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ABSTRACT

This paper introduces a window-based sequence-to-one approach

with dynamic voting for nurse care activity recognition using

acceleration-based wearable sensors. Nurse care activity recog-

nition is an essential part of ensuring high quality patient care

and providing constructive and concrete feedback to the care team.

Some of the current sensing approaches for activity recognition in-

clude vision-based sensing and non-wearable RF sensing. However,

their application is limited in real-life scenarios due to restrictive

factors such as perceived privacy and sensitivity to specific oc-

cupant paths. To overcome these limitations, acceleration-based

wearable sensing have been introduced in recent works. However,

the duration distribution of nursing activity instances are biased

and skewed. This skewness leads to imbalanced datasets which

will result in low performance for the common predictive models.

Further, uncertainties such as ambient noise and environmental

factors affect the signals and thus can potentially reduce the activ-

ity recognition performance. To overcome the first challenge, we

separate the signals into short windows with adaptive overlapping

ratios for activity instances having different lengths, which bal-

ances the label distribution due to event length variations. Further,

we use a multi-layer Long Short-Term Memory (LSTM) model to

predict nursing activities of each sliding window and introduce

a voting-based scheme for complementing the predictions across

the signal windows and addressing the uncertainty challenge. We

validate our approach through participation in “The 2nd Nurse Care

Activity Recognition Challenge Using Lab and Field Data” as team
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1 INTRODUCTION

Nursing care is an essential component of medical care in a variety

of settings - home care, assisted living, and hospital/acute-care to

name a few. The activities that nurses perform often directly impact

the health and well-being of patients [5]. As a result, there is a great

need for understanding the daily activities of nurses so that further

links between quality nursing behavior and positive patient out-

comes can be reinforced, and instances of negligent or substandard

care can be identified and addressed. However, due to the complex-

ity of nurse care activities, high data collection cost, and the lack

of availability of labeled activity information, sensing-based nurse

care activity recognition has not been extensively explored [10].

Outside of the nurse activity domain, sensing and tracking hu-

man activity is a highly studied research area [7]. Existing ap-

proaches include vision-based [6], Radio Frequency(RF)/WiFi-based
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Figure 1: Flowchart of the introduced hierarchical sequence-to-one approach for nurse care activity recognition.

[17], structural vibration sensing [3, 8, 12, 13] and mobile/wearable-

based sensing [1, 14]. These approaches rely on the insight that

various human activities have distinct motion associated with them

that can be used for uniquely identifying each activity. In many

cases, these sensing modalities are restricted due to requirements

of line-of-sight (vision), perceived privacy concerns (vision), and

requiring motion through a specific path/sensing area (RF/WiFi).

For nurse activity recognition, wearable-based sensing approaches

provide significant benefits over many of these existing approaches

due to their ubiquity, ease of instrumentation, and that they do not

require any special action from the nursing staff (beyond putting

on the device each day). As a result, this work focuses on leveraging

acceleration-based wearable sensing for nurse activity recognition.

A common approach for wearable-based activity recognition is

sequence-to-one Long Short Term Memory (LSTM). The main idea

behind this approach is to take a sequence of signal windows as

the input and learn a label (i.e., the activity) for the whole sequence.

Although this approach has provided strong performance in various

signal-based classification tasks, it faces two main challenges for

nurse care activity recognition. Specifically, 1) the distribution of

nursing activity instances across the known nursing activity types

is imbalanced, resulting in poor predictive performance (specifically

for the minority classes), and 2) there are various sources of un-

certainty, such as environmental factors and noise, which makes it

di�cult to accurately identify activities using short duration signal

windows.

To overcome the aforementioned challenges, we introduce a

window-based sequence-to-one approach with dynamic voting for

nurse care activity recognition. To provide the signal windows,

we first separate long time-series signals into event-wise signals

by detecting variance changes of the signal, and apply a sliding

window to produce constant-length signal windows. To address the

first challenge, we design an adaptive algorithm which determines

the overlapping ratio of the sliding windows for each event based

on their duration. Specifically, we use a large overlapping ratio

between windows for short events and avoids overlapping for long

events, which produces a more balanced distribution across the

known nursing activity types. To address the second challenge, we

apply a dynamic majority voting algorithm for complementing the

event-wise predictions across the signal windows and reducing the

effect of the uncertainties.

To evaluate our work, we showcase its performance in “The

2nd Nurse Care Activity Recognition Challenge Using Lab and

Field Data” as team HealthyVibes and applied our approach to

the Heiseikai data, a nurse care activity dataset [11][15] collected

from real-world field experiments. With this dataset, our approach

achieves 97.4% accuracy on training and 43.9% accuracy and 0.449

F1-score on validation.

2 SEQUENCE-TO-ONE APPROACH FOR
NURSE CARE ACTIVITY RECOGNITION

In this section, we introduce our window-based sequence-to-one

approach with dynamic voting for nurse care activity recognition.

As shown in Figure 1, our approach contains three modules: (1) a

data processing module, (2) a window-level prediction module and

(3) an event-level prediction module.

2.1 Data Processing Module

In this module, we process the wearable acceleration data to prepare

a balanced dataset of the time-domain signal windows and their

corresponding activities. To this end, we first segment continuous

time series signals into “events”. Then, we use an adaptive sliding

window to split the signals into signal windows and compile a

relatively balanced dataset.

2.1.1 Event Segmentation. In this section, we segment the signal

into events, which are potentially comprised of several signal win-

dows [16]. The main intuition behind this step is that the occur-

rence of nursing activities will result in larger variance in the signal.

Therefore, we identify these events by tracking the moving vari-

ance of the acceleration signal and comparing it to the background

ambient vibration (when there is no event). Specifically, we first

compute the L2-norm of the signals and noises from three direc-

tions (i.e., x, y, z) and then calculate the 10 second moving variance

along the L-2 norm of the continuous signal. After determining the

moving variance, we identify an event when the signal variance

is more than three standard deviations from the variance of the

ambient noise. With the “events” identified from the dataset, we

conduct data interpolation to achieve a uniform sampling rate of

10Hz for each event based on the empirical observation that the

number of effective data points per second is around 10 after data

de-duplication. Further, we have observed that the duration dis-

tribution of the events is skewed. This means that the majority of

the events have lengths of around 20s to 50s, with outliers that are

shorter than 5s or longer than 15 minutes. We hypothesized that

these extremely short or long events are caused by spurious factors

and hence, have filtered them out and only kept the activities within

the middle 80 percentile duration range for further analysis.

2.1.2 Adaptive Windowing. Although removing the outlier events

controls the range of event duration, the event dataset is not suitable

for use as a model input because of the variable window length.

Thus, we use a sliding window to assure signal inputs to the model

have the same length, which will reduce the model complexity

and retain model generalizability. However, the label distribution

is imbalanced over all the windows, which poses challenges in

model training and prediction. Therefore, we designed an adaptive

windowing algorithm to estimate the overlapping ratio for each
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event. The process for this adaptive algorithm is as follows: in the

first pass, we determine the event duration by reading through all

the timestamps in each event; in the second pass, we calculate the

overlapping ratio as a function of event duration. This function

satisfies two conditions: 1) for short events, the overlapping ratio is

large between the windows, while it is small for long events; 2) for

events exceeding 2 minutes, the overlapping ratio is automatically

set to zero. As a result of this algorithm, the number of windows

for each event label is more balanced, which achieves 2× reduction

of relative ratio between the majority and minority counts (i.e.,

from 12 to 6). To select the best length for the sliding window, we

conduct a grid search across multiple window durations and select

10 seconds because it gives the best activity prediction accuracy.

2.2 Window-Level Prediction Module

In this module, we first train a sequence-to-one Long Short-Term

Memory (LSTM) RNNmodel. This model, in turn, takes each sliding

window signal as a sequence input and performs window-level

activity recognition.

LSTM is a commonly-used RNN architecture that was specifically

designed to overcome the vanishing gradient problem encountered

by traditional RNNs [2]. It maintains a memory over time and learns

when to write and reset memory, and when to read information

from memory. Details of the LSTM model can be found in work by

Hochreiter, et al. [9].

In addition, to learn high-level features from real-world data

that has large size, and to obtain a good prediction accuracy, we

use a deep-LSTM that stacks multiple LSTM models on top of each

other. We then add multiple fully-connected layers with nonlin-

ear activation functions on top of the last hidden state from the

last LSTM layer and apply a softmax to obtain a vector of class

probabilities for each sliding window signal. The model is trained

by back-propagation aiming at minimizing the cross-entropy loss

between the predicted activity label and the ground truth label. De-

tails of the architecture, hyper-parameters and training strategies

for obtaining the result and preventing over-fitting is presented in

Section 3.2.

2.3 Event-Level Prediction Module

In this module, we first perform dynamic majority voting and then

use the voting results for event-based activity recognition. As men-

tioned before, every event contains multiple windows. Therefore,

within one specific event, there may be multiple predicted activi-

ties across each of the signal windows. This likely occurs due to

the ’noisy’ windows that contain partial information of an event,

and/or possible intervals within an event that are not relevant to

that event. For instance, an event of “helping patient movements”

might consist of standing still and moving the patient; “standing

still” might be an activity in one window of that event but it alone

it does not characterize the activity of “helping patient movements”.

As a result, the “standing still” window adds “noise” to the event

prediction. To eliminate these ’noisy’ windows, we implement a

dynamic voting algorithm based on the Boyer–Moore majority vote

with minor modifications [4].

The Boyer-Moore majority vote is an algorithm designed to find

a majority member among a streaming sequence of labels. In our

Figure 2: The effect of dynamic majority voting on one

event. Comparison of the activity labels is given by 1) the

ground truth, 2) window-level prediction and 3) dynamic

majority vote

case, for example, the algorithm provides dynamic voting among

the label sequences from the window-level predictions to get the

event-level activities. The algorithm initializes a majority counter

with zero. When a new label is entered, the algorithm checks the

value of the counter: 1) if the counter is 0, this label will be stored

and counter will be set to 1. 2) If the counter is non-zero, there are

two cases: i) if the new label is equal to the stored label, counter

is incremented by 1. ii) Otherwise, the counter is decremented

by 1. This algorithm is effective at eliminating scattered minority

labels among a sequence of majority labels (i.e. the predicted label

with highest count). For a window sequence that is dynamically

updating, since enough alternative labels should be input before the

majority label count goes down, this algorithm will suffer from a

time lag. Time lag on the correct label sequence will unintentionally

alter the labels that are originally correct. To solve this time lag, the

assignment of 𝑖 = 𝑖−1 can be altered to 𝑖 =𝑚𝑎𝑥 (0, 𝑖−2), which will

fasten the subtracting process and hence has less time lag for a new

label to become the majority. By using the dynamic majority vote

algorithm, the original label sequence of window-level predictions

will have a continuous sequence of majority labels and scattered

minority labels will be eliminated.

As is shown in figure 2, the solid orange line represents dynamic

majority vote on the label sequence of window-level prediction from

one event. From timestamp 1 to 90 of the window-level predicted

sequence, minority labels are scattered among majority labels (label

12 in this case). By implementing a dynamic majority vote, scattered

minority labels are altered to a majority label (which is also the true

label here), thereby increasing the accuracy of the window-level

prediction sequence.

3 EXPERIMENTAL RESULTS

In this section, we evaluate our approach on an open-access dataset

collected in a care facility in Japan. In this section, we first describe

the nurse care activity dataset and then discuss the evaluation

results.

3.1 Nurse Care Activity Recognition Dataset

We first describe the nurse care activity recognition dataset [11][15].

The dataset consists of 12 nursing activities that can be categorized

into 3 principle types: A) Help in Mobility, B) Assistance in Transfer,

and C) Position Change. From these three principal categories, 12
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activities are considered: A1) Guide (from the front), A2) Partial

Assistance, A3) Walker, A4) Wheelchair, B5) All Assistance, B6)

Partial Assistance (from the front), B7) Partial Assistance (from

the side), B8) Partial Assistance (from the back), C9) To Supine

Position or To Right Lying Position, C10) To Left Lying Position,

C11) Lower Body Lifting, and C12) Horizontal Movement. The

raw data was collected using accelerometers in mobile phones. The

mobile phone is secured on the right arm using an armband for each

nurse. The data was acquired with a 60Hz sampling rate. Due to the

synchronization delay in the mobile phone, the actual sampling rate

of the recorded signal varies from 1Hz to 100Hz with duplicated

data points.

Two datasets are provided for training: “Lab” and “Field”, which

consist of accelerometer data from two users and six users, respec-

tively. Lab data was collected in the experimental lab: the Smart

Life Care Unit of the Kyushu Institute of Technology in Japan, and

real field data was collected in a care facility in Japan. These two

datasets are provided for “The 2nd Nurse Care Activity Recognition

Challenge Using Lab and Field Data”. We combine both the “Lab”

and “Field” datasets into one dataset and use this combined dataset

for training and validation of our models.

Each training dataset contains raw data and the correspond-

ing activity labels. Raw data consists of User ID, timestamp, and

accelerometer readings. Data labels contains a User ID and time

intervals for each activity (start and end timestamp and associated

activity). A matching of the raw data with labels was performed

to tag specific activity to each accelerometer reading. In general,

for detecting the events, we can use a variance-based approach, as

discussed in Section 2.1.1. However, as the training dataset for this

challenge is discontinuous, we define one “event” as the accelera-

tion data between the start and end time of a given label. Then, we

assign a label to the event using the corresponding ground truth

information.

The activity labels corresponding to each window in the label

data were manually entered by each nurse. As the experiments

in the “Lab” data were carried out in a controlled setting, there

is an activity label corresponding to every event. That is not the

case for the “Field” data, where manual entry of activity in the real

field setting has rendered many events without an activity label.

The duration of most activities is less than 180 seconds (with the

majority of them ranging from 10 to 40 seconds).

Due to the controlled experiment setup for Lab data, the count

of events corresponding to each activity in the label data is almost

equally distributed (minimum count is 33, maximum count is 39).

But this is not the case for the “Field” data that has a wide variation

of the number of events captured for each activity label (minimum

Count is 1, maximum count is 423). The “Lab” data provided the base

for initial exploration of data due to its uniform distribution. Also,

the inclusion of the “Lab” data in the training set increases number

of observation of activities 2,8,11 that are poorly represented in the

“Field” data.

The testing data was collected in field setting from three nurses.

The raw testing data provided consists of accelerometer data and

timestamp information for each User ID.

It is expected that the accelerometer signal pattern varies for each

activity. This is corroborated in Figure 3 where a stark difference

of signal types can be observed between Activity 4 and 5 for the
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Figure 3: A visualization of one section of data to show dis-

continuity between two activities of user 4. A change in the

signal pattern is noted as the user performs different activ-

ities. The activity visualised involves help in mobility on a

wheelchair (Label 4) and assistance in transfer (Label 5)

same user. It is also noted that the same activity can have different

signal patterns for different users.

3.2 Evaluation Results

In this section, we evaluate the performance of our method with

the pre-mentioned open-access dataset. First, we tune the model pa-

rameters, select training strategies, and evaluate the overall model

performance based on the training and validation accuracy. Then,

we compare the model performance with and without adaptive

windowing to demonstrate the effectiveness of this method in per-

formance improvement. Finally, we evaluate the effectiveness of

the dynamic voting by comparing the model accuracy with and

without it.

3.2.1 Overall Performance. The model architecture we selected

in this work is the deep-LSTM, where we stack multiple layers of

LSTM sequence together to form a deep LSTM model. The input

of the model are windows of 10 seconds with tri-axial accelera-

tions (i.e., a 3-d tensor of shape (#windows, 100, 3)). We split our

training and validation set at an event-level. We randomly split

events into two sets (with a split ratio of 0.15) and then assign all

windows within each event to either the training or validation set.

To improve the quality of the features, we tune the data-processing

parameters such as window size, window overlapping ratio, etc.

After a grid search, we use 10 seconds as our window size, which

gives the best prediction accuracy. To determine the overlapping

ratio between windows, we implement the adaptive algorithm that

calculates the overlapping ratio based on the event duration, which

enables shorter events to generate more windows. This will be

further discussed in Section 3.2.2. Also, we conduct iterative label

down-sampling at each training epoch, which allow us to reduce

over-fitting towards majority labels without losing any informa-

tion from the complete training data. After that, we conduct a

grid search over various combinations of the hyper-parameters,

including the learning rate, the number of LSTM layers, hidden

dimensions, regularization coe�cient, etc. to determine the best

set of hyper-parameters.
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Figure 4: Confusion matrix for the training set with accu-

racy of 97.4%. The model has large model capacity for activ-

ity prediction.

To improve the training e�ciency, we use the Adam optimizer,

which incorporates gradient decaying and momentum to avoid gra-

dient explosion/vanishing and pass the local minima/saddle points.

In addition, we use early stopping to monitor the gradient updates

and cut-off the training process when the loss stops decreasing. Af-

ter obtaining the predictions from the model, we conduct dynamic

voting over the entire sequence of each event to compute the final

prediction results. This will be discussed in Section 3.2.3.

The metrics we used for evaluation are accuracy and F1-score

because of the imbalanced label distribution in the validation set.

The overall training accuracy is 97.4% and the validation accuracy

is 43.9% and 0.449 for F1-score. The training accuracy is high be-

cause the deep-LSTM model has su�cient capacity to incorporate

variances in the dataset. However, it overfits to the dataset and

gradually loses generalizability because of the differences between

events. The discrepancy between the training and validation perfor-

mance indicates that the event-level differences are large. Based on

our definition of an “event”, these differences include time, location,

service target, nursing style, etc., which requires a larger training

set to incorporate all these factors. The confusion matrices of train-

ing and validation set are shown in Figure 4 and 5, respectively. We

observe that the majority of the wrong predictions are on activity

4 and 5, indicating “wheelchair assitance” and “all assistance in

transfer” are more likely to be mixed up with the other activities.

This is because both activities contain similar motions as the other

activities: Activity 5 includes all assistance in transfer movements,

which overlaps with singular partial assistance. Activity 4 is similar

to walking because wheelchair assistance includes walking when

pushing the wheelchair.

3.2.2 E�ectiveness of Adaptive Windowing. Adaptive windowing

enables different length of “event” to have similar window numbers,

which leads to more balanced label distribution for windows-level

prediction. We compare the accuracy of our activity prediction

approach (which uses the adaptive windowing) and the approach

without adaptive windowing. Prior to applying these algorithms

(left bar), the model is trained on a imbalanced dataset, which over-

fits to the majority activity labels. After the adaptive windowing

(right bar), the model is trained on a balanced dataset for each

Figure 5: Confusion matrix for the validation set with accu-

racy and F1-score of 43.9% and 0.449, respectively. The dif-

ferences in training and testing indicate that the model is

over-�tting towards the training dataset, and there are large

differences between the events.

97%

35.6%

97.4%

43.9%

Training Validation
25

50

75

100

A
c
c
u

ra
c
y
 (

%
)

Without Adaptive Windowing

Our Approach

Figure 6: Comparison between our approach and the ap-

proach without adaptive windowing.

epoch, so that all the activity types have the same weight when

computing the loss in each iteration.

As observed in Figure 6, the training accuracy does not change

much because in both models tends to overfit to its training data.

In contrast, the model performance in validation improves signif-

icantly by 8.3% after the adaptive windowing. It is because our

model, which is trained with balanced dataset, captures more fea-

tures between different activity types since they contributes equally

to the loss.

3.2.3 E�ectiveness of Dynamic Majority Voting. To improve the ac-

curacy by eliminating “noisy” windows among window sequences

of unique labels, the Boyer–Moore majority vote algorithm was

implemented and evaluated. Figure 7 shows the result of our ap-

proach which uses this majority vote and compares it with initial

inter-window prediction from LSTM network (i.e., before voting).

For training accuracy, our approach increased the accuracy by 1.9%,

due to the elimination of noise window label modification. While

for validation, our approach improved the accuracy by 9.9%. This

improvement is primarily because dynamic majority voting altered
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Figure 7: Comparison between our approach and the ap-

proach without dynamic voting.

“noisy” labels into their adjacent majority labels, which makes the

labels within one event less scattered (as shown in Figure 2). There-

fore, the accuracy improves as the number of true labels increases.

4 CONCLUSION

In this paper, we present a window-based sequence-to-one ap-

proach with dynamic voting for nurse care activity recognition us-

ing acceleration-basedwearable sensors. This approach enables clas-

sification of nursing activity using wearable accelerometer-based

sensing despite overlapping signals and similar body movements

across varying activities. We developed: 1) an adaptive windowing

algorithm to balance the dataset by estimating the overlapping ratio

for event signals with different windows, and 2) a majority voting

algorithm to determine the majority prediction of an event signal

that contains a sequence of sliding window signals. We evaluate

our approach on an open-access dataset that consists of 6 nurses

and 12 nursing activities. Our approach achieves 97.4% training

accuracy and 43.9% validation accuracy. The recognition result for

the testing dataset will be presented in the summary paper of the

challenge [15].
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APPENDIX

Table 1 summarizes the pipeline and resources for our solution. In

post-processing, we transform all the window-level predictions to

the timestamp-level labels. First, we obtain the start and end time of

each window. For each window, timestamps from raw data that are

within the start and end time are assigned with corresponding label

of that window. By iterating every predicted window, labels with

predictions are mapped into the raw data file. Finally, we obtain a

complete table with user ID, timestamp and label.

Table 1: Description of the pipeline

Sensor modalities Accelerometer

Features Raw tri-axial acceleration signals

Programming information Python, Keras, numpy, sklearn

Window size 10s

Training time 1200s

Training Machine Tesla K80 GPU (24GB RAM)

Testing time 10s

Testing Machine Macbook Pro CPU (16GB RAM)
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