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ABSTRACT

We introduce a footstep-induced floor vibration sensing system that
enables us to quantify the gait pattern of individuals with Muscular
Dystrophy (MD) in non-clinical settings. MD is a neuromuscular
disorder causing progressive loss of muscle, which leads to symp-
toms in gait patterns such as toe-walking, frequent falls, balance
difficulty, etc. Existing systems that are used for progressive track-
ing include pressure mats, wearable devices, or direct observation
by healthcare professionals. However, they are limited by oper-
ational requirements including dense deployment, users’ device
carrying, special training, etc. To overcome these limitations, we
introduce a new approach that senses floor vibrations induced by
human footsteps. Gait symptoms in these footsteps are reflected by
the vibration signals, which enables monitoring of gait health for in-
dividuals with MD. Our approach is non-intrusive, unrestricted by
line-of-sight, and thus suitable for in-home deployment. To develop
our approach, we characterize the gait pattern of individuals with
MD using vibration signals, and infer the health state of the patients
based on both symptom-based and signal-based features. However,
there are two main challenges: 1) different aspects of human gaits
are mixed up in footstep-induced floor vibrations; and 2) struc-
tural heterogeneity distorts vibration propagation and attenuation
through the floor medium. To overcome the first challenge, we char-
acterize the symptom-based gait features of the footstep-induced
floor vibration specific to MD. To minimize the performance in-
consistency across different sensing locations in the building, we
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reduce the structural effects by removing the free-vibration phase
due to structural damping. With these two challenges addressed,
we evaluate our system performance by conducting a real-world
experiment with six patients with MD and seven healthy partici-
pants. Our approach achieved 96% accuracy in predicting whether
the footstep was from a patient with MD.
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1 INTRODUCTION

Muscular Dystrophy (MD) is a genetic neuromuscular disorder
influencing 1 in 3500 to 5000 births worldwide [1], causing progres-
sive loss of muscle and early death (average 19 years old) without
intervention [2, 3]. This disease is generally first detected during
childhood (2-5 years old). Early signs include toe walking and diffi-
culty getting up from the floor [4]. As the disease progresses, muscle
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degeneration impairs cardiac and respiratory functions, leading to a
shortened life expectancy. Monitoring of gait health in individuals
with MD can help doctors to provide more adaptive and timely
treatments. While there is no cure, treatments such as corticos-
teroid therapy and proactive cardiac and respiratory intervention
have been evidenced to delay progression of the disease and can
extend a patient’s life span by more than 20 years [2, 3].

There are existing clinical approaches and sensing systems to
monitor gait health in patients with MD. After clinical diagnosis,
the progression of MD is typically tracked by measuring the pa-
tients’ functional abilities. Those measures include walking speed
or ability to do common activities such as climbing stairs, which re-
flect changes in muscle weakness [5, 6]. The functional assessments
and traditional gait analysis, however, are restricted to in-person
appointments at healthcare clinics. Since MD is a rare disease this
can require the family to travel long distances to see the correct
specialist. A system that can monitor a patient in their home would
be a useful tool for more frequent and continuous monitoring of
MD progression.

There are several existing sensor technologies for continuous
gait monitoring, such as pressure-based, wearable-based, and vision-
based sensing systems [7, 8]. However, these systems have limita-
tions due to operational requirements; for example, they require an
in person visit (direct observation), dense sensor deployment (pres-
sure) or clear lines of sight (vision), and/or requiring the patient to
wear a device for a long period of time (wearables). These limita-
tions make such sensors inadequate for continuous monitoring in
non-clinical settings.

To overcome these limitations, we introduce a footstep-induced
floor vibration-based system that can monitor gait health in a pa-
tient’s home. The primary intuition is: when humans are walking
in the building, each footstep serves as an excitation to the floor to
generate a vibration response. By analyzing these footstep-induced
floor vibrations, we characterize the patients’ gait using vibration-
based features to identify disease-related gait impairments. Com-
pared to other gait analysis approaches, footstep-induced floor
vibration sensing is non-intrusive and can be sparsely deployed (up
to 20m distance [9, 10]). More importantly, it allows monitoring in
a non-clinical setting with fewer privacy concerns. By interpreting
vibration characteristics as an indicator of disease progression, we
suggest our system to be a useful monitoring tool for gait-related
disease progression.

Through prior studies, footstep induced vibration-based methods
have been successful in multiple walker identification, step localiza-
tion, and gait parameter estimation [11-15]. However, it remains a
challenge to address the problem of monitoring individuals with
MD for the following reasons: 1) the floor vibration signals contain
other aspects of the footstep that are not related directly to the
gait disorder; 2) when the vibration waves propagate through the
floor, detected gait patterns are sensitive to variability in structural
properties of the floor medium. Therefore, it is necessary to reduce
the structural effects captured in the vibration signal to improve
the robustness of our system.

To address these challenges, we leverage a physics-informed ap-
proach to extract gait information and reduce structural influences.
To address the first challenge of separating the mixture of gait infor-
mation, we convert vibration signals into temporal gait parameters,
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stability scores, and toe-walking likelihood to quantify physical
symptoms which have been demonstrated to characterize MD, such
as low step frequency, poor balance, and toe-walking gait [6]. This
conversion of the vibration signal into the aforementioned features
known to be related to MD improves the interpretability of our
system. To address the second challenge of confoundment in the
vibration signal from structural effects, we leverage the insight that
one footstep can be assumed as an impulse to the floor that re-
sults in two primary vibration response phases: 1) forced-vibration
phase, and 2) free-vibration phase [16]. The free-vibration phase
occurs after the forced-vibration phase caused by the footstep im-
pulse. In the free-vibration phase, the floor vibrates under structural
damping, primarily governed by structural properties rather than
footstep impacts. Thus, we detect and exclude the free-vibration
phase. This truncation of the vibration signal serves to increase the
effective gait information input to our model, which improves the
efficiency of our system performance.

To evaluate our method, we conducted real-world walking ex-
periments at Nationwide Children’s Hospital with thirteen human
subjects, six of which are patients with MD. Our system achieved
an average accuracy of 96% for detecting the presence of MD (4x
error reduction over a naive baseline that uses signal-based features
only).

The contributions of this paper are:

e We develop a footstep-induced floor vibration system for
monitoring gait health in individuals with MD.

e We characterize the footstep-induced floor vibrations to ex-
tract physical symptoms of MD and to reduce the structural
effects. This improves the interpretability and robustness of
our system.

o We evaluate the performance of our method using real-world
walking experiments with MD patients.

The remainder of the paper covers the physical insights, our
physics-informed approach in MD monitoring, and the field evalu-
ation of our approach, followed by conclusions and future work.

2 PHYSICAL INSIGHTS FOR
FOOTSTEP-INDUCED FLOOR VIBRATION
SENSING

Footstep-induced floor vibrations are generated by footstep impact
forces. Similar to hammer strikes, each footstep can be regarded
as a short-duration force applied to the floor, which causes a small
deformation in the underlying floor slab [16]. Although the dis-
placement is unobservable to the human eye, it can change the
internal stress of the slabs with an increase in shear force and
bending moment around the impact location, resulting in dynamic
structural response to retain equilibrium. As the ensuing structural
response waves propagate through the floor, they can be measured
by vibration sensors deployed on the ground, which transform the
vertical displacements into electrical voltage series. Variation in the
footstep forces due to gait anomalies results in variance in the floor
vibration response, which we use to infer physical characteristics
of human gaits in individuals with MD.
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Figure 1: The Framework of Our Method

Many types of gait symptoms of MD are reflected in footstep-
induced floor vibrations. First, slow walking and unbalanced foot-
steps due to weakness in leg muscles are characterized by spatio-
temporal parameters in gait analysis [17]. Previous research showed
that temporal gait parameters such as step time or stride time,
left-right gait balance, and footstep forces can be estimated from
footstep-induced floor vibrations [13, 18]. Secondly, at the clinical
gait analysis scale, toe-walking gait - in which a subject makes
contact with the floor using only the ball of their foot/toes (i.e., no
heel strike) - is a frequent characteristic [3, 4]. Previous research
suggests that transitions in heel-to-toe contact with the floor can
be reflected by the low frequency bands in footstep-induced vibra-
tions, which allows us to detect toe-walking behavior using features
in the frequency domain [19]. Details of this implementation are
described in Section 3.2.

While structural vibrations capture gait-related characteristics,
they are confounded by the structural response of the floor slab, re-
sulting in inconsistent system performance across different sensing
locations. When vibration waves travel through the floor, hetero-
geneity in structural properties, such as mass, stiffness, and natural
frequency, will alter patterns of wave dispersion through the floor
and force transfer through joints and connecting walls [12, 14, 20].
As a result, sensors at different locations and in different buildings
receive dissimilar wave forms despite the same input force. In cer-
tain cases, different footstep impacts can even generate very similar
vibration signals, resulting from distortion due to structural effects.
This impairs the system performance in characterizing the footstep
inputs using sensor records. To address this issue, we develop an
approach to reduce structural effects, which we discuss further in
Section 3.3.

3 PHYSICS-INFORMED ANALYSIS FOR
MUSCULAR DYSTROPHY MONITORING
Our method uses physics-informed analysis to achieve the goal of

monitoring the gait patterns of individuals with MD. Figure 1 shows
the framework of our method. Firstly, we record and pre-process the
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footstep-induced floor vibrations generated by human gaits. Then
we address our two challenges by identifying the following features
of the vibration: 1) symptom-based: we characterize physical gait
symptoms of MD by extracting different aspects of gait patterns
from footstep-induced floor vibrations; and 2) signal-based: we
reduce the structural effect on vibration signals by excluding the
free-vibration phase and then extract signal-based features from
the truncated signals in both time and frequency domains. Among
symptom-based features, we also consider gender as a feature in
addition to the gait characteristics since gender difference leads
to different gait patterns [21]. In addition, MD almost exclusively
affects males due to the dystrophin gene mutation occurring on the
X-chromosome [2, 22], so using gender as a feature incorporates this
sampling bias factor. To test our ability to differentiate between MD
gaits and normal ones, we extract both signal- and symptom-based
features from each footstep and learn a label of either “Healthy” or
“Unhealthy”.

3.1 Sensing and Data Pre-processing

To capture the footstep-induced floor vibrations, we use an array
of geophone sensors to measure the vertical velocity of floor vibra-
tions and then process the signals into isolated footstep traces. The
recorded signals are first detrended to zero mean and de-noised
with a 200 Hz lowpass filter and Wiener Filter. We then apply an
anomaly detection algorithm which identifies significant signal am-
plitude changes by detecting the deviation of the mean signal from
ambient noise levels [11]. The algorithm consists of two passes:
in the first pass, individual footsteps are identified using anomaly
detection; in the second pass, a group of consecutive footsteps are
segmented as one footstep trace. Detected and segmented footsteps
are then analyzed in the following sections.

3.2 Physical Symptom Characterization

With extracted footstep traces and associated individual steps, we
characterize the physical symptoms of MD, including 1) slow walk-
ing, 2) balance difficulty, and 3) toe-walking gait. In this section,
we describe each of these features and how they relate to MD
classification.

Slow Walking: As demonstrated in past research, muscle loss
from MD results in a slower walking speed and irregularity in
footstep pace [6]. As presented in Figure 2, the footstep traces
contain temporal information of the beginning and end of each
footstep, which can be used for characterizing “slow walking”. In
this way, we estimate step time (time to transition from the left to
right foot, or vice versa) and stride time (time between consecutive
steps by the same foot, for one complete stride) by extracting the
onset of each detected footstep in a trace. Once estimated, step time
and stride time are used as features which characterize temporal
aspects of a person’s gait.

Balance Difficulty: Difficulty in maintaining balance between
left and right footsteps is an important clinical indicator used in
MD assessment [6]. When patients have difficulty maintaining
gait balance, their footsteps tend to induce less consistent floor
vibrations than those induced by healthy gaits. This symptom is
reflected in the power spectrum because differences in footstep
impact forces lead to changes in power across frequency bands.
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Figure 2: Sample footstep trace. Detected footsteps are
shown in boxes

Therefore, we characterize the gait balance by a stability score that
compares the similarity of the power spectrum between footsteps.
To measure the pair-wise step stability, we use the cosine similarity
(Si,j) defined as [23]:

_ _Xi(w) - Xj(w)
11X ()11 ||X (@)

where Xj, Xj represent the power spectral density of vibrations in-
duced by two randomly selected footsteps of a given person. Unlike
Euclidean and Mahalanobis distance, cosine similarity quantifies
the difference between two vectors in orientation instead of in
magnitude, so that this metric is less affected by different sensing
distances and amplification rates.

Toe-walking Gait: Toe-walking gait, an early sign of Duchenne
and Becker Muscular Dystrophy, is commonly considered as a phys-
ical criterion for diagnosis of these diseases [3, 4]. It is characterized
by the absence of heel strikes and occurs as a compensation for
muscle weakness when walking. Therefore, we determine the “like-
lihood of toe-walking” as the confidence in classifying a footstep
for displaying toe-walking behavior. The classification is conducted
using a support vector machine (SVM) with Gaussian kernels, be-
cause it has larger model capacity than the rest of the nonlinear
classifiers using the kernels, and empirically it performed the best
in accuracy for toe-walking prediction. In addition, SVM can pro-
vide a measure of confidence in predictions based on the distance of
sample points from the decision boundary. Since previous studies
suggest that different footstep impact forces lead to discrepancies
in frequency bands of the vibration signals [11], and power spectral
density around 40Hz indicates heel strike and toe push-off behav-
iors [19], we incorporate dominant frequency and power spectral
density around 40Hz as features. In addition, we include step time
and stride time as features since individuals who toe-walk can have
slower walking pace than normal walking in order to maintain
left-right balance. Using this model, we compute the confidence of
toe-walking for each footstep. The confidence is then converted into
the probability of the footstep made by a person with toe-walking
gait using a probabilistic model on top of the SVM [24], where high
confidence results in a large probability. The resulting probability
of toe-walking is then used as a feature in our main system, where
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Figure 3: Forced-vibration phase and free-vibration phase of
a sample footstep signal

the classification task is to predict whether the footstep was made
by a person with MD.

3.3 Structural Effect Reduction

As discussed in Section 2, footstep-induced floor vibrations can be
influenced by structural properties when the waves are transmitted
between the excitation source and sensors [20]. While it is impos-
sible to completely remove this effect, we are able to minimize its
influence through footstep phase separation. In general, structural
vibrations induced by the impact of each footstep are divided into
two phases: 1) the forced-vibration phase when the gait force is
impacting the floor, and 2) the free-vibration phase when the struc-
ture is vibrating without excitation forces [25]. While the former
contains physical information of the gait patterns, the latter mainly
involves the structure behavior itself. Figure 3 presents a sample
footstep-induced floor vibration signal containing these two phases.
We can observe that the vibration damped out under the structural
effect during the free-vibration phase.

To achieve our goal of structural effect reduction, we detect
and remove the free-vibration phase of the signal. However, as
the separation point of the two phases is unclear, we use a grid
search to find the optimal separation point. The process for this
phase separation is as follows: 1) given an assumed separation point,
we conduct training to predict whether the footstep was made by
a person with MD on the signal-based features without the free-
vibration phase with 5-fold cross validation; then, 2) we calculate
the corresponding prediction accuracy to infer the effectiveness
of the chosen point. By repeating the process using a grid search
over the time-domain, we obtain the separation point where the
highest prediction accuracy occurs. Once we find this point, we
remove the free-vibration phase of footstep-induced floor vibration
signals. After that, characterization as a MD footstep is performed
using only the forced-vibration phase, from which we extract signal-
based features. Since it was previously observed that the frequency-
domain characteristics infer how the foot impacts the floor [19],
we select the dominant frequency, mean power spectral density,
and signal energy as our features. With these signal-based features
extracted from the isolated forced-vibration phase, we improve
the robustness of our system performance across different sensing
locations.
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3.4 Prediction of Footsteps from Individuals
with Muscular Dystrophy

Our final feature set for prediction consists of both signal- and
symptom-based features. For model training and testing, we se-
lected Support Vector Machine (SVM) with a Gaussian Radial Basis
Function (RBF) kernel because the flexible nature of the RBF kernel
captures a high degree of non-linearity between features. The model
classifies each footstep signal with one of two labels: "Healthy", indi-
cating the footstep originates from a healthy subject, or "Unhealthy",
indicating it comes from a subject with MD. Through this frame-
work, we provide insights into the characteristics of abnormal gait
patterns seen in individuals with MD.

4 FIELD EVALUATION

To evaluate our method, we conducted an experiment at Nationwide
Children’s Hospital in Columbus, Ohio with six patients with MD
and seven healthy participants.

4.1 Experimental Setup

For the experiment, eight SM-24 geophone sensors recording at a
sampling frequency of 25.6 kHz were mounted to the floor along
one edge of a 26-meter long, 2-meter wide hallway, spaced apart
by 2 meters. To accommodate variations in deployment conditions
including differences in geophone sensors, distance between sensor
and footsteps, etc., we incorporate records from all the sensors for
latter analysis. To improve the signal-to-noise ratio (SNR), the raw
signal was amplified by connecting each geophone to a 100-1000x
variable gain operational-amplifier to aid in capturing footstep sig-
nals and increasing the sensing range to up to 20 meters in diameter
[26]. The amplification rate is selected empirically by conducting
preliminary walking experiments and maximizing response ampli-
tude while avoiding clipping of the signal. A National Instruments
NI DAQ is used to acquire and convert the analog signal to the
digital signal. In addition to vibration sensors, three cameras are
installed at the designated locations to provide visual references
of gait behavior. During the experiments, we hammer the floor to
indicate the start and end of each experimental run. As presented
in Figure 4, the participants are requested to walk/run with their
most comfortable gaits. Each of them walked along the hallway
on the left lane and turned around to return back on the right
lane, then repeated the same path to make a total of two full loops
(i-e., 104 meters in total). All experiments were conducted in accor-
dance with our approved IRBs (CMU: STUDY2017-00000498, NCH:
IRB12-00001, and Stanford: IRB-55372).

The raw signals contain multiple sources of noises from the
sensing system. These noises are from noise sources such as: the
sensors, ADC, amplifiers, and power outlets. In order to de-noise
the raw signals and extract gait information, we applied the method
described in Section 3.1 and compiled a dataset of footstep features
from the recorded time series.

After data pre-processing, a total of 1448 footsteps are in our
dataset. The labels of the dataset are collected from the clinical di-
agnosis of MD, where the footsteps from the six patients are labeled
as “Unhealthy” and the remaining footsteps in the control group
were labeled as “Healthy”. Overall, the ratio of healthy:unhealthy
footsteps is 750:698 in the final dataset, which is relatively balanced.
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In addition, the subject’s gender is used as a feature, in order to
account for potential gait differences. To get the ground truth for
toe-walking, we also visually identified whether patients exhibit
toe-walking gaits from the camera video recordings. Among all
subjects in the healthy control group, only one adult demonstrated
toe-walking gait, while in the unhealthy group, everyone except
one child showed toe-walking gait.

4.2 Results

With the dataset obtained from the field experiments, our system
achieves an overall cross-validation accuracy of 96% for classify-
ing whether the footstep was from a healthy subject or one with
MD. In the following sections, we address the aforementioned chal-
lenges and demonstrate improvements to the model first through
the addition of physical symptom-based features, then through the
structural effect reduction.

4.2.1  Evaluation of Physical Symptom-based Features.

In order to extract information from the signals related to MD, we
characterize the gaits for each participant by estimating the tempo-
ral parameters, stability scores, and their toe-walking probability
for each footstep. As shown in Figure 5, the first three bars rep-
resent the prediction performance using only singular aspects of
gait symptoms of MD. The fourth bar considers all three symptom-
based features in the box and the fifth bar includes all signal-based
features. Then the last two bars evaluate the effectiveness of struc-
tural effect reduction, which is discussed in Section 4.2.2. The last
bar in dark red, in particular, shows our system performance with
both symptom-based and signal-based features.

Overall, our system achieves the highest accuracy among all
other models. The accuracy of the first three bars are all larger
than 50% (i.e., random guessing), which indicates that the estimated
gait parameters improve the accuracy of prediction. By comparing
these bars, we observe that toe-walking probability has the greatest
predictive ability since the third bar (model with only toe-walking
probability as a feature) has higher accuracy than the other two
(models with only footstep stability or only temporal parameters as
features). Temporal parameters have significantly more influence
than footstep stability. In addition to the three physical symptoms,
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Figure 5: System performance on predicting whether the
footstep was made by a person with MD. Demonstrate the
1) effectiveness of symptom-based features and signal-based
features and the 2) effectiveness of structural effect reduc-
tion. The boxed bars represent individual symptoms of MD.
The dark red bar represents our system.

we also compared the prediction accuracy with and without the
biological sex feature. We have a 2x improvement in error rate
reduction (error reduced from 8% to 4%) by adding biological sex to
our feature set. In summary, our system achieves a 96% of accuracy
in prediction of whether the footstep was made by a person with
MD.

By comparing the fourth and fifth bars, it is observed that the
symptom-based features are more influential than the signal-based
features in prediction as the model with the former has higher ac-
curacy than that with the latter. In addition, since both of these two
bars have lower accuracy than the last bar (the model performance
by all features - our system), it is shown that both symptom-based
and signal-based features are necessary in our system to boost up
the overall performance. Among the signal-based features, we se-
lected 20-50Hz and 60-80Hz frequency bands in the power spectrum
based on the empirical observation of the healthy/unhealthy label
versus the mean power spectral density (PSD) plot. We observed
that “Unhealthy” subjects have lower mean PSD magnitude than
“Healthy” subjects in 20-50Hz, while the mean PSD magnitude of
“Unhealthy” subjects in 60-80Hz are higher than “Healthy” subjects.
The choice of these two bands is influenced by the structural prop-
erties, deployment conditions, etc. that distort the vibration signals
in the frequency domain.

4.2.2  Effectiveness of Structural Effect Reduction.
We compare the accuracy of predicting whether the footstep was
made by a person with MD with and without the structural effect
reduction in order to evaluate its effectiveness. Prior to applying
the structural effect reduction (the second-to-last bar), signal-based
features are computed using the full footstep time signal. After the
structural effect is reduced by eliminating the free-vibration phase
of the signal (the last bar), those features are computed using the
truncated footstep time signal.

When comparing the fourth and sixth bars in Figure 5, we notice
that when signal-based features without structural effect reduction
are added to the symptom-based features, the prediction accuracy
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drops by 2%. This is because the structural effect in the the signal-
based features leads to model overfitting towards the structure
instead of the human gait. In contrast, the last two bars present that
model performance improves significantly (by 8%) after reducing
the structural effect. It is because the gait information becomes
more influential in the input, which reduces the model variance
due to the structural effect.

5 DISCUSSION AND FUTURE WORK

The performance in evaluation shows promising results for achiev-
ing the goal of monitoring the gait patterns of individuals with
MD. There are many future directions to expand our method. First,
we will explore more physical symptoms of MD in addition to the
three symptoms that we evaluated. Since symptom-based features
allow us to track symptoms across different stages of MD, we will
conduct long-term experiments with a fixed set of subjects to eval-
uate our system’s performance on quantitative assessment of MD
progression. Secondly, we will consider discrepancies in walking
behavior due to differences in age, gender, body figure, etc. We will
also collect additional data from healthy children and unhealthy
adults as age is a factor that influences both the human gaits and
the prediction results. Furthermore, since our system can lead to
in-home applications in MD monitoring and tracking, it is neces-
sary to design robust algorithms and reliable hardware schemes to
achieve continuous indoor monitoring.

6 CONCLUSION

In this paper, we present a footstep-induced floor vibration sensing
system for monitoring the gait patterns of individuals with MD. To
separate different aspects of gait information mixed up in vibration
signals, we characterize physical symptoms specifically for MD,
which improves the reliability and interpretability of our system. To
address the challenge of the inconsistent performance at different
sensing locations, we introduce structural effect reduction approach
to enhance the robustness of our system. Our approach is evaluated
in a real-world walking experiment with MD patients. Our system
achieves 96% of testing accuracy in the prediction of whether the
footstep was from patients with MD, which significantly outper-
forms the model without any physical insights. These promising
results demonstrate the effectiveness of taking a physics-informed
approach to improve the performance of MD prediction through
footstep-induced floor vibration sensing.
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