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Abstract. Managing large-scale systems often involves simultaneously solving thousands
of unrelated stochastic optimization problems, each with limited data. Intuition suggests
that one can decouple these unrelated problems and solve them separately without loss of
generality. We propose a novel data-pooling algorithm called Shrunken-SAA that dis-
proves this intuition. In particular, we prove that combining data across problems can
outperform decoupling, even when there is no a priori structure linking the problems and
data are drawn independently. Our approach does not require strong distributional as-
sumptions and applies to constrained, possibly nonconvex, nonsmooth optimization
problems such as vehicle-routing, economic lot-sizing, or facility location.We compare and
contrast our results to a similar phenomenon in statistics (Stein’s phenomenon), high-
lighting unique features that arise in the optimization setting that are not present in es-
timation. We further prove that, as the number of problems grows large, Shrunken-SAA
learns if pooling can improve upon decoupling and the optimal amount to pool, even if the
average amount of data per problem is fixed and bounded. Importantly, we highlight a
simple intuition based on stability that highlightswhen andwhy data pooling offers a benefit,
elucidating this perhaps surprising phenomenon. This intuition further suggests that data
pooling offers the most benefits when there are many problems, each of which has a small
amount of relevant data. Finally, we demonstrate the practical benefits of data pooling using
real data from a chain of retail drug stores in the context of inventory management.
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1. Introduction
The stochastic optimization problem

min
x∈X EP c x, ξ( )[ ] (1.1)

is a fundamental model, with applications ranging
from inventory management to personalized medi-
cine. In typical data-driven settings, the measure P

governing the random variable ξ is unknown. In-
stead, we have access to a data set S � {ξ̂1, . . . , ξ̂N}
independent and identically distributed (i.i.d.) from P

and seek a decision x ∈ X depending on these data.
This model and its data-driven variant have been
extensively studied in the literature (see Shapiro et al.
2009 for an overview).

Managing real-world, large-scale systems, how-
ever, frequently involves solving thousands of po-
tentially unrelated stochastic optimization problems
like Problem (1.1) simultaneously. For example, in-
ventory management often requires optimizing stock-
ing levels for many distinct products across categories,

not just a single product. Firms typically determine
staffing and capacity for many warehouses and ful-
fillment centers across the supply chain, not just at a
single location. Logistics companies often divide large
territories into many small regions and solve sepa-
rate vehicle-routing problems, one for each region,
rather than solve a single monolithic problem. In
such applications, a more natural model than Prob-
lem (1.1) might be

1
K

∑K
k�1

λk

λavg
min
xk∈Xk

EPk ck xk, ξk( )[ ], (1.2)

where we solve a separate subproblem of the form (1.1)
for each k, for example, setting a stocking level for
each product. Here, λk > 0 represents the frequency
with which the decision maker incurs costs from
problems of type k, and λavg � 1

K
∑K

k�1 λk. Thus, in
Problem (1.2), our total costs aredrivenby the frequency-
weighted average of the costs of many distinct optimi-
zation problems.
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Of course, intuition strongly suggests that since
there are no coupling constraints across the feasible
regions Xk in Problem (1.2), one can and should de-
couple the problem intoKunrelated subproblems and
solve them separately. Indeed, when the measures Pk
are known, this procedure is optimal. When the Pk’s
are unknown and unrelated, but one has access to a
data set Sk � {ξ̂k,1, . . . , ξ̂k,N̂k

} drawn i.i.d. from Pk in-
dependently across k, intuition still suggests that
decoupling is without loss of generality and that data-
driven procedures can be applied separately by sub-
problem.

Akeymessage of this paper is that this intuition is false.

In the data-driven setting, when solving many sto-
chastic optimization problems, we show that there
exist algorithms that pool data across subproblems
that outperform decoupling, even when the under-
lying problems are unrelated and the data are inde-
pendent. This phenomenon holds, despite the fact that
the kth data setSk tells us nothing aboutPl for l �� k and
there is no a priori relationship between the Pk. We
term this phenomenon the data-pooling phenomenon in
stochastic optimization.

Figure 1 illustrates the data-pooling phenomenon
with a simulated example for emphasis.Here,K � 10, 000,
and the kth subproblem is a newsvendor problemwith
critical quantile 90%, that is, ck(x;ξ)�max 9(ξ−x),(x−ξ){ }.
The measures Pk are fixed, and in each run we sim-
ulate N̂k � 20 data points per subproblem. For the
decoupled benchmark, we use a standard method,
Sample Average Approximation (SAA; Definition 2.1),

which is particularly well-suited to the data-driven
newsvendor problem (Levi et al. 2015). For compar-
ison, we use our novel Shrunken-SAA algorithm,
which exploits the data-pooling phenomenon. We
motivate and formally define Shrunken-SAA in Sec-
tion 3, but, loosely speaking, Shrunken-SAA proceeds
by replacing the kth data set Sk with a “pooled” data
set that is a weighted average of the original kth data
set and all of the remaining l �� k data sets. It then
applies SAA to each of these new pooled data sets.
Perhaps surprisingly, by pooling data across the
unrelated subproblems, Shrunken-SAA reduces the
loss to full-information optimum by over 80% com-
pared with SAA in this example.

Our Contributions
Wedescribe and study the data-pooling phenomenon
in stochastic optimization in the context of Prob-
lem (1.2). Our analysis applies to constrained, poten-
tially nonconvex, nonsmooth optimization problems
under fairly mild assumptions on the data-generating
process. Specifically, we assume that each Pk has fi-
nite support (potentially differing across k); in some
cases, we can even relax this assumption. We contrast
the data-pooling phenomenon to a similar phenom-
enon in statistics (Stein’s phenomenon), highlighting
unique features that arise in the optimization set-
ting (see Theorem 2.2 and Example 2.3). Namely,
unlike traditional statistical settings, the potential
benefits of data pooling depend strongly on the
structure of the underlying optimization problems,
and, in some cases, data pooling may offer no benefit
over decoupling.
This observation raises important questions: Given a

particular data-driven instance of Problem (1.2), should
we data-pool, and, if so, how? More generally, does
data pooling typically offer a significant benefit over
decoupling, or are instances like Figure 1 somehow
the exception to the rule?
To help resolve these questions, we propose a

simple, novel algorithm that we call Shrunken Sample
AverageApproximation (Shrunken-SAA). Shrunken-SAA
generalizes the classical SAA algorithm and, conse-
quently, inherits many of its excellent large-sample
asymptotic properties (see Remark 4.1). Moreover,
Shrunken-SAA is incredibly versatile and can be
tractably applied to a wide variety of optimization
problemswith computational requirements similar to
traditional SAA (see Remark 3.1). Unlike traditional
SAA, however, Shrunken-SAAexploits the data-pooling
phenomenon to improve performance over SAA, as seen
in Figure 1. Moreover, Shrunken-SAA exploits the
structure of the optimization problems and strictly
improves upon an estimate-then-optimize approach
using traditional statistical shrinkage estimators (see
Example 2.3 and Section 6).

Figure 1. (Color online) The Data Pooling Phenomenon

Notes. Consider K � 10, 000 data-driven newsvendor problems, each
with critical fractile 90% and 20 data points drawn independently
across problems. SAA decouples the problems and orders the 90th-
sample quantile in each. Shrunken-SAA (see Algorithm 1 in Section 3),
leverages data pooling. Indicated percentages are losses to the full-
information optimum. Additional details in Section E.1 in Online
Appendix E.
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Shrunken-SAA data-pools by combining data across
subproblems in a particular fashion that is motivated by
an empirical Bayesian argument. We prove that (under
frequentist assumptions) for many classes of optimiza-
tion problems, as the number of subproblems K grows
large, Shrunken-SAA determines if pooling in this
way can improve upon decoupling and, if so, also de-
termines the optimal amount to pool (see Theorems 4.2,
4.3, 4.5, and 4.6). These theoretical results study
Problem (1.2) when Pk has finite, discrete support and
the amount of data available for the kth subproblem is,
itself, random (see Assumption 3.1). Some of our
results do extend to continuous distributions (see
Section 4.6 andTheoremsF.1–F.3 inOnlineAppendix F),
and numerical experiments suggest that our results are
generally robust to the assumption of a random amount
of data.

More interestingly, our theoretical performance
guarantees for Shrunken-SAA, hold even when the
expected amount of data per subproblem is small
and fixed and the number of problems K is large, as
in Figure 1; that is, they hold in the so-called small-
data, large-scale regime (Gupta and Rusmevichientong
2021). Indeed, sincemanytraditionaldata-drivenmethods
(including SAA) converge to the full-information op-
timum in the large-sample regime, the small-data, large-
scale regime is arguably the more interesting regime in
which to study the benefits of data pooling.

In light of the aforementioned results, Shrunken-
SAA provides an algorithmic approach to deciding if,
and by how much, to pool. To develop an intuitive
understanding of when and why data pooling might
improve upon decoupling, we also introduce the Sub-
Optimality-Instability Trade-Off, a decomposition of
the benefits of data pooling. We show that the per-
formance of a data-driven solution to Problem (1.2)
(usually called its out-of-sample performance inmachine-
learning settings) can be decomposed into a sum of
two terms: a term that roughly depends on its in-
sample suboptimality and a term that depends on its
instability; that is, how much does in-sample per-
formance change when training with one fewer data
points? As we increase the amount of data pooling,
we increase the in-sample suboptimality because we
“pollute” the kth subproblem with data from other,
unrelated subproblems. At the same time, however,
we decrease the instability of the kth subproblem,
because the solution no longer relies on its own data
so strongly. Shrunken-SAA works by navigating this
trade-off, seeking a “sweet spot” to improve perfor-
mance. (See Section 5 for discussion.)

In many ways, the Sub-Optimality-Instability Trade-
Off resembles the classical bias-variance trade-off from
statistics.However, theydiffer in that the Sub-Optimality-
Instability Trade-Off applies to general optimization
problems, whereas the bias-variance trade-off applies

specifically to the case ofmean-squared error.Moreover,
even in the special case when Problem (1.2) models
mean-squared error, we prove that these two trade-
offs are distinct (see Section D.2 in Online Appendix D).
In this sense, the Sub-Optimality-Instability Trade-
Offmay be of independent interest outside data pooling.
Stepping back, this simple intuition suggests that

Shrunken-SAA, and data pooling more generally,
offer significant benefits whenever the decoupled solu-
tions to the subproblems are sufficiently unstable, which
typically happens when there is only a small amount of
relevant data per subproblem. It is in this sense that the
behavior in Figure 1 is typical and not pathological.
Moreover, this intuition also naturally extends be-
yond Shrunken-SAA, paving the way to developing
and analyzing new algorithms that also exploit the
hitherto-underutilized data-pooling phenomenon.
Finally, we present numerical evidence in an in-

ventory management context using real data from a
chain of European drug stores showing that Shrunken-
SAA can offer significant benefits over decoupling
when the amount of data per subproblem is small
to moderate. These experiments also suggest that
Shrunken-SAA’s ability to identify an optimal amount
of pooling and improve upon decoupling are rela-
tively robust to violations of our assumptions on the
data-generating process.

Connections to Prior Work
Our proposal, Shrunken-SAA, generalizes SAA. In
manyways, SAA is themost fundamental data-driven
approach to Problem (1.1). SAA proxies P in (1.1) by
the empirical distribution P̂ on the data and optimizes
against P̂. It enjoys strong theoretical and practical
performance in the large-sample limit, that is, whenN
is large (Kleywegt et al. 2002, Shapiro et al. 2009). For
data-driven newsvendor problems, specifically—an
example of whichwe use throughout ourwork—SAA
is the maximum likelihood estimate of the optimal
solution and also is the distributionally robust opti-
mal solution for a Wasserstein ambiguity set (Esfahani
and Kuhn 2018, p. 151). SAA is incredibly versatile
and applicable to a wide variety of classes of optimiza-
tion problems. This combination of strong performance
and versatility has fueled SAA’s use in practice. Ap-
plied to Problem (1.2), SAA decouples the optimiza-
tion into itsK subproblems. Thus, because of its strong
theoretical and practical performance, we use SAA as
the natural, “apples-to-apples” decoupled benchmark
to which we compare our data-pooling procedures.
The data-pooling phenomenon for stochastic op-

timization is also closely related to Stein’s phenom-
enon in statistics (Stein 1956; see also Efron andHastie
2016 for a modern overview). Stein (1956) considered
estimating the mean of K normal distributions, each
with known variance σ2, fromK data sets. The kth data
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set is drawn i.i.d. from the kth normal distribution,
and draws are independent across k. The natural
decoupled solution to the problem (and themaximum
likelihood estimate) is to use the kth sample mean as
an estimate for the kth distribution. Surprisingly,
whereas this estimate is optimal for each problem
separately in a very strong sense (uniformly mini-
mum variance unbiased and admissible), Stein (1956)
describes a pooled procedure that always outperforms
this decoupled procedure with respect to total mean-
squared error whenever K ≥ 3.

The proof of Stein’s result is remarkably short, but
arguably opaque. Many textbooks refer to it as “Stein’s
paradox,” perhaps because it is not clear what drives
the result. Why does it always improve upon decou-
pling? What is special about K � 3? Is the key the
normality assumption? The common variance as-
sumption? The structure of mean-squared error? All
of the above?

Many authors have tried to develop simple intui-
tion for Stein’s result (e.g., Brown 1971, Efron and
Morris 1977, Stigler 1990, Beran 1996, Brown and
Zhao 2012) with mixed success. As a consequence,
although Stein’s phenomenon has had tremendous
impact in statistics, it has, in our humble opinion,
had a fairly limited impact on data-driven optimi-
zation. It is simply not clear how to generalize Stein’s
original algorithm to optimization problems different
from minimizing mean-squared error. Indeed, the
few data-driven optimization methods that attempt
to leverage shrinkage apply either to quadratic op-
timization (e.g., Jorion 1986, DeMiguel et al. 2013,
Davarnia and Cornuéjols 2017) or else under Gaussian
or near-Gaussian assumptions (Mukherjee et al. 2015,
Gupta and Rusmevichientong 2021), both of which
are very close to Stein’s original setting.

By contrast, our analysis of the data-pooling phe-
nomenon requires very mild distributional assump-
tions and applies to constrained, potentially non-
convex, nonsmooth optimization problems. Numerical
experiments in Section 6 further suggest that even our
few assumptions are not crucial to the data-pooling
phenomenon. Moreover, our proposed algorithm,
Shrunken-SAA, is extremely versatile and can be
applied in any setting in which SAA can be applied.

Finally, we note that (in)stability has been well
studied in themachine-learning community (see, e.g.,
Bousquet and Elisseeff 2002, Shalev-Shwartz et al.
2010, Yu 2013, and references therein). Shalev-
Shwartz et al. (2010), in particular, argue that stabil-
ity is the fundamental feature of data-driven algorithms
that enables learning. Our Sub-Optimality-Instability
Trade-Off connects the data-pooling phenomenon in
stochastic optimization to this larger statistical con-
cept. To the best of our knowledge, however, existing
theoretical analyses of stability focus on the large-sample

regime. Ours is the first work to leverage stability con-
cepts in the small-data, large-scale regime. From a
technical perspective, this analysis requires somewhat
different tools.

2. Model Setup and the
Data-Pooling Phenomenon

As discussed in the introduction, we assume throughout
that Pk has finite, discrete support, that is, ξk ∈
{ak1, . . . ,akd}with d ≥ 2.1 Without loss of generality, d
is common for all k. To streamline the notation,
we write

pki ≡Pk ξk � aki( ) and cki x( ) ≡ ck x,aki( ), i� 1, . . . ,d.

For each k, we let Sk � {ξ̂kj : j � 1, . . . , N̂k} be the kth
data set with ξ̂kj ∼ Pk drawn i.i.d. Since Pk is discrete,
we can equivalently represent the kth data set Sk via
counts, m̂k � (m̂k1, . . . ,m̂kd), where m̂ki denotes the num-
ber of times that aki occurs in Sk, and e�m̂k � N̂k. In
what follows, we will use m̂k and Sk interchangeably
to refer to the kth data set. We also use “hat” notation
(p̂, m̂, . . .) to denote an observed realization of a ran-
dom variable, typically a function of Sk.
Because ξ̂kj are i.i.d.,

m̂k | N̂k ∼ Multinomial N̂k,pk
( )

, k � 1, . . . ,K. (2.1)
Let S � (S1, . . . ,SK) or, equivalently, m̂� (m̂1, . . . ,m̂K),
denote all the data across all K subproblems, and let
N̂ � (N̂1, . . . , N̂K) denote the total observation counts.
We define N̂max � maxk N̂k and N̂avg ≡ 1

K
∑K

k�1 N̂k. Fi-
nally, let p̂k ≡ m̂k/N̂k be the empirical distribution for
the kth subproblem.
Notice that we have used ·̂ notation when denoting

N̂k and conditioned on its value in specifying the
distribution of m̂k. This is because, in our subsequent
analysis, we will sometimes view the amount of data
available for each problem as random (see Section 3.2).
When the data are fixed and nonrandom, we condition
on N̂k explicitly to emphasize this fact.
With this notation, we can rewrite our target op-

timization problem:

Z∗ ≡ min
x1∈X1, ..., xK∈XK

1
K

∑K
k�1

λk

λavg
pk

�ck xk( ). (2.2)

Our goal is to identify a data-driven policy, that is,
a function x(m̂) � (x1(m̂), . . . , xK(m̂)) mapping m̂ to
X1×···×XK

for which 1
K
∑K

k�1
λk
λavg

pk
�ck(xk(m̂)) is small. We

stress that the performance of a data-driven policy is
random because it depends on the data.
As mentioned, with full information of pk, Prob-

lem (2.2) decouples across k and, after decoupling, no
longer depends on the frequency weights λk

Kλavg
. Our

proposed algorithms will also not require knowledge
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of the weights λk. For convenience, we let λmin �
mink λk and λmax � maxk λk.

A canonical policy to which we will compare is the
Sample Average Approximation (SAA) policy, which
proxies the solution of these decoupled problems by
replacing pk with p̂k:

Definition 2.1 (Sample Average Approximation). Let
xSAA
k (m̂k) ∈ argminxk∈Xk p̂

�
k ck(xk) denote the SAA pol-

icy for the kth problem, and let xSAA(m̂) � xSAA
1 (m̂1),

. . . , xSAA
K (m̂K)).

As we will see, SAA is closely related to our pro-
posed algorithmShrunken-SAAandhence provides a
natural (decoupled) benchmark when assessing the
value of data pooling.

Finally, we use the newsvendor problem as a run-
ning example in what follows. We say that the kth
subproblem is a newsvendor problem with critical
fractile 0 < s < 1 if ck(x;ξ) � max s

1−s (ξ − x), (x − ξ){ }
.

Its full-information solution is the sth quantile of the
kth distribution.

2.1. A Bayesian Perspective of Data Pooling
To motivate data pooling, we first consider a Bayes-
ian approximation to our problem. Specifically, sup-
pose that each pk were independently drawn from a
common Dirichlet prior, that is,

pk ∼ Dir p0, α0
( )

, k � 1, . . . ,K,

with α0 > 0 and p0 ∈ Δd, the d-dimensional simplex.
The Bayes-optimal decision minimizes the poste-
rior risk, which is E[1K

∑K
k�1

λk
λavg

pk
�ck(xk) | m̂] � 1

K
∑K

k�1
λk
λavg

E pk | m̂
[ ]�ck(xk), by linearity. Furthermore, by in-

dependence and conjugacy, respectively,

E pk | m̂
[ ] � E pk | m̂k

[ ] � α0

N̂k + α0
p0 +

N̂k

N̂k + α0
p̂k.

Hence, a Bayes-optimal solution is x(α0,p0, m̂k) �
(x1(α0,p0, m̂1), . . . , xK(α0,p0, m̂K)), where

p̂k α( ) � α

N̂k + α
p0 +

N̂k

N̂k + α
p̂k

( )
, k � 1, . . . ,K, (2.3)

xk α, p0, m̂k
( ) ∈ argmin

xk∈Xk

p̂k α( )�ck xk( ),
k � 1, . . . ,K.

(2.4)

For any non-data-driven α and p0, xk(α,p0, m̂k) de-
pends on m̂k but not on m̂l for l �� k.
This policy has an appealing, intuitive structure.

Notice that p̂k(α) overloads notation slightly and is a
convex combination between p̂k � p̂k(0), a data-based
estimate of pk, and p0, an a priori estimate of pk.
In traditional statistical parlance, we say that p̂k(α) shrinks the empirical distribution p̂k toward the

anchor p0. The Bayes-optimal solution is the plug-in
solution when using this shrunken empirical mea-
sure; that is, it optimizes xk as though that were the
known true measure. This differs from the SAA so-
lution, which is the plug-in solution when using the
“unshrunken” p̂k.
The parameter α controls the degree of shrinkage.

As α → 0, xk(α,p0, m̂) converges to an SAA solution,
and as α → ∞, xk(α,p0, m̂) converges to the (nonran-
dom) solution to the fully shrunken kth subproblem.
In this sense, the Bayes-optimal solution “interpolates”
between the SAA solution and the fully shrunken
solution. The amount of data N̂k attenuates the amount
of shrinkage; that is, subproblems with more data are
shrunk less aggressively for the same α.
Alternatively, we can give a data-pooling interpreta-

tion of xk(α,p0, m̂k) via the Bayesian notion of pseu-
docounts. Observe that xk(α,p0, m̂k) ∈ argminxk∈Xk

(αp0+m̂k

N̂k+α )�ck(xk) and that αp0+m̂k

N̂k+α is a distribution on

{ak1, . . . ,akd}. In other words, we can interpret xk
(α,p0, m̂k) as the solution obtained when we augment
each of our original K data sets with α additional
“synthetic” data points with counts αp0. As we in-
crease α, we add more synthetic data.
For α > 0, xk(α,p0, 0) is the solution to the fully

shrunken kth subproblem. For emphasis, let

xk ∞,p0
( ) ∈ argmin

xk∈Xk

∑d
i�1

p0icki xk( ),

so that xk(α,p0, 0) � xk(∞,p0) for all α > 0. For com-
pleteness, we also define xk(0, p0, 0) � xk(∞,p0), so that
xk(α, p0, ·) is continuous in α.
In summary, xk(α,p0, m̂k) has an intuitive structure

that is well defined regardless of the precise structure of
the cost functions ck(·) or feasible region X . Importantly,
this analysis shows that, when the pk’s follow a
Dirichlet prior, data pooling by α is never worse
than decoupling, and will be strictly better whenever
xSAA
k (m̂k) is not an optimal solution to the problem

defining xk(α, p0, m̂k).

2.2. Data Pooling in a Frequentist Setting
It is perhaps unsurprising that data pooling improves
upon the decoupled SAA solution in the Bayesian
setting, because problems l �� k contain information about
α and p0, which, in turn, contain information about the
pk’s. However, even in frequentist settings, that is,
when the pk’s are fixed constants that may have no
relationship to one another and there is no “ground-
truth” values for α or p0, x(α,p0, m̂) can still improve
upon SAA through a careful choice of α and p0 that
depend on all the data. This is the heart of Stein’s
result for Gaussian random variables and mean-
squared error.
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To build intuition, we first study the specific case
of minimizing mean-squared error and show that
data pooling can improve upon the decoupled SAA
solution in the frequentist framework of Equation (2.1).
This result is thus reminiscent of Stein’s classical re-
sult but does not require the Gaussian assumptions.
Consider the following example.

Example 2.1 (A Priori Pooling for Mean-Squared Error).
Consider a special case of Problem (2.2) such that for
all k we have λk � λavg, N̂k � N̂ ≥ 2, pk is supported
on {ak1, . . . , akd} ⊆ R, Xk � R and cki(x) � (x − aki)2. In
words, the kth subproblem estimates the unknown
mean μk � p�k ak by minimizing the mean-squared er-
ror. Let σ2k � p�k (ak − μke)2.

Fix any p0 ∈ Δd and α ≥ 0 (not depending on the
data). A direct computation shows that

xk α, p0, m̂k
( ) ≡ μ̂k α( ) ≡ N̂

N̂+α μ̂k + α
N̂+α μk0,

where μ̂k � 1
N̂

∑N̂
i�1 ξ̂ki is the usual sample mean and

μk0 � p�0 ak. Notice, in particular, that the decoupled
SAA solution is xSAA � (μ̂1, . . . , μ̂K), corresponding
to α � 0.

For any p0 and α, the objective value of x(α,p0, m̂) is
1
K

∑K
k�1

p�k ck xk α,p0, m̂k
( )( )

� 1
K

∑K
k�1

E μ̂k α( ) − ξk
( )2 | m̂[ ]

� 1
K

∑K
k�1

σ2k + μk − μ̂k α( )( )2( )
,

by the usual bias-variance decomposition of mean-
squared error (MSE). This objective is the average of
K independent random variables. Hence, we might
intuit that, under appropriate regularity conditions
(see Theorem 2.1) and conditional on N̂, as K → ∞,

1
K

∑K
k�1

σ2k + μk − μ̂k α( )( )2( )

− 1
K

∑K
k�1

σ2k + E μk − μ̂k α( )( )2 | N̂[ ]( )
→p 0. (2.5)

Moreover, 1
K
∑K

k�1 σ
2
k + E (μk − μ̂k(α))2 | N̂[ ]( ) � 1

K
∑K

k�1
(σ2k + ( α

N̂+α)2) (μk − μk0)2 + ( N̂
N̂+α)2

σ2k
N̂
, again using the

bias-variance decomposition of MSE. We can mini-
mize the right-hand side over α explicitly, yielding
the value

αAP
p0

�
∑K

k�1 σ
2
k∑K

k�1 μk − μk0
( )2 > 0,

where AP stands for a priori, meaning αAP
p0

is the on-
average-best a priori choice of shrinkage before ob-
serving any data. In particular, substituting α � 0 and
α � αAP

p0
into the second term of Example 2.5 shows

that, up to a term that is vanishing as K → ∞,
shrinking by αAP

p0
decreases the MSE by

1
K

∑K
k�1

σ2k
N̂

( )
αAP
p0

N̂ + αAP
p0

�
1

KN̂

∑K
k�1 σ

2
k

( )2
1

KN̂

∑K
k�1 σ

2
k + 1

K
∑K

k�1 μk − μk0
( )2 > 0. (2.6)

This benefit is strictly positive for any values of pk and
p0, and increasing in αAP

p0
.

Unfortunately, we cannot implement x(αAP
p0

,p0, m̂)
in practice, because αAP

p0
is not computable from the

data; it depends on the unknown μk and σ2k . The next
theorem shows that we can, however, estimate αAP

p0
from the data in a way that achieves the same ben-
efit as K → ∞, even if N̂ is fixed and small. See Online
Appendix A for proof.

Theorem 2.1 (Data Pooling for MSE). Consider a sequence
of subproblems, indexed by k � 1, 2, . . .. Suppose for each k
that the kth subproblem minimizes mean-squared error; that
is, pk is supported on {ak1, . . . , akd} ⊆ R, Xk � R, and
cki(x) � (x − aki)2. Suppose further that there exists λavg,
N̂ ≥ 2, and amax < ∞ such that λk � λavg, N̂k � N̂, and
‖ak‖∞ ≤ amax for all k. Fix any p0 ∈ Δd, and let

αJS
p0

�
1
K
∑K

k�1
1

N̂−1
∑N̂

i�1 ξ̂ki − μ̂k
( )2

1
K
∑K

k�1 μk0 − μ̂k
( )2− 1

KN̂

∑K
k�1

1
N̂−1
∑N̂

i�1 ξ̂ki − μ̂k
( )2 .

Then, conditional on N̂, as K → ∞,

1
K

∑K
k�1

p�k ck xSAAk

( ) − 1
K

∑K
k�1

p�k ck xk αJS
p0
,p0, m̂k

( )( )
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Benefit over decoupling of α�αJS
p0

−
1
K
∑K

k�1 σ
2
k/N̂

( )2
1
K
∑K

k�1 σ
2
k/N̂ + 1

K
∑K

k�1 μk − μk0
( )2⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Expected benefit over decoupling of α�αAP
p0

→p 0.

Note that xk(αJS
p0
,p0, m̂) � (1 − θ)μ̂k + θμ̂k0, where θ �

1
N̂

1
K

∑K
k�1

1
N̂−1
∑N̂

i�1(ξ̂ki−μ̂k)2
1
K

∑K
k�1(μk0−μ̂k)2 . In this form, we can see that the

resulting estimator with pooling αJS
p0

strongly re-
sembles the classical James-Stein mean estimator
(see Efron and Hastie 2016, equation (7.51)), with
the exception that we have replaced the variance
σ2k , which is assumed to be 1 in Stein’s setting,
with the usual, unbiased estimator of that variance.
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This resemblance motivates our “JS” notation. Theo-
rem2.1 is neither stronger nor weaker than the James-
Stein theorem. Our result applies to non-Gaussian
random variables and holds in probability, but is as-
ymptotic; the James-Stein theorem requires Gaussian
distributions and holds in expectation, but applies to
any fixed K ≥ 3.

Theorem 2.1 shows that data pooling for mean-
squared error always offers a benefit over decou-
pling for sufficiently large K, no matter what the pk
may be. Data pooling for general optimization prob-
lems, however, exhibits more subtle behavior. In par-
ticular, as shown in the following example and theorem,
there exist instances where data pooling offers no
benefit over decoupling, aswell as instanceswhere data
pooling may be worse than decoupling.

Example 2.2 (Data Pooling for Simple Newsvendor).
Consider a special case of Problem (2.2) such that,
for all k, λk � λavg, ξk is supported on {1, 0}, Xk �
[0, 1], and ck(x, ξk) � x − ξk| | so that p�k ck(x) � pk1+
x(1 − 2pk1). In words, the kth subproblem estimates
the median of a Bernoulli random variable by mini-
mizing mean absolute deviation or, equivalently,
is a newsvendor problem with critical fractile 0.5
for Bernoulli demand. We order the support so that
pk1 � P(ξk � 1), as is typical for a Bernoulli random
variable. Suppose further that, for each k, pk1 > 1

2,
and fix any p01 < 1

2.

Note that xk(α,p0,m̂k) � I[ p̂k1 ≥ 1
2+ α

N̂k
(12−p01)].2 Fur-

ther, for any α (possibly depending on m̂),

p�k ck xk α,p0, m̂k
( )( ) − ck xk 0,p0, m̂k

( )( )( )
� 2pk1 − 1
( )

I p̂k1 ≥ 1/2
[ ] − I p̂k1 ≥ 1

2
+ α

N̂k

[(
1
2
− p01

( )])

� 2pk1 − 1
( )

I 1/2 ≤ p̂k1 <
1
2
+ α

N̂k

1
2
− p01

( )[ ]
,

where the last equality follows since p̂k1 < 1/2 ⇒

p̂k1 < 1
2 + α

2 (12 − p01). Notice that pk1 > 1
2 ⇒ (2pk1 − 1) > 0,

so this last expression is nonnegative. It follows that,
path by path, shrinkage by any α > 0 cannot improve
upon the decoupled solution (α � 0). Moreover, if
xk(α,p0, m̂k) �� xk(0,p0, m̂k), then the performance is
strictly worse. If we had chosen p01 ≥ 1

2 and pk1 < 1
2,

then a similar result holds.
We summarize this example in the following theorem.

Theorem 2.2 (Data Pooling Does Not Always Offer
Benefit). Given any p0, there exist instances of Problem (2.2)
such that shrinkage does not outperform the (decoupled)
SAA solution. Moreover, if x(α,p0, m̂) performs the same
as SAA, then x(α,p0, m̂) is, itself, an SAA solution.

On the other hand, there exist examples where the
James-Stein estimator and traditional statistical rea-
soning might suggest the benefits of pooling are mar-
ginal, but, by data pooling in a way that exploits the
optimization structure, we can achieve significant ben-
efits. Specifically, our Bayesian motivation in Section 2.1
suggests pooling offers little benefit when the pk’s are
very dispersed; that is, the Dirichlet prior has high
variance and α0 is small. Similarly, Theorem 2.1 and
Efron and Morris (1977) both suggest that the benefits of
pooling over decoupling for MSE are marginal if the
subproblemmeans are quite dispersed (seeEquation (2.6)).
Nonetheless, for general optimization problems, we
observe that pooling might still offer substantive ben-
efits in these situations.

Example 2.3. (Pooling Can Offer Benefit Even When
pk’s Are Dispersed). Let d > 3, and fix some 0 < s < 1.
Suppose that the kth subproblem is a newsvendor
problem with critical fractile fk > s and demand dis-
tribution supported on the integers 1, . . . , d. For each k,
let pk1 � 0, pkd � 1 − s, and pkjk � s for some 1 < jk < d.
Consider the fixed anchor p01 � s, p0d � 1 − s, and p0j �
0 for 1 < j < d. Notice that typical pk’s are very far from
p0 since ‖pk − p0‖2 �

̅̅
2

√
s. For s sufficiently close to 1,

this value is close to
̅̅
2

√
, which is the maximal distance

between two points on the simplex. In other words,
the pk’s are not very similar. Moreover, the means are
also dispersed for s close to 1 since 1

K
∑K

k�1(μk − μ0)2 �
s2 1

K
∑K

k�1( jk − 1)2 ≈ s2d/2 if the jk’s are chosen uniformly.
Consequently, the James-Stein estimator does not

shrink very much in this example. A straightforward
computation shows that, for K sufficiently large, αJS

p0
≤

(1−s)d2
s with high probability, which is close to 0 for

s close to 1. However, the full-information solution
for the kth problem is x∗k � d, which also equals the
fully pooled (α � ∞) solution, xk(∞, p0). Hence, pool-
ing in an optimization-aware way can achieve full-
information performance, whereas both decoupling
and an “estimate-then-optimize” approach using
James-Stein shrinkage necessarily perform worse. In
other words, pooling offers significant benefits despite
the pk’s being as dispersed as possible, because of the
optimization structure, and leveraging this structure is
necessary to obtain the best shrinkage. □

Theorems 2.1 and 2.2 and Examples 2.2 and 2.3
highlight the fact that data pooling for general opti-
mization is more complex than Stein’s phenomenon.
In particular, in Stein’s classical result for mean-
squared error and Gaussian data, data pooling al-
ways offers a benefit for K ≥ 3. For other optimization
problems and data distributions, data pooling may
not offer a benefit, or it may offer a benefit but
requires a new way of choosing the pooling amount.
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An interplay between p0, pk, and ck determines if data
pooling can improve upon decoupling and howmuch
pooling is best.

This raises two important questions: First, how do
we identify if an instance of Problem (2.2) would
benefit from data pooling? Second, if it does, how do
we compute the “optimal” amount of pooling? In the
next sections, we show how our Shrunken-SAA al-
gorithm can be used to address both questions in the
relevant regime, where K is large but the average
amount of data per subproblem remains small. In-
deed, we show that Shrunken-SAA achieves the best-
possible shrinkage in an optimization-aware fashion
for many types of problems and choices of anchor.

3. The Shrunken SAA Algorithm

Algorithm 1 (The Shrunken-SAA Algorithm)

Input: Data Sk � {ξ̂k1, . . . , ξ̂kN̂k
}, k � 1, . . . ,K, and an

anchor distribution h(S)
Fix a finite grid A ⊆ [0,∞)
for α ∈ A, k � 1, . . . ,K, j � 1, . . . , N̂k define:
xk,−j(α, h(S)) ← argminxk∈Xk

∑
� ��j ck(xk, ξ̂k�) +

αEξk∼h(S)[ck(xk, ξk)] // Compute leave-one-out
(LOO) solutions

end for
αS−SAA
h ← argminα∈A

∑K
k�1
∑N̂k

j�1 ck(xk,−j(α, h(S)), ξ̂kj)
// Modified LOO Cross-Validation

for all k � 1, . . . ,K do
xS−SAAk ← argminxk∈Xk

∑N̂k
j�1 ck(xk, ξ̂kj) +

αS−SAA
h Eξk∼h(S)[ck(xk, ξk)] // Compute pooled

solution
end for
return (xS−SAA1 , . . . , xS−SAAK )

Algorithm 1 formally defines Shrunken-SAA. The
crucial step is the “Modified LOO Cross-Validation,”
which we discuss in detail in Sections 3.2 and 3.3.
To highlight similarities to SAA, we have stated
the algorithm in terms of the data sets Sk and S �
(S1, . . . ,SK). Here, h(S) represents an arbitrary, pos-
sibly data-driven anchor distribution (we present some
examples, shortly). Recall that we can equivalently
express Sk in terms of the counts m̂k. In that notation,
we recognize that if the jth data point of Sk is aki,
thenxk,−j(α, h(m̂)) � xk(α, h(m̂), m̂k − ei) and xS−SAAk � xk
(αS−SAA, h(m̂), m̂k). In other words, Shrunken-SAA re-
tains the particular pooling structure of Equation (2.4)
suggested by our Bayesian argument, but it allows
for a data-dependent anchor h(S) (equivalently, h(m̂))
and chooses the amount of pooling via a particular
cross-validation scheme. We present Algorithm 1
using a finite grid A, but our theory also pertains
to A � [0,∞).
Remark 3.1 (Computational Complexity). Computation-
ally, Algorithm 1 does not depend on d, the size of the

support of ξk. Its bottleneck is computing xk,−j, which is
similar to solving the kth subproblem by SAA with an
augmented data set described by h(S). More specifi-
cally, Algorithm 1 depends on the data only through
h(S) and averages of functions over subsets of S,
neither of which explicitly depends upon d. Conse-
quently, although our setup and analysis assume that
ξk has finite discrete support, from an implementation
perspective, we can apply Shrunken-SAA when ξk has
continuous support without discretization, so long as
we can efficiently solve these augmented SAA prob-
lems (see our empirical study in Section E.6 of Online
Appendix E). From a theoretical perspective, some of
our analysis extends to this continuous setting (see
Section 4.6). In the remainder, we follow Section 2 and
treat the data as discrete, referring to the data by m̂k
and m̂.
We consider Shrunken-SAA to be roughly as tractable

as SAA. We say “roughly” because, in the worst case,
one must solve at most A| |∑K

k�1 min(d, N̂k) problems in
the LOO cross-validation step, which, if we sample
from h(m̂), have a similar structure to SAA. Fortu-
nately, we can parallelize these problems in distributed
computing environments and use previous iterations
to “warm-start” solvers. Moreover, in Section E.8
of Online Appendix E, we observe empirically that
less computationally expensive κ-fold cross-validation
procedures can be used in place of LOO with similar
performance. □

For clarity, the αS−SAA
h parameter (with A � [0,∞))

computed by Algorithm 1 is

αS−SAA
h ∈ argmin

α≥0
∑K
k�1

m̂�
k ck xk α, h m̂( ), m̂k − ei( )( ). (3.1)

The Anchor Distribution h(m̂)
As stated, the anchor in Algorithm 1, h(m̂), is an input.
We think of h(m̂) as a function that selects an anchor
distribution from a candidate set of distributionsP. In
what follows, we will focus on two types of anchors
and corresponding candidate sets P:
• Fixed anchors: Here, h(m̂) � p0, P � {p0} for

some fixed p0, for example, the uniform distribution
p0 � e/d. Fixed anchors might be used for computa-
tional/statistical simplicity or when there is strong a
priori knowledge of a good anchor. In this case, we
abuse notation slightly, replacing the map h : m̂ �→ p0
with the constant p0 when clear from context; for
exampe, we write αS−SAA

p0
for αS−SAA

h .
• Data-driven anchors: Here, h(m̂) is any proce-

dure that uses the data m̂ to select a distribution, and
P is the image of h(·). One example might be to use all
the data to fit a parametric distribution, for example,
a lognormal distribution, via maximum likelihood
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and use this fitted distribution as the anchor. Then, P
would be the set of lognormal distributions.

We also pay particular focus to two special cases of
data-driven anchors in what follows:

• LOO-optimized anchor: For a given P ⊆ Δd, let

hP m̂( ) ∈ argmin
q∈P

min
α∈A

∑K
k�1

m̂�
k ck xk α, q, m̂k − ei

( )(
. (3.2)

We will see later that hP satisfies stronger optimality
properties than general data-driven anchors and,
hence, we treat it separately. From an implementation
point of view, when applying Algorithm 1, we only
ever require the value of hP(m̂), not the full-function
hP(·). Thus,Algorithm1withhP(·) amounts to replacing
the “Modified LOO Cross-Validation” step by a joint
optimization over anchor and pooling amount:

αS−SAA
hP

, hP m̂( )
( )

← argmin
α∈A,q∈P

∑K
k�1

∑N̂k

j�1
ck xk,−j α, q

( )
, ξ̂kj

( )
.

(3.3)
We note that the multivariate optimization problem
in Section 3.3 may be challenging depending on the
structure of P, motivating our second special case:

• GM-anchor: We also consider a computation-
ally simpler “grand-mean” anchor h(m̂) � p̂GM, where
p̂GM ≡ ∑K

k�1 p̂k I N̂k > 0
[ ]

/
∑K

k�1 I N̂k > 0
[ ]

if N̂max > 0 and
e/d otherwise. (For this data-driven anchor, P � Δd.)
This choice is motivated by our Bayesian perspective
on data pooling from Section 2.1. In the Bayesian
setting, p̂GM is an unbiased estimator of the prior
mean. We observe empirically in Section 6 that p̂GM

is a strong and computationally efficient heuristic.

3.1. Oracle Benchmarks
From Theorem 2.2, data pooling need not improve
upon decoupling for a given h(·). To establish ap-
propriate benchmarks, we first define the oracle
pooling for given h(·); that is,

αOR
h ∈ argmin

α≥0
ZK α, h m̂( )( ), where

ZK α, q
( ) � 1

K

∑K
k�1

Zk α, q
( )

,

Zk α, q
( ) � λk

λavg
pk

�ck xk α, q, m̂k
( )( )

. (3.4)

Notice that αOR
h is random, depending on the entire

data-sequence. By construction, ZK(αOR
h , h(m̂)) lower

bounds the performance of any other data-driven
pooling policy with anchor h(m̂) path by path. Hence,
it serves as a strong performance benchmark. How-
ever, αOR

h also depends on the unknown pk and λk,

and, hence, is not implementable in practice. In this
sense, it is an oracle.
Given any α (possibly depending on the data), we

measure the suboptimality of pooling by α relative to
the oracle pooling for h(·) on a particular data reali-
zation by

SubOpth,K α( ) � ZK α, h m̂( )( ) − ZK αOR
h , h m̂( )( )

.

Good pooling procedures have small suboptimality
with high probability with respect to the data. We
allow for αOR

h � 0. Thus, procedures with small sub-
optimality still have good performance in instances
when data pooling is not beneficial. Studying when
αOR
h > 0 further gives intuition into when and why

data pooling is helpful, a task we take up in Section 5.
The aforementioned oracle is defined with respect

to a given anchor. One might also seek to benchmark
performance relative to the best-possible anchor.
Given any P ⊆ Δd, we define the oracle choice of
anchor and pooling amount for anchors inP and for a
particular data realization by

αOR
P , qOR

P

( ) ∈ argmin
α≥0, q∈P

ZK α, q
( )

. (3.5)

Then, given any anchor q ∈ P and pooling amount α
(both possibly depending the data), we measure the
suboptimality of shrinking by α toward q by

SubOptP,K α, q
( ) � ZK α, q

( ) − ZK αOR
P , qOR

P

( )
.

For clarity, we observe that, by construction, αOR
P �αOR

qOR
P

.

3.2. Motivating αS−SAA Through
Unbiased Estimation

We first consider a fixed anchor h(m̂) � p0. In this case,
we abuse notation slightly and write

αOR
p0

∈ argmin
α≥0

ZK α,p0
( )

. (3.6)

One approach to choosing αp0 might be to construct a
suitable proxy for ZK(α, p0) in Equation (3.6) based
only on the data and then choose the αp0 that opti-
mizes this proxy.
If we knew the values of λk, then a natural proxy

might be to replace the unknown pk with p̂k; that
is, optimize 1

K
∑K

k�1
λk
λavg

p̂k
�ck (xk (α, q, m̂k)). Unfortu-

nately, even for a fixed, non-data-driven α, this proxy
is biased, that is, E[1K

∑K
k�1

λk
λavg

p̂k
�ck(xk(α,p0, m̂k))] ��

E ZK(α,p0)
[ ]

, since both p̂k and xk(α, p0, m̂k) depend on
the data m̂k. Worse, this bias wrongly suggests that
α � 0, that is, decoupling, is always a good policy,
because xk(0,p0, m̂k) always optimizes this proxy, by
construction. By contrast, Theorem 2.1 shows that
data pooling can offer significant benefits. This type of
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bias and its consequences are well known in other
contexts and are often termed the “optimizer’s cur-
se”—in-sample costs are optimistically biased and
may not generalize well.

These features motivate us to seek an unbiased
estimate of ZK(α, p0). At first glance, however, ZK
(α,p0), which depends on both the unknown pk
and unknown λk, seems particularly intractable un-
less xk(α, p0, m̂k) admits a closed-form solution as in
Example 2.1. A key observation is that, in fact, ZK

(α,p0) does more generally admit an unbiased esti-
mator, if we also introduce an additional assumption
on our data-generating mechanism, that is, that the
amount of data is random.

Assumption 3.1 (Randomizing Amount of Data). There
exists an N such that N̂k ∼ Poisson(Nλk) for each k �
1, . . . ,K.

Under Assumption 3.1, (unconditional) expecta-
tions and probabilities should be interpreted as over
both the random draw of N̂k and the counts m̂k.
Analytically, the benefit of Assumption 3.1 is that it

breaks the dependence across i in m̂k. Namely, by the
Poisson-splitting property, under Assumption 3.1,

m̂ki ∼ Poisson mki( ) where mki ≡ Nλkpki,

i � 1, . . . , d, k � 1, . . . ,K,

and the m̂ki’s are independent across i and k. If N̂k were
nonrandom, then these m̂ki would be dependent.

Beyond its analytical convenience, we consider
Assumption 3.1 to be reasonable in many applica-
tions. Consider, for instance, a retailer optimizing the
price of k distinct products; that is, xk represents the
price of product k, ξk represents the (random) valua-
tion of a typical customer, and ck(xk, ξk) is the (neg-
ative) profit earned. In such settings, one frequently
ties data collection to time; that is, one might collect
N � 6 months worth of data. To the extent that cus-
tomers arrive seeking product k in a random fashion,
the number of arrivals N̂k that one might observe in
N months is, itself, random and is reasonably mod-
eled as Poisson with rate proportional to N. Similar
statements apply whenever data for problem k are
generated by an event that occurs randomly, for ex-
ample, when observing the response time of emer-
gency responders (disasters occur intermittently),
effectiveness of a new medical treatment (patients
with the relevant disease arrive sequentially), or any
aspect of a customer service interaction (customers
arrive randomly to service).

In some ways, this perspective tacitly underlies the
formulation of Problem (2.2) itself. Indeed, oneway to
interpret the subproblem weights λk

Kλavg
� λk∑K

j�1 λj
is that

the decision maker incurs costs ck(xk, ξk) at rate λk, so
that problems of type k contribute a λk∑K

j�1 λj
fraction of

the total long-run costs. However, if problems of type
k occur at rateλk, it should be that observations of type
k, that is, realizations of ξk, also occur at rate λk,
supporting Assumption 3.1.
In settings where data collection is not tied to

randomly occurring events, modeling N̂k as Poisson
may still be a reasonable approximation if d is large
relative to N̂k and each of the individual pki’s are small.
Indeed, under such assumptions, a Multinomial(N̂k, pk)
is well approximated by independent Poisson ran-
domvariableswith rates N̂kpki, i � 1, . . . d (seeMcDonald
1980, Deheuvels and Pfeifer 1988 for a formal state-
ment). In this sense, we can view the consequence of
Assumption 3.1 as a useful approximation to the
setting where the N̂k’s are fixed, even if it is not
strictly true.
In any case, under Assumption 3.1, we develop an

unbiased estimate for ZK(α, p0, m̂). We use the fol-
lowing identity (Chen 1975). For any f : Z+ → R, for
which the expectations exist,

W ∼ Poisson λ( ) ⇒ λE f W + 1( )[ ] � E Wf W( )[ ]
. (3.7)

The proof of the identity is immediate from the
Poisson probability mass function.3

Now, for any α ≥ 0 and q ∈ Δd, define

ZLOO
k α, q
( ) ≡ 1

Nλavg

∑d
i�1

m̂kicki xk α, q, m̂k − ei
( )( )

,

and ZLOO
K α, q
( ) ≡ 1

K

∑K
k�1

ZLOO
k α, p0
( )

.

(3.8)

Lemma 3.1. (An Unbiased Estimator for ZK(α,p0)).
Under Assumption 3.1, we have for any α ≥ 0 and
q ∈ Δd that E ZLOO

k (α, q)[ ] � E Zk(α, q)
[ ]

. In particular,

E ZLOO
K (α, q)

[ ]
� E ZK(α, q)[ ]

.

Proof. Recall that Zk(α, q) � 1
Nλavg

∑d
i�1 mkicki(xk(α, q,

m̂k)) and that, under Assumption 3.1, m̂ki ∼ Poisson(mki)
independently over i � 1, . . . , d. Let m̂k,−i denote
m̂k,j
( )

j��i. Then, by Equation (3.7),

E mkicki xk α, q, m̂k
( )( ) | m̂k,−i

[ ]
� E m̂kicki xk α, q, m̂k − ei

( )( ) | m̂k,−i
[ ]

.

Taking expectations of both sides, summing over
i � 1, . . . , d, andscalingbyNλavg provesE ZLOO

k (α, q)[ ] �
E Zk(α, q)
[ ]

. Finally, averaging this last equality over k
completes the lemma.
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We therefore propose selecting αbyminimizing the
estimate ZLOO

K (α,p0). As written, ZLOO
K (α,p0) still de-

pends on the unknown N and λavg; however, these
values occur multiplicatively and are positive, and so
do not affect the optimizer. Hence, the optimizer is
exactly αS−SAA

h , as in Equation (3.1).

3.3. Motivating αS−SAA via Modified
Leave-One-Out Cross-Validation

AlthoughwemotivatedEquation (3.1) via an unbiased
estimator, we can alternatively motivate it through
leave-one-out cross-validation. This latter perspec-
tive informs our “LOO” notation. Indeed, consider
again our decision maker, and assume in line with
Assumption 3.1 that subproblems of type k arrive
randomly according to a Poisson process with rate λk,
independently across k. When a problem of type k
arrives, she incurs a cost ck(xk, ξ). Again, the objective
of Problem (2.2) thus represents her expected long-
run costs.

We can alternatively represent her costs via the
modified cost function C(x1, . . . , xK, κ, ξ) � cκ(xκ, ξ),
where κ is a random variable indicating which of the
k subproblems she is currently facing. In particular,
letting P(κ � k) � λk

Kλavg
and P(ξ � aki | κ � k) � pki, the

objective of Problem (2.2) can be more compactly
written E C(x1, . . . , xK, κ, ξ)[ ].

Now consider pooling all the data into a single
“grand” data set of size N̂1 + · · · + N̂K:

k, ξkj
( )

: j � 1, . . . , N̂k, k � 1, . . . ,K
{ }

.

The grand data set can be seen as i.i.d. draws of (κ, ξ).
For a fixed α and p0, the leave-one-out estimate of

E C(x1(α, p0, m̂), . . . , xK(α,p0, m̂), κ, ξ)[ ]
is given by re-

moving one data point from the grand data set,
training x1(α, p0, ·), . . . , xK(α, p0, ·) on the remaining
data, and evaluating C(·) on the left-out point using
these policies. We repeat for each point in the grand
data set and average. We can rewrite this leave-one-
out estimate as

1∑K
k�1 N̂k

∑K
k�1

∑d
i�1

m̂kicki xk α,p0, m̂k − ei
( )( )

,

which agrees with the objective of Equation (3.1) up
to a positive multiplicative constant. Although this
multiplicative constant does not affect the choice
of αS−SAA, it does cause the traditional leave-one-
out estimator to be biased. This bias agrees with
folklore results in machine learning that assert that
leave-one-out does generally exhibit a small bias
(Hastie et al. 2001).

For data-driven anchors, we stress that, unlike
traditional leave-one-out validation, we do not use
one fewer points when computing the anchor in Al-
gorithm 1; we use h(m̂) for all iterations. Hence,
Shrunken-SAA is not strictly a leave-one-out proce-
dure, motivating our qualifier “Modified.”

4. Performance Guarantees
for Shrunken-SAA

In this section, we show that, in the limit where the
number of subproblemsK grows, shrinking by αS−SAA

h
is essentially best possible. More precisely, for any
K ≥ 2 and any 0 < δ < 1/2, with probability at least
1 − δ, we prove that

SubOpth,K αS−SAA
h

( ) ≤ Õ
logβ 1/δ( )̅̅̅

K
√

( )
, (4.1)

where the Õ(·) notation suppresses logarithmic fac-
tors in K, and 1 < β < 2 is a constant that depends on
the particular class of optimization problems un-
der consideration. Imporantly, by the Borel-Cantelli
lemma, Equation (4.1) implies SubOpth,K(αS−SAA

h ) → 0,
almost surely as K → ∞, even if the expected amount
of data per subproblem remains fixed.
Equation (4.1) asserts that for a given anchor h(·),

Shrunken-SAA achieves the best possible shrinkage
amount as K → ∞. We will also prove similar bounds
onSubOptP,K(αS−SAA

h , hP(m̂)). Such bounds assert that,
for a given classP, Shrunken-SAAwith hP(·) achieves
the best possible anchor and shrinkage amount
simultaneously.

4.1. Overview of Proof Technique
To prove performance guarantees like Equation (4.1),
we first bound the suboptimality of Shrunken-SAA in
terms of the maximal stochastic deviations of ZK(α, h)
and ZLOO

K (α, h) from their means.

Lemma 4.1 (Bounding Sub-Optimality). Suppose that
Assumption 3.1 holds.

For a non-data-driven anchor h(m̂) � p0,

SubOptp0,K αS−SAA
p0

( )
≤ 2 sup

α≥0
ZK α,p0
( ) − E ZK α,p0

( )[ ]⃒⃒⃒ ⃒⃒⃒
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Maximal Stochastic Deviation in ZK ·,p0( )

+

2 sup
α≥0

ZLOO
K α,p0,
( ) − E ZLOO

K α,p0
( )[ ⃒⃒⃒⃒⃒⃒⃒ ]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Maximal Stochastic Deviation in Z

LOO
K ·,p0( ).
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Similarly, for a general data-driven anchor with h(m̂) ∈ P,

SubOpth,K αS−SAA
h

( )
≤ 2 sup

α≥0
q∈P

ZK α, q
( ) − E ZK α, q

( )[ ]⃒⃒⃒ ⃒⃒⃒
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Maximal Stochastic Deviation in ZK ·, ·( )

+

2 sup
α≥0
q∈P

ZLOO
K α, q
( ) − E ZLOO

K α, q
( )[ ]⃒⃒⃒⃒ ⃒⃒⃒⃒

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Maximal Stochastic Deviation in ZLOO

K ·, ·( )

.

(4.2)

Finally, for h � hP , SubOptP,K(αS−SAA
hP

, hP(m̂)) is also
bounded by the right-hand side of Equation (4.2).

Proof. By definition of αS−SAA
p0

, ZLOO
K (αOR

p0
,p0) − ZLOO

K(αS−SAA
p0

,p0) ≥ 0. Therefore,

SubOptp0,K αS−SAA
p0

( )
≤ ZK αS−SAA

p0
, p0

( )
− ZK αOR

p0
,p0

( )
+ ZLOO

K αOR
p0

,p0
( )

− ZLOO
K αS−SAA

p0
,p0

( )
≤ 2 sup

α≥0
ZK α, p0
( ) − ZLOO

K α,p0
( )⃒⃒⃒ ⃒⃒⃒

≤ 2 sup
α≥0

ZK α, p0
( ) − EZK α,p0

( )⃒⃒⃒ ⃒⃒⃒
+ 2 sup

α≥0
ZLOO
K α, p0
( ) − EZLOO

K

⃒⃒⃒
α, p0
( )⃒⃒

+ 2 sup
α≥0

EZK α, p0
( ) − EZLOO

K

⃒⃒⃒
α, p0
( )⃒⃒⃒

.

By Lemma 3.1, the last term is zero, which establishes
the first statement. The proof of the second statement
is similar, but, in the second inequality, we take
an additional supremum over q ∈ P to replace h(m̂).
The proof of the third statement is similar, using
ZLOO
K (αS−SAA

hP , hP(m̂)) ≤ ZLOO
K (αOR

P , qOR
P ), and taking a

supremum over α ≥ 0, q ∈ P in the second inequality.

Proving a performance guarantee for αS−SAA
h thus

reduces to bounding the maximal deviations in the
lemma. Recall that ZK(α, q) � 1

K
∑K

k�1 Zk(α, q) and ZLOO
K

(α, q) � 1
K
∑K

k�1 Z
LOO
k (α, q). Both processes have a special

form: they are the empirical average of K independent
stochastic processes (indexed by k). Fortunately, there
exist standard tools to bound the maximal deviations
of such empirical processes that rely on bounding
their metric entropy.

To keep our paper self-contained, we summarize
one such approach presented in Pollard (1990), spe-
cifically in equation (7.5) of that work. Recall that, for
any set S ⊆ Rd, the ε-packing number of S, denoted by
D(ε,S), is the largest number of elements of S that can

be chosen so that the Euclidean distance between any
two is at least ε. Intuitively, packing numbers describe
the size of S at scale ε.

Theorem 4.1 (A Maximal Inequality; Pollard 1990). Let
W(t) � (W1(t), . . . ,WK(t)) ∈ RK be a stochastic process
indexed by t ∈ T , and let WK(t) � 1

K
∑K

k�1 Wk(t). Let F ∈
RK+ be a random variable such that Wk(t)⃒⃒ ⃒⃒ ≤ Fk for all
t ∈ T , k � 1, . . . ,K. Finally, define the random variable

J ≡ J W t( ) : t ∈ T{ }, F( )
≡ 9‖F‖2

∫ 1

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
logD ‖F‖2u, W t( ) : t ∈ T{ }( )√

du. (4.3)

Then, for any p ≥ 1 and any 0 < δ < 1, with probability at
least 1 − δ,4

sup
t∈T

WK t( ) − E WK t( )[ ]⃒⃒⃒ ⃒⃒⃒ ≤ 51/p
̅̅
p

√ ‖J‖pK−1δ−1/p.

If T is finite, then one can bound the maximal devi-
ation with a union bound. Theorem 4.1 extends be-
yond this simple case to cases where T| | � ∞. The
random variable F in the theorem is called an envelope
for the process W(t). The random variable J is often
called the Dudley integral. Whereas packing numbers
describe the size of a set at scale ε, the Dudley inte-
gral roughly describes the size of the set at varying
scales. We again refer the reader to Pollard (1990)
for discussion.

Our overall proof strategy is to use Theorem 4.1 to
bound the two suprema in Lemma 4.1 and thus
obtain a bound on the suboptimality. Specifically,
define the following stochastic processes:

Z α, q
( ) � Z1 α, q

( )
, . . . ,ZK α, q

( )( )
,

ZLOO α, q
( ) � ZLOO

1 α, q
( )

, . . . ,ZLOO
K α, q
( )( )

.

Our proof strategy will be to (1) compute envelopes
for both processes; (2) compute the packing numbers
and Dudley integrals for the relevant aforementioned
sets; (3) apply Theorem 4.1 to bound the relevant
maximal deviations; and (4) use these bounds in
Lemma 4.1 to bound the suboptimality. We execute
this strategy for several special cases in the remainder
of the section.
As a first step, we identify envelopes for each

process. We restrict attention to the case where the
optimal value of each subproblem is bounded for any
choice of anchor and shrinkage.

Assumption 4.1 (Bounded Optimal Values). There ex-
ists C such that for all i � 1, . . . , d, and k � 1 . . . ,K,
supq∈Δd

cki(xk(∞, q))⃒⃒ ⃒⃒ ≤ C.
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Notice that supα≥0, q∈Δd
cki(xk(α, q))⃒⃒ ⃒⃒ � supq∈Δd

|cki xk(
(∞, q)|, so that the assumption bounds the optimal
value associated to every policy. Assumption 4.1 is a
mild assumption and follows, for example, if cki(·) is
continuous and X k is compact. However, the as-
sumption also holds, for example, if cki(·) is un-
bounded but coercive. With it, we can easily compute
envelopes. Recall that N̂max ≡ maxk N̂k.
Lemma 4.2. (Envelopes for Z,ZLOO). Under Assump-
tion 4.1,

1. the vector FPerf ≡ Cλ/λavg is an envelope for Z(α, q)
with ‖FPerf‖2 � C

λavg
‖λ‖2;

2. the random vector FLOO � C N̂
Nλavg

is an envelope for
ZLOO(α, q) with ‖FLOO‖2 � C

Nλavg
‖N̂‖2.

The proof is immediate from the definitions
and omitted.

Our next step is to bound the packing numbers (and
Dudley integrals) for the sets {Z(α, q) : α ≥ 0, q ∈ P} ⊆
RK, and {ZLOO(α,p0) : α ≥ 0} ⊆ RK, for the case of fixed
anchors, and the sets {Z(α, q) : α ≥ 0, q ∈ P} ⊆ RK, and
{ZLOO(α, q) : α ≥ 0, q ∈ P} ⊆ RK, for the case of data-
driven anchors. Bounding these packing numbers
is subtle and requires exploiting the specific structure
of the optimization problem (2.2). We separately con-
sider two general classes of optimization problems—
strongly convex optimization problems and discrete
optimization problems—in the remainder of the ar-
ticle. Although we focus on these classes, we expect
that a similar proof strategy and technique might
be employed to attack other classes of optimiza-
tion problems.

Remark 4.1. (Performance of αS−SAA in the Large-
Sample Regime). Although we focus on performance
guarantees for αS−SAA in settings where K is large and
the expected amount of data per problem is fixed, one
could also ask how αS−SAA performs in the large-
sample regime, that is, where K is fixed and N̂k → ∞
for all k. Using similar techniques, namely, reducing the
problem to bounding a certain maximal stochastic
deviation, one can show that xk(αS−SAA,p0, m̂) performs
comparably to the full-information solution in Prob-
lem (2.2) in this limit. The proof uses somewhat stan-
dard arguments for empirical processes. Moreover,
the result is perhaps unsurprising; many data-driven
methods converge to full-information performance in
the large-sample regime (see, e.g., Kleywegt et al. 2002
for the case of SAA) since p̂k is consistent for pk for all k
in this regime. Consequently, we focus on the small-
data, large-scale regime, where Shrunken SAA enjoys
strong suboptimality guarantees not enjoyed by
SAA. This small-data, large-scale focus, however,
causes the N dependence in our bounds to be looser
than that obtained from a direct large-sample analysis.

Developing a unified analysis of data pooling for any
sequence of N,K remains an open question. □

4.2. Fixed Anchors and Strongly Convex
Optimization Problems

In this section, we treat the case where the K sub-
problems are smooth enough so that xk(α, q, m̂k) is
smooth in α and q for each k. Specifically, in this
section we assume the following.

Assumption 4.2 (Lipschitz, Strongly-ConvexOptimization).
There exists L, γ such that the cki(x)’s are γ-strongly convex
and L-Lipschitz overXk, and, moreover,Xk is nonempty and
convex, for all k � 1, . . . ,K, and i � 1, . . . , d.

Theorem 4.2 (Shrunken-SAA with Fixed Anchors for
Strongly Convex Problems). Fix any p0. Suppose that
Assumptions 3.1, 4.1, and 4.2 hold, K ≥ 2, and Nλmin ≥ 1.
Then, there exists a universal constant A such that, for any
0 < δ < 1/2, with probability at least 1 − δ, we have that

SubOptp0,K αS−SAA
p0

( )
≤ A ·max C,L

̅̅̅
C
γ

√( )
· λmax

λmin

( )5/4

× log2 1/δ( ) · log3/2 K( )̅̅̅
K

√ .

The proof follows our strategy from Section 4.1 (see
Section C.1 in Online Appendix C). We sketch the
main ideas:

We first bound the packing numbers of {Z(α, p0) :
α ≥ 0} and ZLOO(α, p0) : α ≥ 0

{ }
. The key observa-

tion is that, since the subproblems are strongly
convex, the optimal solutions xk(α,p0, m̂k) are con-
tinuous as functions of α. We utilize this continuity to
construct a packing.
Specifically, consider Z(α,p0) : α ≥ 0

{ }
. Continuity

in α implies that, by evaluating x(α, p0, m̂) on a suf-
ficiently dense grid of α’s, we can construct a covering
of {(xk(α,p0, m̂k))Kk�1 : α ≥ 0}, which in turn yields a
covering of Z(α,p0) : α ≥ 0

{ }
. By carefully choosing

the initial grid of α’s, we can ensure that this last
covering is a valid (ε/2)-covering. By (Pollard 1990, p.
10), the size of this covering bounds the ε-packing
number as desired. Figure 2 illustrates this intuition
and further argues that the initial grid of α’s should
be of size O(1/ε2). A similar argument holds for
D(ε, ZLOO(α,p0) : α ≥ 0

{ }), using a grid of α’s to cover
{(xk(α,p0, m̂k − ei) : i � 1, . . . , d, k � 1, . . . ,K) : α ≥ 0}.
The packing is also of size O(1/ε2).
To complete the proof, we use these packing num-

bers in Theorem 4.1 to bound the maximal deviations
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of ZK(·,p0),ZLOO
K (·,p0). Substituting into Lemma 4.1

proves Theorem 4.2.

4.3. Data-Driven Anchors and Strongly
Convex Problems

We next consider the case of a data-driven anchor
h(m̂) ∈ P. Our performance guarantees will depend
on the complexity of P as measured by the size of its
�1-packing numbers. Namely, we let D1(ε,P) be the
largest number of elements of P that can be chosen so
that the �1-distance between any two is at least ε.5

Then, we have the following.

Theorem 4.3 (Shrunken-SAAwith Data-Driven Anchors for
Strongly Convex Problems). Suppose that Assumptions
3.1, 4.1, and 4.2 hold, K ≥ 2. Let d0 ≥ 1 be such that for
any 0 < ε < 1/2, logD1(ε,P) ≤ d0 log(1/ε). Then, there
exists a universal constant A such that for any 0 < δ < 1/2,
with probability at least 1 − δ, we have that

SubOpth,K αS−SAA
h

( )
≤ A ·max C,

L2

γ
+ L

̅̅̅
C
γ

√( )
λmax

λmin

( )5/4

× d20 log
7/2 K( ) log2 1/δ( )̅̅̅

K
√ .

In the special case of hP(·), we can prove an even
stronger result, namely, that Shrunken-SAA with hP

performs comparably to pooling in an optimal way to
the best anchor within the class P.

Theorem 4.4. (Shrunken-SAA with hP for Strongly
Convex Problems).Under the assumptions of Theorem 4.3,
there exists a universal constant A such that for any
0 < δ < 1/2, with probability at least 1 − δ, we have that

SubOptP,K αS−SAA
hP , hP m̂( )

( )
≤ A ·max C,

L2

γ
+ L

̅̅̅
C
γ

√( )
λmax

λmin

( )5/4

× d20 log
7/2 K( ) log2 1/δ( )̅̅̅

K
√ .

In both theorems, the constant d0 measures the com-
plexity of P. Without loss of generality, d0 ≤ 3d since
P ⊆ Δd and logD1(ε,Δd) ≤ 3d log(1/ε) (Pollard 1990,
lemma 4.1). In practice, we might choose flexible,
parametric families for P with small d0 that do not
scale with d. An example might be when P consists
of all (truncated) Poisson distributions with mean
at most Λ, in which case, one can take d0 � 2max
(1, log(Λ)), independently of d (and the truncation).
Another example is given in Section 6 using beta
distributions. In general, we expect that our perfor-
mance boundsmust depend on the complexity ofP in
some way, because we impose no assumptions on the
function h(m̂) that selects the anchor and, hence, must
control behavior across all of P.

Both proofs follow the strategy of Section 4.1 (see
Section C.2 of Online Appendix C). The key idea to
bounding the packing numbers is again to leverage
continuity and cover the set {(α, q) : α ≥ 0, q ∈ P}.
Since both proofs leverage Lemma 4.1, the right-hand
sides of the bounds are the same.
By contrast, the left-hand sides of Theorems 4.3

and 4.4 are different: the first measures suboptimality
relative to an oracle with a prespecified anchor, whereas
the second is relative to an oracle that can optimize the
choice of anchor. This distinction mirrors the difference
between “estimate-then-optimize” procedures and
those which choose parameters in an optimization-
aware fashion. Continuing our example where P is a
set of Poisson distributions, Theorem 4.3 bounds the
suboptimality of Shrunken-SAA when using (all)
the data to fit a Poisson distribution without regard
to the downstream optimization, for example, by
maximum likelihood, and then choosing α and xk(·) to
optimize. By contrast, Theorem 4.4 bounds the per-
formance of Shrunken-SAAwhen choosing the anchor,
α and xk(·) simultaneously to optimize the down-
stream optimization.

Figure 2. (Color online) Covering a Continuous Process

Notes. The set {(xk(α, p0, m̂k))Kk�1 : α ≥ 0} can be thought of as a
parametric curve indexed by α in the space

∏K
k�1 Xk. Because of the

continuity in α (see part iii of Lemma C.1 in Online Appendix C), to
cover this curve for any compact set α ∈ [0, αmax] requiresO(1/ε) balls
of size ε. Because of the continuity at α � ∞ (see part iv of Lemma C.1
in Online Appendix C), it suffices to take αmax � O(1/ε). This yields a
packing number bound of O(1/ε2) (see Lemma C.2 in Online Ap-
pendix C).
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4.4. Fixed Anchors and Discrete
Optimization Problems

In this section, we consider the case where the K
subproblems are discrete optimization problems.
Specifically, we require Xk| |<∞ for each k � 1, . . . ,K.
This encompasses, for example, binary linear or non-
linear optimization and linear optimization over a
polytope, since we may restrict to its vertices.

Unlike the case of strongly convex problems, the
optimization defining xk(α,p0, m̂k) (see Equation (2.4))
may admit multiple optima, and, hence, xk(α, p0, m̂k)
requires a tie-breaking rule. For our results, we as-
sume that this tie-breaking rule is consistent in the
sense that if the set of minimizers to Equation (2.4) is
the same for two distinct values of (α, p0), then the tie-
breaking minimizer is also the same for both. We
express this requirement by representing the tie-
breaking rule as a function from a set of minimizers
to a chosen minimizer.

Assumption 4.3 (Consistent Tie-Breaking). For each k,
there exists σk : 2Xk → Xk such that

xk α, p0, m̂k
( ) � σk arg min

xk∈Xk

p̂k α( )�ck xk( )
( )

.

Then we have the following.

Theorem 4.5 (Shrunken-SAA with Fixed Anchors for Dis-
crete Problems). Suppose that Xk| | < ∞ for each k, K ≥ 2,
and that Assumptions 3.1, 4.1, and 4.3 hold. Then, there
exists a universal constant A such that for any 0 < δ < 1/2
we have that, with probability at least 1 − δ,

SubOptp0,K αS−SAA
p0

( )

≤ A · Cλmax

λmin
·
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log 2Nmax

∑K
k�1

Xk| |
( )√√

·

× log3/2 K( ) · log3/2 1/δ( )̅̅̅
K

√ .

We stress that Xk| | occurs logarithmically in the
bound, so that the bound is reasonably tight, even
when the number of feasible solutions per subprob-
lem may be large. For example, consider binary op-
timization. Then, Xk| | often scales exponentially in the
number of binary variables, so that log(Xk| |) scales like
the number of binary variables. Thus, as long as the
number of binary variables per subproblem is much
smaller than K, the suboptimality will be small with
high probability.

We also note that, unlike Theorem 4.2, the afore-
mentioned bound depends on log(Nmax). This mild

dependence stems from the fact that we have made
no assumptions of continuity on the functions ck(x, ξ) in
x or ξ. Since these functions could be arbitrarily
nonsmooth, we need to control their behavior sepa-
rately across all of the LOO iterations, which intro-
duces the Nmax dependence. With stronger assump-
tions, it might be possible to remove this dependence.
However, sincewe aremostly interested in the setting
where Nk is moderate to small for all k, we do not
pursue this idea.
To prove Theorem 4.5, we again follow the ap-

proach outlined in Section 4.1. However, since the
policy x(α, p0, m̂) need not be smooth in α, we adopt
a different strategy than in Section 4.2. Specifi-
cally, we bound the cardinality of Z(α,p0) : α ≥ 0

{ }
,

ZLOO(α, p0) : α ≥ 0
{ }

, directly. (Recall that the cardi-
nality of a set bounds its ε-packing number for any ε.)
First note that the cardinality of Z(α,p0) : α ≥ 0

{ }
is

at most that of {(xk(α, p0, m̂k))Kk�1 : α ≥ 0}. A trivial
bound on this latter set’s cardinality is

∏K
k�1 Xk| |. This

bound is too crude for our purposes; it grows expo-
nentially in K, even if Xk| | is bounded for all k. Intu-
itively, this bound is crude, because it supposes that
we can vary each solution xk(α,p0, m̂k) independently
of the others to achieve all

∏K
k�1 Xk| | possible combi-

nations. In reality, we can only vary a single pa-
rameter, α, that simultaneously controls all K solu-
tions, rather than varying them separately. We use
this intuition to show that amuch smaller bound, that
is, 2

∑K
k�1 Xk| |, is valid.

To this end, we fix k and study the dependence of
xk(α, p0, m̂k) on α. In the trivial case N̂k � 0, xk(α,p0, m̂k)
takes only one value: xk(∞,p0). Hence, we focus on the
case N̂k ≥ 1.
Consider reparameterizing the solution in terms of

θ � α
α+N̂k

∈ [0, 1), and let α(θ) � θ
1−θ N̂k. Then for any

x ∈ Xk, define the linear function

gkx θ( ) � 1 − θ( )p̂k + θp0
( )�ck x( ), θ ∈ 0, 1[ ).

Since gkx(·) is linear, the function θ �→ minx∈Xk gkx(θ) is
concave and piecewise linear with at most Xk| |
−1 break points. By construction, xk(α(θ), p0, m̂k) ∈
argminxk∈Xk

gkx(θ). More precisely, for any θ, the set of
active supporting hyperplanes of minx∈Xk gkx(·) at θ
is {(p0 − p̂k)�ck(x) x ∈ argminxk∈Xk

gkx(θ)}.
Since the set of active supporting hyperplanes is

constant between break points, the set of minimizers
argminxk∈Xk

gkx(θ) is also constant between break
points. By Assumption 4.3, this implies that θ �→ xk
(α(θ),p0, m̂k) is piecewise constant with at most Xk| | − 1
points of discontinuity (see also Figure 3). Viewed in
the original parameterization in terms of α, it follows
that α �→ xk(α,p0, m̂k) is also piecewise constant with
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at most Xk| | − 1 points of discontinuity. Thus we have
the following.

Lemma 4.3. Suppose that Assumption 4.3 holds. Fix any
p0 and m̂k. Then, the function α �→ xk(α, p0, m̂k) is piece-
wise constant with at most Xk| | − 1 points of discontinuity.

Taking the union of all these points of disconti-
nuity over k proves that xk(α,p0, m̂k)

( )K
k�1 is also

piecewise constant with at most
∑K

k�1(Xk| | − 1) points of
discontinuity. Therefore, it takes at most 2

∑K
k�1 Xk| |

− 2K + 1 different values—a distinct value for each
of the

∑K
k�1(Xk| | − 1) break points plus a distinct

value for the
∑K

k�1(Xk| | − 1) + 1 regions between break
points. This gives the desired cardinality bound on
| Z(α,p0) : α ≥ 0
{ }|. A similar argument considering
the larger xk(α,p0, m̂k − ei)( )

i∈I k ,k�1,...,K, where I k � {i �
1, . . . , d : m̂ki > 0}, gives a corresponding cardinality
bound on | ZLOO(α,p0) : α ≥ 0

{ }|. Noting I k| | ≤ min
(d, N̂k) gives the following (proof omitted):

Corollary 4.1 (Size of Discrete Solutions Sets). Suppose
that Assumption 4.3 holds. Then,

Z(α, p0) : α ≥ 0
{ }⃒⃒⃒ ⃒⃒⃒ ≤ 2

∑K
k�1

Xk| |,

ZLOO(α, p0) : α ≥ 0
{ }⃒⃒⃒ ⃒⃒⃒ ≤ 1 + 2

∑K
k�1

min d, N̂k
( )

Xk| |.

The additional “1” in the case of ZLOO(α,p0) : α ≥ 0
{ }⃒⃒⃒ ⃒⃒⃒

covers the case where N̂max � 0 and {ZLOO(α,p0) :
α ≥ 0} � {0}. Although these bounds may appear
large, an important feature is that they are only linear
in K as long as the Xk| |’s are bounded over k.

We use these cardinality bounds to bound the
packing numbers and then apply our usual strategy

via Theorem 4.1 and Lemma 4.1 to prove Theorem 4.5.
The details are in Section C.3 of Online Appendix C.

4.5. Data-Driven Anchors and Discrete
Optimization Problems

We next extend the results of Section 4.4 to the case
of a data-driven anchor, h(m̂). As in Section 4.3, our
bounds will depend on a measure of complexity of P,
namely, the dimension of spn(P) ≡ {∑d

��1θ�q�θ� ∈
R, q� ∈P, �� 1, . . . ,d} when viewed as a linear sub-
space. Denote this dimension by d0, and note 1 ≤
d0 ≤ d. A canonical examplemight be whenP consists
of mixture distributions with d0 (specified) compo-
nents. We prove the following.

Theorem 4.6 (Shrunken-SAAwith Data-Driven Anchors for
Discrete Problems). Suppose that Xk| | < ∞ for each k, that
span(P) has dimension d0, and that Assumptions 3.1, 4.1,
and 4.3 hold. Then, there exists a universal constant A such
that, for all 0 < δ < 1/2, we have that, with probability at
least 1 − δ,

SubOpth,K αS−SAA
h

( )
≤ A · Cλmax

λmin

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d0 log Nmax

∑K
k�1

Xk| |
( )√√

· log
3/2 K( ) log2 1/δ( )̅̅̅

K
√ .

Theorem 4.7 (Shrunken-SAA with hP for Discrete
Problems). Under the assumptions of Theorem 4.6, there
exists a universal constant A such that, for any 0 < δ < 1/2
with probability at least 1 − δ, we have that

SubOptP,K αS−SAA
hP , hP m̂( )

( )

≤ A · Cλmax

λmin

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d0 log Nmax

∑K
k�1

Xk| |
( )√√

· log
3/2 K( ) log2 1/δ( )̅̅̅

K
√ .

Both proofs follow the strategy from Section 4.1
(see Section C.4 of Online Appendix C) and, hence,
lead to the same right-hand sides. However, the left-
hand sides are distinct. We sketch the main ideas of
the proof:

We first bound Z(α, q) : α ≥ 0, q ∈ P
{ }⃒⃒⃒ ⃒⃒⃒

, |{ZLOO(α, q) :
α ≥ 0, q ∈ P}|. The key is to generalize the argument
of Section 4.4 from counting break points in a uni-
variate piecewise-affine function to counting the
pieces in a multivariate piecewise affine function.

Figure 3. (Color online) Counting Discrete Solutions

Notes. A concave piecewise-linear function consisting of Xk| | lines
has at most Xk| | − 1 break points, between which the set of active
supporting lines is constant. Any function of this set of active
supporting lines is piecewise constant with at most Xk| | − 1
discontinuities.
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First, we reparameterize our policies. Let the col-
umns of V ∈ Rd×d0 be a basis of spn(P). Then, inter-
preting 0/0 as e/d ∈ Δd,

Z(α, q) : α ≥ 0, q ∈ P
{ }⃒⃒⃒ ⃒⃒⃒

≤ xk α, q, m̂k
( )( )K

k�1 : q ∈ P, α ≥ 0
{ }⃒⃒⃒⃒ ⃒⃒⃒⃒

≤ xk ‖w‖1,w/‖w‖1,( m̂k)( )Kk�1 :
{⃒⃒

w ∈ span P( ) ∩ Rd
+
}⃒⃒

� xk ‖Vθ‖1,Vθ/‖Vθ‖1,( m̂k)( )Kk�1 :
{⃒⃒

θ ∈ Rd0 , Vθ ∈ Rd
+
}⃒⃒
.

(4.4)

Hence, it suffices to bound the right-most side of
Equation (4.4). An advantage of this θ-parameteri-
zation over the original (α, q)-parameterization is
that, for N̂k > 0,

xk ‖Vθ‖1,Vθ/‖Vθ‖1,( m̂k) ∈ argmin
x∈Xk

Vθ+( m̂k)�ck x( ),
(4.5)

and θ occurs linearly in this representation.
The set of θ where we are indifferent between

xki, xkj ∈ Xk in Equation (4.5) is the hyperplane

Hkij � θ ∈ Rd0 : Vθ+( m̂k)� ck xki( ) − ck xkj
( )( ){ � 0

}
.

(4.6)
Consider drawing all

∑K
k�1

Xk| |
2

( )
such hyperplanes, as in

Figure 4. Then, for any θ ∈ Rd0 , consider the poly-
hedron given by the equality constraints of those
hyperplanes containing θ and the inequality con-
straints defined by the side on which θ lies for the
remaining hyperplanes. The relative ordering of {(Vθ+
m̂k)�ck(xk) : xk ∈ Xk} is constant for all θ in this poly-
hedron’s interior. Hence, (xk(‖Vθ‖1,Vθ/‖Vθ‖1, m̂k))Kk�1

is also constant. Thus, to bound {Z(α, q) :α ≥ 0, q ∈ P},
it suffices to count the number of such polyhedra. We
do this counting in Section C.4 of Online Appendix C.
A similar argument (with a different hyperplane ar-
rangement) can be used to bound the cardinality of
ZLOO(α, q) : α ≥ 0, q ∈ P
{ }

. We summarize the results
as follows.

Lemma 4.4 (Size of Discrete Solutions Sets). Under the
assumptions of Theorem 4.6,

Z(α, q) : α ≥ 0, q ∈ P
{ }⃒⃒⃒ ⃒⃒⃒ ≤ ∑K

k�1
Xk| |2

( )d0
,

ZLOO(α, q) : α ≥ 0, q ∈ P
{ }⃒⃒⃒ ⃒⃒⃒ ≤ 1 + N̂d0

max

∑K
k�1

Xk| |2
( )d0

.

Importantly, both bounds are polynomial in K if the
Xk| |’s are bounded over k. We then apply Theorem 4.1
to bound the maximal deviations in Lemma 4.1,
proving the theorems.

4.6. Performance Guarantees for
Continuous Distributions

None of the bounds in Theorems 4.2 – 4.7 or Algo-
rithm 1 depend on d, the size of the support of pk,
suggesting that similar guarantees might hold for
continuous distributions. In Online Appendix F, we
prove such results for strongly convex optimization
problems by discretizing and taking a limit as the
granularity tends to zero. The details are straightfor-
ward. Unfortunately, for discrete optimization prob-
lems, it is not clear that similar results hold without
additional assumptions. Again, see Online Appendix F.

5. The Sub-Optimality-Instability
Trade-Off: An Intuition for Data Pooling

Shrunken SAA also provides intuition into when and
why data pooling improves upon decoupling. For
simplicity, first consider a non-data-driven anchor p0.
Lemma 3.1 shows that E ZK(α,p0)

[ ] � E[ZLOO
K (α,p0)].

Theorems 4.2 and 4.5 further establish that, under
mild conditions,

sup
α≥0

⃒⃒
ZK α,p0
( )⏟̅̅̅⏞⏞̅̅̅⏟

True Performance of α

− ZLOO
K α,p0
( )⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟

LOO Performance of α

⃒⃒

≤ Õp 1/
̅̅̅
K

√( )
⏟̅̅̅̅⏞⏞̅̅̅̅⏟
Stochastic Error

.

Hence, optimizing ZK(α,p0) over α is roughly equiv-
alent to optimizing ZLOO

K (α,p0) for large K.

Figure 4. (Color online) Solution-Induced
Hyperplane Arrangement

Notes. The hyperplanes Hkij (see Section 4.6) in Rd are indifference
curves between solutions xki and xkj in Section 4.5. The total ordering
on each setXk induced by the objective of Section 4.5 is thus constant on
the interior of the fully specified polyhedra defined by the hyperplanes.
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A simple algebraic manipulation then shows that

ZLOO
K α, p0
( ) � 1

Nλavg
SAA-SubOpt α( ) + Instability (α)(

+ SAA 0( )),

where
SAA-SubOpt α( )

≡ 1
K

∑K
k�1

∑d
i�1

m̂ki cki( xk α,p0,
(

m̂k)
( )− cki xk 0,p0,m̂k

( )( ))
Instability α( )

≡ 1
K

∑K
k�1

∑d
i�1

m̂ki cki( xk α,p0,m̂k − ei
( )( )− cki xk α,p0,m̂k

( )( ))
,

SAA 0( )

≡ 1
K

∑K
k�1

∑d
i�1

m̂kicki xk 0,p0,m̂k
( )( )

,

and SAA(0) does not depend on α. Hence, optimizing
ZLOO
K (α,p0) is roughly equivalent to

min
α≥0 SAA-SubOpt α( ) + Instability α( ).

We term this last optimization the “Sub-Optimality-
Instability Trade-Off.”

For intuition, SAA-SubOpt(α) is nonnegative and
measures the average degree to which each xk(α, p0,
m̂k) is suboptimal with respect to a (scaled) SAA
objective. It is minimized at α � 0, and we expect it is
increasing in α. By contrast, Instability(α) measures
the average degree to which the (scaled) performance
of xk(α, p0, m̂k) changes in-sample if we use one fewer
data point. It isminimized at α � ∞, since xk(∞, p0, m̂k)
does not depend on the data at all. One might expect
Instability(α) to be decreasing. However, although
Instability(α) is often decreasing for large α, its be-
havior for small α can be subtle. In sum, intuitively,
Shrunken-SAA improves performance by seeking an
α in the “sweet spot” that balances this fundamental
trade-off.

This trade-off also illuminates when data pooling
offers an improvement. Intuitively, αS−SAA > 0 only if
Instability(0) is large and decreasing fast enough that
the (in-sample) suboptimality incurred by choosing a
small positive α is outweighed by the increased sta-
bility. Thus, we intuit that data pooling offers a
benefit whenever (i) the SAA solution is unstable, (ii)
the fully shrunken solution xk(∞,p0, m̂) is not too
suboptimal, and (iii) K is large. In particular, when N̂k
is small for most k, the SAA solution is likely to be very
unstable. Hence, intuition suggests that data pooling
provides a benefit whenever N̂k is small but K is large,
that is, the small-data, large-scale regime.

The intuition for a data-driven anchor h(m̂) is
similar. The proofs of Theorems 4.3 and 4.6 show
that the approximation ZK(α,p0) ≈ ZLOO

K (α,p0) holds
uniformly in α and p0. Thus, the Sub-Optimality-
Instability Trade-Off also holds for the data-driven
anchor h(m̂).
The Sub-Optimality-Instability Trade-Off resem-

bles the bias-variance trade-off; however, it applies to
general optimization problems, not just MSE. Even in
the case of MSE, these trade-offs still exhibit differ-
ences (see Section D.2 of Online Appendix D).
Finally, for simple problems, we may analytically

study the benefits of data pooling (see Theorem 2.1),
but, for more complex problems, such a study is
not possible. Fortunately, both SAA-SubOpt(α) and
Instability(α) can be evaluated directly from the data.
Thus, evaluating the Sub-Optimality-Instability Trade-
Off for various α for a particular instance explains
why (orwhy not) data pooling improves performance
for that instance. We illustrate this idea in Section D.1
of Online Appendix D.

6. Computational Experiments
We next study the empirical performance of Shrunken-
SAA on synthetic and real data. All code is available at
https://github.com/vgupta1/JS_SAA. Our focus is
assessing the degree to which Shrunken-SAA is ro-
bust to violations of the assumptions underlying
Theorems 4.2–4.7. Specifically, we ask howShrunken-
SAA performs when (i) K is small to moderate;
(ii) each N̂k is fixed and nonrandom; (iii) the true Pk do
not havefinite, discrete support; or (iv)N grows large.
Each subproblem is a newsvendor problem with

critical fractile s � 95%. We use real sales data from a
chain of European pharmacies to specify the distri-
butions pk (see Section E.3 in Online Appendix E).
We compare 10 policies: The SAA and KS polices

are our decoupled benchmarks. Recall that, for the
newsvendor problem, SAA is also the optimal solu-
tion to a distributionally robust formulation using a
Wasserstein ambiguity set (Esfahani and Kuhn 2018).
We define KS to be an optimal solution to a dis-
tributionally robust formulation of the newsvendor
problem using the Kolmogorov-Smirnov ambiguity
set (see Section E.2 in Online Appendix E).
The policies JS-Fixed, S-SAA-Fixed, and Oracle-Fixed
each shrink toward the uniform distribution. JS-
Fixed, x(αJS

p0
,p0, m̂), pools according to Theorem 2.1;

S-SAA-Fixed, x(αS−SAA
p0

,p0, m̂), is our Shrunken-SAA
algorithm; and Oracle-Fixed, x(αOR

p0
, p0, m̂) is the ora-

cle shrinkage.
The policies S-SAA-Beta and Oracle-Beta each

shrink toward a data-driven anchor in P, a set of
scaled beta distributions (see Section E.3 of Online
Appendix E). S-SAA, x(αS−SAA

P , hP(m̂), m̂), uses hP , and
Oracle-Beta, x(αOR

P , qOR
P , m̂), uses the oracle anchor.
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Finally, the policies JS-GM, S-SAA-GM, andOracle-
GM each shrink toward the grand-mean anchor, p̂GM.
JS-GM pools according to Theorem 2.1, S-SAA-GM is
our Shrunken-SAA Algorithm, and Oracle-GM is the
oracle pooling.

Contrasting the JS policies and the decoupled pol-
icies illustrates the value of data pooling in a “generic”
fashion. Contrasting the Shrunken-SAA policies and
JS policies quantifies the additional benefit of data
pooling in an optimization-aware fashion. Contrasting
the “Beta” and “Fixed” anchor versions quantifies the
value of a good anchor.

Before presenting details, we summarize our main
findings. When N is moderate to large, all methods
perform comparably to the full-information solution.
WhenN is small tomoderate, however, our Shrunken-
SAA policies provide a significant benefit over SAA
and a substantial benefit over JS variants that do not
leverage the optimization structure. This is true even
for moderate K (K ≤ 100) and even when the N̂k’s are
fixed (violating Assumption 3.1). The value of d has
little effect on the performance of Shrunken-SAA; it
strongly outperforms decoupling, even as d → ∞.
Finally, our GM heuristic has very strong perfor-
mance, comparable to the Beta variants that optimize
the choice of anchor, at a much smaller computa-
tional cost.

We present all results as “%Benefit over SAA”; that
is, bigger values are better.

6.1. An Idealized Synthetic Data Set
We first consider an ideal setting. Specifically, af-
ter discretizing demand for each store into d � 20
buckets, we set pk to be the (store-level) empirical
distribution of demand. We then simulate synthetic
data according to Section 2.1 under Assumption 3.1.

We train each policy and then evaluate its true per-
formance using the pk. We repeat this process 200
times. The left panel of Figure 5 shows the average
results for a subset of the policies (see Table EC.1 in
Online Appendix E for all policies).
Shrunken-SAA significantly outperforms decou-

pling even for K as small as 10. For large K, the
benefit is as large as 10%–15%. Both Shrunken-SAA
policies converge quickly to their oracle benchmarks.
JS policies also outperform the decoupled solutions
but by a smaller amount (5%–10%). Shrinking to the
grand mean outperforms shrinking to the uniform
distribution, since, as observed earlier, the true dis-
tributions are far from uniform and have quantiles far
from the uniform quantile. The grand-mean policies
perform comparably to our Beta policies (see Ta-
ble EC.1).
Section E.4 in Online Appendix E presents addi-

tional results such as the standard deviation of per-
formance and the amount of pooling for each variant.
Overall, Shrunken-SAAmethods are less variable and
pool more than competitors. In particular, JS variants
pool very little because of the demand heterogeneity.

6.2. Relaxing Assumption 3.1
We next repeat the experiment of the previous section
but now simulate data with N̂k � 10 for all k and all
runs. Results are shown in the second panel of Figure 5
and in Section E.4 in Online Appendix E. We see the
same qualitative features. Specifically, our Shrunken-
SAA methods converge to oracle performance, and,
even for moderate K, they significantly outperform
decoupling. The JS methods offer a much smaller
improvement over SAA. Many of the other features
with respect to convergence in α and standard devi-
ation of the performance are also qualitatively similar.

Figure 5. (Color online) Robustness to Assumption 3.1

Notes. Simulated data. In panel (a), the amount of data per store follows Assumption 3.1. In panel (b), it is fixed (nonrandom) for all runs. Error
bars show ±1 standard error.
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These results support our claim that Assumption 3.1
is not crucial to performance.

6.3. Historical Backtest
We next consider a more realistic setting. We employ
repeated random subsampling validation with our
data to assess each method: for each store, we select
10 days randomly from the data set for training and an
additional 10 days for testing. Since store k may be
missing data on these days, we train (respectively, test)
with at most 10 points. We use repeated, random sub-
sampling validation instead of five-fold cross-validation
in order to limit the number of data points N̂k used in
each subproblem.

Figure 6 shows results with d � 20 for a subset of
policies. See Table EC.3 in Online Appendix E for all
policies. Importantly, we see the same features as in
our synthetic data experiment: our Shrunken-SAA
methods converge to oracle optimality and offer a
substantive improvement over SAA for large enough
K. They also outperform JS variants that do not le-
verage the optimization structure.

6.4. Other Experimentswith Synthetic andReal Data
Sections E.6–E.8 in Online Appendix E study the ro-
bustness of Shrunken-SAA to the number of support
points d, its performance as N → ∞, and compares
computationally cheaper variants of the algorithm
that substitute two-fold or five-fold cross-validation
for the LOOvalidation step.We omit details for space.
Generally, we find that (i) Shrunken-SAA is quite
robust to d; (ii) as N increases, Shrunken-SAA retains
many of SAA’s strong large-sample properties; (iii)
Other forms of cross-validation perform quite well
and are viable alternatives in computationally lim-
ited settings.

7. Conclusion
We introduce the data-pooling phenomenon for sto-
chastic optimization—when simultaneously solving
many data-driven stochastic optimization subprob-
lems, pooling data across subproblems may improve

performance, even when (1) subproblems are unre-
lated and (2) data for each subproblem are inde-
pendent. We propose Shrunken-SAA, a simple al-
gorithm that exploits this phenomenon, and prove
that, as the number of subproblems grows large,
Shrunken-SAA identifies whether pooling can im-
prove upon decoupling and, if so, the ideal amount to
pool, even if the amount of data per subproblem is
fixed and small. Empirical evidence further suggests
that Shrunken-SAA offers significant benefits for a wide
variety of problems. We hope that our work inspires
researchers to think of data pooling as an “additional
knob” to leverage in data-driven decision-making
under uncertainty.
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Endnotes
1 Section 4.6 discusses relaxing this discrete support assumption.
2This solution is nonunique, and the solution I[p̂k1 > 1

2 + α
N̂k
(12 − p01)] is

also valid. We adopt the former solution in what follows, but our
comments apply to either solution.
3 In particular,E[Wf (W)] �∑∞

w�0wf (w)e−λ λw

w! � λ
∑∞

w�0 f (w)e−λ λw−1
(w−1)! �

λE[f (W + 1)].
4 Strictly speaking, equation (7.5) of Pollard (1990) shows that
E[| supt∈T WK(t) − E[WK(t)]

⃒⃒⃒ ⃒⃒⃒|p] ≤ 2pCp
pE[Jp]K−p, for some constant Cp

that relates the �p norm of a random variable and a particular Orlicz
norm. In Lemma B.4 in Online Appendix B, we prove that it suf-

fices to take Cp � 51/p
̅
p̅
2e

√
. The result then follows from Mar-

kov’s inequality.
5Recall that D(ε, S) is defined with respect to �2-distance.
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