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Abstract

In this work, we propose to employ information-geometric tools to optimize a graph neural network
architecture such as the graph convolutional networks. More specifically, we develop optimization
algorithms for the graph-based semi-supervised learning by employing the natural gradient information in
the optimization process. This allows us to efficiently exploit the geometry of the underlying statistical
model or parameter space for optimization and inference. To the best of our knowledge, this is the
first work that has utilized the natural gradient for the optimization of graph neural networks that can
be extended to other semi-supervised problems. Efficient computations algorithms are developed and
extensive numerical studies are conducted to demonstrate the superior performance of our algorithms

over existing algorithms such as ADAM and SGD.
Index Terms

Graph neural network, Fisher information, natural gradient descent, network data.

I. INTRODUCTION

In machine learning, the cost function is mostly evaluated using labeled samples that are not
easy to collect. Semi-supervised learning tries to find a better model by using unlabeled samples.
Most of the semi-supervised methods are based on a graph representation on (transformed)
samples and labels [11]. For example, augmentation methods create a new graph in which
original and augmented samples are connected. Graphs, as datasets with linked samples, have

been the center of attention in semi-supervised learning. Graph Neural Network (GNN), initially



proposed to capture graph representations in neural networks [20], have been used for semi-
supervised learning in a variety of problems like node classification, link predictions, and so on.
The goal of each GNN layer is to transform features while considering the graph structure by
aggregating information from connected or neighboring nodes. When there is only one graph,
the goal of node classification becomes predicting node labels in a graph while only a portion
of node labels are available (even though the model might have access to the features of all
nodes). Inspired by the advance of convolutional neural networks [14] in computer vision [12],
Graph Convolutional Network (GCN) [10] employs the spectra of graph Laplacian for filtering
signals and the kernel can be approximated using Chebyshev polynomials or functions [24, 22].
GCN has become a standard and popular tool in the emerging field of geometric deep learning
[2].

From the optimization perspective, Stochastic Gradient Descent (SGD)-based methods that
use an estimation of gradients have been popular choices due to their simplicity and efficiency.
However, SGD-based algorithms may be slow in convergence and hard to tune on large datasets.
Adding extra information about gradients, may help with the convergence but are not always
possible or easy to obtain. For example, using second-order gradients like the Hessian matrix,
resulting in the Newton method, is among the best choices which, however, are not easy to
calculate especially in NNs. When the dataset is large or samples are redundant, NNs are trained
using methods built on top of SGD like AdaGrad [4] or Adam [9]. Such methods use the
gradients information from previous iterations or simply add more parameters like momentum
to the SGD. Natural Gradient Descent (NGD) [1] provides an alternative based on the second-
moment of gradients. Using an estimation of the inverse of the Fisher information matrix (simply
Fisher), NGD transforms gradients into so-called natural gradients that showed to be much faster
compared to the SGD in many cases. The use of NGD allows efficient exploration of the geometry
of the underlying parameter space in the optimization process. Also, Fisher information plays a
pivotal role throughout statistical modeling [16]. In frequentist statistics, Fisher information is
used to construct hypothesis tests and confidence intervals by maximum likelihood estimators. In
Bayesian statistics, it defines the Jeffreys’s prior, a default prior commonly used for estimation
problems and nuisance parameters in a Bayesian hypothesis test. In minimum description length,
Fisher information measures the model complexity and its role in model selection within the
minimum description length framework like AIC and BIC. Under this interpretation, NGD

is invariant to any smooth and invertible reparameterization of the model, while SGD-based



methods highly depend on the parameterization. For models with a large number of parameters
like DNN, Fisher is so huge that makes it almost impossible to evaluate natural gradients. Thus,
for faster calculation it is preferred to use an approximation of Fisher like Kronecker-Factored
Approximate Curvature (KFAC) [18] that are easier to store and inverse.

Both GNN and training NNs with NGD have been active areas of research in recent years
but, to the best of our knowledge, this is the first attempt on using NGD in the semi-supervised
learning. In this work, a new framework for optimizing GNNSs is proposed that takes into account
the unlabeled samples in the approximation of Fisher. Section II provides an overview of related
topics such as semi-supervised learning, GNN, and NGD. The proposed algorithm is described
in section III and a series of experiments are performed in section IV to evaluate the method’s

efficiency and sensitivity to hyper-parameters. Finally, the work is concluded in section V.

II. PROBLEM AND BACKGROUND

In this section, first, the graph-based semi-supervised learning with a focus on least-squared
regression and cross-entropy classification is defined. Required backgrounds on the optimization
and neural networks are provided in the subsequent sections. A detailed description of the

notation is summarized in the Table 1.

A. Problem

Consider an information source ¢(x) generating independent samples x; € X, the target
distribution ¢(y|x) associating y; € Y to each x;, and the adjacency distribution ¢(a|x,x")
representing the link between two nodes given their covariates levels x and x’. The problem of

learning ¢(y|x) is to estimate some parameters @ that minimizes the cost function

7(0) = Ex x'mg(x).a~alalxx’)y~a(yl) (Y (X, X', a; 0))] €))

where the loss function [(y,y) measures the prediction error between y and y. Also, x’ and a
show sequences of x’ and a, respectively. As ¢(x), ¢(a|x,x’), and ¢(y|x) are usually unknown
or unavailable, the cost 7(8) is estimated using samples from these distributions. Furthermore, it
is often more expensive to sample from ¢(y|x) than ¢(x) and ¢(a|x,x’) resulting in the different
number of samples from each distribution being available.

Let X = X, to be a dy X n matrix of n > 1 ii.d x; samples from ¢(x) (equivalent to
X ~ ¢(X)). It is assumed that n x n adjacency matrix A = [a;;] is sampled from g(a|x;, x;)

for 7,7 = 1,...,n (equivalent to A ~ g(A|X)). One can consider (X, A) to be a graph of n



TABLE 1

NOTATION

Symbol Description
r,x, X Scalar, vector, matrix
€N,y Regularization hyper-parameters
n The learning rate
A Adjacency matrix
X7 Matrix transpose
1 Comfortable identity matrix
X A sequence of x vectors
n The total number of samples
n The number of labeled samples
F Fisher information matrix
B Preconditioning matrix
r(0) The cost of parameters 6
y,y) The loss between y and y
q(x) The source distribution
q(y|x) The target distribution
q(alx,x") The adjacency distribution
p(y|f(X,A;0)) The prediction distribution
o) An element-wise nonliear function
Veof Gradient of scalar f wrt. 0
Jof Jacobian of vector f wrt. 8
Hof Hessian of scalar f wrt. 8
® Element-wise multiplication operation

nodes in which the ith column of X shows the covariate at the node i and D = diag(}_; a;;)
denotes the diagonal degree matrix. Also, denote Y to be a d,, x n matrix of 7 < n samples
y; from ¢(y|x;) fori=1,...,n and z = [1(i € {1,...,7n})]", to be the training mask vector.
Note that 1(condition) is 1 if the condition is true and 0 otherwise. Thus, an empirical cost can

be estimated by

1 n
#(0) = =D Uy f(xi, X, 4;9)), @)
i=1

where f(x;, X, A;0) shows the processed x; when having access to n — 1 extra samples and
links between them. Note that as X contains x; (the ith column), f(x;, X, A;0) and (X, A;0)

are used interchangeably.



Assuming p(y|f(X, A; 0)) = pg(y|X, A) to be an exponential family with natural parameters

in I, the loss function becomes

Uy, £(X, A;0)) = —logp(y|f(X, A;0)). 3)
In the least-squared regression,

p(YIE(X, A;0)) = N(yIf(X, 4;0),07) )

for fixed 02 and I = Y = RR. In the cross-entropy classification to ¢ classes,

ply = KIECX, 4:0)) = exp(f)/ S ex(h) 5

j=1

for F =R¢and Y ={1,...,c}.

B. Parameter estimation

Having the first order approximation of (@) around a point 6,
r(0) = 7(80) + g (0 — 6o), (6)
the gradient descent can be used to update parameter @ iteratively:
0:11 =0 — nBgo (7
where 77 > 0 denotes the learning rate, go = g(6y) is the gradient at 6, for

g(0) = 825;9) (8)

and B shows a symmetric positive definite matrix called preconditioner capturing the interplay
between the elements of 8. In SGD, B = I and g is approximated by:

1= Al(y;, £(X, A;0))
gO—?Z 00

=1

(€))

where 7 > 1 can be the mini-batch (a randomly drawn subset of the dataset) size.
To take into the account the relation between @ elements, one can use the second order

approximation of r():

1
() = 1(6,) + g (6 — ;) + 5(9 — 60)"Ho(6 — 6y), (10)
where Hy = H(6,) denotes the Hessian matrix at 8 for
0?r(0)
H(O) = . 11
0= 202 ar



Thus, having the gradients of r(8) around 6 as:
g(0) ~ go + Ho(0 — 6y), (12)
the parameters can be updated using:
0,1 = (I —nBHy)0, — nB(go — Hoby). (13)

The convergence of Eq. 13 heavily depends on the selection of 7 and the distribution of [ —nB H,
eigenvalues. Note that update rules Eqs. 7 and 13 coincides at B = H;;* resulting the Newton’s
method. As it is not always possible or desirable to obtain Hessian, several preconditioners are
suggested to adapt the information geometry of the parameter space.

In NGD, the preconditioner is defined to be the inverse of Fisher Information matrix:
F(8) :=Exypxy0)[VoVe] (14)
=FExq(x).y~p(y[x:0) [VOVE] (15)
where p(x,y;0) := q(x)p(y[x; 0) and
Vo := —Vglogp(x,y;0). (16)

C. Neural Networks

A neural network is a mapping from the input space X to the output space [I' through a series
of m layers. Layer k € {1,...,m}, projects dy_;-dimensional input x;_; to di-dimensional

output x; and can be expressed as:

X, = Or(Wixp-1) (17)

where ¢, is an element-wise non-linear function and W}, is the dj X dj_;-dimensional weight
matrix. The bias is not explicitly mentioned as it could be the last column of W, when x; has an
extra unit element. Let the @ = [0, ..., 0,,] to be the parameters of an m-layer neural network
formed by stacking m vectors of dimension dydy_; for £ = 1,... ,m and dim(x) = dy such

that dim(@) = >}, dxdy_1. The parameters of the k’th layer, 8, = vec(W}) for vec(W},) =

[Wi,...,Wg], is also shaped by piling up rows of W). Their gradients, Vg, , could be written
as: .

Vo = = 18

T T (1%

for dj x dydj_1-dimensional matrix 0xj/00) and dj-dimensional vector Jl/0xy.



D. Graph Neural Networks

The Graph Neural Network (GNN) extends the NN mapping to the data represented in graph
domains [20]. The basic idea is to use related samples when the adjacency information is
available. In other words, the input to the k’th layer, x;_; is transformed into x;_; that take into
the account unlabeled samples using the adjacency such that p(x;_1, A) = p(Xx_1). Therefore,
for each node 7 = 1,...,n, the Eq. 17 can be written by a local transition function (or a single

message passing step) as:
Xpi = B (Xp—1,6, X5 145 X0,i> X053 W) (19)

where X, ; denotes all the information coming from nodes connected to the ith node at the kth
layer. The subscripts here are used to indicate both the layer and the node, i.e. x;; means the
state embedding of node ¢ in the layer k. Also, the local transition Eq. 19, parameterized by
Wi, is shared by all nodes that includes the information of the graph structure, and x; = X;.
The Graph Convolutional Network (GCN) is a one of the GNN with the message passing
operation as a linear approximation to spectral graph convolution, followed by a non-linear

activation function as:

Xk,i :fk<xk71,i> X157 Wk) (20)
Xi = (Wi Xp1 A) (21)
= (Wi Xp_1) (22)

where ¢ is a element-wise nonlinear activation function such as RELU(z) = max(z,0), W} is
a dy X di_, parameter matrix that needs to be estimated. A denotes the normalized adjacency
matrix defined by:

A=D+ D)V A+1)(D+ 1) (23)

to overcome the overfitting issue due to the small number of labeled samples 7. In fact, a GCN
layer is basically a NN (Eq. 17) where the input x;_; is initially updated into x;_; using a
so-called renormalization trick such that X, _1; = > 7, G;jX;1, Where A = [@;]. Comparing
Eq. 20 with the more general Eq. 19, the local transition function f; is defined as a linear

combination followed by a nonlinear activation function. For classifying x into ¢ classes, having



a c-dimensional x,, as the output of the last layer with a Softmax activation function, the loss

between the label y and the prediction x,, becomes:
(Y, %m) = = Y 1 = 5) g Xpm ;. (24)

j=1
ITII. METHOD
The basic idea of preconditioning is to capture the relation between the gradients of parameters
V. This relation can be as complete as a matrix B (for example, NGD) representing the pairwise
relation between elements of Vg or as simple as a weighting vector (for example, Adam) with
the same size as Vg resulting in a diagonal B. Considering the flow of gradients Vg, over
the training time as input features, the goal of preconditioning is to extract useful features that
help with the updating rule. One can consider the preconditioner to be the expected value of
B(x,y) = [bi;]* for

bij = bij(x,y) = b(Veil[Vo;)". (25)

In methods with a diagonal preconditioner like Adam, B(x,y) = diag(Ve ® Vj), the pair-
wise relation between gradients is neglected. Preconditioners like Hessian inverse in Newton’s
method with the form of b;; = OV;/00; are based on the second derivative that encodes the cost
curvature in the parameter space. In NGD and similar methods, this curvature is approximated
using the second moment of gradient b;; = Vg,;Vy;, as an approximation of Hessian, in some
empirical cases (see [13] for a detailed discussion).

In this section, a new preconditioning algorithm, motivated by natural gradient, is proposed
for graph-based semi-supervised learning that improves the convergence of Adam and SGD with
intuitive and insensitive hyper-parameters. The natural gradient is a concept from information
geometry and stands for the steepest descent direction in the Riemannian manifold of proba-
bility distributions [1], where the distance in the distribution space is measured with a special
Riemannian metric. This metric depends only on the properties of the distributions themselves
and not their parameters, and in particular, it approximates the square root of the KL divergence
within a small neighborhood [17]. Instead of measuring the distance between the parameters 6
and @', the cost is measured by the KL divergence between their distributions p(€) and p(0").

Consequently, the steepest descent direction in the statistical manifold is the negative gradient

"Note that the adjacency matrix provides the relation between x samples where the preconditioning matrix includes the relation

between the elements of Vg



preconditioned with the Fisher information matrix F'(0). The validation cost on three different

datasets is shown in Fig. 1 where preconditioning is applied to both Adam and SGD.

Validation Cost
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—— Adam-y
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Fig. 1. The validation costs of four optimization methods on the second split of Citation datasets over 10 runs. A 2-layer
GCN with a 64-dimensional hidden variable is used in all experiments. As shown in Fig. la, 1b, and 1c (upper row), the
proposed Adam-KDAC methods (green and red curves) outperform vanilla Adam methods (blue and orange curves) on all three
datasets. Also, Fig. 1d, le, and 1f (bottom row) reveal that the suggested SGD-KFAC methods (green and red curves) achieve

a remarkably faster convergence than the vanilla SGD method (blue and orange curves) on all three datasets.

As the original NGD (Eq. 14) is defined based on a prediction function with access only

to a single sample, p(y|f(x;8)), Fisher information matrix with the presence of the adjacency

distribution becomes:
F(0) = By x a,y~p(x,x a,y:9) [VOVE] (26)
= By xmq(x).ama(abxx)y~plyxx,a:6) Vo V- (27)
With n samples of ¢(x), i.e. X and n? samples of ¢(a|X), i.e. A, Fisher can be estimated as:
F(O) = By p(y|x.2:0) [ngg], (28)

where

Vo =—Vglogp(X, A, y;0). (29)



In fact, to evaluate the expectation in Eq. 26, ¢(X) and ¢(A|X) are approximated with §(X)
and §(A|X) using {x;}I , and A, respectively. However, there are only 7 samples from ¢(y|x;)

as an approximation of ¢(y|x;) for the following replacement:

p(y|X, A; 0) =~ q(y|x:). (30)

Therefore, an empirical Fisher can be obtained by

) 1 n n
F(0) = le VoV = Z_; B;(0) 31
for
Vo= —Vglogp(y:| X, A; 0) (32)

From the computation perspective, the matrix B;(€) can be very large, for example, in neural
networks with multiple layers, the parameters could be huge, so it needs to be approximated
too. In networks characterized with Eqs. 17 or 20, a simple solution would be ignoring the

-1

cross-layer terms so that B;(0)~' and consequently B;(€) turns into a block-diagonal matrix:

BZ(O) = diag(Bl,Z-, Ce 7Bm,i) (34)

In KFAC, the diagonal block Bj, ;, corresponded to k’th layer with the dimension dydj,_1 X djdj—1,

is approximated with the Kronecker product of the inverse of two smaller matrices Uy ; and V} ;

as:
Bri = (Uri @ Vii) ' = Uy @ Vil (35)
For Vg; = [V, ;... Vg, ;' the preconditioned gradient By ;V, ; can be computed using the
identity
Bkﬂ;ka’i = Uk,i X Vk,z‘ VCC(aWk) (36)
— veo(Up 2L v ) (37)
ki aWk ki /°
Noting that:
ol o N\ ..
— = = Wixp— 38
oWy, (0Xk ® Wik 1)> et %)
= uk,iv;cr,h (39)

10



Uy and Vj, blocks are approximated with the expected values of ukyiuzyi and v,w-v{’i respectively
where dim(uy,) = dj, dim(vy) = dy_y. Finally, U, L and V,;1 are evaluated by taking inverses
of Uy, + ¢ /2 and V}, + € /2 for € being the regularization hyper-parameter.

For a graph with n nodes, adjacency matrix A, and the training set {(x;,y;)}7— + {Xi}/_n i1,
Uy and V}, are estimated in two ways: (1) using only 7 labeled samples, and (2) including n — 7

unlabeled samples. In the first method, U and V} are estimated by:

U—l ﬂ@qﬁ’(Wf( ) ﬂ@qs’(WX ) ! (40)
kE — n 3Xk k k<Nk—1 an k k<XNk—1
1 - -
vV, = 5X,f_lx,;tl. 41)

Note that both 9l/0X} and gb;f(ka( k—1) are di X n matrices and the last n — n columns of
0l/0X}, are zero. However, as unlabeled samples are not used in the first method, one needs to
evaluate loss function for i = 7+ 1,...,n, which can be done by sampling y; from p(y|x;@).

In the second method, these new samples are added to the empirical cost as
1 n
r(0) =— Uy, f(X, A0
F(6) = D3 S (X, 4:6)

+

> Uy, (X, A;0)), (42)

i=n+1

n—n
where 0 < A < 1 denotes the regularization hyper-parameter for controlling the cost of predicted

labels and A = 0 results the first method. As the prediction improves over the course of training,

A can be a function of iteration ¢, for example here, it is defined to be:

() = (@)7 43)

where max(t) shows the maximum number of iterations and ~y is the replaced regularization
hyper-parameter. Algorithm 1 shows the preconditioning step for modifying gradients of each
layer at any iteration such that gradients are first, transformed using two matrices of V' and
U, !, then sent to the optimization algorithm for updating parameters.

A. Relation between Fisher and Hessian

The Hessian of the cost function:

Hor(0) = Ex ay~p(x.ay0)[Hol(y, f(X, A;0))] A4

11



Algorithm 1 Semi-Supervised Preconditioning

Require: VIV > Gradient of parameters for K =1,...,m
Require: A > Adjacency matrix
Require: D > Degree matrix
Require: z > Training mask vector
Require: €, A > Regularization hyper-parameters
= dim(z)
5 (2)

n =
A= (D+I1)"2A+1)(D+1)"' = [ay]
for k=1,...,m do
Xg-1i = Z;Lzl A jXf—1,j
y_1,; = 0l/0x;, © ¢, (WiXp—1,)
Vi1 = Xg—1,
Un =320 (2 + (1= z) Ny 3/ (n + An)
Vi= S0 (s (1= 20 \)ViavE,/ (n + i)
U, ' = INVERSE(U},)
V., ! = INVERSE(V})
output v, 'VW,U, !

function INVERSE(X)

output (X + ¢ 1/2)7!

can also be approximated using §(X), ¢(A|X), and §(y|x;) resulting the empirical Hessian to

be
Hor(6) ZHe (yi [(X, 4;0)), (45)

1=1

which is equivalent to the empirical Fisher Eq. 31 when p(X, A, y; 0) is estimated with ¢(X)G(A|X)q(y|x;)

fori=1,...,n (see Lemma 1 in the appendix).

12



IV. EXPERIMENTS

In this section, the performance of the proposed algorithm is evaluated compared to Adam and
SGD on several datasets for the task of node classification in single graphs. The task is assumed
to be transductive when all the features are available for training but only a portion of labels
are used in the training. First, a detailed description of datasets and the model architecture are
provided. Then, the general optimization setup, commonly used for the node classification, is
specified. The last part includes the sensitivity to hyper-parameter and training time analysis in
addition to validation cost convergence and the test accuracy. All the experiments are conducted
mainly using Pytorch [19] and Pytorch Geometric [5], two open-source Python libraries for

automating differentiation and working with graph datasets.

A. Datasets

Three citation datasets with the statistics shown in Table II are used in the experiments [21].
Cora, CiteSeer, and PubMed are single graphs in which nodes and edges correspond to documents
and citation links, respectively. A sparse feature vector (document keywords) and a class label
are associated with each node. Several splits of these datasets are used in the node classification
task. The first split, 20 instances are randomly selected for training, 500 for validation, and 1000
for the test; the rest of the labels are not used [23]. In the second split, all nodes except 500+ 1000
validation and test nodes are used for the training [3]. To evaluate the overfitting behavior, the
third split exploits all labels for training excluding 500 + 500 nodes for the validation and test
[15].

TABLE II

CITATION NETWORK DATASETS STATISTICS

Dataset  Nodes Edges Classes Features

Citeseer 3,327 4732 6 3,703
Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500

B. Architectures

In the node classification using a NN followed by Softmax function (Eq. 5), the class with
maximum probability is chosen to be the predicted node label. A 2-layer GCN with a 64-

dimensional hidden variable is used for comparing different optimization methods. In the first

13



layer, the activation function ReLU is followed by a dropout function with a rate of 0.5. The

loss function is evaluated as the negative log-likelihood of Softmax (Eq. 5) of the last layer.

C. Optimization

The weights of parameters are initialized like the original GCN [10] and input vectors are
row-normalized accordingly [7]. The model is trained for 200 epochs without any early stopping
and the learning rate of 0.01. The Adam and SGD are used with the weight decay of 5 x 104

and the momentum of 0.9, respectively.

D. Results

The optimization performance is measured by both the minimum validation cost and the test
accuracy for the best validation cost. The validation cost of training a 2-layer GCN with a
64-dimensional hidden variable is used for comparing optimization methods (Adam and SGD)
with their preconditioned version (Adam-KFAC and SGD-KFAC). For each method, unlabeled
samples are used in the training process with a ratio controlled by . Fig. 1 shows the validation
cost of four methods based on Adam (upper row) and SGD (bottom row) for all three Citation
datasets. The test accuracy of a 2-layer GCN trained using four different methods on three split
are shown in Tab. III, IV, and V. Reported values of test accuracy in tables are averages
and 95% confidence intervals over 10 runs for the best hyper-parameters tuned on the second
split of the CiteSeer dataset. Note that the test accuracy may not always reflect the performance
of the optimization method as the objective function (cross-entropy) is not the same as the
prediction function (argmax). However, in most cases, the proposed method achieves better
accuracy compared to Adam (the first row in all tables). As a fixed learning rate 0.01 is used in
all methods, SGD has a very slow convergence and does not provide competitive results.

The importance of hyper-parameters €, v are shown in Fig. 2. Figures 2a and 2d depict the
sensitivity of Adam and SGD to the e parameter, respectively. As the inverse of e directly affects
the same factor as the learning rate 7, the smaller the e, the faster the convergence. However,
choosing very small e results in larger confidence intervals which are not desirable. The effect
of v on Adam and SGD are depicted in figures 2b and 2e, respectively. When using Adam,
due to its faster convergence compared to SGD, smaller v, i.e. using more predictions leads to
much wider confidence intervals. In other words, the training process dominated by more labels
results in a more stable convergence with a smaller variance. Thus, for a stable estimation, A

or v must be tuned with respect to the optimization algorithm because of their sensitivity to

14



TABLE III
THE TEST ACCURACY OF FOUR OPTIMIZATION METHODS ON THE FIRST SPLIT OF CITATION DATASETS OVER 10 RUNS. A

2-LAYER GCN WITH A 64-DIMENSIONAL HIDDEN VARIABLE IS USED IN ALL EXPERIMENTS.

CiteSeer Cora Pubmed
Adam 71.66 + 0.61 81.20 £ 0.25 79.72 £ 0.30
Adam,, 74.28 £0.67 82.424+0.33 80.06 +0.34
Adam-KFAC.  71.94+£0.53 81.68 £ 0.25 79.48 £0.28
Adam-KFAC, 70.24+0.66 82.84+0.87 76.9440.59
SGD 20.38 +£8.92 23.14 +5.17 45.76 £ 3.04
SGD, 17.64 £6.18 17.26 £ 8.41 46.20 = 4.35
SGD-KFAC. 71.824+0.48 82.06+0.34 77.20£0.63
SGD-KFAC, 73.52+0.22 81.70+0.79 79.20+0.29

THE TEST ACCURACY OF FOUR OPTIMIZATION METHODS ON THE SECOND SPLIT OF CITATION DATASETS OVER 10 RUNS. A

2-LAYER GCN WITH A 64-DIMENSIONAL HIDDEN VARIABLE IS USED IN ALL EXPERIMENTS.

TABLE 1V

CiteSeer Cora Pubmed
Adam 78.68 £0.83 87.36 £ 0.47 87.78 £0.14
Adam, 77.98 £ 0.39 87.28 £0.34 87.52+0.30
Adam-KFAC. 79.50+0.15 87.60+0.20 88.46+0.24
Adam-KFAC,  79.42+0.32 86.60 + 0.30 87.88 £0.16
SGD 20.80 £2.12 31.90 = 0.00 43.22 +1.42
SGD, 20.96 £+ 5.22 31.90 + 0.00 40.82 £ 0.33
SGD-KFAC. 79.48 +0.40 87.54+043 89.08+0.18
SGD-KFAC, 77.32£0.27 87.42 +£0.24 88.18 £ 0.30

THE TEST ACCURACY OF FOUR OPTIMIZATION METHODS ON THE THIRD SPLIT OF CITATION DATASETS OVER 10 RUNS. A

2-LAYER GCN WITH A 64-DIMENSIONAL HIDDEN VARIABLE IS USED IN ALL EXPERIMENTS.

TABLE V

CiteSeer Cora Pubmed
Adam 79.80 £ 0.66 89.44 +0.41 87.16 +0.71
Adam, 79.64 £ 0.32 89.60 £ 0.91 87.44 +£0.27
Adam-KFAC. 80.52+0.14 90.16+0.59 87.84+0.21
Adam-KFAC,  80.52 £ 0.22 89.24 +0.64 87.36 + 0.37
SGD 15.04 £1.70 32.80+0.00 41.96 £ 0.44
SGD, 16.12 £5.30 32.80 = 0.00 41.20 +£0.00
SGD-KFAC. 79.76 £0.75 89.88+0.14 89.36+0.57
SGD-KFAC, 78.52 £0.28 88.72 £ 0.38 87.88 £ 0.80
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the convergence rate. Since the Fisher matrix does not change considerably at each iteration,
an experiment is performed to explore the sensitivity of validation loss to the frequency of
updating Fisher. In Figures 2c¢ and 2f, the validation cost over time is evaluated for updating
Fisher every 4,8, ...,128 iterations. When Fisher is updated more frequently, its computation
takes more time hence the training process lasts longer (having other hyper-parameters fixed).
Increasing the update frequency does not affect the performance to some extent, however, it
largely reduces the training time. As updating Fisher every 50 or 100 iterations, does not affect

the final validation cost to a great extent, to speed up the training process, Fisher is updated

every 50 epochs in all of the experiments.

Validation Cost
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Validation Cost
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— 0.8
— 12

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 1 2

Epoch Epoch Time (s)

(a) Adam (b) Adam (c) Adam
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T T T T T T T T T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125

5
°

3 4 5 6
Epoch Epoch Time (s)

(d) SGD (e) SGD (f) SGD

Fig. 2. The sensitivity of €, v, and updating frequency on validation costs of Adam-KFAC (upper) and SGD-KFAC (below)
when training on the second split of CiteSeer dataset over 10 runs. A 2-layer GCN with a 64-dimensional hidden variable is
used in all experiments. Fig. 2a and 2d show that smaller € results in a faster convergence with a probable cost of larger variance
as it inversely scales the same factor as the learning rate. As depicted in Fig. 2b and 2e, the larger the ~, the more stable the
convergence (the more confined confidence intervals). Finally, it can be seen in Fig. 2c and 2f that since performances are

similar under different updating frequencies, selecting a relatively large frequency (50) can reduce the training time substantially.

To examine the time complexity of the proposed method, the validation costs of Adam-
KFAC and SGD-KFAC are compared with Adam and SGD when training on the second split

of Citation datasets with respect to the training time for 200 epochs (Fig. 3). The training on
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Cora and PubMed (Fig. 3b and 3c) takes a shorter time compared to the training on CitSeer
(Fig. 3a) mainly because of the dimension of input features as it directly enlarges the size of
the Fisher matrix. As shown in Fig. 3, the proposed SGD-KFAC method (red curve) converges
much faster than the vanilla SGD as expected. Surprisingly, SGD-KFAC outperforms Adam and
even Adam-KFAC methods in all datasets implying that the naive SGD with a natural gradient
preconditioner can lead to a faster convergence than Adam-based methods. Another interesting
observation is that Adam-based methods demonstrate similar performances in all experiments

making them independent of the dataset while SGD-based methods show different overfitting

behavior.

Validation Cost
=
=
2 2
$ 9
Validation Cost
gry
o
El
5
g
[o]
Validation Cost
gry
o
El
5
g
[o]
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(a) CiteSeer (b) Cora (c) PubMed

Fig. 3. The validation costs of four optimization methods with respect to the training time on the second split of Citation datasets
over 10 runs. A 2-layer GCN with a 64-dimensional hidden variable is used in all experiments. The proposed SGD-KFAC method

shows the highest convergence rate among all other methods and it is slightly faster than Adam-KFAC.

V. CONCLUSION

In this work, we introduced a novel optimization framework for graph-based semi-supervised
learning. After the distinct definition of semi-supervised problems with the adjacency distri-
bution, we provided a comprehensive review of topics like semi-supervised learning, graph
neural network, and preconditioning optimization (and NGD as its especial case). We adopted
a commonly used probabilistic framework covering least-squared regression and cross-entropy
classification. In the node classification task, our proposed method showed to improve Adam
and SGD not only in the validation cost but also in the test accuracy of GCN on three splits
of Citation datasets. Extensive experiments were provided on the sensitivity to hyper-parameters
and the time complexity. As the first work, to the best of our knowledge, on the preconditioned
optimization of graph neural networks, we not only achieved the best test accuracy but also

empirically showed that it can be used with both Adam and SGD.

17



As the preconditioner may significantly affect Adam, illustrating the relation between NGD

and Adam and effectively combining them can be a promising direction for future work. We also

aim to deploy faster approximation methods than KFAC like [6] and better sampling methods

for exploiting unlabeled samples. Finally, since this work is mainly focused on single parameter

layers, another possible research path would be adjusting KFAC to, for example, residual layers

[8].
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APPENDIX

Lemma 1. The expected value of the Hessian of —logp(X, A,y;0) is equal to Fisher informa-

tion matrix, I.e.

—Ex Ay~p(x.ay:0)[Hologp(X, A,y 0)] = F (46)
Proof. The Hessian of f(6) can be written as the Jacobian of Vg f:

Hof(0) = JoVof(0). 47)

So for the Hessian of the negative log-likelihood becomes:

—Hglogp(X, A,y;0) (48)
X, Ay;0
o ovﬂp( ) 7'}’7 ) (49)
p(X, A y;6)
__ Hep(X, A)y;0)p(X, A y; 6) (50)
p(X,A,y;6).p(X, A y; 0)
p(X,A,y;0).p(X, A y;0)
Hep(X, A,y; 0) T
_ 52
p(X, Ay:0) VoVo o
Taking the expectation over p(X, A,y; @), the first term turns into zero:
Hop(X, A,y:0)
E N . 53
Ay Ayl p(X,A,y;0) | &)
:HBEX,AvyNP(XA,y;B) [1] (54)
=0 (55)
and Fisher is defined as the expected value of the second term. [
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