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Abstract

We consider a sparse linear regression model with unknown symmetric error under
the high-dimensional setting. The true error distribution is assumed to belong to the
locally p-Holder class with an exponentially decreasing tail, which does not need to
be sub-Gaussian. We obtain posterior convergence rates of the regression coefficient
and the error density, which are nearly optimal and adaptive to the unknown sparsity
level. Furthermore, we derive the semi-parametric Bernstein-von Mises (BvM) the-
orem to characterize asymptotic shape of the marginal posterior for regression coef-
ficients. Under the sub-Gaussianity assumption on the true score function, strong
model selection consistency for regression coefficients are also obtained, which
eventually asserts the frequentist’s validity of credible sets.

Keywords High-dimensional semi-parametric model - Posterior convergence rate -
Bernstein-von Mises theorem - Strong model selection consistency
1 Introduction

We consider the linear regression model

Y=X0+e, ey
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where Y = (Y}, ..., Y,)T € R" is a vector of response variables, X = (x;) € R>P
is the n X p matrix of covariates whose i-th row is xiT = (X;[5 -.- ,xip), 0 € R? is the
p-dimensional regression coefficient and € = (¢, ..., €,) € R" is the vector of ran-
dom errors with ¢; b n fori =1, ..., n. Statistical inference with the model (1) in
high-dimensional settings has received increasing attention in recent years. For the
estimability of € under large p, certain sparsity condition is often imposed which
assumes most components of 6 are nearly zero. Under the sparsity assumption, regu-
larization methods have been at the center of statistical research due to their compu-
tational tractability, ease of interpretation, elegant theory and good performance in
practice. Some pioneering references include Tibshirani (1996), Fan and Li (2001),
Tibshirani et al. (2005), Zou and Hastie (2005), Zou (2006), Candes and Tao (2007)
and Zhang and Zhang (2014). We also refer to the monograph Biihlmann and van de
Geer (2011) for reviews with abundant examples.

In a Bayesian framework, the sparsity can be expressed through a prior on 8 for
which there are two well-known classes: spike-and-slab and continuous shrink-
age priors. The former has been considered as the gold standard for sparse priors
supported by rich theory, see Castillo et al. (2015), Rockova and George (2018),
Martin et al. (2017) and Chae et al. (2019b). Continuous shrinkage priors have
been developed as computationally efficient alternatives of spike-and-slab prior,
see Polson and Scott (2010), Carvalho et al. (2010), Armagan et al. (2013a, b)
and Bhattacharya et al. (2015).

With regard to the high-dimensional regression model (1), there are three fun-
damental problems attracting statistical interest: (i) recovery of 6; (ii) selection
of nonzero coefficients; and (iii) quantifying the uncertainty of inference. Note
that even for Bayesian methods, it is common to analyse the performance of those
methods from a frequentist’s perspective by assuming a true data-generating dis-
tribution. Under the assumption that errors are i.i.d. from the standard Gaussian,
Castillo et al. (2015) investigated the posterior convergence rate, strong model
selection consistency and Bernstein-von Mises (BvM) theorem. Slightly different
sets of conditions and priors also lead to similar results, see Shin et al. (2015),
Song and Liang (2017), Yang et al. (2016a), Martin et al. (2017) and Yang (2017).
Although some of their results, e.g. the recovery of €, tend to be robust to the
misspecification of error distribution, Gaussian models have certain limitations;
for example, they are vulnerable to outliers. Some theoretical justification for this
can be found in Castillo et al. (2015) and Biihlmann and van de Geer (2011).

Another problem of a misspecified Gaussian model arises in model selec-
tion. It should be noted that the sub-Gaussianity of the score function is a very
important condition for consistent model selection, see Kim and Jeon (2016) and
Chae et al. (2019b). Although it is not clear whether this is a necessary condi-
tion, empirical results given in Rossell and Rubio (2017) show that a Gaussian
model might lead to inconsistency in model selection when true error distribu-
tions are heavy-tailed. There are a few works concerning Bayesian variable selec-
tion beyond the Gaussian assumption, which however often suffered from lack of
theory in high-dimensional setting. See Rossell and Rubio (2017) and references
therein for recent advances on Bayesian variable selection without Gaussianity.
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Uncertainty quantification, in particular its theoretical justification, is perhaps
the most difficult task. In Bayesian methods, the uncertainty of parameters based
on posteriors is typically expressed through a credible set, which has frequentist’s
validity in a smooth parametric model by the BvM theorem, see e.g. van der Vaart
(1998). Although the BvM theorem cannot be fully extended to high- or infinite-
dimensional models, in some models with carefully chosen priors, credible sets can
provide valid confidence satisfying certain frequentist’s criteria of optimality, often
called as non- or semi-parametric BvM theorem, see Castillo and Nickl (2013), Cas-
tillo and Nickl (2014), Castillo and Rousseau (2015), Panov and Spokoiny (2015)
and Chae et al. (2019a). If the model is misspecified, however, the credible set loses
the frequentist’s validity even in a very simple parametric model (Kleijn and van der
Vaart 2012). Some adjusting techniques are known (Yang et al. 2016b), but they are
not applicable more generally.

In this paper, we study frequentist’s property of Bayesian methods for model (1)
by investigating large sample behavior of the posterior distributions. We assume a
symmetric error density # rather than assuming a Gaussian error density. The sym-
metric assumption might be slightly restrictive in practice, but a good compromise
for the theoretical analysis. In fact, a zero mean or median condition might be more
realistic, but without symmetric assumption, uncertainty quantification is challeng-
ing in a semi-parametric Bayesian framework.

Asymptotic properties of the posterior distribution in a high-dimensional semi-
parametric regression model has been extensively studied in Chae et al. (2019b)
under a rather strong assumption on 7. In particular, they assumed that # is a mix-
ture of Gaussians with a compactly supported mixing distribution, still falling into
a sub-Gaussian framework. In this paper, we use the result of Shen et al. (2013) to
eliminate this strong assumption. Specifically, the true error density will be assumed
to be in a locally f-Holder class with an exponentially decreasing tail. This is a
much weaker assumption than that given in Chae et al. (2019b). In particular, the
true error density need to be neither a mixture of Gaussians nor sub-Gaussian. For
the prior, a spike-and-slab and a symmetrized Dirichlet process (DP) mixture priors
are imposed on 6 and 7, respectively. Asymptotic results given in this paper provide
reasonable sufficient conditions for the frequentist’s validity on (i) recovery of 6, (ii)
variable selection, and (iii) uncertainty quantification.

It would be worthwhile to mention some technical contributions of this paper.
First of all, our results allow error densities whose tails are thicker than sub-Gauss-
ian for which well-known concentration bounds such as the Hoeffding’s inequality
make the proof simpler. Although the results are limited to exponentially decaying
tails, it is highly expected that recent advances on heavy tail distributions (Canale
and De Blasi 2017) are also applicable. Secondly, we provide simpler proof for pos-
terior convergence rates compared to that of Chae et al. (2019b). To derive the pos-
terior convergence rates, they used the misspecified LAN (local asymptotic normal-
ity) and some bounded conditions for empirical process, which turn out to be not
necessary using our techniques.

The rest of the paper is organized as follows. In Sect. 2, we define the model and
prior with some preliminary materials. In Sect. 3, main results on posterior convergence
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rates, asymptotic shape and selection property are presented. Concluding remarks fol-
low in Sect. 4, and technical proofs are given in the Supplementary Material.

2 Preliminaries
2.1 Notations

For any positive sequences a,, and b,, a, = o(b,) implies that a, /b, — 0 as n - 0.
We denote a, < b,, or equivalently a, = O(b,), if a, < Cb,, for all sufficiently large
n and some constant C > 0, which is an absolute constant or at least does not depend
on n and p. For any x € R, | x| is the largest integer which is smaller than or equal to
x. For any constants a and b, we denote a V b as the maximum of a and . We denote
the indicator function for some set A as 1,(-) and /(- € A). For any 8 € R?, the support
of 4 is denoted by S,, which is the nonzero index of 6, i.e. Sy = {1 <i<p : 0, # 0}.
We denote the cardinality of S, as s, =[Syl Fo~r any index set S C {1,...,p}
and nxp matrix X, let 5= (0,),cs € RIS, = (0,1(i € 9)),<;<, € R” and
X5 = (X))jcs € R™I, where X; is the j-th column of X. For any y € R and den-
sity #, we denote 7, (y) = log n(y) £,(0) =0¢,()/dy, £,(y) = 0*¢,(y)/(9y)* and
f;l(y) 93¢ 0/ (ay)g whenever they ex1st Slmllarly, for any x € R? and 0 € R?, let
Con(x.y) = f ,0—x"0), £, 2y = fﬂ(y —xT0)x and f;g’n(x, y) = f;l(y — xT0)xx".
Let Ey , be the expectation under P, , and Py, be the probability measure cor-
responding to the model (1). We denote [E,,0 = [k, for simplicity of exposition. For
given a sequence of random variables Y,, Y, = op (1) means that ¥, converges to
zero in Py, -probability as n — co. For glven a real function f : RP XR —~ R and
the data D = ((Y;,x))_, from the model (1), we define L,(0,7n) = Z, 1 ConXis Y,
R,(0.n) = HLI 0y, - x; 0)/no(Y; — x] 6y),

P.f = Zf(x,, )
Z{ﬂx,, Y) — Eg, . [, )]} and

o
= Z, Egyne [fgo,ﬂfao’%(xi, Yl-)].

Note that V,, =v, %, where v, =, (f ' ), Z =n"'X"X. Let N,, ¢ be the ISI-

n- Mo
dimensional normal dlstrlbutlon w1th mean V Gn,] ¢ and Varlance V 1 o where
G,,.s is the ISl-dimensional projection of G fgﬂ o Vins = Vy2s and Xg = n_lXTXS

For simplicity, we denote G,, , .V, sand N, ¢ as Gn s> V. and N, ¢, respectively.
For given positive real numbers a and b, we denote /G(a, b) as an inverse gamma
distribution whose shape and scale parameters are a and b, respectively. For given
positive integer p, p, € R? and p X p positive definite matrix X,, we denote
N,(uy, 2y) as a p-dimensional normal distribution with mean g, and covariance
matrix X,
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1/q
For any 6 € R”, denote the vector £ -norm as |||, := (2}’;1 |0i|‘7> . For any
pair of densities 7, and 7, with respect to a probability measure y, define the total
variation and Hellinger distance as dy(y,n,) 1= / ln, —npldu  and

d2(ny.my) 1= [(\/m — \/m)*du, respectively. For any pairs of vectors 6',6? € R?
and densities #,, 1,, we define the mean Hellinger distance as

1 n
2((p1 2 _ 2
d>((0",n). (6. 1y)) = ;df](pel,r/,,ispﬂz,nz,i)’

where p,,, (") = n(y = x70).
2.2 Prior

As mentioned earlier, we consider the following model
Y, = xfe +€;,
€ ~mn, i=1,...,n,

where 0 € R?” and # is a symmetric density. We impose prior distributions on 6 and
n to conduct Bayesian inference. Let © = R? and H be the class of symmetric and
continuously differentiable densities equipped with the Hellinger metric. We use
a product prior IT = I1gy X I1,, for (8,7), where Il and I1,, are Borel probability
measures on O and H, respectively.

For the prior I, on the coefficient vector 8, we select (i) the number of nonzero
components s from a prior x,,(s) on {0, ..., p}, (ii) arandom set S C {1, ..., p} whose
cardinality is s = |S| from the uniform prior, and (iii) the nonzero values 6, from a
prior g on RI!in turn. Specifically, we consider the following prior distribution on
(S, 0):

(8,0) =, (IS L 85(05) 69(0sc),

(&)

where ¢, is the Dirac measure at 0. This type of prior has been studied by George
and Foster (2000), Scott and Berger (2010), Castillo and van der Vaart (2012) and
Castillo et al. (2015). For the prior 7, and gg, we assume that

APPa (s =) <) < Ap a1, s=1op @
PN n
8509 =(5) " exp(=llosl, %sas\/nlogp, ©

for some positive constants A;,A,,A; and A,. Note that the prior gg is the product of
the Laplace distribution g(0) = Aexp(—416])/2, i.e., g5(05) = [, 8(6))
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For the prior IT;, on the error density #, we consider the location mixture of a
symmetrized DP,

N = / ¢, (x — DdF (@),
F ~ DP(a),
6t ~G

where ¢, (x) 1= (V270)  exp{—x?/(26?)},F := (F+ F7)/2,dF(z) := dF(—z2)
and DP(«a) is the Dirichlet process with a finite positive measure a. For the base
measure « and the prior on o2, we further assume that

a eM[-C'n,C'n], (4)

a([—x,x]°) <exp(—=C"x) for all sufficiently large x > 0, 3)
G(o? < x) <exp(—C"x%) for all sufficiently small x > 0, 6)
G(o? > x) <x™% for all sufficiently large x > 0, (7

G(s < 672 < s(1 + 1)) >ags"1% exp(—C"s*/?) forany s > 0 and 7 € (0, 1), (8)

for some positive constants a,, ...,as, C',C" and «, where @ = a/a([-C'n, C'n])
and M|a, b] is the set of probability measures on (a, b). We assume that @ has a
positive density function on (—C’n, C'n).

We need additional assumptions to achieve a distributional approximation and
model selection consistency. Specifically, we assume that

& eM [—C’(log n)%, C(log n)§], ©)

G eM|0, ' logn), (10)

and a = a!a([—C’(log n)é, C'(log n)§]) has a positive density function on
(—=C'(logn)=, C'(logn)-), where = > 0 will be used to define true parameter class
(condition (D2)) in Sect. 2.3.

Remark 1 The above prior conditions are mild which include popular prior choices.
If we choose @ as a truncated normal distribution on interval [—n, n], conditions (4)
and (5) are satisfied with a, = 2. If we consider o ~ IG(ay, b,) for some positive
constants a,, b, and m, conditions (6)—(8) are satisfied with a, = m/2 and k = m,.
For conditions (9) and (10), it suffices to consider the truncated normal and inverse-
gamma distribution on (—C’(log n) C'(log n) ) and (0, C’' log n), respectively, for
some large constant C' > 0. As n grows to infinity, the above supports in (9) and
(10) are getting close to the whole supports, R and R* = (0, c0).
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2.3 True parameter class

We focus on the “large p and small n” setting, i.e. p > n, throughout the paper. We
assume 6, € R” to be a sy-sparse vector, which means the number of nonzero ele-
ments of 6 is equal to s,. The support of 8, is denoted by S, = S . Further condi-
tions on the sparsity s, and the magnitude of 6, will be introduced in the main theo-
rems in Sect. 3. We introduce here conditions (D1)—(D5) for the true error density

Mp:

(D1) (Locally p-Holder class) for given positive constants f, 7, and a real-valued
function L, n, € CPL70(R) where CPL™(R) is the class of every density # whose
kth order derivative 7 exists up to k < | #]and for k; = | f],

1%+ y) — n* )| <L) explrgyd)IyP 1, vx,y € R.

(D2) (Light tail) There exist positive constants a, b and 7 such that

no(x) <exp(=blx|*), |x| > a.

2p+v)/k
) < oo and

(D3) There exists a constant v > 0 such that [E,10<|;1(()k)|/;10
E, (L/n) """ < soforl <k < [B].

(D4) (Symmetry) ny(x) = #y(—x) and #,(x) > 0 for all x € R.

(D5) there exist positive constants y;, 75, v3, o', C,,U and 7’ < 7 such that for any y € R,

12, <C, (¥ + 1), (11)
1, <C, (¥ + 1), (12)
12,01 <C, (¥ + 1), (13)

and, for any small Ixl,

no(y + .x) S C eh/lylﬂ .
’,]O(y) Mo

Now we describe the above conditions in more details. Condition (D1), locally f
-Holder class, has been extensively studied in Kruijer et al. (2010), Shen et al.
(2013), Canale and De Blasi (2017) and Bochkina and Rousseau (2017). This
class is much more general than the Holder class because it only requires the local
smoothness by adopting L(x) instead of a constant L > 0. Furthermore, due to con-
dition (D2), it is essentially weaker than the condition in Kruijer et al. (2010), which
assumes log 7, € CPE70(R) (Shen et al. 2013).

Condition (D2) ensures that the true density has an exponentially light tail. It
is mainly required to prove the prior thickness condition for the density part and
use the Hanson-Wright inequality for the strong model selection consistency. The
technical details for the former issue can be found in Shen et al. (2013) (Lemma 2,

(14)
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Theorem 3 and Proposition 1). Recently, Bochkina and Rousseau (2017) adopted
much weaker tail condition, | *y?1,(y)dy < C(1 4+ x)~* for some constants C > 0
and 7 > 0, which includes some polynomially decreasing tail densities. However,
they considered only the densities on R*, and it is unclear whether their techniques
are applicable to the densities on R.

Condition (D3) is needed for the prior thickness condition for the density (Shen
et al. 2013) and implicitly controls the tail behavior of #,. It has been commonly
used in literature including Kruijer et al. (2010), Shen et al. (2013) and Bochkina
and Rousseau (2017).

Condition (D4) is not needed for proving the optimal convergence results (Theo-
rems 1 and 2). However, the symmetric assumption will play an important role in
proving the BvM theorem (Theorem 3). Based on current techniques in this paper,
this assumption is also needed to prove Corollaries 1 and 2, although we suspect that
this can be weakened.

Condition (D5) is required only for the BvM theorem and selection consistency
results. This condition is closely related to the tail of #, and satisfied for a wide
range of densities. For example, if 7,(y) o exp(—aly|?) for some constants a, b > 0
and every large enough [yl, condition (D5) is met. In fact, it holds unless 7, has an
extremely thin tail.

2.4 Design matrix

We consider a fixed design matrix X € R™? and assume that every element of the
design matrix is bounded by y/log p up to some constant, i.e. sup;; |x;| < M+/logp
for some constant M > 0. The upper bound for entries of the demgn matrix is
introduced due to technical reasons, and some recent works (Narisetty et al. 2019;
Song and Liang 2017) on high-dimensional Bayesian inference also used similar
conditions. In this paper, we require this condition mainly to (i) derive the poste-
rior convergence rate for || X(6 — 90)||2 using Corollary 3.2 of Chae et al. (2019b)
and (ii) obtain upper bounds for fo (X y) (or its derivatives) based on ¢ , () (or its
derivatives).

In high-dimensional linear regression model (1), certain regularity conditions
have been imposed on the design matrix X for the estimability of 8. In this paper, we
define the uniform compatibility number by

T
¢2(s):inf{s9.3”9if D 0 ER?, O<s9§s}
1

and the restricted eigenvalue by
2 . 07x0 .
w(s) =inf I P 0eR, 0<sy<s
2

for any 1 < s < p, where X =n~'X"X, 5, = |S,| and S, is the support of . These
quantities have been commonly used in literature (van de Geer and Biihlmann 2009;
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Bickel et al. 2009; Castillo et al. 2015), and the bounded below conditions have been
introduced for consistent estimation. Note that the infimum, which is used to define
compatibility number (or restricted eigenvalue), is often taken over all S C {1, ...,p}
and 6@ € R? such that || ||, < c||6s]|, for some constant ¢ > 0. However, our defini-
tions for ¢p*(s) and w2(s) focus on sparse vectors § such that 0 < s, < s. For exam-
ple, Castillo et al. (2015) uses similar definitions. Bounded below assumption on
w(s) is required for the convergence rate under £, norm and BvM result, while the
same assumption on ¢(s) is required for the convergence rate under £, norm. If the
restricted eigenvalue w2(s) is bounded away from zero, it implies that X is positive
definite for any |S| = s. Note that w/(s) < ¢(s) because [|0]|7 < 5,[|0]|3 by the Cauchy-
Schwartz inequality. Thus, the restricted eigenvalue conditions is stronger than the
uniform compatibility number condition.

Because p > n, if we consider, for example, a random design matrix X = (x;)),
where x;’s are random samples from the standard normal, sup;; |x;| < My/logp
and the restricted eigenvalue condition are met with high probability tending to 1 as
p — oo. Furthermore, by Lemma 6.1 in Narisetty and He (2014), these conditions
are also satisfied with high probability tending to 1 if the rows of X are independent
isometric sub-Gaussian random vectors.

3 Main results
3.1 Posterior convergence rates

The first theorem is about the model dimension which states that the posterior dis-
tribution puts most of its mass on moderately small dimensional models. We denote
the posterior distribution based on D, as IT1(- | D,,).

Theorem 1 Assume that conditions (2)—(8) hold, A||6,ll, = O(sylogp) and
logp < n?. Then, for any n, satisfying (DI1)—(D4), there exists a constant Ky, > 1
not depending on n and p such that

Eg 1T (59 > Kgim{so vV n* /@ logn)*'} | D,) = o(1)

0o

where k* := (kV Dandt> {k*(1+ 77 + D) +1}/Q + ).

Since we use a Laplace prior for nonzero coefficients, the condition
AlGoll; = O(sylog p) might seem to a bit restrictive. Note that this condition can
be avoided in Gaussian models by utlizing explicit form of the log-likelihood,
see Castillo et al. (2015), van der Pas et al. (2016) and Gao et al. (2015). To
use the same technique in our semi-parametric model, quadratic approximation
of the log-likelihood should be preceded, for which empirical process techniques
can be applied. However, quadratic approximation is highly difficult when models
have many nonzero coefficients. Therefore, the proof of Theorem 1 heavily relies
on the prior, requiring an additional condition A||6,||; = O(sylog p). An empirical
Bayes approach proposed in Martin et al. (2017) might be an alternative way to
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relax this condition. However, the choice of the least squared estimators as the
center of the prior may yield another problems when errors have heavier tails
than the sub-Gaussian tail. Since we believe the condition 4||6,]|, = O(s,log p) is
not too restrictive under the large A regime, we leave the problem of relaxing this
condition as future work.

For a given > {x*(1+7 '+ ) +1}/Q+«c*p), let s, :=2Ky,
{59V n</CP 9 (logn)?1}). Theorem 1 effectively reduces the meaning-
ful parameter space when s, is not too big and makes the theoretical develop-
ment easier. Theorem 2 describes a result on posterior convergence rate under
the mean Hellinger distance. The obtained rate has the term s, defined above,
where s, and n*"/@#*+)(log n)*~! come from the coefficient and density estima-
tion, respectively.

Theorem 2 Assume that conditions (2)—(8) hold, A||6yll, = O(sylogp) and
s, log p = o(n). Then, for any n, satisfying (D1)—(D4),

E, 11 d (@.n.@ Y AL N T
010 n(( ,'7),(0,’70))> Hel 1 . | =o(1),

for some constant Ky, > 0 not depending on n and p.

Remark 2 The symmetric condition (D4) is not directly used in the proof of Theo-
rems 1 and 2. Hence, they can be easily re-stated without (D4). We did not try to
re-state them because it entails a redefinition of the prior and a lot of minor changes.
We need the symmetric assumption for the BvM theorem, particularly for proving
that the score function has zero expectation, that is, E, , £ 9, = 0 for symmetric 7.
This will play an important role in the proof of the misspecified LAN, see Lemma
11 of the Supplement. Finally, we note that the current proof of Corollaries 1 and 2
below relies on the symmetric assumption (D4), but it might be possible to prove
them without it.

Based on Theorem 2, the posterior convergence rate of # and € can be achieved
as follows. The proof of Corollary 2 is straightforward by Theorem 2 and similar
arguments used in the proof of Corollary 3.2 of Chae et al. (2016), so we omit the
proof here.

Corollary 1 Under the conditions of Theorem 2, we have

E 1l a s, logp B
o110 H(rl’ ’70) > Keta n Dn =o(1),

for some constant K., > 0 not depending on n and p, and for any n, satisfying (D1)-
(D4) with 2 + v > 2.

Corollary 2 Under the conditions of Theorem 2 and s, logp/¢(s,) = 0(\/5), we have
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Sy logp
Egpuno T\ 10 = 6oll; > Kthela_d)(s NV D, | =o(1),
1 s, logp
By 1T\ 116 = 6oll> > Ktheta_y/(s ) ; D, | =o(1),

IEHO»'IOH <“X(9 - 9())”2 > Ktheta VS logp ‘ Dn) = o(1),

for some constant Ky, > 0 not depending on n and p, and for any n, satisfying
(DI1)—(D4).

If we assume that ¢(s,,) is bounded away from zero, the condition s, log p/¢(s,,)
= 0(\/2) in Corollary 2 becomes s,logp = o(\/ﬁ). Similar condition was made
by Chae et al. (2019b) to convert the convergence rate of the mean Hellinger
distance d,((0,#n),(6,,n,)) to that of [|§ —6y||,- Note that Chae et al. (2019b)

assumed s,v/logp/¢(s,) = 0(\/5) under the bounded design matrix assumption,
sup;; |x;| <M. If we assume sup; ; [x;| < M, the condition in Corollary 2 is also

relaxed to s, \/logp/¢(s,) = o(\/ﬁ). It is a quite natural condition to obtain a mean-
ingful convergence rate tending to zero under the £;-norm.

The posterior convergence rate in Theorem 2 is nearly optimal if the hyper-
parameter x is set equal to 1. Note that «* =1 in this case. For example, if

so > n'/@#+D(logn)*~!, the posterior convergence rate with respect to the mean
Hellinger distance is \/W , leading to the same marginal convergence rate for
0 in Z,-norm. Note that the minimax rate is \/solog(pw (Ye and Zhang 2010).
If 5, < n'/@f*D(log n)*~!, the marginal convergence for # rate with respect to the

Hellinger distance is n=#/?#+Dx y/(log n)2~1log p which is the minimax rate up to
a logarithmic factor and the same as that of Shen et al. (2013). In conclusion, the
global rate for the whole parameter (6, #) is determined by the slower one among the
two rates for € and #, where both of them are close to the minimax rate provided that
log p is negligible relative to n.

3.2 Bernstein von-Mises theorem

In this subsection, we study the distributional limit of the marginal posterior distribu-
tion for . Assume for a moment that p is moderately slowly increasing and the model
is not sparse. Since we are working with a smooth semi-parametric model, it is highly
expected that asymptotic shape of the map 6 — L,(0,#n) — L, (6, ) is quadratic around
6, for every n. Since the posterior mass is concentrated around (6,, #,), we only need to
consider #’s that are sufficiently close to #,. The assertion leads to the semi-parametric
BvM theorem which guarantees the asymptotic efficiency of Bayes estimator.

With a sparse model considered in this paper, the marginal posterior distribu-
tion cannot converge to a single normal distribution unless posterior puts most of
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its mass on a single model. To be more specific, note that the marginal posterior
distribution of 6 is given as

dri@©|D,)= Y, wsdOy0)dsy0y.),

where

7,(ISI)

(&)

/ / exp (Ln(g& n) — L, (6, n0)>dHH(n)gs(95)d95

and

Ji ] &5 (Lu@s:m) = L0, ) ) T(n)g(05)d05

[ [ exp (Ln(ﬁs, 1n) — L,(6,, 110)>dHH(’7)83(95)d9S

Q565 € B) =

for every measurable set B C RIS, Here, Qg can be understood as the conditional
posterior distribution of 8y given S, = §. If IS is not too large, Qg is expected to
be asymptotically normal as in the semi-parametric BvM theorem described in the
previous paragraph. As a consequence, if there is a limit distribution of the marginal
posterior for 8, it should be a mixture of the form

dr=©|D,)= Y wsn™ 2 dN, s(hs) déy(s),
SC{l,...p}

where hg = \/_ n(ls = 8y5), n~ %' is the determinant of the Jacobian matrix, and N .S
is defined in Sect. 2.1. Theorem 3 says that the semi-parametric BvM theorem holds
under slightly stronger condition than those needed for the posterior convergence
rate results.

Theorem 3 (Bernstein von-Mises) Assume that the prior conditions (2), (3), (5)-
(10) hold with a, = 3 M 6ll; = O(sylogp) and As,logp = 0(\/—) Further assume

that sﬁ{(logp)11 Vs, - (logp) I } = o(n'=%) holds for some constant { > 0 and yw(s,)
is bounded away from zero. Then, we have

Eoya |y (TTCID,). T2CID,)) | =o()
for any n satisfying (D1)—(D35).

The bounded condition on y(s,) ensures that the quadratic term of log-likeli-
hood ratio does not vanish. The condition As,logp = o(\/ﬁ) is required to wash
out the prior effect and is a quite mild condition if we consider the small A regime
such as 1 = \/r_z/p To prove the BvM theorem, Castillo et al. (2015) also used
similar condition, 4s,4/logp = o(||X||), where || X|| is the maximum #,-norm of the
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columns of matrix X. Note that if logp = o(n) and x;’s are random samples from
N(0, 1), it coincide with As,logp = 0(\/_) with hlgh probability tending to 1, as
p — 0.

The condition s®{(log p)'' v s, 5 (log p)** i } = o(n'%) for some constant ¢ > 0, are
sufficient conditions for

/ sup (£,00) = £,,()) dP, ()

neH;

converging to zero at a certain rate, where 7’ is a neighborhood of 7, to which the
posterior distribution contracts. See Lemmas 6 and 12 in Supplementary Material for
details. To satisfy this condition, a certain level of smoothness of #, is essential. For
example, suppose we consider the prior 6 ~ IG(a,, b,) for somg positive constants
ag and by, i.e., a, = 3and k = 6. Then, the condition (s logp) 2 (logp()z =o(n'=%)
is satisfied when (s,logp)®" v (logp)z =o(n'™¢) and n¥2(ogp)z =o(n'™®),
which hold for f > 16.25 provided that log p is negligible relative to n. Chae et al.
(2019b) assumed (s, log p)°® = o(n'~*) for some constant { > 0 to establish the semi-
parametric BvM theorem. Our condition is slightly stronger due to relaxation on the
tail condition of 7.

3.3 Strong model selection consistency

Theorem 4 states that the posterior probability of S, for the strict supersets of the true
model S tends to zero. It implies that the posterior probability is asymptotically con-
centrated on the union of some strict subset of S, and possibly other coordinates of S,

Theorem 4 (No superset) Under the conditions of Theorem 3 and © > 2y,, we have

Eg,s, [1(Sp 2 Sy | D,) =o(1)

for any nqy satisfying (D1)—(D5), provided that A, > K, for some constant K
depending only on nj,.

Since we assume that no(y) S exp(—bly|") and |f (y)l < |yl + C, the condition
T > 2y, implies that f i — X 79,) is a sub-Gaussian random variable. The sub-Gauss-
ian assumption enables us to use the Hanson-Wright inequality (Hanson and Wright
1971; Wright 1973), which is one of the key properties for proving Theorem 4. Note
that a normal distribution and a location-scale mixture of normal with compact mixing
distribution satisfy the above condition. One important consequence of Theorem 4 is
that if we assume that

K

. s, logp
0, : 0, #0, 1<j< } > _thew o /70 OEP 15
mln{l 0J| OJ;é .] p l//(S) n ( )

Corollary 2 and Theorem 4 guarantee the strong model selection consistency, which
means E, , I1(Sy =S, | D,) — lasn — oo. The above condition (15) is called the
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beta-min condition commonly assumed to obtain the model selection consistency
(Castillo et al. 2015; Song and Liang 2017). The following corollary asserts that one
can achieve the selection consistency and efficiently capture the uncertainty of the
nonzero coordinates under the beta-min condition.

Corollary 3 (Selection) Let 85, = n™'/2V4 G5, + 0y, S5, = n~'Vi L, and 6 be
the Dirac measure at 0& RIS Denote 6~ le |(0S s ZS )® 5S< if
bs, ~ N, SoI(HS , ZSU) and BSL = 0, independently. Under the conditions of Theorem 4
and (15), we have

Eg e [dV(H(-| D) N5, s, 55) ® 555)] = o(1)

for any nqy satisfying (D1)—(D5), provided that A, > K, for some constant K,
depending only on n,.

Remark 3 Yang (2017) proved the asymptotic normality for an individual coordinate
0, without the beta-min condition. However, her results focus on the posterior distri-
bution of an individual coordinate under the normal error distribution and cannot be
extended to the posterior distribution of the whole 6.

4 Discussion

In this paper, we study asymptotic properties of posterior distributions for high-
dimensional linear regression models under unknown symmetric error. We extend
the previous works on Bayesian asymptotic theory to deal with much more general
error densities beyond the sub-Gaussian class. To the best of our knowledge, this
is the first work that has proved posterior convergence rates and BvM theorem for
high-dimensional linear regression model without the sub-Gaussian assumption. For
the BvM theore;m and selection consistency, the conditions, sS(logp)!! = o(n'~)
and (sn log p)6 2 (log p)z = o(n'™%), are needed, which requires that the true error
distribution is smooth enough.

Note that algorithms for sampling a DP mixture and a spike-and-slab prior can
be suitably combined to generate MCMC samples from the posterior distribution in
our semiparametric model, see Sect. 4 of Chae et al. (2019b). Although our theoreti-
cal analysis is limited to error densities with exponentially decaying tails, results of
numerical experiments in Chae et al. (2019b) demonstrate that a semi-parametric
estimator performs much better in prediction, model selection and uncertainty quan-
tification than a parametric counterpart when the tail of error density is polynomi-
ally decaying. In particular, with a location-scale mixture of Gaussians with a conju-
gate DP prior, the selection consistency and BvM phenomena seem to hold while a
location mixture only does not provide satisfactory results.
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Future work will focus on the theoretical development of a location-scale mix-
tures with heavy-tailed components such as the Student’s ¢ distributions. This will
likely entail new techniques for Bayesian asymptotic, see Chae and Walker (2017)
for example.
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