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Abstract. We determine the absolute differential Galois group of the field C(x) of rational func-
tions: It is the free proalgebraic group on a set of cardinality |C|. This solves a longstanding open
problem posed by B.H. Matzat. For the proof we develop a new characterization of free proalgebraic
groups in terms of split embedding problems, and we use patching techniques in order to solve a
very general class of differential embedding problems. Our result about C(x) also applies to rational
function fields over more general fields of coefficients.

1. Introduction

The differential Galois group of a linear differential equation is a linear algebraic group that
measures the algebraic relations among the solutions: the larger the group, the fewer relations
there are. This group is central for analyzing algebraic properties of the solutions.

One of the guiding problems in the Galois theory of differential equations is the so-called inverse
problem. It asks which linear algebraic groups occur as differential Galois groups over a given
differential field F . In the classical case F = C(x), the inverse problem was solved by C. Tretkoff
and M. Tretkoff ([TT79]) based on J. Plemelj’s solution of Hilbert’s 21st problem: Every linear
algebraic group is a differential Galois group over C(x).

There are various directions in which the inverse problem can be strengthened. For example, one
may ask how many essentially different ways a given linear algebraic group G occurs as a differential
Galois group over C(x). More precisely, one may ask to determine the cardinality κG of the set of
isomorphism classes of Picard-Vessiot extensions of C(x) with differential Galois group isomorphic
to G. Here a Picard-Vessiot extension is the differential analog of a finite Galois extension of fields
in usual Galois theory. The solution of the inverse problem simply states that κG ≥ 1 for any linear
algebraic group G. Since there are only |C(x)| = |C| linear differential equations over C(x), one
trivially has κG ≤ |C|. J. Kovacic showed ([Kov69]) that κG = |C| when G is a connected solvable
linear algebraic group. Our main result (see below) implies that indeed κG = |C| for any non-trivial
linear algebraic group G.

The absolute differential Galois group of a differential field F is a proalgebraic group that governs
the linear part of the differential field arithmetic of F . This group is the projective limit of all
differential Galois groups of all linear differential equations with coefficients in F . A linear algebraic
group is a differential Galois group over F if and only if it is a quotient of the absolute differential
Galois group of F . Thus the problem of determining the absolute differential Galois group can also
be seen as a strengthening of the inverse problem.
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For the differential fields of formal and convergent Laurent series, the absolute differential Galois
group is known ([vdPS03, Chapter 10]). On the other hand, in the classical case of the rational
function field F = C(x), no explicit description of the absolute differential Galois group has been
known so far. During the 1999 MSRI program Galois Groups and Fundamental Groups, B.H.
Matzat suggested that there should be a differential generalization of A. Douady’s theorem ([Dou64];
see also [Sza09, Theorem 3.4.8]) that the absolute Galois group of C(x) is the free profinite group
on a set of cardinality |C|. In this paper we show that this is indeed the case (Theorem 5.6):

Theorem (Matzat’s conjecture for C(x)). The absolute differential Galois group of C(x) is the free
proalgebraic group on a set of cardinality |C|.

In fact, our theorem provides another proof of Douady’s result as well; see Remark 5.9.
Previously known freeness results for absolute differential Galois groups include the case of

prounipotent extensions. Free prounipotent proalgebraic groups were introduced and characterized
in terms of embedding problems in [LM82]. Based on this characterization, A. Magid has recently
shown ([Mag20]) that the maximal prounipotent quotient of any absolute differential Galois group
is free.

In [BHHW19], the authors were able to prove the analog of Matzat’s conjecture for a countable
algebraically closed field of infinite transcendence degree and characteristic zero in place of C.

In this article we in fact prove Matzat’s conjecture for any uncountable algebraically closed field of
characteristic zero in place of C; and so, in combination with loc. cit., obtain the case of algebraically
closed fields of infinite transcendence degree over Q (Theorem 5.6). We note that the proofs in the
countable and the uncountable case are quite different. On the one hand, the characterization of
the freeness in terms of embedding problems is much simpler in the countable case; on the other
hand, the specialization argument (Proposition 5.5) that we use in the uncountable case only works
for uncountable fields.

Our proof of Matzat’s conjecture is based on the study of certain differential embedding problems
that we solve using patching techniques. A differential embedding problem of finite type over C(x)
is a Picard-Vessiot extension L/C(x) with differential Galois group H together with a surjective
morphism G → H of linear algebraic groups. A solution is a Picard-Vessiot extension M/C(x)
with differential Galois group G together with an embedding of L into M that is compatible with
the morphism G → H. Note that the special case H = 1 corresponds to the inverse problem.
Solutions to differential embedding problems tell us not only which linear algebraic groups occur
as differential Galois groups but also how these groups fit together in the projective system that
defines the absolute differential Galois group.

It was shown in [BHHW18] (and in [BHHP20] for more general fields than C) that every differ-
ential embedding problem of finite type over C(x) has a solution. However, to establish Matzat’s
conjecture a significantly stronger result is needed. In fact, it was shown in [BHHW19] that Matzat’s
conjecture is equivalent to the statement that every differential embedding problem of finite type
over C(x) has |C| independent solutions; i.e., there exist |C| solutions that are linearly disjoint over
the given extension L.

Another path to establish Matzat’s conjecture via solving differential embedding problems is
to relax the finite type assumption, and this is the one we will follow in this article. Instead of
a surjective morphism G → H of linear algebraic groups, one allows a surjective morphism of
proalgebraic groups with algebraic kernel. And instead of taking a single Picard-Vessiot extension
L/C(x), one allows a direct limit of Picard-Vessiot extensions, where the limit it taken over a
directed set of cardinality less than |C|. We call differential embedding problems of this kind
admissible. In fact, Matzat’s conjecture is also equivalent to the statement that all admissible
differential embedding problems over C(x) have a solution (loc. cit.). Two key ingredients of our
proof of the latter condition are:
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• A new characterization of free proalgebraic groups in terms of embedding problems that
relies on and improves the characterization from [Wib20]. The crucial point here is that to
prove Matzat’s conjecture we can reduce to solving split admissible differential embedding
problems; i.e., we can assume that the morphism G→ H has a section.
• To solve these split admissible differential embedding problems, we generalize the patching

techniques from [BHHW18] and [BHHP20], where only differential embedding problems of
finite type were considered.

The idea to prove the freeness of a Galois group by solving embedding problems goes back to
K. Iwasawa ([Iwa53]), who used it to prove the solvable version of a conjecture of I. Shafarevich in
inverse Galois theory. Shafarevich’s conjecture (see [Har02]) states that the absolute Galois group of
the maximal abelian extension Qab = Qcycl of Q is a free profinite group on a countably infinite set.
The function field analog of that conjecture (proven in [Har95] and [Pop95]) asserts the freeness of
the absolute Galois group of F̄p(x) = Fp(x)cycl, and more generally of k(x) for k algebraically closed
of characteristic p. That result, combined with the parallel between differential Galois theory in
characteristic zero and usual Galois theory in characteristic p (see [vdPS03, Section 11.6]), provided
motivation for Matzat’s conjecture.

Our main theorem (Matzat’s conjecture for C(x)) can also be reformulated in the Tannakian
framework. Namely, from that perspective, it states that there is an equivalence of Tannakian
categories, between the category of finite dimensional differential modules over C(x) and that of
cofinite representations of the free group on |C| elements.

Structure of the manuscript. In Section 2, after recalling the definition of free proalgebraic
groups, we provide a new characterization of these groups in terms of algebraic embedding problems
and split admissible embedding problems. In Section 3 we recall basic definitions and results from
differential Galois theory and show that to prove Matzat’s conjecture, it suffices to solve split
admissible differential embedding problems. In Section 4 we establish a patching setup that we
then use in Section 5 to prove Matzat’s conjecture.

Acknowledgments. The authors thank A. Pillay for helpful discussions.

2. Free proalgebraic groups and embedding problems

In this section we first recall the definition of free proalgebraic groups and their characterization
in terms of embedding problems from [Wib20]. We then show that, in this context, it suffices to
consider algebraic embedding problems and certain split embedding problems.

Throughout this section we work over an arbitrary base field K with algebraic closure K̄.

2.1. Proalgebraic groups. We begin by introducing some notation for proalgebraic groups. To
simplify terminology we will use the term algebraic group (over K) to mean affine group scheme of
finite type (over K) and the term proalgebraic group (over K) to mean affine group scheme (over
K). Equivalently, a proalgebraic group is a projective limit of algebraic groups. A closed normal
subgroup N of a proalgebraic group G over K is called coalgebraic if G/N is algebraic.

The coordinate ring (i.e., the ring of global functions) on a proalgebraic group G is denoted by
K[G], so G = Spec(K[G]). We also write K[X] for the global functions on an affine K-scheme X.
It is often convenient to identify a proalgebraic group G with its functor of points T 7→ G(T ), for
T a K-algebra. The scheme theoretic image of a morphism φ : G → H of proalgebraic groups is
denoted by φ(G). It is the smallest closed subgroup of H such that φ factors through the inclusion
φ(G)→ H.

A morphism φ : G→ H of proalgebraic groups is an epimorphism if φ(G) = H. This is equivalent
to the dual map φ∗ : K[H]→ K[G] being injective. It is also equivalent to the following statement:
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For every K-algebra R and h ∈ H(R), there exists a faithfully flat R-algebra S and g ∈ G(S) such
that under φ the element g maps to the image of h in H(S).

If G is a proalgebraic group over K and if F/K is a field extension, then we may consider the
base change GF := F ×K G and its coordinate ring F [GF ] = F ⊗K K[G]. We often suppress the
base change subscript (e.g., writing F [G] for F [GF ]), except when necessary to avoid confusion.

A free proalgebraic group over K on a set X is a proalgebraic group Γ = ΓK(X) equipped with
a map ι : X → Γ(K̄) such that

• for every coalgebraic subgroup N of Γ all but finitely many elements of X map into N(K̄)
under ι and
• whenever G is a proalgebraic group over K and ϕ : X → G(K̄) is a map as above, then

there exists a unique morphism ψ : Γ→ G such that

X
ι //

ϕ !!

Γ(K̄)

ψK̄{{
G(K̄)

commutes.

As usual, this is unique up to isomorphism. For our proof of Matzat’s conjecture we will use a
different characterization of free proalgebraic groups. To this end we recall some definitions from
[Wib20].

Definition 2.1. Let G be a proalgebraic group that is not algebraic. The rank of G, denoted by
rank(G), is the dimension of K[G] as a K-vector space. For a non-trivial algebraic group G we set
rank(G) = 1. The rank of the trivial group is defined to be zero.

See [Wib20, Prop. 3.1] for different characterizations of the rank of a proalgebraic group. If X
is a set with |X| ≥ |K| and char(K) = 0, then ΓK(X) is of rank |X| ([Wib20, Cor. 3.12]).

Definition 2.2. Let Γ be a proalgebraic group. An embedding problem for Γ consists of epimor-
phisms α : G � H and β : Γ � H of proalgebraic groups. A (proper) solution is an epimorphism
φ : Γ� G such that β = αφ, i.e.,

Γ
β

    
φ
����
G

α // // H

commutes. A weak solution is a morphism (not necessarily an epimorphism) φ : Γ → G such that
β = αφ. If G (and therefore also H) is algebraic, the embedding problem is called algebraic.

The embedding problem is split if α : G� H splits, i.e., if there exists a morphism α′ : H → G
such that αα′ = idH .

The kernel of the embedding problem is the kernel of G� H. If the kernel is algebraic (i.e., of
finite type over K) and rank(H) < rank(Γ), the embedding problem is admissible.

Definition 2.3. A proalgebraic group Γ is saturated if every admissible embedding problem for Γ
has a solution.

Theorem 3.24 of [Wib20] provides several equivalent characterizations of saturated proalgebraic
groups in terms of embedding problems. Moreover, over a field of characteristic zero, a proalgebraic
group Γ with rank(Γ) ≥ |K| is saturated if and only if it is free on a set of cardinality rank(Γ)
([Wib20, Theorem 3.42]).
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2.2. Reduction to the case of split admissible embedding problems. The following lemma
shows that, as far as weak solutions are concerned, one can restrict to the case of algebraic embed-
ding problems.

Lemma 2.4. Let Γ be a proalgebraic group. If every algebraic embedding problem for Γ has a weak
solution, then every embedding problem for Γ has a weak solution.

Proof. First consider a pair consisting of an epimorphism α : G � H of algebraic groups and
any morphism β : Γ → H (not necessarily an epimorphism). We claim that we can complete the
commutative diagram

(1) Γ
β

  
φ
��
G

α // // H

with a morphism φ : Γ → G. To see this, replace H by β(Γ) and G by α−1(β(Γ)); this yields an
algebraic embedding problem for Γ, which has a weak solution, by hypothesis. We thus obtain the
asserted map φ, proving the claim.

By [BLMM02, Prop. 4], the above claim implies that every diagram (1) with α : G � H an
epimorphism of proalgebraic groups can be completed with a morphism φ, thereby showing that
every embedding problem for Γ has a weak solution. (We note that [BLMM02] has the standing
hypothesis that the base field K is algebraically closed and of characteristic zero; but the self-
contained proof of [BLMM02, Prop. 4] does not make use of that assumption.) �

The following lemma will allow us to reduce the solvability of admissible embedding problems
to the solvability of algebraic embedding problems and split admissible embedding problems.

Lemma 2.5. Let Γ be a proalgebraic group. If every algebraic embedding problem for Γ has a
weak solution, then every admissible embedding problem G � H, Γ � H for Γ is dominated by
a split admissible embedding problem. That is, there exists a split admissible embedding problem
G′ � H ′, Γ� H ′ and epimorphisms G′ � G, H ′ � H such that

(2) Γ

����

����

G′ // //

����

H ′

����
G // // H

commutes.

Proof. Let G � H, Γ � H be an admissible embedding problem for Γ. In particular, N :=
ker(G � H) is algebraic. It follows from Lemma 2.4 that there exists a weak solution, i.e., a
morphism φ : Γ→ G such that

Γ

    
φ
��
G // // H

commutes. Let H ′ = φ(Γ) ≤ G. The group G (and therefore also H ′) acts on the normal subgroup
N via conjugation and we can form the semidirect product G′ = N o H ′. So we have a split
embedding problem G′ � H ′ and Γ� H ′.
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The rank of a closed subgroup of G is at most the rank of G ([Wib20, Lemma 3.5]), and the
source and target of an epimorphism with algebraic kernel have the same rank ([Wib20, Lemma
3.6]. It follows that rank(H ′) ≤ rank(G) = rank(H) < rank(Γ). Moreover, ker(G′ � H ′) = N is
algebraic. Thus the embedding problem G′ � H ′, Γ� H ′ is admissible.

The restriction of G � H to H ′ → H is an epimorphism because Γ � H is an epimorphism.
We will show that the multiplication map G′ → G, (n, h′) 7→ nh′ is also an epimorphism.

Let R be a K-algebra and g ∈ G(R). Let h ∈ H(R) be the image of g under G � H. Since
Γ � H is an epimorphism there exists a faithfully flat R-algebra S and a γ ∈ Γ(S) that maps
onto h ∈ H(R) ⊆ H(S). Now g ∈ G(R) ⊆ G(S) and φ(γ) ∈ G(S) both map to h ∈ H(S).
Thus n = gφ(γ)−1 ∈ N(S) and (n, φ(γ)) ∈ G′(S) maps onto g ∈ G(S). Therefore G′ → G is an
epimorphism. By construction, diagram (2) commutes. �

Proposition 2.6. Let Γ be a proalgebraic group. Then Γ is saturated if and only if

(i) every algebraic embedding problem for Γ has a weak solution and
(ii) every split admissible embedding problem for Γ has a solution.

Proof. Clearly (i) and (ii) must be satisfied if Γ is saturated. Let G� H, Γ� H be an admissible
embedding problem. By (i) and Lemma 2.5 there exists a split admissible embedding problem
dominating it as in diagram (2). By (ii) this split admissible embedding problem has a solution
Γ � G′. Composing this solution with G′ � G yields a solution to the original embedding
problem. �

3. Differential Galois theory

In the first part of this section we recall some basic results from differential Galois theory. We
also introduce some notation that will be used throughout the text. In the second part, using
Proposition 2.6 and [BHHW19], we give a criterion for the freeness of the absolute differential
Galois group in terms of differential embedding problems (Proposition 3.8).

Throughout this paper all differential fields are assumed to be of characteristic zero. The letter
F will always denote a differential field with derivation ∂ : F → F and field of constants K. (The
field of constants of a differential field L is L∂ = {a ∈ F | ∂(a) = 0}.) For now, we do not assume
that K is algebraically closed.

3.1. Picard-Vessiot extensions and differential Galois groups. Classically, one considers
Picard-Vessiot extensions L/F associated to a given linear differential equation ∂(y) = Ay, where
A ∈ Fn×n. In this case L is generated as a field by the entries of a fundamental solution matrix of
∂(y) = Ay. In particular, L is a finitely generated field extension of F . (Standard references are
[vdPS03] and [Mag94].) For our purposes it is essential to consider Picard-Vessiot extensions that
are not finitely generated as field extensions. Instead of considering a Picard-Vessiot extension of
a single equation, we consider a Picard-Vessiot extension of a family of equations

(3) ∂(y) = Aiy, Ai ∈ Fni×ni , i ∈ I.
Differential Galois theory in this generality is treated in [AMT09] (the Hopf-algebraic definition

there is equivalent to our definition of Picard-Vessiot extensions given below by [Tak89], Cor. 3.5.)

Definition 3.1. A differential field extension L/F is a Picard-Vessiot extension for (3) if

(i) for every i ∈ I there exists Yi ∈ GLni(L) such that ∂(Yi) = AiYi,
(ii) L is generated as a field extension of F by the entries of all the Yi’s,

(iii) L∂ = F ∂ .

The differential F -subalgebra R of L generated by all the entries and the inverses of the determinants
of all these Yi’s is called a Picard-Vessiot ring for (3).
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A Picard-Vessiot ring for (3) can also be characterized without reference to a Picard-Vessiot
extension: It is a differential F -algebra R such that

(i) for every i ∈ I there exists Yi ∈ GLni(R) such that ∂(Yi) = AiYi,
(ii) R is generated as an F -algebra by all the entries of all the Yi’s and the inverses of their

determinants
(iii) R is ∂-simple, i.e., all ∂-ideals of R are trivial and
(iv) R∂ = F ∂ . (If K = F ∂ is algebraically closed, this condition follows automatically from the

three other conditions.)

A Picard-Vessiot extension (resp. Picard-Vessiot ring) is a Picard-Vessiot extension (resp. ring)
with respect to some family of differential equations.

If K = F ∂ is algebraically closed, there exists a Picard-Vessiot extension for any family of equa-
tions, and such a Picard-Vessiot extension or a Picard-Vessiot ring is unique up to an isomorphism
of differential F -algebras. In that case, we can speak of “the Picard-Vessiot extension” associated
to an equation, or to a family of equations. We note that [AMT09] provides a characterization of
Picard-Vessiot extensions and rings without reference to a family of differential equations.

Definition 3.2. The differential Galois group Gal(L/F ) = Gal(R/F ) of a Picard-Vessiot extension
L or a Picard-Vessiot ring R is the functor that associates to a K-algebra T the group of differential
automorphisms Aut∂(R⊗K T/F ⊗K T ) of R⊗K T over F ⊗K T .

Here T is considered as a differential algebra with the trivial derivation. The differential Galois
group is a proalgebraic group over K. In fact G = Gal(R/F ) is represented by K[G] = (R⊗F R)∂

and the canonical map R ⊗K K[G] → R ⊗F R is an isomorphism. In Section 4 this isomorphism
will be interpreted geometrically by saying that Spec(R) is a differential G-torsor.

Remark 3.3. Let L/F be a Picard-Vessiot extension with Picard-Vessiot ring R and differential
Galois group G. Then the following statements are equivalent:

(i) L is a finitely generated field extension of F .
(ii) R is a finitely generated F -algebra.

(iii) G is algebraic (i.e., of finite type).
(iv) L/F is a Picard-Vessiot extension of a single equation.

A Picard-Vessiot extension or ring satisfying the above equivalent conditions is said to be of
finite type.

Consider a Picard-Vessiot ring R for a (possibly infinite) family of differential equations indexed
over some set I. By viewing I as the filtered direct limit of its finite subsets, we can realize R as
the filtered direct limit lim−→i

Ri of Picard-Vessiot rings Ri/F of finite type. Here each Ri is in fact a
Picard-Vessiot ring of a single equation, by the above remark. If Ri has differential Galois group Gi
and T is a K-algebra, then an element g ∈ G(T ) = Aut∂(R⊗K T/F ⊗K T ) restricts to an element
gi ∈ Gi(T ) = Aut∂(Ri⊗K T/F⊗K T ) for every i. Conversely, to define a g ∈ Aut∂(R⊗K T/F⊗K T )
is equivalent to defining a compatible system of gi’s, i.e., G(T ) = lim←−iGi(T ) and so G = lim←−iGi.

Let L/F be a Picard-Vessiot extension with Picard-Vessiot ring R, a ∈ L, T a K-algebra and
g ∈ G(T ), where G = Gal(R/F ). The automorphism g : R ⊗K T → R ⊗K T extends to an
automorphism g̃ of the total ring of fractions of R⊗K T , which contains L. If g̃(a) = a we say that
a is fixed by g. For a closed subgroup H of G we set

LH = {a ∈ L| a is fixed by all h ∈ H(T ) for all K-algebras T}.

A similar notation will be used for Picard-Vessiot rings, i.e.,

RH = {a ∈ R| a is fixed by all h ∈ H(T ) for all K-algebras T}.
7



We can now recall the fundamental theorem of differential Galois theory, the Galois correspon-
dence: Let L/F be a Picard-Vessiot extension with differential Galois group G.

• The assignments M 7→ Gal(L/M) and H 7→ LH are mutually inverse bijections between
the set all intermediate differential fields F ⊆ M ⊆ L and the set of all closed subgroups
H of G.
• For an intermediate differential field M , the extension M/F is Picard-Vessiot if and only

if the corresponding closed subgroup H of G is normal. Moreover, in this case, the re-
striction map Gal(L/F ) → Gal(M/F ) is an epimorphism with kernel Gal(L/M ), so that
Gal(M/F ) ∼= Gal(L/F )/Gal(L/M).

If R is the Picard-Vessiot ring of L/F , then in 3.1 above, the Picard-Vessiot ring of M/F is RH .

Definition 3.4. If K = F ∂ is algebraically closed, we define the absolute differential Galois group
of F as the differential Galois group of the Picard-Vessiot extension for the family of all linear
differential equations over F .

3.2. Differential embedding problems. In this section, we apply our result on embedding prob-
lems of proalgebraic groups (Proposition 2.6) in the differential setting to obtain a new characteri-
zation of free absolute differential Galois groups in terms of differential embedding problems.

Definition 3.5. A differential embedding problem over F is a pair (α : G � H,R) where R is a
Picard-Vessiot ring over F with H ∼= Gal(R/F ), and α : G� H is an epimorphism of proalgebraic
groups. A (proper) solution is an embedding of Picard-Vessiot rings R ↪→ S such that G ∼=
Gal(S/F ) and the diagram

Gal(S/F )
res // // Gal(R/F )

G

OO

// // H

OO

commutes. A differential embedding problem is split if there exists a morphism α′ : H → G such
that αα′ is the identity. In this case G ∼= N oH with N = ker(α), and we may also refer to the
pair (N oH,R) as a differential embedding problem.

A differential embedding problem is of finite type if G is an algebraic group, i.e., an affine group
scheme of finite type. (This implies that R/F is of finite type.)

If K = F ∂ is algebraically closed, one can use the differential Galois correspondence for the
Picard-Vessiot extension of the family of all linear differential equations over F to translate embed-
ding problems for the absolute differential Galois group of F into differential embedding problems
over F and vice versa (cf. [BHHW19, Section 3.3]).

Definition 3.6. The rank of a Picard-Vessiot extension L/F , denoted by rank(L), is the smallest
cardinal number κ such that L is a Picard-Vessiot extension for a family of cardinality κ.

In particular, rank(L) ≤ |F | for every Picard-Vessiot extension L/F . If L/F is a Picard-Vessiot
extension with Picard-Vessiot ring R we also set rank(R) := rank(L). Lemma 3.2 of [BHHW19]
provides several equivalent characterizations of the rank of a Picard-Vessiot extension. In particular,
if R is a Picard-Vessiot ring that is not of finite type then the rank of R agrees with its dimension
as an F -vector space. Moreover, if L/F is a Picard-Vessiot extension with differential Galois group
G, then rank(L) = rank(G) ([BHHW19, Lemma 3.3]).

Definition 3.7. A differential embedding problem (α : G� H, R) over F is admissible if rank(R) <
|F | and ker(α) is an algebraic group.
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Admissible differential embedding problems correspond to admissible embedding problems of
proalgebraic groups as defined in Section 2. Note that every embedding problem of finite type (i.e.
with G algebraic) is admissible.

The criterion given by the following proposition will be a crucial ingredient to proving Matzat’s
conjecture.

Proposition 3.8. Assume that K = F ∂ is algebraically closed. Then the absolute differential
Galois group of F is the free proalgebraic group on a set of cardinality |F | if and only if

(i) every differential embedding problem over F of finite type has a solution and
(ii) every split admissible differential embedding problem over F has a solution.

Proof. Let Γ denote the absolute differential Galois group of F . It was shown in [BHHW19,
Theorem 3.7] that Γ is the free proalgebraic group on a set of cardinality |F | if and only if every
admissible differential embedding problem over F is solvable. Thus, if Γ is the free proalgebraic
group on a set of cardinality |F |, clearly (i) and (ii) must be satisfied.

To establish the converse, we first show that rank(Γ) = |F |. Let F̃ denote the Picard-Vessiot

extension for the family of all linear differential equations over F , so that Γ = Gal(F̃ /F ). Fix
a non-trivial algebraic group G over K and let L denote the compositum of all Picard-Vessiot

extensions of F with differential Galois group isomorphic to G (inside F̃ ). If rank(L) = |F |, then
also rank(Γ) = |F | as claimed (using [BHHW19, Lemma 3.3]). Assume for contradiction that
rank(L) < |F |. Let R denote the Picard-Vessiot ring of L and let α : G ×Gal(R/F ) → Gal(R/F )
denote the projection onto the second factor. Then (α,R) is a split admissible differential embedding
problem over F . By (ii) it has a solution, i.e., there exists a Picard-Vessiot ring S over F containing
R with Gal(S/F ) ∼= G×Gal(R/F ) such that

G×Gal(R/F )

'
�� (( ((

Gal(S/F ) // // Gal(R/F )

commutes. Since K is algebraically closed, any Picard-Vessiot ring over F embeds into F̃ , so we

may assume that S is contained in F̃ . The Picard-Vessiot extension L′/F corresponding to the
closed normal subgroup Gal(R/F ) of G × Gal(R/F ) ' Gal(S/R) has differential Galois group
isomorphic to G but is not contained in L by the Galois correspondence (as L and L′ correspond
to the subgroups G and Gal(R/F ) of G × Gal(R/F )). This contradicts the choice of L. Thus
rank(Γ) = |F | ≥ |K|.

On the other hand, we can use Proposition 2.6 to deduce from (i) and (ii) that Γ is saturated.
But a proalgebraic group Γ over K with rank(Γ) ≥ |K| is saturated if and only if it is free on a set
of cardinality rank(Γ) ([Wib20, Theorem 3.42]). Thus Γ is free on a set of cardinality |F |. �

4. Solving differential embedding problems via patching

Proposition 3.8 leaves us with the task to solve all differential embedding problems of type (i)
and (ii) as in that proposition. All differential embedding problems over C(x) of type (i) were al-
ready solved in [BHHP20, Cor. 4.6], so it remains to consider split admissible differential embedding
problems.

The main goal of this section is to establish a certain patching setup that yields solutions to split
admissible differential embedding problems (Theorem 4.4). This theorem generalizes [BHHW18,
Theorem 2.14] from Picard-Vessiot rings of finite type to arbitrary Picard-Vessiot rings. The main
strategy will be to write a proalgebraic group as the projective limit of algebraic groups and provide
compatible solutions of the corresponding differential embedding problems of finite type.
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As before, F always denotes a differential field of characteristic zero with field of constants K.

4.1. Reduction to the finite type case. It was noted in Section 3.1 that every Picard-Vessiot
ring can be viewed as a direct limit of Picard-Vessiot rings of finite type, and that the differential
Galois group is the projective limit of the corresponding algebraic differential Galois groups. The
next lemma shows the converse, for arbitrary directed systems of Picard-Vessiot rings.

Lemma 4.1. Let (Ri)i∈I be a directed system of Picard-Vessiot rings over F . Then R = lim−→Ri is

a Picard-Vessiot ring over F and Gal(R/F ) = lim←−Gal(Ri/F ).

Proof. Since Picard-Vessiot rings are differentially simple, any morphism of Picard-Vessiot rings is
injective. We can thus identify each Ri with a subring of R. Then R is the union of the Ri’s and
similarly the field of fractions of R is the union of the fields of fractions of the Ri’s. As there are no
new constants in the latter differential fields, there are also no new constants in the fraction field
of R. Thus, if Ri is a Picard-Vessiot ring for a familiy Fi of linear differential equations over F ,
then R is a Picard-Vessiot ring for ∪Fi.

Let T be an algebra over K = F ∂ . For a given g ∈ Gal(R/F )(T ) = Aut∂(R ⊗K T/F ⊗K T ),
the restriction maps Gal(R/F ) → Gal(Ri/F ) define an element (gi) of (lim←−Gal(Ri/F ))(T ) =

lim←−Gal(Ri/F )(T ). Conversely, given an element (gi) of lim←−Gal(Ri/F )(T ), we can define an element

g of Gal(R/F )(T ) by setting g(a) = gi(a) for a ∈ Ri ⊗K T ⊆ R⊗K T . �

Recall that a coalgebraic subgroup of a proalgebraic group G is a normal closed subgroup U E G
such that G/U is algebraic, i.e., of finite type. The intersection of two coalgebraic subgroups U, V
of G is also coalgebraic, since G/(U ∩ V ) embeds into to the algebraic group G/U × G/V . Thus
the set of coalgebraic subgroups of G is a directed set, by defining U 4 V if and only if U ⊇ V . If
U is a directed family of coalgebraic subgroups of G such that

⋂
U∈U U = 1, then G = lim←−U G/U .

If moreover R is a Picard-Vessiot ring with differential Galois group G, then, by the Galois
correspondence, R = lim−→U R

U , and RU is a Picard-Vessiot ring of finite type with differential

Galois group G/U .
The following lemma will allow us to break down a split admissible differential embedding prob-

lem (N o H,R) to a family of split differential embedding problems (N o (H/U), RU ) of finite
type.

Lemma 4.2. Let H be a proalgebraic group acting (from the left) on an algebraic group N . Then
there exists a directed family U of coalgebraic subgroups of H with

⋂
U∈U U = 1 such that each

U ∈ U acts trivially on N . For the induced actions H/U × N → N we then have a commutative
diagram

H ×N

�� $$
H/V ×N //

��

N

H/U ×N

::

for all U ⊇ V in U .

Proof. Let ρ : K[N ] → K[H] ⊗K K[N ] denote the co-action associated to the action H ×N → N
of H on N . Since K[N ] is a finitely generated K-algebra, there exists a finitely generated K-
subalgebra T of K[H] such that ρ(K[N ]) ⊆ T ⊗KK[N ]. This T is contained in a finitely generated
Hopf-subalgebra of K[H] ([Wat79, Theorem 3.3]) and this Hopf-subalgebra is of the form K[H/U0]
for some coalgebraic subgroup U0 of H. So the co-action ρ factors through K[H/U0] ⊗K K[N ] ⊆
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K[H] ⊗K K[N ]. The action of H on N thus factors through H/U0, and the action of U0 ⊆ H
on N is trivial. These properties also hold for any coalgebraic subgroup U of H contained in U0.
Consider the family U of all such U ’s. The intersection of all coalgebraic subgroups of H is trivial
since H is a proalgebraic group. Moreover, for every coalgebraic subgroup V of H, the intersection
U0 ∩ V is also a coalgebraic subgroup of H. Therefore, the intersection of all U ’s is trivial and the
family U is as asserted. �

Lemma 4.3. Let (NoH,R) be a split differential embedding problem with N algebraic and let U be a
family of coalgebraic subgroups of H as in Lemma 4.2. Assume that for every U ∈ U a solution SU of
the differential embedding problem (N o (H/U), RU ) is given, together with morphisms fUV : SU →
SV for U ⊇ V subject to the following conditions:

(i) fVW ◦ fUV = fUW and fUU = id for all U ⊇ V ⊇W ,
(ii)

RU � � //� _

��

SU� _

��
RV � � // SV

commutes for all U ⊇ V and
(iii)

Gal(SV /F ) //

����

N o (H/V )

����
Gal(SU/F ) // N o (H/U)

commutes for all U ⊇ V .

Then S = lim−→SU is a solution of the differential embedding problem (N oH,R).

Proof. It follows from Lemma 4.1 that S is a Picard-Vessiot ring with differential Galois group
Gal(S/F ) = lim←−Gal(SU/F ), with respect to the inverse system defined by (i). Condition (iii)

gives an isomorphism between the inverse systems (Gal(SU/F ))U and (N o H/U)U . Therefore
Gal(S/F ) = lim←−Gal(SU/F ) ' lim←−N o H/U = N o H. Using (ii) we obtain an embedding R =

lim−→RU ↪→ lim−→SU = S. The commutativity of

Gal(S/F ) // //

����

Gal(SU/F )
' //

����

N oH/U

����
Gal(R/F ) // // Gal(RU/F )

' // H/U

implies the commutativity of

Gal(S/F )

����

' // N oH

����
Gal(R/F )

' // H.

Thus S is a solution of (N oH,R). �
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4.2. Patching problems of differential torsors. In this section, G is an algebraic group over
K. As always, F is a differential field of characteristic zero with field of constants K.

Recall that an affine G-space is an affine scheme X = Spec(R) of finite type over K equipped with
a morphism action α : X×G→ X such that αT : X(T )×G(T )→ X(T ) defines a right group action
of G(T ) on X(T ) for every K-algebra T ; the dual of α is the co-action ρ : K[X]→ K[X]⊗K K[G].
A non-empty affine G-space X is called G-torsor if for every K-algebra T and all x, y ∈ X(T ) there
exists a unique g ∈ G(T ) with x.g = y, where we write αT (x, g) = x.g.

AGF -torsor X equipped with an extension of the derivation from F to F [X] is called a differential
GF -torsor if the co-action ρ : F [X] → F [X] ⊗F F [G] is compatible with the derivation, i.e., is a
differential homomorphism (here we consider F [G] = F ⊗K K[G] as a differential ring extension
of F with constants K[G]). Differential torsors were introduced in [BHHW18] for the purpose of
solving differential embedding problems of finite type.

If R is a Picard-Vessiot ring over F with differential Galois group G, then X = Spec(R) is a
differential GF -torsor. Conversely, if X = Spec(R) is a differential GF -torsor such that R is a simple
differential ring with field of constants K, then R is a Picard-Vessiot ring over F with differential
Galois group G by [BHHW18, Prop. 1.12].

To consider patching problems of differential torsors, we work with differential diamonds (F, F1, F2,
F0), that is, overfields F1 and F2 of F that are contained in a common overfield F0 with compatible
extensions of the derivation on F such that F1 ∩ F2 = F . We say that such a diamond has the
factorization property if for every matrix A ∈ GLn(F0) there exist matrices B ∈ GLn(F1) and
C ∈ GLn(F2) with A = BC.

Let (F, F1, F2, F0) be a differential diamond. Recall that a patching problem of differential G-
torsors in this situation is a tuple (X1, X2, X0, ν1, ν2) where Xi = Spec(Si) is a differential GFi-
torsor, and where νi : F0×Fi Xi → X0 is an isomorphism of differential GF0-torsors for i = 1, 2. On
the level of coordinate rings, this patching problem corresponds to the tuple (S1, S2, S0,Θ1,Θ2),
where Θi = (ν∗i )−1 : F0 ⊗Fi Si → S0 is an isomorphism of differential F0-algebras that respects the
G-co-action. We also refer to this tuple as a patching problem of differential G-torsors. A solution
to the patching problem is a differential torsor over F that induces the torsors Xi compatibly via
base change; i.e., a differential G-torsor X = Spec(S) over F together with Fi-isomorphisms of GFi-
torsors γi : Fi×FX → Xi for i = 1, 2 such that the two maps νi◦(idF0⊗Fi γi) : F0×FX → X0 agree.
On the level of coordinate rings, we can write Φi = (γ−1

i )∗ : Fi ⊗F S → Si, and the compatibility
condition is that

Θ1 ◦ (idF0 ⊗F1Φ1) = Θ2 ◦ (idF0 ⊗F2Φ2).

We then also refer to (S,Φ1,Φ2) as a solution to the patching problem.
Building on a result in [HHK15] on patching problems of G-torsors (without differential structure)

it was shown in [BHHW18, Thm. 2.2] that every patching problem of differential G-torsors has
a solution if (F, F1, F2, F0) has the factorization property. Moreover, this solution (S,Φ1,Φ2) is
unique up to differential isomorphism and it is given by S = Θ1(S1)∩Θ2(S2) ⊆ S0, with derivation
and G-action given by restriction from those on Θ1(S1) and Θ2(S2) and with Φi induced by Θ−1

i .

4.3. Solving split differential embedding problems. Recall that if H is a closed subgroup of
an algebraic group G over a field K, and if Y is an H-torsor over K, then there is a natural induced
torsor X = IndGH(Y ) that satisfies a universal mapping property and is given by (Y ×G)/H, where
H acts on Y ×G by (y, g).h = (y.h, h−1g). On the level of coordinate rings, if Y = Spec(R), then

IndGH(R) := K[X] = (K[Y ]⊗K K[G])H = {f ∈ K[Y ]⊗K K[G] | ρ(f) = f ⊗ 1},
where ρ : K[Y ] ⊗K K[G] → K[Y ] ⊗K K[G] ⊗K K[H] is the co-action corresponding to the action
of H on Y ×G. See [BHHW18, Proposition A.8] and its proof for details. Another interpretation
of induced torsors is as follows: the set of isomorphism classes of G-torsors over K is classified
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by the Galois cohomology set H1(K,G), and similarly for H-torsors. If Y is an H-torsor over K,
corresponding to α ∈ H1(K,H), then IndGH(Y ) is the G-torsor corresponding to the image of α
under the natural map H1(K,H)→ H1(K,G).

In the differential context, i.e., if R is the coordinate ring of a differential HF -torsor, then

IndGF
HF

(R) = (R ⊗F F [G])HF

is the coordinate ring of a differential GF -torsor. The derivation on (R⊗F F [G])HF is the restriction
of the derivation on R⊗F F [G].

Theorem 4.4. Let (F, F1, F2, F0) be a differential diamond with the factorization property and
define K = F ∂. Let G = N oH be a proalgebraic group over K such that N is algebraic. Assume
further that R is a Picard-Vessiot ring over F with differential Galois group H and such that R ⊆ F1

as a differential F -subalgebra. Finally, we assume that there exists a Picard-Vessiot ring R1/F1

with differential Galois group NF1
∂ and with R1 ⊆ F0 as a differential F1-subalgebra.

Then the differential embedding problem (N oH,R) over F has a solution.

Proof. The strategy of our proof is to use Lemmas 4.2 and 4.3 to reduce to the case of finite type,
where the result was shown in [BHHW18, Prop. 2.11]. To be able to use Lemma 4.3, we will need
to verify the compatibility conditions (i), (ii), (iii) there; and for that we will need to know the
explicit form of the solutions SU to the finite type problems. We therefore first recall the proof of
the assertion in the finite type case, as given in [BHHW18].

So assume that H is an algebraic group. The tuple

(S1, S2, S0,Θ1,Θ2) =
(

Ind
GF1
NF1

(R1), F2 ⊗F IndGF
HF

(R), F0[G], Θ1, Θ2

)
is a patching problem of differential G-torsors, where

Θ1 : F0 ⊗F1 S1 = F0 ⊗F1 (R1 ⊗F1 F1[G])NF1 −→∼ F0[G]

is the restriction of F0 ⊗F1 R1 ⊗F1 F1[G]→ F0[G], a⊗ r ⊗ f 7→ arf and

Θ2 : F0 ⊗F2 S2 = F0 ⊗F (R⊗F F [G])HF −→∼ F0[G]

is the restriction of F0⊗FR⊗FF [G] −→ F0[G], a⊗r⊗f 7→ arf. The solution S = Θ1(S1)∩Θ2(S2) of
this patching problem is a solution of the differential embedding problem (NoH,R). In more detail:
The derivation on S is the restriction of the derivation on F0[G], and the co-action S → S⊗F F [G]
is the restriction of the comultiplication F0[G] → F0[G] ⊗F0 F0[G]; these are well-defined on S
because they are the common restrictions of the corresponding maps for Θ1(S1) and Θ2(S2). The
inclusion R→ S is the restriction of R→ R⊗F F [H]→ F0[G], where the first map is the co-action
and the second map is r⊗ f 7→ rf . (To verify the latter one has to trace through the explicit form
of the middle vertical map in the diagram in the proof of [BHHW18, Prop. 2.11].)

We now return to the proof in the general situation, where H need not be of finite type. By
applying Lemma 4.2 to the action of H on N , we obtain a family U of coalgebraic subgroups of
H with the properties asserted there. Since each U ∈ U acts trivially on N , we can regard U as a
normal closed subgroup of G, and we can form the quotient G/U = N o (H/U) of G = N o H.
For every U ∈ U we have a differential embedding problem (G/U,RU ) = (N o (H/U), RU ) of finite
type with a solution SU defined (as above) as the solution of the patching problem

(S1U , S2U , S0U ,Θ1U , Θ2U ) =
(

Ind
(G/U)F1
NF1

(R1), F2 ⊗F Ind
(G/U)F
(H/U)F

(RU ), F0[G/U ], Θ1U , Θ2U

)
.

That is, SU = Θ1U (S1U ) ∩ Θ2U (S2U ) with Θ1U and Θ2U defined like Θ1 and Θ2 above. If U ⊇ V
are from U , then RU ⊆ RV and Fi[G/U ] ⊆ Fi[G/V ] for i = 0, 1, 2. Therefore

S1U = (R1 ⊗F1 F1[G/U ])NF1 ⊆ (R1 ⊗F1 F1[G/V ])NF1 = S1V
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and similarly, since

RU ⊗F F [G/U ]
ρ //

� _

��

RU ⊗F F [G/U ]⊗F F [H/U ]� _

��
RV ⊗F F [G/V ]

ρ // RV ⊗F F [G/V ]⊗F F [H/V ]

commutes, we have

Ind
(G/U)F
(H/U)F

(RU ) = (RU ⊗F F [G/U ])(H/U)F ⊆ (RV ⊗F F [G/V ])(H/V )F = Ind
(G/V )F
(H/V )F

(RV ).

So SiU ⊆ SiV for i = 0, 1, 2. Moreover,

(4) F0 ⊗F1 SiU
ΘiU //

��

S0U

��
F0 ⊗F1 SiV

ΘiV // S0V

commutes for i = 1, 2. Hence S0U ⊆ S0V restricts to an inclusion fUV : SU → SV of differential
F -algebras.

We claim that the solutions SU of the differential embedding problems (No(H/U), RU ), together
with the morphisms fUV : SU → SV , satisfy the three conditions in the hypothesis of Lemma 4.3.
Once this is shown, the conclusion of that lemma yields the desired solution to the differential
embedding problem (N oH,R) over F .

For condition (i) of Lemma 4.3, note that these compatibilities hold for the corresponding mor-
phisms between the associated patching problems, by the functoriality of induced torsors. By the
equivalence of categories between patching problems and solutions, it follows that condition (i)
holds as well for the morphisms fUV .

Concerning condition (ii), consider the compositions RU ↪→ RU ⊗F F [H/U ] ↪→ F0[G/U ] = S0U

for all U ∈ U . For U ⊇ V , this yields a commutative square

(5) RU � � //� _

��

S0U� _

��
RV � � // S0V .

Here the horizontal maps factor through SU and SV respectively, yielding a diagram

RU � � //� _

��

SU
� � //

� _

��

S0U� _

��
RV � � // SV

� � // S0V .

The right hand square of this diagram commutes, because ΘiV restricts to ΘiU for i = 1, 2. Since
the maps in the above diagram are injective, and since diagram (5) commutes, it follows that the
left hand square in the above diagram also commutes; i.e., condition (ii) holds.

For condition (iii), note that the comultiplication maps induce a commutative square

F0[G/U ] //

��

F0[G/U ]⊗F0 F0[G/U ]

��
F0[G/V ] // F0[G/V ]⊗F0 F0[G/V ],
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for U ⊇ V . This implies the commutativity of

SU //

��

SU ⊗F F [G/U ]

��
SV // SV ⊗F F [G/V ].

So the structure of Spec(SV ) as a differential G/V -torsor induces that of Spec(SU ) as a differential
G/U -torsor. This yields condition (iii), completing the proof of the claim and hence the theorem.

�

5. Matzat’s conjecture

In this section, we conclude our proof that every split admissible differential embedding problem
over C(x) has a solution, and thereby prove our main result (Theorem 5.6). Our strategy is first to
show that the induced embedding problem over C((t))(x) has a solution (Theorem 5.4), and then
to descend this solutions in a suitable way.

In the proof of Theorem 5.4, we will work with differential diamonds of fields (F, F1, F2, F0) with
F0 a certain iterated Laurent series field. The following lemma will allow us to work inside such
Laurent series fields.

Lemma 5.1. Let k be an algebraically closed field of characteristic zero and E = k(x). If R/E
is a Picard-Vessiot ring with rank(R) < |k|, then there exists an a ∈ k such that R embeds into
k((x− a)) as a differential k(x)-algebra.

Proof. This statement is well known for Picard-Vessiot rings of finite type. So we may assume that
rank(R) is infinite.

We know that R is the Picard-Vessiot ring for a family (∂(y) = Aiy)i∈I with |I| = rank(R) < |k|.
The set of all poles of all coefficients of all Ai’s has cardinality |I| < |k|. Thus there exists an
a ∈ k such that all equations ∂(y) = Aiy are regular at a and therefore have a fundamental solution
matrix Yi ∈ GLni(k((x − a))). The E-subalgebra R′ of k((x − a)) generated by all Yi’s and the
inverse of their determinants is a Picard-Vessiot ring for (∂(y) = Aiy)i∈I . By the uniqueness of
Picard-Vessiot rings, R ∼= R′. �

The following lemma generalizes [BHHP20, Prop. 2.4] from Picard-Vessiot rings of finite type
to arbitrary Picard-Vessiot rings.

Lemma 5.2. Let E be a differential field and K a field extension of k = E∂. Then E ⊗k K (with
trivial derivation on K) is an integral domain whose field of fractions F is a differential field with
F ∂ = K. Moreover, if R is a Picard-Vessiot ring over E with differential Galois group G, then
R′ = R⊗E F is a Picard-Vessiot ring over F with differential Galois group G′ = GK .

Proof. We first note that E ⊗k K is an integral domain because k is relatively algebraically closed
in E. If S is a ∂-simple ring with field of constants k, then S⊗kK is ∂-simple with field of constants
K ([DHW14, Lemma 2.3]). Here F ∂ = K, since the field of constants of a ∂-simple ring agrees
with the field of constants of its field of fractions (e.g., see the first part of the proof of [vdPS03,
Lemma 1.17(2)]). As R ⊗E F is a localization of R ⊗E (E ⊗k K) = R ⊗k K which is ∂-simple, we
see that R ⊗E F is also ∂-simple and has field of constants K. Thus R′ is a Picard-Vessiot ring
over F .

For a K-algebra T we have

GK(T ) = Aut∂(R⊗k T/E ⊗k T ) = Aut∂((R⊗k K)⊗K T/(E ⊗k K)⊗K T ) =

= Aut∂(R′ ⊗K T/F ⊗K T ) = G′(T )
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and so G′ = GK . �

Definition 5.3. Let E be a differential field, let K be a field extension of k = E∂ , and let F be
the fraction field of E ⊗k K. If (α : G � H, R) is a differential embedding problem over E, then
(αK : GK � HK , R ⊗E F ) is a differential embedding problem over F , by Lemma 5.2. Such an
embedding problem is called an (F/E)-differential embedding problem.

In the above definition, if the differential embedding problem (α : G � H, R) is split (resp.
admissible), then so is (αK : GK � HK , R⊗E F ). We then refer to the latter embedding problem
as an (F/E)-split (resp. (F/E)-admissible) differential embedding problem. If (α : G� H, R) has
both properties, we call (αK : GK � HK , R⊗EF ) an (F/E)-split admissible differential embedding
problem.

The proof of the next theorem is modeled on the proof of [BHH18, Theorem 4.2], replacing certain
ingredients there by generalizations to the case of proalgebraic groups respectively not necessarily
finitely generated Picard-Vessiot extensions. However, note that since we work over an algebraically
closed base field k (whereas [BHH18] considered arbitrary fields k), some parts of the proof simplify
significantly.

Theorem 5.4. Let k be an algebraically closed field of characteristic zero, and let K = k((t)).
Then every (K(x)/k(x))-split admissible differential embedding problem has a solution.

Proof. Let (N oH,R) be a (K(x)/k(x))-split admissible differential embedding problem. Thus R
is a Picard-Vessiot ring over F := K(x) with differential Galois group H. Moreover, there exist
proalgebraic groups N0 and H0 over k with N0 of finite type such that N is the base change of N0

and H is the base change of H0 from k to K, and there exists a Picard-Vessiot ring R0 over E := k(x)
with differential Galois group H0 and rank(R0) < |k(x)| = |k| such that R ∼= R0 ⊗k(x) K(x) as
differential K(x)-algebras.

By Lemma 5.1, there exists an a ∈ k such that R0 embeds into k((x− a)) as a differential k(x)-
algebra, where k((x − a)) is equipped with the derivation ∂

∂(x−a) . We use the method of patching

over fields (see [HH10]) over the x-line P1
k[[t]]. Let P denote the point (x− a, t) on the closed fibre

P1
k of P1

k[[t]], and set U = P1
k r {P}. Then by [HH10, Theorem 5.9] and the discussion immediately

after the proof of that theorem, we have fields

FU = Frac(k[(x− a)−1][[t]])

FP = k((x− a, t)) := Frac(k[[x− a, t]])
F ◦P = k((x− a))((t))

such that the quadruple (F, FP , FU , F
◦
P ) is a diamond with the factorization property. Note that

the derivation ∂ = ∂/∂x = ∂/∂(x−a) on F extends to compatible derivations ∂/∂(x−a) on FU , FP
and F ◦P . Hence (F, FP , FU , F

◦
P ) is in fact a differential diamond with the factorization property.

To prove the theorem, it suffices to verify the hypotheses of Theorem 4.4 for the fields F1 = FP ,
F2 = FU , F0 = F ◦P . By [BHH18, Theorem 3.3], there is a Picard-Vessiot ring R1/F1 with differential
Galois group N such that R1 is a differential F1-subalgebra of F0. Thus it remains to show that
the Picard-Vessiot ring R over F is a differential F -subalgebra of F1 = FP .

Recall that R0 embeds into k((x − a)) as a differential k(x)-algebra; in particular, R0 embeds
into k((x − a, t)) as a differential k(x)-algebra, as does F = k((t))(x) = k((t))(x − a). So there
is a canonical differential F -algebra homomorphism R ∼= R0 ⊗k(x) k((t))(x) → k((x − a, t)); and
since R is a simple differential ring, this homomorphism is injective. Hence we may consider R as
a differential F -subalgebra of k((x− a, t)) = FP . �

The following proposition shows that there is no harm in enlarging the constants when considering
differential embedding problems over k(x).
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Proposition 5.5. Let k be an uncountable algebraically closed field of characteristic zero, let
(α : G � H, R) be an admissible differential embedding problem over E := k(x), and let K/k
be a field extension. If the induced differential embedding problem (αK : GK � HK , R⊗E F ) over
F = K(x) is solvable, then so is (α : G� H, R).

Proof. After replacing K by its algebraic closure (and using Lemma 5.2), we may assume that
K is algebraically closed. The proof proceeds in three steps. We first show that the embedding
problem (α : G� H, R) descends to an embedding problem (α0 : G0 � H0, R0) over E0 = k0(x),
where k0 ⊆ k is an algebraically closed field with |k0| < |k|. Then, based on the assumption of
the proposition, we show that for some algebraically closed field extension k1 of k0 inside K with
|k1| < |k|, the embedding problem (α1 : G1 � H1, R1) = ((α0)k1 : (G0)k1 � (H0)k1 , R0 ⊗E0 E1)
over E1 := k1(x) has a solution. Finally, we embed k1/k0 into k and observe that the embedding
problem ((α1)k : (G1)k � (H1)k, R1 ⊗E1 E) is the original embedding problem.

Since rank(R) < |E| = |k|, we know that R is the Picard-Vessiot ring for a family of linear
differential equations (∂(y) = Aiy, Ai ∈ Eni×ni)i∈I where |I| = rank(R) < |k|. As k is uncountable,
there exists an algebraically closed subfield field k0 of k with |k0| < |k| such that all entries of all
Ai’s lie in E0 = k0(x) ⊆ k(x) = E. Let R0/E0 be the Picard-Vessiot ring for the family

(6) (∂(y) = Aiy, Ai ∈ E0
ni×ni)i∈I

over E0. Then R and R0 ⊗E0 E both are Picard-Vessiot rings for the same family of equations,
hence R = R0 ⊗E0 E and H = (H0)k by Lemma 5.2, where H0 := Gal(R0/E0). Since

rank(G) = rank(H) < |k|

by [Wib20, Lemma 3.6] (and admissibility), the coordinate ring of k[G] can be generated by less
than |k| elements (cf. [Wib20, Prop. 3.1]). Thus, after enlarging k0 if necessary, we can assume
that G = (G0)k for some proalgebraic group G0 over k0 and that α = (α0)k for some α0 : G0 � H0.

By assumption, there exists a Picard-Vessiot ring S′/F containing R′ and an isomorphism
ψ′ : GK → Gal(S′/F ) such that

(7) Gal(S′/F ) // // Gal(R′/F )

GK

ψ′

OO

αK // // HK

OO

commutes.
As rank(S′) = rank(GK) = rank(G) < |k|, there exist a family of linear differential equations

(8) (∂(y) = Bjy, Bj ∈ Fnj×nj )j∈J

where |J | < |k|, such that S′/F is the Picard-Vessiot ring for this family. As R0 ⊗E0 F = R′ ⊆ S′

we may assume without loss of generality that the family (6) is a subfamily of (∂(y) = Bjy, Bj ∈
Fnj×nj )j∈J .

There exists an algebraically closed field extension k1/k0 inside K of cardinality less than |k|
such that all entries of all Bj ’s lie in E1 = k1(x) ⊆ K(x) = F . Let S1/E1 be the Picard-Vessiot ring

for the family (∂(y) = Bjy, Bj ∈ E
nj×nj

1 )j∈J over E1. Then S′ = S1⊗E1 F and with G1 := (G0)k1

we obtain that

ψ′ : (G1)K = GK ∼= Gal(S′/F ) = Gal(S1/E1)K

is an isomorphism of proalgebraic groups over K. As rank(G1) = rank(G) < |k|, after enlarging
k1 if necessary, we can assume that, ψ′ = (ψ1)K for some isomorphism ψ1 : G1 → Gal(S1/E1) of
proalgebraic groups over k1. Set R1 = R0 ⊗E0 E1, H1 = (H0)k1 and α1 = (α0)k1 . We have R0 ⊆
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R′ ⊆ S′ = S1 ⊗E1 F . As the family (8) contains the family (6), we see that R1 = R0 ⊗E0 E1 ⊆ S1.
The diagram

(9) Gal(S1/E1) // // Gal(R1/E1)

G1

ψ1

OO

α1 // // H1

OO

of proalgebraic groups over k1 becomes diagram (7) after base extension form k1 to K. As diagram
(7) commutes, diagram (9) also commutes.

Since k is uncountable and |k0| < |k|, we see that trdeg(k/k0) = |k| > |k1|. Thus there exists an
embedding of k1 into k over k0. Now, if we consider k1 as a subfield of k and E1 as a subfield of E
via this embedding, then S = S1⊗E1E is a Picard-Vessiot ring over E that contains R = R1⊗E1E.
Moreover, the diagram

Gal(S/E) // // Gal(R/E)

G

(ψ1)k

OO

α // // H

OO

of proalgebraic groups over k commutes, because it is the base change to k of the commutative
diagram (9). �

We are finally prepared to prove Matzat’s conjecture. Our proof works for any algebraically
closed field of characteristic zero of infinite transcendence degree over Q in place of C.

Theorem 5.6 (Matzat’s conjecture for infinite transcendence degree). Let k be an algebraically
closed field of characteristic zero of infinite transcendence degree over Q. Then the absolute differ-
ential Galois group of k(x) is the free proalgebraic group on a set of cardinality |k|.

Proof. If k is countable, this was shown in [BHHW19, Theorem 3.10]. So we may henceforth assume
that k is uncountable. Define E = k(x). By Proposition 3.8, it suffices to show that differential em-
bedding problems of type (i) and (ii) as in that proposition are solvable. As differential embeddings
of type (i) (i.e., those of finite type) were solved in [BHHP20, Cor. 4.6], it suffices to show that
those of type (ii) are solvable. So let (α : G � H, R) be a split admissible differential embedding
problem over E = k(x). Set K = k((t)) and F = K(x). By Theorem 5.4 the induced differential
embedding problem (αK : GK � HK , R⊗E F ) is solvable. So it follows from Proposition 5.5 that
(α : G� H, R) has a solution. �

In the proof of Theorem 5.6, it was sufficient to consider only certain types of admissible differen-
tial embedding problems, but by [BHHW19, Theorem 3.7] the result of Theorem 5.6 then actually
implies:

Corollary 5.7. Let k be an algebraically closed field of infinite transcendence degree over Q. Then
every differential embedding problem (G� H,R) over k(x) with rank(G) ≤ |k| and rank(R) < |k|
has a solution.

In particular, every admissible differential embedding problem over k(x) has a solution. More is
true:

Corollary 5.8. Let k be an algebraically closed field of infinite transcendence degree over Q. Then
every non-trivial differential embedding problem (G � H,R) of finite type over k(x) has |k| inde-
pendent solutions, i.e., there exist |k| solutions Si (inside the Picard-Vessiot extension of the family
of all linear differential equations over k(x)) such that the fraction fields of the Si’s are linearly
independent over the field of fractions of R.
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Remark 5.9. Matzat’s conjecture implies Douady’s theorem. More generally, if F is a differential
field with k = F ∂ algebraically closed such that the absolute differential Galois group of F is the
free proalgebraic group on a set of cardinality |F |, then the absolute Galois group of F is the free
profinite group on a set of cardinality |F |.

Proof. For a proalgebraic group G, let π0(G) denote the maximal pro-étale quotient of G, i.e.,
π0(G) = G/Go. Let Γ be the free proalgebraic group (over k) on the set X with structure map

ι : X → Γ(k). Then ι0 : X
ι−→ Γ(k)→ π0(Γ)(k) converges to 1 (see [Wib20, Lemma 2.12]); and from

the universal properties of ι : X → Γ(k) and Γ → π0(Γ) it follows that ι0 satisfies the following
universal property: If G is a pro-étale proalgebraic group and ϕ : X → G(k) a map converging to
1, then there exists a unique morphism ψ : π0(Γ)→ G such that

X
ι0 //

ϕ !!

π0(Γ)(k)

ψkzz
G(k)

commutes. In the language of [Wib20], this means that π0(Γ) is the free pro-C-group (over k) on
the set X, where C is the class of all étale algebraic groups over k.

As k is algebraically closed, the category of (abstract) finite groups is equivalent to the category
of étale algebraic groups (over k). This extends to an equivalence between the category of profinite
groups and the category of pro-étale algebraic groups (over k). Under this equivalence π0(Γ)
corresponds to the free profinite group on the set X. The claim now follows from the fact that π0

of the absolute differential Galois group of F is the differential Galois group of F̄ /F , where F̄ is
the algebraic closure of F . �

To resolve the remaining case of Matzat’s conjecture (when k has finite transcendence degree
over Q it would suffice to show that every differential embedding problem of finite type over k(x)
has a solution ([BHHW19, Cor. 3.9]).
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