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Abstract
We consider a sparse linear regression model with unknown symmetric error under 
the high-dimensional setting. The true error distribution is assumed to belong to the 
locally �-Hölder class with an exponentially decreasing tail, which does not need to 
be sub-Gaussian. We obtain posterior convergence rates of the regression coefficient 
and the error density, which are nearly optimal and adaptive to the unknown sparsity 
level. Furthermore, we derive the semi-parametric Bernstein-von Mises (BvM) the-
orem to characterize asymptotic shape of the marginal posterior for regression coef-
ficients. Under the sub-Gaussianity assumption on the true score function, strong 
model selection consistency for regression coefficients are also obtained, which 
eventually asserts the frequentist’s validity of credible sets.

Keywords  High-dimensional semi-parametric model · Posterior convergence rate · 
Bernstein-von Mises theorem · Strong model selection consistency

1  Introduction

We consider the linear regression model

(1)Y = X� + �,

Online ISSN 2005-2863
Print ISSN 1226-3192

Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s4295​
2-020-00091​-4) contains supplementary material, which is available to authorized users.

 *	 Kyoungjae Lee 
	 leekjstat@gmail.com

1	 Department of Statistics, Inha University, Incheon, South Korea
2	 Department of Industrial and Management Engineering, Pohang University of Science 

and Technology, Pohang, South Korea
3	 Department of Applied and Computational Mathematics and Statistics, The University of Notre 

Dame, Notre Dame, USA

http://orcid.org/0000-0002-8349-811X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42952-020-00091-4&domain=pdf
https://doi.org/10.1007/s42952-020-00091-4
https://doi.org/10.1007/s42952-020-00091-4


	 Journal of the Korean Statistical Society

1 3

where Y = (Y1,… , Yn)
T ∈ ℝ

n is a vector of response variables, X = (xij) ∈ ℝ
n×p 

is the n × p matrix of covariates whose i-th row is xT
i
= (xi1,… , xip) , � ∈ ℝ

p is the 
p-dimensional regression coefficient and � = (�1,… , �n) ∈ ℝ

n is the vector of ran-
dom errors with �i

i.i.d.
∼ � for i = 1,… , n . Statistical inference with the model (1) in 

high-dimensional settings has received increasing attention in recent years. For the 
estimability of � under large p, certain sparsity condition is often imposed which 
assumes most components of � are nearly zero. Under the sparsity assumption, regu-
larization methods have been at the center of statistical research due to their compu-
tational tractability, ease of interpretation, elegant theory and good performance in 
practice. Some pioneering references include Tibshirani (1996), Fan and Li (2001), 
Tibshirani et al. (2005), Zou and Hastie (2005), Zou (2006), Candes and Tao (2007) 
and Zhang and Zhang (2014). We also refer to the monograph Bühlmann and van de 
Geer (2011) for reviews with abundant examples.

In a Bayesian framework, the sparsity can be expressed through a prior on � for 
which there are two well-known classes: spike-and-slab and continuous shrink-
age priors. The former has been considered as the gold standard for sparse priors 
supported by rich theory, see Castillo et al. (2015), Ročková and George (2018), 
Martin et  al. (2017) and Chae et  al. (2019b). Continuous shrinkage priors have 
been developed as computationally efficient alternatives of spike-and-slab prior, 
see Polson and Scott (2010), Carvalho et  al. (2010), Armagan et  al. (2013a, b) 
and Bhattacharya et al. (2015).

With regard to the high-dimensional regression model (1), there are three fun-
damental problems attracting statistical interest: (i) recovery of � ; (ii) selection 
of nonzero coefficients; and (iii) quantifying the uncertainty of inference. Note 
that even for Bayesian methods, it is common to analyse the performance of those 
methods from a frequentist’s perspective by assuming a true data-generating dis-
tribution. Under the assumption that errors are i.i.d. from the standard Gaussian, 
Castillo et  al. (2015) investigated the posterior convergence rate, strong model 
selection consistency and Bernstein-von Mises (BvM) theorem. Slightly different 
sets of conditions and priors also lead to similar results, see Shin et  al. (2015), 
Song and Liang (2017), Yang et al. (2016a), Martin et al. (2017) and Yang (2017). 
Although some of their results, e.g. the recovery of � , tend to be robust to the 
misspecification of error distribution, Gaussian models have certain limitations; 
for example, they are vulnerable to outliers. Some theoretical justification for this 
can be found in Castillo et al. (2015) and Bühlmann and van de Geer (2011).

Another problem of a misspecified Gaussian model arises in model selec-
tion. It should be noted that the sub-Gaussianity of the score function is a very 
important condition for consistent model selection, see Kim and Jeon (2016) and 
Chae et  al. (2019b). Although it is not clear whether this is a necessary condi-
tion, empirical results given in Rossell and Rubio (2017) show that a Gaussian 
model might lead to inconsistency in model selection when true error distribu-
tions are heavy-tailed. There are a few works concerning Bayesian variable selec-
tion beyond the Gaussian assumption, which however often suffered from lack of 
theory in high-dimensional setting. See Rossell and Rubio (2017) and references 
therein for recent advances on Bayesian variable selection without Gaussianity.
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Uncertainty quantification, in particular its theoretical justification, is perhaps 
the most difficult task. In Bayesian methods, the uncertainty of parameters based 
on posteriors is typically expressed through a credible set, which has frequentist’s 
validity in a smooth parametric model by the BvM theorem, see e.g. van der Vaart 
(1998). Although the BvM theorem cannot be fully extended to high- or infinite-
dimensional models, in some models with carefully chosen priors, credible sets can 
provide valid confidence satisfying certain frequentist’s criteria of optimality, often 
called as non- or semi-parametric BvM theorem, see Castillo and Nickl (2013), Cas-
tillo and Nickl (2014), Castillo and Rousseau (2015), Panov and Spokoiny (2015) 
and Chae et al. (2019a). If the model is misspecified, however, the credible set loses 
the frequentist’s validity even in a very simple parametric model (Kleijn and van der 
Vaart 2012). Some adjusting techniques are known (Yang et al. 2016b), but they are 
not applicable more generally.

In this paper, we study frequentist’s property of Bayesian methods for model (1) 
by investigating large sample behavior of the posterior distributions. We assume a 
symmetric error density � rather than assuming a Gaussian error density. The sym-
metric assumption might be slightly restrictive in practice, but a good compromise 
for the theoretical analysis. In fact, a zero mean or median condition might be more 
realistic, but without symmetric assumption, uncertainty quantification is challeng-
ing in a semi-parametric Bayesian framework.

Asymptotic properties of the posterior distribution in a high-dimensional semi-
parametric regression model has been extensively studied in Chae et  al. (2019b) 
under a rather strong assumption on � . In particular, they assumed that � is a mix-
ture of Gaussians with a compactly supported mixing distribution, still falling into 
a sub-Gaussian framework. In this paper, we use the result of Shen et al. (2013) to 
eliminate this strong assumption. Specifically, the true error density will be assumed 
to be in a locally �-Hölder class with an exponentially decreasing tail. This is a 
much weaker assumption than that given in Chae et al. (2019b). In particular, the 
true error density need to be neither a mixture of Gaussians nor sub-Gaussian. For 
the prior, a spike-and-slab and a symmetrized Dirichlet process (DP) mixture priors 
are imposed on � and � , respectively. Asymptotic results given in this paper provide 
reasonable sufficient conditions for the frequentist’s validity on (i) recovery of � , (ii) 
variable selection, and (iii) uncertainty quantification.

It would be worthwhile to mention some technical contributions of this paper. 
First of all, our results allow error densities whose tails are thicker than sub-Gauss-
ian for which well-known concentration bounds such as the Hoeffding’s inequality 
make the proof simpler. Although the results are limited to exponentially decaying 
tails, it is highly expected that recent advances on heavy tail distributions (Canale 
and De Blasi 2017) are also applicable. Secondly, we provide simpler proof for pos-
terior convergence rates compared to that of Chae et al. (2019b). To derive the pos-
terior convergence rates, they used the misspecified LAN (local asymptotic normal-
ity) and some bounded conditions for empirical process, which turn out to be not 
necessary using our techniques.

The rest of the paper is organized as follows. In Sect. 2, we define the model and 
prior with some preliminary materials. In Sect. 3, main results on posterior convergence 
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rates, asymptotic shape and selection property are presented. Concluding remarks fol-
low in Sect. 4, and technical proofs are given in the Supplementary Material.

2 � Preliminaries

2.1 � Notations

For any positive sequences an and bn , an = o(bn) implies that an∕bn ⟶ 0 as n → ∞ . 
We denote an ≲ bn , or equivalently an = O(bn) , if an ≤ Cbn for all sufficiently large 
n and some constant C > 0 , which is an absolute constant or at least does not depend 
on n and p. For any x ∈ ℝ , ⌊x⌋ is the largest integer which is smaller than or equal to 
x. For any constants a and b, we denote a ∨ b as the maximum of a and b. We denote 
the indicator function for some set A as IA(⋅) and I(⋅ ∈ A) . For any � ∈ ℝ

p , the support 
of � is denoted by S� , which is the nonzero index of � , i.e. S� = {1 ≤ i ≤ p ∶ �i ≠ 0} . 
We denote the cardinality of S� as s� = |S�| . For any index set S ⊆ {1,… , p} 
and n × p matrix X, let �S = (�i)i∈S ∈ ℝ

|S| , �̃S = (�iI(i ∈ S))1≤i≤p ∈ ℝ
p and 

XS = (Xj)j∈S ∈ ℝ
n×|S| , where Xj is the j-th column of X. For any y ∈ ℝ and den-

sity � , we denote ��(y) = log �(y) , �̇𝜂(y) = 𝜕�𝜂(y)∕𝜕y , �̈𝜂(y) = 𝜕2�𝜂(y)∕(𝜕y)
2 and 

�⃛𝜂(y) = 𝜕3�𝜂(y)∕(𝜕y)
3 , whenever they exist. Similarly, for any x ∈ ℝ

p and � ∈ ℝ
p , let 

��,�(x, y) = ��(y − xT�) , �̇𝜃,𝜂(x, y) = �̇𝜂(y − xT𝜃)x and �̈𝜃,𝜂(x, y) = �̈𝜂(y − xT𝜃)xxT . 
Let ��0,�0

 be the expectation under ℙ�0,�0
 and ℙ�,� be the probability measure cor-

responding to the model (1). We denote ��0
= �0,�0

 for simplicity of exposition. For 
given a sequence of random variables Yn , Yn = oP0

(1) means that Yn converges to 
zero in ℙ�0,�0

-probability as n → ∞ . For given a real function f ∶ ℝ
p ×ℝ ↦ ℝ and 

the data Dn = ((Yi, xi))
n
i=1

 from the model (1), we define Ln(�, �) =
∑n

i=1
��,�(xi, Yi) , 

Rn(�, �) =
∏n

i=1
�(Yi − xT

i
�)∕�0(Yi − xT

i
�0),

Note that Vn,� = ��� , where 𝜈𝜂 = �𝜂0
(�̇𝜂�̇𝜂0

) , � = n−1XTX . Let Nn,�,S be the |S|-
dimensional normal distribution with mean V−1

n,�,S
Gn,�,S and variance V−1

n,�,S
 , where 

Gn,�,S is the |S|-dimensional projection of �n�̇𝜃0,𝜂
, Vn,�,S = ���S and �S = n−1XT

S
XS . 

For simplicity, we denote Gn,�0,S
,Vn,�0,S

 and Nn,�0,S
 as Gn,S,Vn,S and Nn,S , respectively. 

For given positive real numbers a and b, we denote IG(a, b) as an inverse gamma 
distribution whose shape and scale parameters are a and b, respectively. For given 
positive integer p, �0 ∈ ℝ

p and p × p positive definite matrix �0 , we denote 
Np(�0,�0) as a p-dimensional normal distribution with mean �0 and covariance 
matrix �0.

ℙnf =
1

n

n�

i=1

f (xi, Yi),

𝔾nf =
1√
n

n�

i=1

�
f (xi, Yi) − 𝔼𝜃0,𝜂0

�
f (xi, Yi)

��
and

Vn,𝜂 =
1

n

n�

i=1

𝔼𝜃0,𝜂0

�
�̇𝜃0,𝜂

�̇
T
𝜃0,𝜂0

(xi, Yi)
�
.
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For any � ∈ ℝ
p , denote the vector �q-norm as ‖�‖q ∶=

�∑p

j=1
��i�q

�1∕q

. For any 
pair of densities �1 and �2 with respect to a probability measure � , define the total 
variation and Hellinger distance as dV (�1, �2) ∶= ∫ |�1 − �2|d� and 
d2
H
(�1, �2) ∶= ∫ (√�1 −

√
�2)

2d� , respectively. For any pairs of vectors �1, �2 ∈ ℝ
p 

and densities �1, �2 , we define the mean Hellinger distance as

where p�,�,i(y) = �(y − xT
i
�).

2.2 � Prior

As mentioned earlier, we consider the following model

where � ∈ ℝ
p and � is a symmetric density. We impose prior distributions on � and 

� to conduct Bayesian inference. Let � = ℝ
p and H be the class of symmetric and 

continuously differentiable densities equipped with the Hellinger metric. We use 
a product prior � = �� ×�H for (�, �) , where �� and �H are Borel probability 
measures on � and H , respectively.

For the prior �� on the coefficient vector � , we select (i) the number of nonzero 
components s from a prior �p(s) on {0,… , p} , (ii) a random set S ⊆ {1,… , p} whose 
cardinality is s = |S| from the uniform prior, and (iii) the nonzero values �S from a 
prior gS on ℝ|S| in turn. Specifically, we consider the following prior distribution on 
(S, �):

where �0 is the Dirac measure at 0. This type of prior has been studied by George 
and Foster (2000), Scott and Berger (2010), Castillo and van der Vaart (2012) and 
Castillo et al. (2015). For the prior �p and gS , we assume that

for some positive constants A1,A2,A3 and A4 . Note that the prior gS is the product of 
the Laplace distribution g(�) = � exp(−�|�|)∕2 , i.e., gS(�S) =

∏
i∈S g(�i).

d2
n

(
(�1, �1), (�

2, �2)
)
=
1

n

n∑

i=1

d2
H
(p�1,�1,i, p�2,�2,i),

Yi = xT
i
� + �i,

�i
i.i.d.
∼ �, i = 1,… , n,

(S, �) ↦�p(|S|)
1(
p

|S|

) gS(�S) �0(�Sc ),

(2)A1p
−A3�p(s − 1) ≤�p(s) ≤ A2p

−A4�p(s − 1), s = 1,… , p

(3)gS(�S) =
�
�

2

��S�
exp(−�‖�S‖1),

√
n

p
≤ � ≤ √

n log p,



	 Journal of the Korean Statistical Society

1 3

For the prior �H on the error density � , we consider the location mixture of a 
symmetrized DP,

where 𝜙𝜎(x) ∶= (
√
2𝜋𝜎)−1 exp{−x2∕(2𝜎2)}, F̄ ∶= (F + F−)∕2, dF−(z) ∶= dF(−z) 

and DP(�) is the Dirichlet process with a finite positive measure � . For the base 
measure � and the prior on �2 , we further assume that

for some positive constants a1,… , a6,C
�,C�� and � , where 𝛼̄ = 𝛼∕𝛼([−C�n,C�n]) 

and M[a, b] is the set of probability measures on (a,  b). We assume that 𝛼̄ has a 
positive density function on (−C�n,C�n).

We need additional assumptions to achieve a distributional approximation and 
model selection consistency. Specifically, we assume that

and 𝛼̄ = 𝛼∕𝛼([−C�(log n)
2

𝜏 ,C�(log n)
2

𝜏 ]) has a positive density function on 
(−C�(log n)

2

� ,C�(log n)
2

� ) , where 𝜏 > 0 will be used to define true parameter class 
(condition (D2)) in Sect. 2.3.

Remark 1  The above prior conditions are mild which include popular prior choices. 
If we choose 𝛼̄ as a truncated normal distribution on interval [−n, n] , conditions (4) 
and (5) are satisfied with a1 = 2 . If we consider �m0 ∼ IG(a0, b0) for some positive 
constants a0 , b0 and m0 , conditions (6)–(8) are satisfied with a2 = m0∕2 and � = m0 . 
For conditions (9) and (10), it suffices to consider the truncated normal and inverse-
gamma distribution on (−C�(log n)

2

� ,C�(log n)
2

� ) and (0,C� log n) , respectively, for 
some large constant C′ > 0 . As n grows to infinity, the above supports in (9) and 
(10) are getting close to the whole supports, ℝ and ℝ+ = (0,∞).

𝜂(x) = ∫ 𝜙𝜎(x − z)dF̄(z),

F ∼ DP(𝛼),

𝜎2 ∼ G

(4)𝛼̄ ∈M[−C�n,C�n],

(5)𝛼̄([−x, x]c) ≤ exp(−C��xa1 ) for all sufficiently large x > 0,

(6)G(𝜎2 ≤ x) ≤ exp(−C��x−a2 ) for all sufficiently small x > 0,

(7)G(𝜎2 ≥ x) ≤x−a3 for all sufficiently large x > 0,

(8)G(s < 𝜎−2 < s(1 + t)) ≥a6sa4 ta5 exp(−C��s𝜅∕2) for any s > 0 and t ∈ (0, 1),

(9)𝛼̄ ∈M
[
−C�(log n)

2

𝜏 ,C�(log n)
2

𝜏

]
,

(10)G ∈M[0,C� log n],
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2.3 � True parameter class

We focus on the “large p and small n” setting, i.e. p ≥ n , throughout the paper. We 
assume �0 ∈ ℝ

p to be a s0-sparse vector, which means the number of nonzero ele-
ments of �0 is equal to s0 . The support of �0 is denoted by S0 = S�0 . Further condi-
tions on the sparsity s0 and the magnitude of �0 will be introduced in the main theo-
rems in Sect. 3. We introduce here conditions (D1)–(D5) for the true error density 
�0 : 

	(D1)	 (Locally �-Hölder class) for given positive constants � , �0 and a real-valued 
function L, �0 ∈ C

�,L,�0(ℝ) where C�,L,�0(ℝ) is the class of every density � whose 
kth order derivative �(k) exists up to k ≤ ⌊�⌋ and for k1 = ⌊�⌋ , 

	(D2)	 (Light tail) There exist positive constants a, b and � such that 

	(D3)	 There exists a constant 𝜐 > 0 such that �𝜂0

(
|𝜂(k)

0
|∕𝜂0

)(2𝛽+𝜐)∕k

< ∞ and 
�𝜂0

(
L∕𝜂0

)(2𝛽+𝜐)∕𝛽
< ∞ for 1 ≤ k ≤ ⌊�⌋.

	(D4)	 (Symmetry) �0(x) = �0(−x) and 𝜂0(x) > 0 for all x ∈ ℝ.
	(D5)	 there exist positive constants �1, �2, �3, b′,C�0

 and 𝜏′ < 𝜏 such that for any y ∈ ℝ , 

 and, for any small |x|, 

Now we describe the above conditions in more details. Condition (D1), locally �
-Hölder class, has been extensively studied in Kruijer et  al. (2010), Shen et  al. 
(2013), Canale and De  Blasi (2017) and Bochkina and Rousseau (2017). This 
class is much more general than the Hölder class because it only requires the local 
smoothness by adopting L(x) instead of a constant L > 0 . Furthermore, due to con-
dition (D2), it is essentially weaker than the condition in Kruijer et al. (2010), which 
assumes log �0 ∈ C

�,L,�0(ℝ) (Shen et al. 2013).
Condition (D2) ensures that the true density has an exponentially light tail. It 

is mainly required to prove the prior thickness condition for the density part and 
use the Hanson-Wright inequality for the strong model selection consistency. The 
technical details for the former issue can be found in Shen et al. (2013) (Lemma 2, 

����
(k1)(x + y) − �(k1)(x)

��� ≤L(x) exp(�0y2)�y��−⌊�⌋, ∀x, y ∈ ℝ.

𝜂0(x) ≤ exp(−b|x|𝜏), |x| > a.

(11)|�̇𝜂0
(y)| ≤C𝜂0

(|y|𝛾1 + 1),

(12)|�̈𝜂0
(y)| ≤C𝜂0

(|y|𝛾2 + 1),

(13)|�⃛𝜂0
(y)| ≤C𝜂0

(|y|𝛾3 + 1),

(14)
�0(y + x)

�0(y)
≤C�0

eb
�|y|�� .
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Theorem  3 and Proposition 1). Recently, Bochkina and Rousseau (2017) adopted 
much weaker tail condition, ∫ ∞

x
y2�0(y)dy ≤ C(1 + x)−� for some constants C > 0 

and 𝜏 > 0 , which includes some polynomially decreasing tail densities. However, 
they considered only the densities on ℝ+ , and it is unclear whether their techniques 
are applicable to the densities on ℝ.

Condition (D3) is needed for the prior thickness condition for the density (Shen 
et  al. 2013) and implicitly controls the tail behavior of �0 . It has been commonly 
used in literature including Kruijer et al. (2010), Shen et al. (2013) and Bochkina 
and Rousseau (2017).

Condition (D4) is not needed for proving the optimal convergence results (Theo-
rems 1 and 2). However, the symmetric assumption will play an important role in 
proving the BvM theorem (Theorem 3). Based on current techniques in this paper, 
this assumption is also needed to prove Corollaries 1 and 2, although we suspect that 
this can be weakened.

Condition (D5) is required only for the BvM theorem and selection consistency 
results. This condition is closely related to the tail of �0 and satisfied for a wide 
range of densities. For example, if �0(y) ∝ exp(−a|y|b) for some constants a, b > 0 
and every large enough |y|, condition (D5) is met. In fact, it holds unless �0 has an 
extremely thin tail.

2.4 � Design matrix

We consider a fixed design matrix X ∈ ℝ
n×p and assume that every element of the 

design matrix is bounded by 
√
log p up to some constant, i.e. supi,j �xij� ≤ M

√
log p 

for some constant M > 0 . The upper bound for entries of the design matrix is 
introduced due to technical reasons, and some recent works (Narisetty et al. 2019; 
Song and Liang 2017) on high-dimensional Bayesian inference also used similar 
conditions. In this paper, we require this condition mainly to (i) derive the poste-
rior convergence rate for ‖X(� − �0)‖2 using Corollary 3.2 of Chae et  al. (2019b) 
and (ii) obtain upper bounds for �̇𝜃,𝜂(x, y) (or its derivatives) based on �̇𝜂(y) (or its 
derivatives).

In high-dimensional linear regression model (1), certain regularity conditions 
have been imposed on the design matrix X for the estimability of � . In this paper, we 
define the uniform compatibility number by

and the restricted eigenvalue by

for any 1 ≤ s ≤ p , where � = n−1XTX , s� = |S�| and S� is the support of � . These 
quantities have been commonly used in literature (van de Geer and Bühlmann 2009; 

𝜙2(s) = inf

�
s𝜃 ⋅

𝜃T𝛴𝜃

‖𝜃‖2
1

∶ 𝜃 ∈ ℝ
p, 0 < s𝜃 ≤ s

�

𝜓2(s) = inf

�
𝜃T𝛴𝜃

‖𝜃‖2
2

∶ 𝜃 ∈ ℝ
p, 0 < s𝜃 ≤ s

�
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Bickel et al. 2009; Castillo et al. 2015), and the bounded below conditions have been 
introduced for consistent estimation. Note that the infimum, which is used to define 
compatibility number (or restricted eigenvalue), is often taken over all S ⊆ {1,… , p} 
and � ∈ ℝ

p such that ‖�Sc‖1 ≤ c‖�S‖1 for some constant c > 0 . However, our defini-
tions for �2(s) and �2(s) focus on sparse vectors � such that 0 < s𝜃 ≤ s . For exam-
ple, Castillo et  al. (2015) uses similar definitions. Bounded below assumption on 
�(s) is required for the convergence rate under �2 norm and BvM result, while the 
same assumption on �(s) is required for the convergence rate under �1 norm. If the 
restricted eigenvalue �2(s) is bounded away from zero, it implies that �S is positive 
definite for any |S| = s . Note that �(s) ≤ �(s) because ‖�‖2

1
≤ s�‖�‖22 by the Cauchy-

Schwartz inequality. Thus, the restricted eigenvalue conditions is stronger than the 
uniform compatibility number condition.

Because p ≥ n , if we consider, for example, a random design matrix X = (xij) , 
where xij ’s are random samples from the standard normal, supi,j �xij� ≤ M

√
log p 

and the restricted eigenvalue condition are met with high probability tending to 1 as 
p → ∞ . Furthermore, by Lemma 6.1 in Narisetty and He (2014), these conditions 
are also satisfied with high probability tending to 1 if the rows of X are independent 
isometric sub-Gaussian random vectors.

3 � Main results

3.1 � Posterior convergence rates

The first theorem is about the model dimension which states that the posterior dis-
tribution puts most of its mass on moderately small dimensional models. We denote 
the posterior distribution based on Dn as �(⋅ ∣ Dn).

Theorem  1  Assume that conditions (2)–(8) hold, �‖�0‖1 = O(s0 log p) and 
log p ≤ n2 . Then, for any �0 satisfying (D1)–(D4), there exists a constant Kdim > 1 
not depending on n and p such that

where �∗ ∶= (� ∨ 1) and t > {𝜅∗(1 + 𝜏−1 + 𝛽−1) + 1}∕(2 + 𝜅∗𝛽−1).

Since we use a Laplace prior for nonzero coefficients, the condition 
�‖�0‖1 = O(s0 log p) might seem to a bit restrictive. Note that this condition can 
be avoided in Gaussian models by utlizing explicit form of the log-likelihood, 
see Castillo et  al. (2015), van  der Pas et  al. (2016) and Gao et  al. (2015). To 
use the same technique in our semi-parametric model, quadratic approximation 
of the log-likelihood should be preceded, for which empirical process techniques 
can be applied. However, quadratic approximation is highly difficult when models 
have many nonzero coefficients. Therefore, the proof of Theorem 1 heavily relies 
on the prior, requiring an additional condition �‖�0‖1 = O(s0 log p) . An empirical 
Bayes approach proposed in Martin et al. (2017) might be an alternative way to 

�𝜃0,𝜂0
𝛱
(
s𝜃 > Kdim

{
s0 ∨ n𝜅

∗∕(2𝛽+𝜅∗)(log n)2t−1
}
∣ Dn

)
= o(1)
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relax this condition. However, the choice of the least squared estimators as the 
center of the prior may yield another problems when errors have heavier tails 
than the sub-Gaussian tail. Since we believe the condition �‖�0‖1 = O(s0 log p) is 
not too restrictive under the large � regime, we leave the problem of relaxing this 
condition as future work.

For a given t > {𝜅∗(1 + 𝜏−1 + 𝛽−1) + 1}∕(2 + 𝜅∗𝛽−1) , let s
n
∶= 2K

dim

{s0 ∨ n
�∗∕(2�+�∗)(log n)2t−1} . Theorem  1 effectively reduces the meaning-

ful parameter space when sn is not too big and makes the theoretical develop-
ment easier. Theorem  2 describes a result on posterior convergence rate under 
the mean Hellinger distance. The obtained rate has the term sn defined above, 
where s0 and n�∗∕(2�+�∗)(log n)2t−1 come from the coefficient and density estima-
tion, respectively.

Theorem  2  Assume that conditions (2)–(8) hold, �‖�0‖1 = O(s0 log p) and 
sn log p = o(n) . Then, for any �0 satisfying (D1)–(D4),

for some constant KHel > 0 not depending on n and p.

Remark 2  The symmetric condition (D4) is not directly used in the proof of Theo-
rems 1 and 2. Hence, they can be easily re-stated without (D4). We did not try to 
re-state them because it entails a redefinition of the prior and a lot of minor changes. 
We need the symmetric assumption for the BvM theorem, particularly for proving 
that the score function has zero expectation, that is, �𝜃0,𝜂0

�̇𝜃0,𝜂
= 0 for symmetric � . 

This will play an important role in the proof of the misspecified LAN, see Lemma 
11 of the Supplement. Finally, we note that the current proof of Corollaries 1 and 2 
below relies on the symmetric assumption (D4), but it might be possible to prove 
them without it.

Based on Theorem 2, the posterior convergence rate of � and � can be achieved 
as follows. The proof of Corollary 2 is straightforward by Theorem 2 and similar 
arguments used in the proof of Corollary 3.2 of Chae et al. (2016), so we omit the 
proof here.

Corollary 1  Under the conditions of Theorem 2, we have

for some constant Keta > 0 not depending on n and p, and for any �0 satisfying (D1)–
(D4) with 2� + � ≥ 2.

Corollary 2  Under the conditions of Theorem 2 and sn log p∕�(sn) = o(
√
n) , we have

�𝜃0,𝜂0
𝛱

(
dn
(
(𝜃, 𝜂), (𝜃0, 𝜂0)

)
> KHel

√
sn log p

n

||||
Dn

)
=o(1),

�𝜃0,𝜂0
𝛱

(
dH(𝜂, 𝜂0) > Keta

√
sn log p

n

||||
Dn

)
=o(1),
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for some constant Ktheta > 0 not depending on n and p, and for any �0 satisfying 
(D1)–(D4).

If we assume that �(sn) is bounded away from zero, the condition sn log p∕�(sn) 
= o(

√
n) in Corollary 2 becomes sn log p = o(

√
n) . Similar condition was made 

by Chae et  al. (2019b) to convert the convergence rate of the mean Hellinger 
distance dn((�, �), (�0, �0)) to that of ‖� − �0‖1 . Note that Chae et  al. (2019b) 
assumed sn

√
log p∕�(sn) = o(

√
n) under the bounded design matrix assumption, 

supi,j |xij| ≤ M . If we assume supi,j |xij| ≤ M , the condition in Corollary 2 is also 
relaxed to sn

√
log p∕�(sn) = o(

√
n) . It is a quite natural condition to obtain a mean-

ingful convergence rate tending to zero under the �1-norm.
The posterior convergence rate in Theorem  2 is nearly optimal if the hyper-

parameter � is set equal to 1. Note that �∗ = 1 in this case. For example, if 
s0 ≥ n1∕(2�+1)(log n)2t−1 , the posterior convergence rate with respect to the mean 
Hellinger distance is 

√
s0 log p∕n , leading to the same marginal convergence rate for 

� in �2-norm. Note that the minimax rate is 
√
s0 log(p∕s0)∕n (Ye and Zhang 2010). 

If s0 < n1∕(2𝛽+1)(log n)2t−1 , the marginal convergence for � rate with respect to the 
Hellinger distance is n−�∕(2�+1)× 

√
(log n)2t−1 log p which is the minimax rate up to 

a logarithmic factor and the same as that of Shen et al. (2013). In conclusion, the 
global rate for the whole parameter (�, �) is determined by the slower one among the 
two rates for � and � , where both of them are close to the minimax rate provided that 
log p is negligible relative to n.

3.2 � Bernstein von‑Mises theorem

In this subsection, we study the distributional limit of the marginal posterior distribu-
tion for � . Assume for a moment that p is moderately slowly increasing and the model 
is not sparse. Since we are working with a smooth semi-parametric model, it is highly 
expected that asymptotic shape of the map � ↦ Ln(�, �) − Ln(�0, �) is quadratic around 
�0 for every � . Since the posterior mass is concentrated around (�0, �0) , we only need to 
consider � ’s that are sufficiently close to �0 . The assertion leads to the semi-parametric 
BvM theorem which guarantees the asymptotic efficiency of Bayes estimator.

With a sparse model considered in this paper, the marginal posterior distribu-
tion cannot converge to a single normal distribution unless posterior puts most of 

�𝜃0,𝜂0
𝛱

�
‖𝜃 − 𝜃0‖1 > Ktheta

sn

𝜙(sn)

�
log p

n

����
Dn

�
= o(1),

�𝜃0,𝜂0
𝛱

�
‖𝜃 − 𝜃0‖2 > Ktheta

1

𝜓(sn)

�
sn log p

n

����
Dn

�
= o(1),

�𝜃0,𝜂0
𝛱

�
‖X(𝜃 − 𝜃0)‖2 > Ktheta

√
sn log p

����
Dn

�
= o(1),
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its mass on a single model. To be more specific, note that the marginal posterior 
distribution of � is given as

where

and

for every measurable set B ⊆ ℝ
|S| . Here, QS can be understood as the conditional 

posterior distribution of �S given S� = S . If |S| is not too large, QS is expected to 
be asymptotically normal as in the semi-parametric BvM theorem described in the 
previous paragraph. As a consequence, if there is a limit distribution of the marginal 
posterior for � , it should be a mixture of the form

where hS =
√
n(�S − �0,S) , n−

|S|
2  is the determinant of the Jacobian matrix, and Nn,S 

is defined in Sect. 2.1. Theorem 3 says that the semi-parametric BvM theorem holds 
under slightly stronger condition than those needed for the posterior convergence 
rate results.

Theorem  3  (Bernstein von-Mises) Assume that the prior conditions (2), (3), (5)–
(10) hold with a2 = 3 , �‖�0‖1 = O(s0 log p) and �snlog p = o(

√
n) . Further assume 

that s6
n
{(log p)11 ∨ s

5

12

n (log p)8+
11

12 } = o(n1−� ) holds for some constant 𝜁 > 0 and �(sn) 
is bounded away from zero. Then, we have

for any �0 satisfying (D1)–(D5).

The bounded condition on �(sn) ensures that the quadratic term of log-likeli-
hood ratio does not vanish. The condition �snlog p = o(

√
n) is required to wash 

out the prior effect and is a quite mild condition if we consider the small � regime 
such as � =

√
n∕p . To prove the BvM theorem, Castillo et  al. (2015) also used 

similar condition, �sn
√
log p = o(‖X‖) , where ‖X‖ is the maximum �2-norm of the 

d𝛱(𝜃 ∣ Dn) =
∑

S⊆{1,…,p}

wS dQS(𝜃S) d𝛿0(𝜃Sc),

wS ∝
�p(|S|)(

p

|S|

) ∫ ∫ exp
(
Ln(�̃S, �) − Ln(�0, �0)

)
d�H(�)gS(�S)d�S

QS(�S ∈ B) =
∫
B
∫ exp

(
Ln(�̃S, �) − Ln(�0, �0)

)
d�H(�)gS(�S)d�S

∫ ∫ exp
(
Ln(�̃S, �) − Ln(�0, �0)

)
d�H(�)gS(�S)d�S

d𝛱∞(𝜃 ∣ Dn) =
∑

S⊆{1,…,p}

wS n
−

|S|
2 dNn,S(hS) d𝛿0(𝜃Sc ),

��0,�0

[
dV

(
�(⋅|Dn),�

∞(⋅|Dn)
)]

=o(1)
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columns of matrix X. Note that if log p = o(n) and xij ’s are random samples from 
N(0, 1), it coincide with �snlog p = o(

√
n) with high probability tending to 1, as 

p → ∞.
The condition s6

n
{(log p)11 ∨ s

5

12

n (log p)8+
11

12 } = o(n1−� ) for some constant 𝜁 > 0 , are 
sufficient conditions for

converging to zero at a certain rate, where H∗
n
 is a neighborhood of �0 to which the 

posterior distribution contracts. See Lemmas 6 and 12 in Supplementary Material for 
details. To satisfy this condition, a certain level of smoothness of �0 is essential. For 
example, suppose we consider the prior �6 ∼ IG(a0, b0) for some positive constants 
a0 and b0 , i.e., a2 = 3 and � = 6 . Then, the condition 

(
sn log p

)6+ 5

12 (log p)
5

2 = o(n1−� ) 
is satisfied when (s0 log p)

6+
5

12 (log p)
5

2 = o(n1−� ) and n
77

4�+12 (log p)
107

12 = o(n1−� ) , 
which hold for 𝛽 > 16.25 provided that log p is negligible relative to n. Chae et al. 
(2019b) assumed (s0 log p)6 = o(n1−� ) for some constant 𝜁 > 0 to establish the semi-
parametric BvM theorem. Our condition is slightly stronger due to relaxation on the 
tail condition of �0.

3.3 � Strong model selection consistency

Theorem 4 states that the posterior probability of S� for the strict supersets of the true 
model S0 tends to zero. It implies that the posterior probability is asymptotically con-
centrated on the union of some strict subset of S0 and possibly other coordinates of Sc

0
.

Theorem 4  (No superset) Under the conditions of Theorem 3 and � ≥ 2�1 , we have

for any �0 satisfying (D1)–(D5), provided that A4 > Ksel for some constant Ksel 
depending only on �0.

Since we assume that 𝜂0(y) ≲ exp(−b|y|𝜏) and |�̇𝜂0
(y)| ≲ |y|𝛾1 + C , the condition 

� ≥ 2�1 implies that �̇𝜂0
(yi − xT

i
𝜃0) is a sub-Gaussian random variable. The sub-Gauss-

ian assumption enables us to use the Hanson-Wright inequality (Hanson and Wright 
1971; Wright 1973), which is one of the key properties for proving Theorem 4. Note 
that a normal distribution and a location-scale mixture of normal with compact mixing 
distribution satisfy the above condition. One important consequence of Theorem 4 is 
that if we assume that

Corollary 2 and Theorem 4 guarantee the strong model selection consistency, which 
means ��0,�0

�(S� = S0 ∣ Dn) ⟶ 1 as n → ∞ . The above condition (15) is called the 

∫ sup
𝜂∈H∗

n

(
�̇𝜂(y) − �̇𝜂0

(y)
)2
dP𝜂0

(y)

�𝜃0,𝜂0
𝛱(S𝜃 ⊋ S0 ∣ Dn) =o(1)

(15)min
{
|�0,j| ∶ �0,j ≠ 0, 1 ≤ j ≤ p

} ≥Ktheta

�(sn)

√
sn log p

n
,
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beta-min condition commonly assumed to obtain the model selection consistency 
(Castillo et al. 2015; Song and Liang 2017). The following corollary asserts that one 
can achieve the selection consistency and efficiently capture the uncertainty of the 
nonzero coordinates under the beta-min condition.

Corollary 3  (Selection) Let �̂S0 = n−1∕2V−1
n,S0

Gn,S0
+ �0,S0 , �̂S0

= n−1V−1
n,S0

 , and �Sc
0
 be 

the Dirac measure at 0 ∈ ℝ
|Sc| . Denote 𝜃 ∼ N|S0|(

�𝜃S0 ,
�𝛴S0

)⊗ 𝛿Sc
0
 if 

�S0 ∼ N|S0|(�̂S0 , �̂S0
) and �Sc

0
= 0 , independently. Under the conditions of Theorem 4 

and (15), we have

for any �0 satisfying (D1)–(D5), provided that A4 > Ksel for some constant Ksel 
depending only on �0.

Remark 3  Yang (2017) proved the asymptotic normality for an individual coordinate 
�i without the beta-min condition. However, her results focus on the posterior distri-
bution of an individual coordinate under the normal error distribution and cannot be 
extended to the posterior distribution of the whole �.

4 � Discussion

In this paper, we study asymptotic properties of posterior distributions for high-
dimensional linear regression models under unknown symmetric error. We extend 
the previous works on Bayesian asymptotic theory to deal with much more general 
error densities beyond the sub-Gaussian class. To the best of our knowledge, this 
is the first work that has proved posterior convergence rates and BvM theorem for 
high-dimensional linear regression model without the sub-Gaussian assumption. For 
the BvM theorem and selection consistency, the conditions, s6

n
(log p)11 = o(n1−� ) 

and 
(
sn log p

)6+ 5

12 (log p)
5

2 = o(n1−� ) , are needed, which requires that the true error 
distribution is smooth enough.

Note that algorithms for sampling a DP mixture and a spike-and-slab prior can 
be suitably combined to generate MCMC samples from the posterior distribution in 
our semiparametric model, see Sect. 4 of Chae et al. (2019b). Although our theoreti-
cal analysis is limited to error densities with exponentially decaying tails, results of 
numerical experiments in Chae et  al. (2019b) demonstrate that a semi-parametric 
estimator performs much better in prediction, model selection and uncertainty quan-
tification than a parametric counterpart when the tail of error density is polynomi-
ally decaying. In particular, with a location-scale mixture of Gaussians with a conju-
gate DP prior, the selection consistency and BvM phenomena seem to hold while a 
location mixture only does not provide satisfactory results.

�𝜃0,𝜂0

[
dV

(
𝛱(⋅|Dn),N|S0|(

�𝜃S0 ,
�𝛴S0

)⊗ 𝛿Sc
0

)]
= o(1)
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Future work will focus on the theoretical development of a location-scale mix-
tures with heavy-tailed components such as the Student’s t distributions. This will 
likely entail new techniques for Bayesian asymptotic, see Chae and Walker (2017) 
for example.
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