
Optimization of Graph Neural Networks with

Natural Gradient Descent

Mohammad Rasool Izadi ∗†

mizadi@nd.edu

Yihao Fang †

yfang5@nd.edu

Robert Stevenson ∗

rls@nd.edu

Lizhen Lin †

lizhen.lin@nd.edu

∗Electrical Engineering, †Applied and Computational Mathematics and Statistics

University of Notre Dame

Notre Dame, IN, USA

Abstract

In this work, we propose to employ information-geometric tools to optimize a graph neural network

architecture such as the graph convolutional networks. More specifically, we develop optimization

algorithms for the graph-based semi-supervised learning by employing the natural gradient information in

the optimization process. This allows us to efficiently exploit the geometry of the underlying statistical

model or parameter space for optimization and inference. To the best of our knowledge, this is the

first work that has utilized the natural gradient for the optimization of graph neural networks that can

be extended to other semi-supervised problems. Efficient computations algorithms are developed and

extensive numerical studies are conducted to demonstrate the superior performance of our algorithms

over existing algorithms such as ADAM and SGD.

Index Terms

Graph neural network, Fisher information, natural gradient descent, network data.

I. INTRODUCTION

In machine learning, the cost function is mostly evaluated using labeled samples that are not

easy to collect. Semi-supervised learning tries to find a better model by using unlabeled samples.

Most of the semi-supervised methods are based on a graph representation on (transformed)

samples and labels [11]. For example, augmentation methods create a new graph in which

original and augmented samples are connected. Graphs, as datasets with linked samples, have

been the center of attention in semi-supervised learning. Graph Neural Network (GNN), initially
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proposed to capture graph representations in neural networks [20], have been used for semi-

supervised learning in a variety of problems like node classification, link predictions, and so on.

The goal of each GNN layer is to transform features while considering the graph structure by

aggregating information from connected or neighboring nodes. When there is only one graph,

the goal of node classification becomes predicting node labels in a graph while only a portion

of node labels are available (even though the model might have access to the features of all

nodes). Inspired by the advance of convolutional neural networks [14] in computer vision [12],

Graph Convolutional Network (GCN) [10] employs the spectra of graph Laplacian for filtering

signals and the kernel can be approximated using Chebyshev polynomials or functions [24, 22].

GCN has become a standard and popular tool in the emerging field of geometric deep learning

[2].

From the optimization perspective, Stochastic Gradient Descent (SGD)-based methods that

use an estimation of gradients have been popular choices due to their simplicity and efficiency.

However, SGD-based algorithms may be slow in convergence and hard to tune on large datasets.

Adding extra information about gradients, may help with the convergence but are not always

possible or easy to obtain. For example, using second-order gradients like the Hessian matrix,

resulting in the Newton method, is among the best choices which, however, are not easy to

calculate especially in NNs. When the dataset is large or samples are redundant, NNs are trained

using methods built on top of SGD like AdaGrad [4] or Adam [9]. Such methods use the

gradients information from previous iterations or simply add more parameters like momentum

to the SGD. Natural Gradient Descent (NGD) [1] provides an alternative based on the second-

moment of gradients. Using an estimation of the inverse of the Fisher information matrix (simply

Fisher), NGD transforms gradients into so-called natural gradients that showed to be much faster

compared to the SGD in many cases. The use of NGD allows efficient exploration of the geometry

of the underlying parameter space in the optimization process. Also, Fisher information plays a

pivotal role throughout statistical modeling [16]. In frequentist statistics, Fisher information is

used to construct hypothesis tests and confidence intervals by maximum likelihood estimators. In

Bayesian statistics, it defines the Jeffreys’s prior, a default prior commonly used for estimation

problems and nuisance parameters in a Bayesian hypothesis test. In minimum description length,

Fisher information measures the model complexity and its role in model selection within the

minimum description length framework like AIC and BIC. Under this interpretation, NGD

is invariant to any smooth and invertible reparameterization of the model, while SGD-based
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methods highly depend on the parameterization. For models with a large number of parameters

like DNN, Fisher is so huge that makes it almost impossible to evaluate natural gradients. Thus,

for faster calculation it is preferred to use an approximation of Fisher like Kronecker-Factored

Approximate Curvature (KFAC) [18] that are easier to store and inverse.

Both GNN and training NNs with NGD have been active areas of research in recent years

but, to the best of our knowledge, this is the first attempt on using NGD in the semi-supervised

learning. In this work, a new framework for optimizing GNNs is proposed that takes into account

the unlabeled samples in the approximation of Fisher. Section II provides an overview of related

topics such as semi-supervised learning, GNN, and NGD. The proposed algorithm is described

in section III and a series of experiments are performed in section IV to evaluate the method’s

efficiency and sensitivity to hyper-parameters. Finally, the work is concluded in section V.

II. PROBLEM AND BACKGROUND

In this section, first, the graph-based semi-supervised learning with a focus on least-squared

regression and cross-entropy classification is defined. Required backgrounds on the optimization

and neural networks are provided in the subsequent sections. A detailed description of the

notation is summarized in the Table I.

A. Problem

Consider an information source q(x) generating independent samples xi ∈ X, the target

distribution q(y|x) associating yi ∈ Y to each xi, and the adjacency distribution q(a|x,x′)

representing the link between two nodes given their covariates levels x and x′. The problem of

learning q(y|x) is to estimate some parameters θ that minimizes the cost function

r(θ) = Ex,x′∼q(x),a∼q(a|x,x′),y∼q(y|x)[l(y, f(x,x
′, a;θ))] (1)

where the loss function l(y, ŷ) measures the prediction error between y and ŷ. Also, x′ and a

show sequences of x′ and a, respectively. As q(x), q(a|x,x′), and q(y|x) are usually unknown

or unavailable, the cost r(θ) is estimated using samples from these distributions. Furthermore, it

is often more expensive to sample from q(y|x) than q(x) and q(a|x,x′) resulting in the different

number of samples from each distribution being available.

Let X = X0 to be a d0 × n matrix of n ≥ 1 i.i.d xi samples from q(x) (equivalent to

X ∼ q(X)). It is assumed that n × n adjacency matrix A = [aij] is sampled from q(a|xi,xj)

for i, j = 1, . . . , n (equivalent to A ∼ q(A|X)). One can consider (X,A) to be a graph of n
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TABLE I

NOTATION

Symbol Description

x,x, X Scalar, vector, matrix

ε, λ, γ Regularization hyper-parameters

η The learning rate

A Adjacency matrix

XT Matrix transpose

I Comfortable identity matrix

x A sequence of x vectors

n The total number of samples

n̄ The number of labeled samples

F Fisher information matrix

B Preconditioning matrix

r(θ) The cost of parameters θ

l(y, ŷ) The loss between y and ŷ

q(x) The source distribution

q(y|x) The target distribution

q(a|x,x′) The adjacency distribution

p(y|f(X,A;θ)) The prediction distribution

φ(·) An element-wise nonliear function

∇θf Gradient of scalar f wrt. θ

Jθf Jacobian of vector f wrt. θ

Hθf Hessian of scalar f wrt. θ

� Element-wise multiplication operation

nodes in which the ith column of X shows the covariate at the node i and D = diag(
∑

j aij)

denotes the diagonal degree matrix. Also, denote Y to be a dm × n̄ matrix of n̄ < n samples

yi from q(y|xi) for i = 1, . . . , n̄ and z = [1(i ∈ {1, . . . , n̄})]ni=1 to be the training mask vector.

Note that 1(condition) is 1 if the condition is true and 0 otherwise. Thus, an empirical cost can

be estimated by

r̂(θ) =
1

n̄

n̄∑
i=1

l(yi, f(xi, X,A;θ)), (2)

where f(xi, X,A;θ) shows the processed xi when having access to n − 1 extra samples and

links between them. Note that as X contains xi (the ith column), f(xi, X,A;θ) and f(X,A;θ)

are used interchangeably.
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Assuming p(y|f(X,A;θ)) = pθ(y|X,A) to be an exponential family with natural parameters

in F, the loss function becomes

l(y, f(X,A;θ)) = − log p(y|f(X,A;θ)). (3)

In the least-squared regression,

p(y|f(X,A;θ)) = N (y|f(X,A;θ), σ2) (4)

for fixed σ2 and F = Y = R. In the cross-entropy classification to c classes,

p(y = k|f(X,A;θ)) = exp(fk)/
c∑
j=1

exp(fj) (5)

for F = R
c and Y = {1, . . . , c}.

B. Parameter estimation

Having the first order approximation of r(θ) around a point θ0,

r(θ) ≈ r(θ0) + gT
0 (θ − θ0), (6)

the gradient descent can be used to update parameter θ iteratively:

θt+1 = θt − ηBg0 (7)

where η > 0 denotes the learning rate, g0 = g(θ0) is the gradient at θ0 for

g(θ) =
∂r(θ)

∂θ
(8)

and B shows a symmetric positive definite matrix called preconditioner capturing the interplay

between the elements of θ. In SGD, B = I and g0 is approximated by:

ĝ0 =
1

n̄

n̄∑
i=1

∂l(yi, f(X,A;θ))

∂θ
(9)

where n̄ ≥ 1 can be the mini-batch (a randomly drawn subset of the dataset) size.

To take into the account the relation between θ elements, one can use the second order

approximation of r(θ):

r(θ) ≈ r(θ0) + gT
0 (θ − θ0) +

1

2
(θ − θ0)TH0(θ − θ0), (10)

where H0 = H(θ0) denotes the Hessian matrix at θ0 for

H(θ) =
∂2r(θ)

∂θTθ
. (11)
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Thus, having the gradients of r(θ) around θ as:

g(θ) ≈ g0 +H0(θ − θ0), (12)

the parameters can be updated using:

θt+1 = (I − ηBH0)θt − ηB(g0 −H0θ0). (13)

The convergence of Eq. 13 heavily depends on the selection of η and the distribution of I−ηBH0

eigenvalues. Note that update rules Eqs. 7 and 13 coincides at B = H−1
0 resulting the Newton’s

method. As it is not always possible or desirable to obtain Hessian, several preconditioners are

suggested to adapt the information geometry of the parameter space.

In NGD, the preconditioner is defined to be the inverse of Fisher Information matrix:

F (θ) :=Ex,y∼p(x,y;θ)[∇θ∇T
θ ] (14)

=Ex∼q(x),y∼p(y|x;θ)[∇θ∇T
θ ] (15)

where p(x,y;θ) := q(x)p(y|x;θ) and

∇θ := −∇θ log p(x,y;θ). (16)

C. Neural Networks

A neural network is a mapping from the input space X to the output space F through a series

of m layers. Layer k ∈ {1, . . . ,m}, projects dk−1-dimensional input xk−1 to dk-dimensional

output xk and can be expressed as:

xk = φk(Wkxk−1) (17)

where φk is an element-wise non-linear function and Wk is the dk × dk−1-dimensional weight

matrix. The bias is not explicitly mentioned as it could be the last column of Wk when xk has an

extra unit element. Let the θ = [θ1, . . . ,θm] to be the parameters of an m-layer neural network

formed by stacking m vectors of dimension dkdk−1 for k = 1, . . . ,m and dim(x) = d0 such

that dim(θ) =
∑m

k=1 dkdk−1. The parameters of the k’th layer, θk = vec(Wk) for vec(Wk) =

[w1, . . . ,wdk ], is also shaped by piling up rows of Wk. Their gradients, ∇θk , could be written

as:

∇θk =
∂l

∂θk
=
∂xk
∂θk

T ∂l

∂xk
(18)

for dk × dkdk−1-dimensional matrix ∂xk/∂θk and dk-dimensional vector ∂l/∂xk.

6



D. Graph Neural Networks

The Graph Neural Network (GNN) extends the NN mapping to the data represented in graph

domains [20]. The basic idea is to use related samples when the adjacency information is

available. In other words, the input to the k’th layer, xk−1 is transformed into x̃k−1 that take into

the account unlabeled samples using the adjacency such that p(xk−1, A) = p(x̃k−1). Therefore,

for each node i = 1, . . . , n, the Eq. 17 can be written by a local transition function (or a single

message passing step) as:

xk,i = fk(xk−1,i,xk−1,i,x0,i,x0,i;Wk) (19)

where xk,i denotes all the information coming from nodes connected to the ith node at the kth

layer. The subscripts here are used to indicate both the layer and the node, i.e. xk,i means the

state embedding of node i in the layer k. Also, the local transition Eq. 19, parameterized by

Wk, is shared by all nodes that includes the information of the graph structure, and x0,i = xi.

The Graph Convolutional Network (GCN) is a one of the GNN with the message passing

operation as a linear approximation to spectral graph convolution, followed by a non-linear

activation function as:

xk,i =fk(xk−1,i,xk−1,i;Wk) (20)

Xk =φk(WkXk−1Ã) (21)

=φk(WkX̃k−1) (22)

where φk is a element-wise nonlinear activation function such as RELU(x) = max(x, 0), Wk is

a dk × dk−1 parameter matrix that needs to be estimated. Ã denotes the normalized adjacency

matrix defined by:

Ã = (D + I)−1/2(A+ I)(D + I)−1/2 (23)

to overcome the overfitting issue due to the small number of labeled samples n̄. In fact, a GCN

layer is basically a NN (Eq. 17) where the input xk−1 is initially updated into x̃k−1 using a

so-called renormalization trick such that x̃k−1,i =
∑n

j=1 ãi,jxk−1,i where Ã = [ãi,j]. Comparing

Eq. 20 with the more general Eq. 19, the local transition function fk is defined as a linear

combination followed by a nonlinear activation function. For classifying x into c classes, having
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a c-dimensional xm as the output of the last layer with a Softmax activation function, the loss

between the label y and the prediction xm becomes:

l(y,xm) = −
c∑
j=1

1(xm,j = j) log xm,j. (24)

III. METHOD

The basic idea of preconditioning is to capture the relation between the gradients of parameters

∇θ. This relation can be as complete as a matrix B (for example, NGD) representing the pairwise

relation between elements of ∇θ or as simple as a weighting vector (for example, Adam) with

the same size as ∇θ resulting in a diagonal B. Considering the flow of gradients ∇θ,t over

the training time as input features, the goal of preconditioning is to extract useful features that

help with the updating rule. One can consider the preconditioner to be the expected value of

B(x,y) = [bij]
−1 for

bij = bi,j(x,y) = b(∇θi||∇θj)
1. (25)

In methods with a diagonal preconditioner like Adam, B(x,y) = diag(∇θ � ∇θ), the pair-

wise relation between gradients is neglected. Preconditioners like Hessian inverse in Newton’s

method with the form of bij = ∂∇θi/∂θj are based on the second derivative that encodes the cost

curvature in the parameter space. In NGD and similar methods, this curvature is approximated

using the second moment of gradient bij = ∇θi∇θj , as an approximation of Hessian, in some

empirical cases (see [13] for a detailed discussion).

In this section, a new preconditioning algorithm, motivated by natural gradient, is proposed

for graph-based semi-supervised learning that improves the convergence of Adam and SGD with

intuitive and insensitive hyper-parameters. The natural gradient is a concept from information

geometry and stands for the steepest descent direction in the Riemannian manifold of proba-

bility distributions [1], where the distance in the distribution space is measured with a special

Riemannian metric. This metric depends only on the properties of the distributions themselves

and not their parameters, and in particular, it approximates the square root of the KL divergence

within a small neighborhood [17]. Instead of measuring the distance between the parameters θ

and θ′, the cost is measured by the KL divergence between their distributions p(θ) and p(θ′).

Consequently, the steepest descent direction in the statistical manifold is the negative gradient

1Note that the adjacency matrix provides the relation between x samples where the preconditioning matrix includes the relation

between the elements of ∇θ
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preconditioned with the Fisher information matrix F (θ). The validation cost on three different

datasets is shown in Fig. 1 where preconditioning is applied to both Adam and SGD.
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Fig. 1. The validation costs of four optimization methods on the second split of Citation datasets over 10 runs. A 2-layer

GCN with a 64-dimensional hidden variable is used in all experiments. As shown in Fig. 1a, 1b, and 1c (upper row), the

proposed Adam-KDAC methods (green and red curves) outperform vanilla Adam methods (blue and orange curves) on all three

datasets. Also, Fig. 1d, 1e, and 1f (bottom row) reveal that the suggested SGD-KFAC methods (green and red curves) achieve

a remarkably faster convergence than the vanilla SGD method (blue and orange curves) on all three datasets.

As the original NGD (Eq. 14) is defined based on a prediction function with access only

to a single sample, p(y|f(x;θ)), Fisher information matrix with the presence of the adjacency

distribution becomes:

F (θ) = Ex,x′,a,y∼p(x,x′,a,y;θ)[∇θ∇T
θ ] (26)

= Ex,x′∼q(x),a∼q(a|x,x′),y∼p(y|x,x′,a;θ)[∇θ∇T
θ ]. (27)

With n samples of q(x), i.e. X and n2 samples of q(a|X), i.e. A, Fisher can be estimated as:

F̂ (θ) = Ey∼p(y|X,A;θ)[∇θ∇T
θ ], (28)

where

∇θ = −∇θ log p(X,A,y;θ). (29)
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In fact, to evaluate the expectation in Eq. 26, q(X) and q(A|X) are approximated with q̂(X)

and q̂(A|X) using {xi}ni=1 and A, respectively. However, there are only n̄ samples from q̂(y|xj)

as an approximation of q(y|xj) for the following replacement:

p(y|X,A;θ) ≈ q̂(y|xi). (30)

Therefore, an empirical Fisher can be obtained by

F̂ (θ) =
1

n̄

n̄∑
i=1

∇θ,i∇T
θ,i =

n̄∑
i=1

Bi(θ) (31)

for

∇θ,i = −∇θ log p(yi|X,A;θ) (32)

Bi(θ) = B(X,A,yi;θ). (33)

From the computation perspective, the matrix Bi(θ) can be very large, for example, in neural

networks with multiple layers, the parameters could be huge, so it needs to be approximated

too. In networks characterized with Eqs. 17 or 20, a simple solution would be ignoring the

cross-layer terms so that Bi(θ)−1 and consequently Bi(θ) turns into a block-diagonal matrix:

Bi(θ) = diag(B1,i, . . . , Bm,i) (34)

In KFAC, the diagonal block Bk,i, corresponded to k’th layer with the dimension dkdk−1×dkdk−1,

is approximated with the Kronecker product of the inverse of two smaller matrices Uk,i and Vk,i

as:

Bk,i = (Uk,i ⊗ Vk,i)−1 = U−1
k,i ⊗ V

−1
k,i . (35)

For ∇θ,i = [∇T
θ1,i
, . . . ,∇T

θm,i
]T, the preconditioned gradient Bk,i∇θk,i can be computed using the

identity

Bk,i∇θk,i = U−1
k,i ⊗ V

−1
k,i vec(

∂l

∂Wk

) (36)

= vec(U−1
k,i

∂l

∂Wk

V −1
k,i ). (37)

Noting that:

∂l

∂Wk

=

(
∂l

∂xk
� φ′k(Wkx̃k−1)

)
x̃T
k−1 (38)

= uk,iv
T
k,i, (39)
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Uk and Vk blocks are approximated with the expected values of uk,iuT
k,i and vk,iv

T
k,i respectively

where dim(uk) = dk, dim(vk) = dk−1. Finally, U−1
k and V −1

k are evaluated by taking inverses

of Uk + ε−1/2 and Vk + ε−1/2 for ε being the regularization hyper-parameter.

For a graph with n nodes, adjacency matrix A, and the training set {(xi,yi)}n̄i=1 + {xi}ni=n̄+1,

Uk and Vk are estimated in two ways: (1) using only n̄ labeled samples, and (2) including n− n̄

unlabeled samples. In the first method, Uk and Vk are estimated by:

Uk =
1

n̄

(
∂l

∂Xk

� φ′k(WkX̃k−1)

)(
∂l

∂Xk

� φ′k(WkX̃k−1)

)T

(40)

Vk =
1

n̄
X̃k−1X̃

T
k−1. (41)

Note that both ∂l/∂Xk and φ′k(WkX̃k−1) are dk × n matrices and the last n − n̄ columns of

∂l/∂Xk are zero. However, as unlabeled samples are not used in the first method, one needs to

evaluate loss function for i = n̄+ 1, . . . , n, which can be done by sampling ŷi from p(y|x;θ).

In the second method, these new samples are added to the empirical cost as

r̂(θ) =
1

n̄

n̄∑
i=1

l(yi, f(X,A;θ))

+
λ

n− n̄

n∑
i=n̄+1

l(yi, f(X,A;θ)), (42)

where 0 ≤ λ ≤ 1 denotes the regularization hyper-parameter for controlling the cost of predicted

labels and λ = 0 results the first method. As the prediction improves over the course of training,

λ can be a function of iteration t, for example here, it is defined to be:

λ(t) :=

(
t

max(t)

)γ
, (43)

where max(t) shows the maximum number of iterations and γ is the replaced regularization

hyper-parameter. Algorithm 1 shows the preconditioning step for modifying gradients of each

layer at any iteration such that gradients are first, transformed using two matrices of V −1
k and

U−1
k , then sent to the optimization algorithm for updating parameters.

A. Relation between Fisher and Hessian

The Hessian of the cost function:

Hθr(θ) = EX,A,y∼p(X,A,y;θ)[Hθl(y, f(X,A;θ))] (44)
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Algorithm 1 Semi-Supervised Preconditioning
Require: ∇Wk . Gradient of parameters for k = 1, . . . ,m

Require: A . Adjacency matrix

Require: D . Degree matrix

Require: z . Training mask vector

Require: ε, λ . Regularization hyper-parameters

n = dim(z)

n̄ =
∑

(z)

Ã = (D + I)−1/2(A+ I)(D + I)−1/2 = [ãij]

for k = 1, . . . ,m do

x̃k−1,i =
∑n

j=1 ãi,jxk−1,j

uk−1,i = ∂l/∂xk � φ′k(Wkx̃k−1,i)

vk−1,i = x̃k−1,i

Uk =
∑n

i=1(zi + (1− zi)λ)uk−1,iu
T
k−1,i/(n+ λn̄)

Vk =
∑n

i=1(zi + (1− zi)λ)vk,iv
T
k,i/(n+ λn̄)

U−1
k = INVERSE(Uk)

V −1
k = INVERSE(Vk)

output V −1
k ∇WkU

−1
k

function INVERSE(X)

output (X + ε−1/2I)−1

can also be approximated using q̂(X), q̂(A|X), and q̂(y|xi) resulting the empirical Hessian to

be

Ĥθr(θ) :=
1

n̄

n̄∑
i=1

Hθl(yi, f(X,A;θ)), (45)

which is equivalent to the empirical Fisher Eq. 31 when p(X,A,y;θ) is estimated with q̂(X)q̂(A|X)q̂(y|xi)

for i = 1, . . . , n̄ (see Lemma 1 in the appendix).
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IV. EXPERIMENTS

In this section, the performance of the proposed algorithm is evaluated compared to Adam and

SGD on several datasets for the task of node classification in single graphs. The task is assumed

to be transductive when all the features are available for training but only a portion of labels

are used in the training. First, a detailed description of datasets and the model architecture are

provided. Then, the general optimization setup, commonly used for the node classification, is

specified. The last part includes the sensitivity to hyper-parameter and training time analysis in

addition to validation cost convergence and the test accuracy. All the experiments are conducted

mainly using Pytorch [19] and Pytorch Geometric [5], two open-source Python libraries for

automating differentiation and working with graph datasets.

A. Datasets

Three citation datasets with the statistics shown in Table II are used in the experiments [21].

Cora, CiteSeer, and PubMed are single graphs in which nodes and edges correspond to documents

and citation links, respectively. A sparse feature vector (document keywords) and a class label

are associated with each node. Several splits of these datasets are used in the node classification

task. The first split, 20 instances are randomly selected for training, 500 for validation, and 1000

for the test; the rest of the labels are not used [23]. In the second split, all nodes except 500+1000

validation and test nodes are used for the training [3]. To evaluate the overfitting behavior, the

third split exploits all labels for training excluding 500 + 500 nodes for the validation and test

[15].

TABLE II

CITATION NETWORK DATASETS STATISTICS

Dataset Nodes Edges Classes Features

Citeseer 3,327 4732 6 3,703

Cora 2,708 5,429 7 1,433

Pubmed 19,717 44,338 3 500

B. Architectures

In the node classification using a NN followed by Softmax function (Eq. 5), the class with

maximum probability is chosen to be the predicted node label. A 2-layer GCN with a 64-

dimensional hidden variable is used for comparing different optimization methods. In the first
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layer, the activation function ReLU is followed by a dropout function with a rate of 0.5. The

loss function is evaluated as the negative log-likelihood of Softmax (Eq. 5) of the last layer.

C. Optimization

The weights of parameters are initialized like the original GCN [10] and input vectors are

row-normalized accordingly [7]. The model is trained for 200 epochs without any early stopping

and the learning rate of 0.01. The Adam and SGD are used with the weight decay of 5× 10−4

and the momentum of 0.9, respectively.

D. Results

The optimization performance is measured by both the minimum validation cost and the test

accuracy for the best validation cost. The validation cost of training a 2-layer GCN with a

64-dimensional hidden variable is used for comparing optimization methods (Adam and SGD)

with their preconditioned version (Adam-KFAC and SGD-KFAC). For each method, unlabeled

samples are used in the training process with a ratio controlled by γ. Fig. 1 shows the validation

cost of four methods based on Adam (upper row) and SGD (bottom row) for all three Citation

datasets. The test accuracy of a 2-layer GCN trained using four different methods on three split

are shown in Tab. III, IV, and V. Reported values of test accuracy in tables are averages

and 95% confidence intervals over 10 runs for the best hyper-parameters tuned on the second

split of the CiteSeer dataset. Note that the test accuracy may not always reflect the performance

of the optimization method as the objective function (cross-entropy) is not the same as the

prediction function (argmax). However, in most cases, the proposed method achieves better

accuracy compared to Adam (the first row in all tables). As a fixed learning rate 0.01 is used in

all methods, SGD has a very slow convergence and does not provide competitive results.

The importance of hyper-parameters ε, γ are shown in Fig. 2. Figures 2a and 2d depict the

sensitivity of Adam and SGD to the ε parameter, respectively. As the inverse of ε directly affects

the same factor as the learning rate η, the smaller the ε, the faster the convergence. However,

choosing very small ε results in larger confidence intervals which are not desirable. The effect

of γ on Adam and SGD are depicted in figures 2b and 2e, respectively. When using Adam,

due to its faster convergence compared to SGD, smaller γ, i.e. using more predictions leads to

much wider confidence intervals. In other words, the training process dominated by more labels

results in a more stable convergence with a smaller variance. Thus, for a stable estimation, λ

or γ must be tuned with respect to the optimization algorithm because of their sensitivity to
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TABLE III

THE TEST ACCURACY OF FOUR OPTIMIZATION METHODS ON THE FIRST SPLIT OF CITATION DATASETS OVER 10 RUNS. A

2-LAYER GCN WITH A 64-DIMENSIONAL HIDDEN VARIABLE IS USED IN ALL EXPERIMENTS.

CiteSeer Cora Pubmed

Adam 71.66± 0.61 81.20± 0.25 79.72± 0.30

Adamγ 74.28± 0.67 82.42± 0.33 80.06± 0.34

Adam-KFACε 71.94± 0.53 81.68± 0.25 79.48± 0.28

Adam-KFACγ 70.24± 0.66 82.84± 0.87 76.94± 0.59

SGD 20.38± 8.92 23.14± 5.17 45.76± 3.04

SGDγ 17.64± 6.18 17.26± 8.41 46.20± 4.35

SGD-KFACε 71.82± 0.48 82.06± 0.34 77.20± 0.63

SGD-KFACγ 73.52± 0.22 81.70± 0.79 79.20± 0.29

TABLE IV

THE TEST ACCURACY OF FOUR OPTIMIZATION METHODS ON THE SECOND SPLIT OF CITATION DATASETS OVER 10 RUNS. A

2-LAYER GCN WITH A 64-DIMENSIONAL HIDDEN VARIABLE IS USED IN ALL EXPERIMENTS.

CiteSeer Cora Pubmed

Adam 78.68± 0.83 87.36± 0.47 87.78± 0.14

Adamγ 77.98± 0.39 87.28± 0.34 87.52± 0.30

Adam-KFACε 79.50± 0.15 87.60± 0.20 88.46± 0.24

Adam-KFACγ 79.42± 0.32 86.60± 0.30 87.88± 0.16

SGD 20.80± 2.12 31.90± 0.00 43.22± 1.42

SGDγ 20.96± 5.22 31.90± 0.00 40.82± 0.33

SGD-KFACε 79.48± 0.40 87.54± 0.43 89.08± 0.18

SGD-KFACγ 77.32± 0.27 87.42± 0.24 88.18± 0.30

TABLE V

THE TEST ACCURACY OF FOUR OPTIMIZATION METHODS ON THE THIRD SPLIT OF CITATION DATASETS OVER 10 RUNS. A

2-LAYER GCN WITH A 64-DIMENSIONAL HIDDEN VARIABLE IS USED IN ALL EXPERIMENTS.

CiteSeer Cora Pubmed

Adam 79.80± 0.66 89.44± 0.41 87.16± 0.71

Adamγ 79.64± 0.32 89.60± 0.91 87.44± 0.27

Adam-KFACε 80.52± 0.14 90.16± 0.59 87.84± 0.21

Adam-KFACγ 80.52± 0.22 89.24± 0.64 87.36± 0.37

SGD 15.04± 1.70 32.80± 0.00 41.96± 0.44

SGDγ 16.12± 5.30 32.80± 0.00 41.20± 0.00

SGD-KFACε 79.76± 0.75 89.88± 0.14 89.36± 0.57

SGD-KFACγ 78.52± 0.28 88.72± 0.38 87.88± 0.80
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the convergence rate. Since the Fisher matrix does not change considerably at each iteration,

an experiment is performed to explore the sensitivity of validation loss to the frequency of

updating Fisher. In Figures 2c and 2f, the validation cost over time is evaluated for updating

Fisher every 4, 8, . . . , 128 iterations. When Fisher is updated more frequently, its computation

takes more time hence the training process lasts longer (having other hyper-parameters fixed).

Increasing the update frequency does not affect the performance to some extent, however, it

largely reduces the training time. As updating Fisher every 50 or 100 iterations, does not affect

the final validation cost to a great extent, to speed up the training process, Fisher is updated

every 50 epochs in all of the experiments.
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Fig. 2. The sensitivity of ε, γ, and updating frequency on validation costs of Adam-KFAC (upper) and SGD-KFAC (below)

when training on the second split of CiteSeer dataset over 10 runs. A 2-layer GCN with a 64-dimensional hidden variable is

used in all experiments. Fig. 2a and 2d show that smaller ε results in a faster convergence with a probable cost of larger variance

as it inversely scales the same factor as the learning rate. As depicted in Fig. 2b and 2e, the larger the γ, the more stable the

convergence (the more confined confidence intervals). Finally, it can be seen in Fig. 2c and 2f that since performances are

similar under different updating frequencies, selecting a relatively large frequency (50) can reduce the training time substantially.

To examine the time complexity of the proposed method, the validation costs of Adam-

KFAC and SGD-KFAC are compared with Adam and SGD when training on the second split

of Citation datasets with respect to the training time for 200 epochs (Fig. 3). The training on
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Cora and PubMed (Fig. 3b and 3c) takes a shorter time compared to the training on CitSeer

(Fig. 3a) mainly because of the dimension of input features as it directly enlarges the size of

the Fisher matrix. As shown in Fig. 3, the proposed SGD-KFAC method (red curve) converges

much faster than the vanilla SGD as expected. Surprisingly, SGD-KFAC outperforms Adam and

even Adam-KFAC methods in all datasets implying that the naive SGD with a natural gradient

preconditioner can lead to a faster convergence than Adam-based methods. Another interesting

observation is that Adam-based methods demonstrate similar performances in all experiments

making them independent of the dataset while SGD-based methods show different overfitting

behavior.
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Fig. 3. The validation costs of four optimization methods with respect to the training time on the second split of Citation datasets

over 10 runs. A 2-layer GCN with a 64-dimensional hidden variable is used in all experiments. The proposed SGD-KFAC method

shows the highest convergence rate among all other methods and it is slightly faster than Adam-KFAC.

V. CONCLUSION

In this work, we introduced a novel optimization framework for graph-based semi-supervised

learning. After the distinct definition of semi-supervised problems with the adjacency distri-

bution, we provided a comprehensive review of topics like semi-supervised learning, graph

neural network, and preconditioning optimization (and NGD as its especial case). We adopted

a commonly used probabilistic framework covering least-squared regression and cross-entropy

classification. In the node classification task, our proposed method showed to improve Adam

and SGD not only in the validation cost but also in the test accuracy of GCN on three splits

of Citation datasets. Extensive experiments were provided on the sensitivity to hyper-parameters

and the time complexity. As the first work, to the best of our knowledge, on the preconditioned

optimization of graph neural networks, we not only achieved the best test accuracy but also

empirically showed that it can be used with both Adam and SGD.
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As the preconditioner may significantly affect Adam, illustrating the relation between NGD

and Adam and effectively combining them can be a promising direction for future work. We also

aim to deploy faster approximation methods than KFAC like [6] and better sampling methods

for exploiting unlabeled samples. Finally, since this work is mainly focused on single parameter

layers, another possible research path would be adjusting KFAC to, for example, residual layers

[8].
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APPENDIX

Lemma 1. The expected value of the Hessian of − log p(X,A,y;θ) is equal to Fisher informa-

tion matrix, i.e.

−EX,A,y∼p(X,A,y;θ)[Hθ log p(X,A,y;θ)] = F (46)

Proof. The Hessian of f(θ) can be written as the Jacobian of ∇θf :

Hθf(θ) = Jθ∇θf(θ). (47)

So for the Hessian of the negative log-likelihood becomes:

−Hθ log p(X,A,y;θ) (48)

=− Jθ
∇θp(X,A,y;θ)

p(X,A,y;θ)
(49)

=− Hθp(X,A,y;θ).p(X,A,y;θ)

p(X,A,y;θ).p(X,A,y;θ)
(50)

− ∇θp(X,A,y;θ)∇θp(X,A,y;θ)T

p(X,A,y;θ).p(X,A,y;θ)
(51)

= −Hθp(X,A,y;θ)

p(X,A,y;θ)
+∇θ∇T

θ (52)

Taking the expectation over p(X,A,y;θ), the first term turns into zero:

EX,A,y∼p(X,A,y;θ)[
Hθp(X,A,y;θ)

p(X,A,y;θ)
] (53)

=HθEX,A,y∼p(X,A,y;θ)[1] (54)

=0 (55)

and Fisher is defined as the expected value of the second term.

20


