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Abstract. Managing large-scale systems often involves simultaneously solving thousands
of unrelated stochastic optimization problems, each with limited data. Intuition suggests
that one can decouple these unrelated problems and solve them separately without loss of
generality. We propose a novel data-pooling algorithm called Shrunken-SAA that dis-
proves this intuition. In particular, we prove that combining data across problems can
outperform decoupling, even when there is no a priori structure linking the problems and
data are drawn independently. Our approach does not require strong distributional as-
sumptions and applies to constrained, possibly nonconvex, nonsmooth optimization
problems such as vehicle-routing, economic lot-sizing, or facility location. We compare and
contrast our results to a similar phenomenon in statistics (Stein’s phenomenon), high-
lighting unique features that arise in the optimization setting that are not present in es-
timation. We further prove that, as the number of problems grows large, Shrunken-SAA
learns if pooling can improve upon decoupling and the optimal amount to pool, even if the
average amount of data per problem is fixed and bounded. Importantly, we highlight a
simple intuition based on stability that highlights when and why data pooling offers a benefit,
elucidating this perhaps surprising phenomenon. This intuition further suggests that data
pooling offers the most benefits when there are many problems, each of which has a small
amount of relevant data. Finally, we demonstrate the practical benefits of data pooling using
real data from a chain of retail drug stores in the context of inventory management.
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1. Introduction

The stochastic optimization problem

not just a single product. Firms typically determine
staffing and capacity for many warehouses and ful-

fillment centers across the supply chain, not just at a
(1.1)

min  E[c(x, &)]

is a fundamental model, with applications ranging
from inventory management to personalized medi-
cine. In typical data-driven settings, the measure PP
governing the random variable & is unknown. In-
stead, we have access to a data set S = {3,'1,. . .,.ASN}
independent and identically distributed (i.i.d.) from P
and seek a decision x € X depending on these data.
This model and its data-driven variant have been
extensively studied in the literature (see Shapiro et al.
2009 for an overview).

Managing real-world, large-scale systems, how-
ever, frequently involves solving thousands of po-
tentially unrelated stochastic optimization problems
like Problem (1.1) simultaneously. For example, in-
ventory management often requires optimizing stock-
ing levels for many distinct products across categories,

single location. Logistics companies often divide large
territories into many small regions and solve sepa-
rate vehicle-routing problems, one for each region,
rather than solve a single monolithic problem. In
such applications, a more natural model than Prob-
lem (1.1) might be

Ak
/\avg

min E%[ce(xr, &),
xkEXk

2

k=

(1.2)

A=

K
1

where we solve a separate subproblem of the form (1.1)
for each k, for example, setting a stocking level for
each product. Here, Ay > 0 represents the frequency
with which the decision maker incurs costs from
problems of type k, and Aug =+ XK, Ak Thus, in
Problem (1.2), our total costs are driven by the frequency-
weighted average of the costs of many distinct optimi-
zation problems.
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Of course, intuition strongly suggests that since
there are no coupling constraints across the feasible
regions A&} in Problem (1.2), one can and should de-
couple the problem into K unrelated subproblems and
solve them separately. Indeed, when the measures Py
are known, this procedure is optimal. When the P;’s
are unknown and unrelated, but one has access to a
data set Sy = {‘%k,lf"'/ék,ﬁlk} drawn i.i.d. from Py in-
dependently across k, intuition still suggests that
decoupling is without loss of generality and that data-
driven procedures can be applied separately by sub-
problem.

A key message of this paper is that this intuition is false.

In the data-driven setting, when solving many sto-
chastic optimization problems, we show that there
exist algorithms that pool data across subproblems
that outperform decoupling, even when the under-
lying problems are unrelated and the data are inde-
pendent. This phenomenon holds, despite the fact that
the kth data set Sy tells us nothing about P; for [ # kand
there is no a priori relationship between the P. We
term this phenomenon the data-pooling phenomenon in
stochastic optimization.

Figure 1 illustrates the data-pooling phenomenon
with a simulated example for emphasis. Here, K = 10, 000,
and the kth subproblem is a newsvendor problem with
critical quantile 90%, that is, cx(x;&) =max{9(&—x),(x—&)}.
The measures Py are fixed, and in each run we sim-
ulate Nj =20 data points per subproblem. For the
decoupled benchmark, we use a standard method,
Sample Average Approximation (SAA; Definition 2.1),

Figure 1. (Color online) The Data Pooling Phenomenon
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Notes. Consider K = 10,000 data-driven newsvendor problems, each
with critical fractile 90% and 20 data points drawn independently
across problems. SAA decouples the problems and orders the 90th-
sample quantile in each. Shrunken-SAA (see Algorithm 1 in Section 3),
leverages data pooling. Indicated percentages are losses to the full-
information optimum. Additional details in Section E.1 in Online
Appendix E.

which is particularly well-suited to the data-driven
newsvendor problem (Levi et al. 2015). For compar-
ison, we use our novel Shrunken-SAA algorithm,
which exploits the data-pooling phenomenon. We
motivate and formally define Shrunken-SAA in Sec-
tion 3, but, loosely speaking, Shrunken-SAA proceeds
by replacing the kth data set Sy with a “pooled” data
set that is a weighted average of the original kth data
set and all of the remaining | # k data sets. It then
applies SAA to each of these new pooled data sets.
Perhaps surprisingly, by pooling data across the
unrelated subproblems, Shrunken-SAA reduces the
loss to full-information optimum by over 80% com-
pared with SAA in this example.

Our Contributions

We describe and study the data-pooling phenomenon
in stochastic optimization in the context of Prob-
lem (1.2). Our analysis applies to constrained, poten-
tially nonconvex, nonsmooth optimization problems
under fairly mild assumptions on the data-generating
process. Specifically, we assume that each IP; has fi-
nite support (potentially differing across k); in some
cases, we can even relax this assumption. We contrast
the data-pooling phenomenon to a similar phenom-
enon in statistics (Stein’s phenomenon), highlighting
unique features that arise in the optimization set-
ting (see Theorem 2.2 and Example 2.3). Namely,
unlike traditional statistical settings, the potential
benefits of data pooling depend strongly on the
structure of the underlying optimization problems,
and, in some cases, data pooling may offer no benefit
over decoupling.

This observation raises important questions: Given a
particular data-driven instance of Problem (1.2), should
we data-pool, and, if so, how? More generally, does
data pooling typically offer a significant benefit over
decoupling, or are instances like Figure 1 somehow
the exception to the rule?

To help resolve these questions, we propose a
simple, novel algorithm that we call Shrunken Sample
Average Approximation (Shrunken-SAA). Shrunken-SAA
generalizes the classical SAA algorithm and, conse-
quently, inherits many of its excellent large-sample
asymptotic properties (see Remark 4.1). Moreover,
Shrunken-SAA is incredibly versatile and can be
tractably applied to a wide variety of optimization
problems with computational requirements similar to
traditional SAA (see Remark 3.1). Unlike traditional
SAA, however, Shrunken-SAA exploits the data-pooling
phenomenon to improve performance over SAA, as seen
in Figure 1. Moreover, Shrunken-SAA exploits the
structure of the optimization problems and strictly
improves upon an estimate-then-optimize approach
using traditional statistical shrinkage estimators (see
Example 2.3 and Section 6).
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Shrunken-SAA data-pools by combining data across
subproblems in a particular fashion that is motivated by
an empirical Bayesian argument. We prove that (under
frequentist assumptions) for many classes of optimiza-
tion problems, as the number of subproblems K grows
large, Shrunken-SAA determines if pooling in this
way can improve upon decoupling and, if so, also de-
termines the optimal amount to pool (see Theorems 4.2,
4.3, 4.5, and 4.6). These theoretical results study
Problem (1.2) when P has finite, discrete support and
the amount of data available for the kth subproblem s,
itself, random (see Assumption 3.1). Some of our
results do extend to continuous distributions (see
Section 4.6 and Theorems F.1-F.3 in Online Appendix F),
and numerical experiments suggest that our results are
generally robust to the assumption of a random amount
of data.

More interestingly, our theoretical performance
guarantees for Shrunken-SAA, hold even when the
expected amount of data per subproblem is small
and fixed and the number of problems K is large, as
in Figure 1; that is, they hold in the so-called small-
data, large-scale regime (Gupta and Rusmevichientong
2021). Indeed, since many traditional data-driven methods
(including SAA) converge to the full-information op-
timum in the large-sample regime, the small-data, large-
scale regime is arguably the more interesting regime in
which to study the benefits of data pooling.

In light of the aforementioned results, Shrunken-
SAA provides an algorithmic approach to deciding if,
and by how much, to pool. To develop an intuitive
understanding of when and why data pooling might
improve upon decoupling, we also introduce the Sub-
Optimality-Instability Trade-Off, a decomposition of
the benefits of data pooling. We show that the per-
formance of a data-driven solution to Problem (1.2)
(usually called its out-of-sample performance in machine-
learning settings) can be decomposed into a sum of
two terms: a term that roughly depends on its in-
sample suboptimality and a term that depends on its
instability; that is, how much does in-sample per-
formance change when training with one fewer data
points? As we increase the amount of data pooling,
we increase the in-sample suboptimality because we
“pollute” the kth subproblem with data from other,
unrelated subproblems. At the same time, however,
we decrease the instability of the kth subproblem,
because the solution no longer relies on its own data
so strongly. Shrunken-SAA works by navigating this
trade-off, seeking a “sweet spot” to improve perfor-
mance. (See Section 5 for discussion.)

In many ways, the Sub-Optimality-Instability Trade-
Off resembles the classical bias-variance trade-off from
statistics. However, they differ in that the Sub-Optimality-
Instability Trade-Off applies to general optimization
problems, whereas the bias-variance trade-off applies

specifically to the case of mean-squared error. Moreover,
even in the special case when Problem (1.2) models
mean-squared error, we prove that these two trade-
offs are distinct (see Section D.2 in Online Appendix D).
In this sense, the Sub-Optimality-Instability Trade-
Off may be of independent interest outside data pooling.

Stepping back, this simple intuition suggests that
Shrunken-SAA, and data pooling more generally,
offer significant benefits whenever the decoupled solu-
tions to the subproblems are sufficiently unstable, which
typically happens when there is only a small amount of
relevant data per subproblem. It is in this sense that the
behavior in Figure 1 is typical and not pathological.
Moreover, this intuition also naturally extends be-
yond Shrunken-SAA, paving the way to developing
and analyzing new algorithms that also exploit the
hitherto-underutilized data-pooling phenomenon.

Finally, we present numerical evidence in an in-
ventory management context using real data from a
chain of European drug stores showing that Shrunken-
SAA can offer significant benefits over decoupling
when the amount of data per subproblem is small
to moderate. These experiments also suggest that
Shrunken-SAA’s ability to identify an optimal amount
of pooling and improve upon decoupling are rela-
tively robust to violations of our assumptions on the
data-generating process.

Connections to Prior Work

Our proposal, Shrunken-SAA, generalizes SAA. In
many ways, SAA is the most fundamental data-driven
approach to Problem (1.1). SAA proxies P in (1.1) by
the empirical distribution P on the data and optimizes
against P. It enjoys strong theoretical and practical
performance in the large-sample limit, thatis, when N
is large (Kleywegt et al. 2002, Shapiro et al. 2009). For
data-driven newsvendor problems, specifically—an
example of which we use throughout our work—SAA
is the maximum likelihood estimate of the optimal
solution and also is the distributionally robust opti-
mal solution for a Wasserstein ambiguity set (Esfahani
and Kuhn 2018, p. 151). SAA is incredibly versatile
and applicable to a wide variety of classes of optimiza-
tion problems. This combination of strong performance
and versatility has fueled SAA’s use in practice. Ap-
plied to Problem (1.2), SAA decouples the optimiza-
tion into its K subproblems. Thus, because of its strong
theoretical and practical performance, we use SAA as
the natural, “apples-to-apples” decoupled benchmark
to which we compare our data-pooling procedures.

The data-pooling phenomenon for stochastic op-
timization is also closely related to Stein’s phenom-
enon in statistics (Stein 1956; see also Efron and Hastie
2016 for a modern overview). Stein (1956) considered
estimating the mean of K normal distributions, each
with known variance ¢?, from K data sets. The kth data
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set is drawn i.i.d. from the kth normal distribution,
and draws are independent across k. The natural
decoupled solution to the problem (and the maximum
likelihood estimate) is to use the kth sample mean as
an estimate for the kth distribution. Surprisingly,
whereas this estimate is optimal for each problem
separately in a very strong sense (uniformly mini-
mum variance unbiased and admissible), Stein (1956)
describes a pooled procedure that always outperforms
this decoupled procedure with respect to total mean-
squared error whenever K > 3.

The proof of Stein’s result is remarkably short, but
arguably opaque. Many textbooks refer to it as “Stein’s
paradox,” perhaps because it is not clear what drives
the result. Why does it always improve upon decou-
pling? What is special about K =3? Is the key the
normality assumption? The common variance as-
sumption? The structure of mean-squared error? All
of the above?

Many authors have tried to develop simple intui-
tion for Stein’s result (e.g., Brown 1971, Efron and
Morris 1977, Stigler 1990, Beran 1996, Brown and
Zhao 2012) with mixed success. As a consequence,
although Stein’s phenomenon has had tremendous
impact in statistics, it has, in our humble opinion,
had a fairly limited impact on data-driven optimi-
zation. It is simply not clear how to generalize Stein’s
original algorithm to optimization problems different
from minimizing mean-squared error. Indeed, the
few data-driven optimization methods that attempt
to leverage shrinkage apply either to quadratic op-
timization (e.g., Jorion 1986, DeMiguel et al. 2013,
Davarnia and Cornuéjols 2017) or else under Gaussian
or near-Gaussian assumptions (Mukherjee et al. 2015,
Gupta and Rusmevichientong 2021), both of which
are very close to Stein’s original setting.

By contrast, our analysis of the data-pooling phe-
nomenon requires very mild distributional assump-
tions and applies to constrained, potentially non-
convex, nonsmooth optimization problems. Numerical
experiments in Section 6 further suggest that even our
few assumptions are not crucial to the data-pooling
phenomenon. Moreover, our proposed algorithm,
Shrunken-SAA, is extremely versatile and can be
applied in any setting in which SAA can be applied.

Finally, we note that (in)stability has been well
studied in the machine-learning community (see, e.g.,
Bousquet and Elisseeff 2002, Shalev-Shwartz et al.
2010, Yu 2013, and references therein). Shalev-
Shwartz et al. (2010), in particular, argue that stabil-
ity is the fundamental feature of data-driven algorithms
that enables learning. Our Sub-Optimality-Instability
Trade-Off connects the data-pooling phenomenon in
stochastic optimization to this larger statistical con-
cept. To the best of our knowledge, however, existing
theoretical analyses of stability focus on the large-sample

regime. Ours is the first work to leverage stability con-
cepts in the small-data, large-scale regime. From a
technical perspective, this analysis requires somewhat
different tools.

2. Model Setup and the

Data-Pooling Phenomenon

As discussed in the introduction, we assume throughout
that P, has finite, discrete support, that is, & €
{an, ..., ar} withd > 2. Without loss of generality, d
is common for all k. To streamline the notation,
we write

Pri =Pe(& = ax) and cpi(x) = ci(x,ar:), i=1,...,d.
For each k, we let Sy = {Ek] j=1,. .,Ni} be the kth
data set with é;k] ~ Py drawn i.i.d. S1nce Py is discrete,
we can equivalently represent the kth data set Sy via
counts, 7y, = (1, .. ., ilgg), where 7it;; denotes the num-
ber of times that ay; occurs in Sk, and e"7iy = Ni. In
what follows, we will use 71 and Sy interchangeably
to refer to the kth data set. We also use “hat” notation
(p,m,...) to denote an observed realization of a ran-
dom variable, typically a function of Sk.

Because kaj are i.i.d.,

i | N ~ Multinornial(Nk,pk), k=1,...,K. (2.1)
Let S = (S1,...,Sk) or, equivalently, 1= (114, . .., 1hk),

denote all the data across all K subproblems, and let

(Nl, N k) denote the total observation counts.
We define Ny = - maxy N; and Navg = sz 1Nk Fi-
nally, let p, = 7i; /Ny be the empirical distribution for
the kth subproblem.

Notice that we have used “notation when denoting
Ni and conditioned on its value in specifying the
distribution of 7. This is because, in our subsequent
analysis, we will sometimes view the amount of data
available for each problem as random (see Section 3.2).
When the data are fixed and nonrandom, we condition
on Ni explicitly to emphasize this fact.

With this notation, we can rewrite our target op-
timization problem:

7* =

x1€X1

K
A
fz 1 £ T er(xe).

xKGX;C avg

(2.2)

Our goal is to identify a data-driven policy, that is,
a function x(#i1) = (xl(ﬁa) ., xk(f)) mapping i1 to
Xix..xx, for which 1 Zk M’\ Py Ter(x (1)) is small. We
stress that the performance ‘of a data-driven policy is
random because it depends on the data.

As mentioned, with full information of p,, Prob-
lem (2.2) decouples across k and, after decouphng, no
longer depends on the frequency weights o
proposed algorithms will also not require knowledge
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of the weights A;. For convenience, we let Apin =
ming Ay and Apax = maxg Ag.

A canonical policy to which we will compare is the
Sample Average Approximation (SAA) policy, which
proxies the solution of these decoupled problems by
replacing p, with p,:

Definition 2.1 (Sample Average Approximation). Let

A (i) € argmingey, pJ ck(x) denote the SAA pol-

icy for the k" problem, and let x°A4 (1) = 2544 (i),
- XM ().

As we will see, SAA is closely related to our pro-
posed algorithm Shrunken-SAA and hence provides a
natural (decoupled) benchmark when assessing the
value of data pooling.

Finally, we use the newsvendor problem as a run-
ning example in what follows. We say that the kth
subproblem is a newsvendor problem with critical
fractile 0 <s <1 if c(x;&) = max{: (& —x), (x - &)}
Its full-information solution is the sth quantile of the
kth distribution.

2.1. A Bayesian Perspective of Data Pooling

To motivate data pooling, we first consider a Bayes-
ian approximation to our problem. Specifically, sup-
pose that each p, were independently drawn from a
common Dirichlet prior, that is,

p; ~ Dir(py, @), k=1,...K,

with ag > 0 and p, € A;, the d-dimensional simplex.
The Bayes-optimal decision minimizes the poste-
rior risk, which is E[£ 3K A pk Teelxe) | ] =28,
L E[py | 111 e(x), by linearity. Furthermore, by in-

axg

dependence and conjugacy, respectively,

ag N

= K = =
Elp ) = Elpy ] = +aopO+Nk+ao ¢

Hence, a Bayes-optimal solution is x(ao,p,, fity) =
(x1(ao, py, 1111), . . ., xx (o, py, 1i1x)), where

(04 Nk
= + = p.|, k=1,...,K, (23
Pil@) = Rera " Rotalt (2.3)
xe(a, po, i) € argmin  pr(a) " ce(x),
nex, (24)
k=1,...,K

For any non-data-driven a and p,, x(a, p,, i) de-
pends on 7y but not on #y for [ # k.

This policy has an appealing, intuitive structure.
Notice that p,(a) overloads notation slightly and is a
convex combination between p, = p,(0), a data-based
estimate of p,, and p,, an a priori estimate of p,.
In traditional statistical parlance, we say that p,
(@) shrinks the empirical distribution p, toward the

anchor p,. The Bayes-optimal solution is the plug-in
solution when using this shrunken empirical mea-
sure; that is, it optimizes x; as though that were the
known true measure. This differs from the SAA so-
lution, which is the plug-in solution when using the
“unshrunken” p,.

The parameter a controls the degree of shrinkage.
As a — 0, x(a, po,ﬁ1) converges to an SAA solution,
and as a — oo, xx(a, p,, 1) converges to the (nonran-
dom) solution to the fully shrunken kth subproblem.
In this sense, the Bayes-optimal solution “interpolates”
between the SAA solution and the fully shrunken
solution. The amount of data N attenuates the amount
of shrinkage; that is, subproblems with more data are
shrunk less aggressively for the same a.

Alternatively, we can give a data-pooling interpreta-
tion of xx(a, p,, 1) via the Bayesian notion of pseu-
docounts. Observe that xi(a,p,, fitx) € argminyex,

(aﬁj:?k)Tck(xk) and that % “:':k is a distribution on

{ax1,..., akq}. In other words, we can interpret xj
(o, py, ﬁ1k) as the solution obtained when we augment
each of our original K data sets with a additional
“synthetic” data points with counts ap,. As we in-
crease a, we add more synthetic data.

For a >0, xx(a,p,,0) is the solution to the fully
shrunken kth subproblem. For emphasis, let

d
%:(00, po) € arg min le Poicri(xt),
i=

so that xi(a, p,,0) = x¢(c0, p,) for all @ > 0. For com-
pleteness, we also define x4(0, p,, 0) = xx(c0, p), so that
xi(a, py, -) is continuous in a.

In summary, x(a, Por 1) has an intuitive structure
that is well defined regardless of the precise structure of
the cost functions ¢i(-) or feasible region X. Importantly,
this analysis shows that, when the p,’s follow a
Dirichlet prior, data pooling by «a is never worse
than decoupling, and will be strictly better whenever
xA (1) is not an optimal solution to the problem
defining x(a, p,, fitg).

2.2. Data Pooling in a Frequentist Setting

Itis perhaps unsurprising that data pooling improves
upon the decoupled SAA solution in the Bayesian
setting, because problems ! # k contain information about
a and p,,, which, in turn, contain information about the
p;’s. However, even in frequentist settings, that is,
when the p,’s are fixed constants that may have no
relationship to one another and there is no “ground-
truth” values for « or p,, x(a, p,, 1) can still improve
upon SAA through a careful choice of a and p,, that
depend on all the data. This is the heart of Stein’s
result for Gaussian random variables and mean-
squared error.
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To build intuition, we first study the specific case
of minimizing mean-squared error and show that
data pooling can improve upon the decoupled SAA
solution in the frequentist framework of Equation (2.1).
This result is thus reminiscent of Stein’s classical re-
sult but does not require the Gaussian assumptions.
Consider the following example.

Example 2.1 (A Priori Pooling for Mean-Squared Error).
Consider a special case of Problem (2.2) such that for
all k we have Ay = Aayg, Ne=N>2, p; is supported
on {ap,...,au} CR, & =R and c(x) = (x —ai)?. In
words, the k" subproblem estimates the unknown
mean (i = p; ax by minimizing the mean-squared er-
ror. Let 0?2 = p/ (ax — uxe)*.

Fix any p, € A; and a >0 (not depending on the
data). A direct computation shows that

.X'k(a, p()/ ﬁ’lk) (ak(a) = Nlia ‘ﬁk + ﬁ Hro,

where yk 2 Zl 1 & is the usual sample mean and
ko = P - Notlce, in particular, that the decoupled
SAA solution is x5* = ({iy,..., fix), corresponding
toa=0.

For any p, and a, the objective value of x(a, p,, 1) is

33T

5k)2 | ﬁf]

il

E[(ﬁlk(“) -

U g

Rl Rl

(0F + (e = iul)?),

>~
I

1

by the usual bias-variance decomposition of mean-
squared error (MSE). This objective is the average of
K independent random variables. Hence, we might
intuit that, under appropriate regularity conditions
(see Theorem 2.1) and conditional on N, as K — oo,

1 K
E,;( (= @)’
K
-3 >or+ E[(yk — (@) N]) —, 0. (2.5)
k=1
Moreover, % (Zk, 0f + E[(ux — yk(oz))2 IN]) =12k,

(07 + (NM)Z) (tx — o) + (N+a)2ﬁ’ again using the
bias-variance decomposition of MSE. We can mini-
mize the right-hand side over a explicitly, yielding
the value

K 2
AP _ =1
= k=% 5,
Po

S (1 = tiro)?

where AP stands for a priori, meaning a4 is the on-
average-best a priori choice of shrmkage before ob-
serving any data. In particular, substituting « = 0 and
a= a}/;\P into the second term of Example 2.5 shows
that, up to a term that is vanishing as K — oo,
shrinking by asop decreases the MSE by

K OCAP
kz ) N+ aAP

= (ﬁ Zien a]%)z 5> 0.

KNZk 1 0% + % 2o (B = o)

(2.6)

This benefit is strictly positive for any values of p, and
Py, and increasing in a;, "

Unfortunately, we cannot implement x(a ., +Por 7it)
in practice, because ocAP is not Computable from the
data; it depends on the unknown ux and o7. The next
theorem shows that we can, however, estimate a’”

Po
from the data in a way that achieves the same ben-
efitas K — o, evenif N is fixed and small. See Online

Appendix A for proof.

Theorem 2.1 (Data Pooling for MSE). Consider a sequence
of subproblems, indexed by k = 1,2, . ... Suppose for each k
that the k™ subproblem minimizes mean-squared error; that
is, p, is supported on {ap,...,an} CR, X =R, and
ckl(x) (x —a)?. Suppose further that there exists Aavg,
N >2, and apmay < oo such that Ay = Aavg,s Ny =N, and
laklle < amax for all k. Fix any p, € Ay, and let

(2 A \2
s {2kl 2 B
a %2115:1 (P‘kO - ﬁk) - _Zk 1 N 1 Z (éki - PA‘k)z

Then, conditional on N, as K — oo,

RO~ ST o)

S

Benefit over decoupling of a= aJ

B (=L, o}/N)? R
K2 0N + L 2K (e = pro)

Expected benefit over decoupling of a= aAOP

Note that xk(a > Por ) =
lKZk—lN_lzz 1(’51” %’k)
N KZk (o=

resulting estimator with pooling ;> strongly re-
sembles the classical James-Stein mean estimator
(see Efron and Hastie 2016, equation (7.51)), with
the exception that we have replaced the variance
a,%, which is assumed to be 1 in Stein’s setting,
with the usual, unbiased estimator of that variance.

(1-60)ii + Ofix, where 6 =

. In this form, we can see that the
s
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This resemblance motivates our “JS” notation. Theo-
rem 2.1 is neither stronger nor weaker than the James-
Stein theorem. Our result applies to non-Gaussian
random variables and holds in probability, but is as-
ymptotic; the James-Stein theorem requires Gaussian
distributions and holds in expectation, but applies to
any fixed K > 3.

Theorem 2.1 shows that data pooling for mean-
squared error always offers a benefit over decou-
pling for sufficiently large K, no matter what the p,
may be. Data pooling for general optimization prob-
lems, however, exhibits more subtle behavior. In par-
ticular, as shown in the following example and theorem,
there exist instances where data pooling offers no
benefit over decoupling, as well as instances where data
pooling may be worse than decoupling.

Example 2.2 (Data Pooling for Simple Newsvendor).
Consider a special case of Problem (2.2) such that,
for all k, Ay = Aavg, &k is supported on {1,0}, & =
[0,1], and ci(x, &) = |x — & so that pe(x) = pa+
x(1 = 2pg1). In words, the kth subproblem estimates
the median of a Bernoulli random variable by mini-
mizing mean absolute deviation or, equivalently,
is a newsvendor problem with critical fractile 0.5
for Bernoulli demand. We order the support so that
pa = P(& = 1), as is typical for a Bernoulli random
variable. Suppose further that, for each k, pi > 1,
and fix any po1 < 3.

Note that xi(a,p,, i) =1[ pra > %+ Ii]—"k(% - pol)].2 Fur-

ther, for any a (possibly depending on ),

P (ex el po, ine)) = e (xc(0, o, 1))

A A 1 1
= (2pk1 - 1)(H[pk1 > 1/2] -1 Pr1 > 2+ng(2—p01)])

. 1 a1
=(2Pk1_1)]1[1/2 < P < §+N—k(§_p01)]'

where the last equality follows since py <1/2 =
f?kl < % + %(% - P01)- Notice thatpk1 > % = (me -1)>0,
so this last expression is nonnegative. It follows that,
path by path, shrinkage by any a > 0 cannot improve
upon the decoupled solution (@ =0). Moreover, if
xi(a, py, fing) # (0, py, 1), then the performance is
strictly worse. If we had chosen po; 2% and pj < %,
then a similar result holds.

We summarize this example in the following theorem.

Theorem 2.2 (Data Pooling Does Not Always Offer
Benefit). Given any p,,, there exist instances of Problem (2.2)
such that shrinkage does not outperform the (decoupled)
SAA solution. Moreover, if x(a, p,, i) performs the same
as SAA, then x(a, p, 1) is, itself, an SAA solution.

On the other hand, there exist examples where the
James-Stein estimator and traditional statistical rea-
soning might suggest the benefits of pooling are mar-
ginal, but, by data pooling in a way that exploits the
optimization structure, we can achieve significant ben-
efits. Specifically, our Bayesian motivation in Section 2.1
suggests pooling offers little benefit when the p,’s are
very dispersed; that is, the Dirichlet prior has high
variance and «ag is small. Similarly, Theorem 2.1 and
Efron and Morris (1977) both suggest that the benefits of
pooling over decoupling for MSE are marginal if the
subproblem means are quite dispersed (see Equation (2.6)).
Nonetheless, for general optimization problems, we
observe that pooling might still offer substantive ben-
efits in these situations.

Example 2.3. (Pooling Can Offer Benefit Even When
p;’s Are Dispersed). Let d > 3, and fix some 0 <5 < 1.
Suppose that the k' subproblem is a newsvendor
problem with critical fractile f, > s and demand dis-
tribution supported on the integers 1, ..., d. For each k,
let pr1 =0, pra =1 =5, and py;, = s for some 1 < ji <d.
Consider the fixed anchor po1 = s, pos = 1 =5, and po; =
0for 1 <j < d. Notice that typical p,’s are very far from
p, since |lp, — poll, = V2s. For s sufficiently close to 1,
this value is close to V2, which is the maximal distance
between two points on the simplex. In other words,
the p,’s are not very similar. Moreover, the means are
also dispersed for s close to 1 since = 3K | (ux — po)* =
s*L 2K (ji — 1)* ~ s%d/2 if the ji’s are chosen uniformly.

Consequently, the James-Stein estimator does not
shrink very much in this example. A straightforward

computation shows that, for K sufficiently large, @S <

Po
@ with high probability, which is close to 0 for

s close to 1. However, the full-information solution
for the k problem is x; = d, which also equals the
fully pooled (a = o) solution, xx(co, p,). Hence, pool-
ing in an optimization-aware way can achieve full-
information performance, whereas both decoupling
and an “estimate-then-optimize” approach using
James-Stein shrinkage necessarily perform worse. In
other words, pooling offers significant benefits despite
the p,’s being as dispersed as possible, because of the
optimization structure, and leveraging this structure is
necessary to obtain the best shrinkage. O

Theorems 2.1 and 2.2 and Examples 2.2 and 2.3
highlight the fact that data pooling for general opti-
mization is more complex than Stein’s phenomenon.
In particular, in Stein’s classical result for mean-
squared error and Gaussian data, data pooling al-
ways offers a benefit for K > 3. For other optimization
problems and data distributions, data pooling may
not offer a benefit, or it may offer a benefit but
requires a new way of choosing the pooling amount.
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Aninterplay between p,,, p;, and ¢, determines if data
pooling canimprove upon decoupling and how much
pooling is best.

This raises two important questions: First, how do
we identify if an instance of Problem (2.2) would
benefit from data pooling? Second, if it does, how do
we compute the “optimal” amount of pooling? In the
next sections, we show how our Shrunken-SAA al-
gorithm can be used to address both questions in the
relevant regime, where K is large but the average
amount of data per subproblem remains small. In-
deed, we show that Shrunken-SAA achieves the best-
possible shrinkage in an optimization-aware fashion
for many types of problems and choices of anchor.

3. The Shrunken SAA Algorithm

Algorithm 1 (The Shrunken-SAA Algorithm)
Input: Data S; = {ékl,...,émk}, k=1,...,
anchor distribution h(S)
Fix a finite grid A C [0, c0)
forac A k=1,...,K,j=1,. deeflne
xi-j(@, h(S)) < arg mingex, Zf;é] ek, &) +
aEg, ns)lck(xk, &)] // Compute leave-one-out
(LOO) solutions
end for
ap~SAA — argmingea IK, 2 Ck(xk e, 1(S)), &)
// Modified LOO Cross Vahdatlon
forallk=1,...,Kdo
xS-SAA argmingex, Z].Ii"l
ay SMEg, s [or(ax, )]

K, and an

ck(xk, &) +
// Compute pooled
solution

end for

return (xP~SAA, . a$SAA)
Algorithm 1 formally defines Shrunken-SAA. The
crucial step is the “Modified LOO Cross-Validation,”
which we discuss in detail in Sections 3.2 and 3.3.
To highlight similarities to SAA, we have stated
the algorithm in terms of the data sets Sy and S =
(S1,...,8k). Here, h(S) represents an arbitrary, pos-
sibly data-driven anchor distribution (we present some
examples, shortly). Recall that we can equivalently
express S in terms of the counts 7. In that notation,
we recognize that if the /' data point of Sy is ay,
thenxy _i(a, (1)) = x(a, h(ih), i — e;) and x5SR = xy
(a5~ SAA , h(i), iy ). In other words, Shrunken SAA re-
tains the particular pooling structure of Equation (2.4)
suggested by our Bayesian argument, but it allows
for a data-dependent anchor /(S) (equivalently, h(#i))
and chooses the amount of pooling via a particular
cross-validation scheme. We present Algorithm 1
using a finite grid 4, but our theory also pertains
to A = [0, ).

Remark 3.1 (Computational Complexity). Computation-
ally, Algorithm 1 does not depend on d, the size of the

support of &. Its bottleneck is computing x;,;, which is
similar to solving the k' subproblem by SAA with an
augmented data set described by h(S). More specifi-
cally, Algorithm 1 depends on the data only through
h(S) and averages of functions over subsets of S,
neither of which explicitly depends upon d. Conse-
quently, although our setup and analysis assume that
& has finite discrete support, from an implementation
perspective, we can apply Shrunken-SAA when &; has
continuous support without discretization, so long as
we can efficiently solve these augmented SAA prob-
lems (see our empirical study in Section E.6 of Online
Appendix E). From a theoretical perspective, some of
our analysis extends to this continuous setting (see
Section 4.6). In the remainder, we follow Section 2 and
treat the data as discrete, referring to the data by 7
and 7.

We consider Shrunken-SAA to be roughly as tractable
as SAA. We say “roughly” because, in the worst case,
one must solve at most |A| 2K | min(d, Ny) problems in
the LOO cross-validation step, which, if we sample
from h(s1), have a similar structure to SAA. Fortu-
nately, we can parallelize these problems in distributed
computing environments and use previous iterations
to “warm-start” solvers. Moreover, in Section E.8
of Online Appendix E, we observe empirically that
less computationally expensive «-fold cross-validation
procedures can be used in place of LOO with similar
performance. O

For clarity, the a$~SA parameter (with A = [0, o))
computed by Algorithm 1 is
K
ap~SARe argm Z ck(xx(a, h(m), 1y — e;)). (3.1)

k=1

The Anchor Distribution h(m)

As stated, the anchor in Algorithm 1, h(i#1), is an input.
We think of h(s#1) as a function that selects an anchor
distribution from a candidate set of distributions P. In
what follows, we will focus on two types of anchors
and corresponding candidate sets P:

* Fixed anchors: Here, h(i) = p,, P ={p,} for
some fixed p,, for example, the uniform distribution
p, = e/d. Fixed anchors might be used for computa-
tional/statistical simplicity or when there is strong a
priori knowledge of a good anchor. In this case, we
abuse notation slightly, replacing the map 1 : 71 = p,,
with the constant Po when clear from context; for
exampe, we write a5 SA for ap~SAA,

e Data-driven anchors: Here, h(m) is any proce-
dure that uses the data i to select a distribution, and
P is the image of hi(-). One example might be to use all
the data to fit a parametric distribution, for example,
a lognormal distribution, via maximum likelihood
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and use this fitted distribution as the anchor. Then, P
would be the set of lognormal distributions.

We also pay particular focus to two special cases of
data-driven anchors in what follows:

¢ LOO-optimized anchor: For a given P C Ay, let

K
hp(ii) € argminmin > 7y c(xe (e, g, — e;). (3.2)
geP O =1

We will see later that ip satisfies stronger optimality
properties than general data-driven anchors and,
hence, we treat it separately. From an implementation
point of view, when applying Algorithm 1, we only
ever require the value of hp(i#1), not the full-function
hp(-). Thus, Algorithm 1 with ip(-) amounts to replacing
the “Modified LOO Cross-Validation” step by a joint
optimization over anchor and pooling amount:

(afp‘SAA, hp(m)) — argmin i % Ck (xk,_j(a, q), ékj).

acAqeP k=1 j=1
(3.3)

We note that the multivariate optimization problem
in Section 3.3 may be challenging depending on the
structure of P, motivating our second special case:

® GM-anchor: We also consider a computation—
ally simpler “grand-mean” anchor h(#1) = M where
peM = =K p I[Nk > 0]/ =K, I[N > 0] 1meaX >0and
e/ d otherwise. (For this data-driven anchor, P = A;.)
This choice is motivated by our Bayesian perspective
on data pooling from Section 2.1. In the Bayesian
setting, p HCM is an unbiased estimator of the prior
mean. We observe empirically in Section 6 that M
is a strong and computationally efficient heuristic.

3.1. Oracle Benchmarks

From Theorem 2.2, data pooling need not improve
upon decoupling for a given h(-). To establish ap-
propriate benchmarks, we first define the oracle
pooling for given h(-); that is,

OR € argmin Zx(a, h(in)), where
a>0
_ K
Z(,q) = % 2 Zi(a. q),
k=1
Zi(w,q) = 2 p el g, ). (34)

Notice that a®® is random, depending on the entire
data-sequence. By construction, ZK(ahOR,h(m)) lower
bounds the performance of any other data-driven
pooling policy with anchor k(i#1) path by path. Hence,
it serves as a strong performance benchmark. How-
ever, ah R also depends on the unknown p, and Ay,

and, hence, is not implementable in practice. In this
sense, it is an oracle.

Given any a (possibly depending on the data), we
measure the suboptimality of pooling by «a relative to
the oracle pooling for h(-) on a particular data reali-
zation by

SubOpt, k(@) = Zx(a, h(iin)) — Zx(aR, h(r)).
Good pooling procedures have small suboptimality
with high probability with respect to the data. We
allow for ad® = 0. Thus, procedures with small sub-
optimality stlll have good performance in instances
when data pooling is not beneficial. Studying when
a®® > 0 further gives intuition into when and why
data pooling is helpful, a task we take up in Section 5.

The aforementioned oracle is defined with respect
to a given anchor. One might also seek to benchmark
performance relative to the best-possible anchor.
Given any P C A;, we define the oracle choice of
anchor and pooling amount for anchors in P and for a
particular data realization by

(@R, 49F) € argmin Zk(a, q). (3.5)

a>0,qeP

Then, given any anchor g € P and pooling amount «
(both possibly depending the data), we measure the
suboptimality of shrinking by a toward q by

SubOptp k(a,9) = Zk(a, q) — Zk( OR OR).

k\&p . qp

For clarity, we observe that, by construction, a3% = a?oFé{

3.2. Motivating a5-5** Through

Unbiased Estimation
We first consider a fixed anchor h(i#1) = p,. In this case,
we abuse notation slightly and write

a;?oR € argaginZK(a,po). (3.6)
One approach to choosing a, might be to construct a
suitable proxy for Zg(a,p,) in Equation (3.6) based
only on the data and then choose the a; that opti-
mizes this proxy.

If we knew the values of Ay, then a natural proxy
might be to replace the unknown p, with p,; that
is, optimize % X K, P ek (xi (a, q, 7ir)). Unfortu-

Aav
nately, even for a fixed, non—data driven a, this proxy
is biased, that is, E[f K, < pk T, py, 1)) #
E|Zk(a, Po)] since both p, and xe(ar, o, fix) depend on
the data siy,. Worse, this bias wrongly suggests that
a =0, that is, decoupling, is always a good policy,
because x¢(0, p,, 771c) always optimizes this proxy, by
construction. By contrast, Theorem 2.1 shows that
data pooling can offer significant benefits. This type of
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bias and its consequences are well known in other
contexts and are often termed the “optimizer’s cur-
se”—in-sample costs are optimistically biased and
may not generalize well.

These features motivate us to seek an unbiased
estimate of Zk(a, py)- At first glance, however, Zg
(a,po), which depends on both the unknown p,
and unknown Ay, seems particularly intractable un-
less xi(a, py, i) admits a closed-form solution as in
Example 2.1. A key observation is that, in fact, Zg
(a0, p,) does more generally admit an unbiased esti-
mator, if we also introduce an additional assumption
on our data-generating mechanism, that is, that the
amount of data is random.

Assumption 3.1 (Randomizing Amount of Data). There
exists an N such that Ny ~ Poisson(NAy) for each k =
1,...,K

Under Assumption 3.1, (unconditional) expecta-
tions and probabilities should be interpreted as over
both the random draw of N; and the counts 7.

Analytically, the benefit of Assumption 3.1 is that it
breaks the dependence across i in 7it. Namely, by the
Poisson-splitting property, under Assumption 3.1,

~ Poisson(my;) where my; = NAipyi,
i=1,...,d, k=1,...,K

and the 7iy;’s are independent across i and k. If Ny were
nonrandom, then these 7i1;; would be dependent.

Beyond its analytical convenience, we consider
Assumption 3.1 to be reasonable in many applica-
tions. Consider, for instance, a retailer optimizing the
price of k distinct products; that is, x; represents the
price of product k, & represents the (random) valua-
tion of a typical customer, and c(xx, &) is the (neg-
ative) profit earned. In such settings, one frequently
ties data collection to time; that is, one might collect
N = 6 months worth of data. To the extent that cus-
tomers arrive seeking product k in a random fashion,
the number of arrivals Ny that one might observe in
N montbhs is, itself, random and is reasonably mod-
eled as Poisson with rate proportional to N. Similar
statements apply whenever data for problem k are
generated by an event that occurs randomly, for ex-
ample, when observing the response time of emer-
gency responders (disasters occur intermittently),
effectiveness of a new medical treatment (patients
with the relevant disease arrive sequentially), or any
aspect of a customer service interaction (customers
arrive randomly to service).

In some ways, this perspective tacitly underlies the
formulation of Problem (2.2) itself. Indeed, one way to

interpret the subproblem weights K/tk ZK 1s that

the decision maker incurs costs c(xy, Ek) at rate A, so

that problems of type k contribute a fraction of

j= IA
the total long-run costs. However, if problems of type
koccur atrate Ay, it should be that observations of type
k, that is, realizations of &, also occur at rate A,
supporting Assumption 3.1.

In settings where data collection is not tied to
randomly occurring events, modeling Nj as Poisson
may still be a reasonable approximation if 4 is large
relative to N and each of the individual Pri’s are small.
Indeed, under such assumptions, a Multinomial(Ny, p,)
is well approximated by independent Poisson ran-
dom variables with rates Nkpkl,l =1,...d(see McDonald
1980, Deheuvels and Pfeifer 1988 for a formal state-
ment). In this sense, we can view the consequence of
Assumption 3.1 as a useful approximation to the
setting where the Nyi’s are fixed, even if it is not
strictly true.

In any case, under Assumption 3.1, we develop an
unbiased estimate for Zx(a, Py, ). We use the fol-
lowing identity (Chen 1975). For any f : Z, — R, for
which the expectations exist,

W ~ Poisson(A) = AE[f(W + 1)| = E[Wf(W)|. (3.7)

The proof of the identity is immediate from the
Poisson probability mass function.’
Now, for any a > 0 and g € Ay, define

1 & R
a, q) = N1 Z mkicki(xk(a, q, my — ei))/

avg =1
K
Z LOO(a pO
k=1

(3.8)

70

and ZL(OO( q) =

A=

Lemma 3.1. (An Unbiased Estimator for Z(a,p,)).
Under Assumption 3.1, we have for any a >0 and
g €A that E[ZL°°(a,q)| = E[Zk(a, q)]. In particular,

E[ZLOO(oz, q)] =E|[Zk(a, q)].

Proof. Recall that Zi(a,q) = ﬁvg >4 mycri(xi(a, g,
7)) and that, under Assumption 3.1, rity; ~ Poisson(my;)
independently over i=1,...,d. Let 7i5,_; denote
(Thk,j)]. ,- Then, by Equation (3.7),

E[miicki (e (v, g, 1)) | g ]
= Bl ek (xi (v, g, e — e7)) | it —i]-

Taking expectations of both sides, summing over
i=1,...,d,and scalingby N,y proves E[ZL%®(a, q)| =
E[Z(«, q)|. Finally, averaging this last equality over k
completes the lemma.
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We therefore propose selecting & by minimizing the

estimate ZL(OO(O(, po)- As written, ZIL(OO(&, p,) still de-
pends on the unknown N and A,yg; however, these
values occur multiplicatively and are positive, and so
do not affect the optimizer. Hence, the optimizer is
exactly a5~SA as in Equation (3.1).

3.3. Motivating o5~S** via Modified
Leave-One-Out Cross-Validation

Although we motivated Equation (3.1) via an unbiased
estimator, we can alternatively motivate it through
leave-one-out cross-validation. This latter perspec-
tive informs our “LOQO” notation. Indeed, consider
again our decision maker, and assume in line with
Assumption 3.1 that subproblems of type k arrive
randomly according to a Poisson process with rate Ay,
independently across k. When a problem of type k
arrives, she incurs a cost cx(xx, £). Again, the objective
of Problem (2.2) thus represents her expected long-
run costs.

We can alternatively represent her costs via the
modified cost function C(xi,...,xx, &, &) = ci(x, &),
where « is a random variable indicating which of the
k subproblems she 1s currently facing. In particular,
letting P(x = k) = =ay | k = k) = py;, the
objective of Problem (2.2) can be more compactly
written E[C(xy, ..., xg, x, &)].

Now consider poohng all the data into a single

“grand” data set of size Ny+---+ NK

(k&) 7= 1

The grand data set can be seen as i.i.d. draws of (k, &).

For a fixed « and p,,, the leave-one-out estimate of
E[C(x1(a, py, ), . .., xx(a, py, ), k, &)] is given by re-
moving one data point from the grand data set,
training x1(a, py,°), ..., xx(a,p,,-) on the remaining
data, and evaluating C(-) on the left-out point using
these policies. We repeat for each point in the grand
data set and average. We can rewrite this leave-one-
out estimate as

Nk,k=1,...,1<}.

~
N

Atgicki(xi (v, po, it — €1)),

which agrees with the objective of Equation (3.1) up
to a positive multiplicative constant. Although this
multiplicative constant does not affect the choice
of a5 SAA it does cause the traditional leave-one-
out estimator to be biased. This bias agrees with
folklore results in machine learning that assert that
leave-one-out does generally exhibit a small bias
(Hastie et al. 2001).

For data-driven anchors, we stress that, unlike
traditional leave-one-out validation, we do not use
one fewer points when computing the anchor in Al-
gorithm 1; we use h(im) for all iterations. Hence,
Shrunken-SAA is not strictly a leave-one-out proce-
dure, motivating our qualifier “Modified.”

4. Performance Guarantees

for Shrunken-SAA
In this section, we show that, in the limit where the
number of subproblems K grows, shrinking by a5 -SA*
is essentially best possible. More precisely, for any
K >2 and any 0 < 0 < 1/2, with probability at least
1 -6, we prove that

SubOpt;,  (a3~5*4) < @(—bgf/%/ 6)), (4.1)

where the O(-) notation suppresses logarithmic fac-
torsin K, and 1 < < 2 is a constant that depends on
the particular class of optimization problems un-
der consideration. Imporantly, by the Borel-Cantelli
lemma, Equation (4.1) implies SubOpt, x (a5 SA4) — 0,
almost surely as K — oo, even if the expected amount
of data per subproblem remains fixed.

Equation (4.1) asserts that for a given anchor h(-),
Shrunken-SAA achieves the best possible shrinkage
amount as K — co. We will also prove similar bounds
on SubOptp,K(af‘SAA, hp(#ir)). Such bounds assert that,
fora given class P, Shrunken-SAA with hip(-) achieves
the best possible anchor and shrinkage amount
simultaneously.

4.1. Overview of Proof Technique

To prove performance guarantees like Equation (4.1),
we first bound the suboptimality of Shrunken-SAA in
terms of the maximal stochastic deviations of Zg(a, )
and ZK (oc h) from their means.

Lemma 4.1 (Bounding Sub-Optimality). Suppose that
Assumption 3.1 holds.

For a non-data-driven anchor h(ii1) = p,,

SubOpt, « (a,i;SAA)

<2 sup|Zx(a,po) = EZx(opo)]| +

Maximal Stochastic Deviation in ZK(- po)

. _LOO(“f Po) —E [Zlioo(afpo)”

—L
Maximal Stochastic Deviation in ZKOO(»,pO).
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Similarly, for a general data-driven anchor with h(ii) € P,

SubOpt;, (a5

<2 sup|Z(a,q) - E[Zx(a,q)]| +
aep

Maximal Stochastic Deviation in ZK( )

Zl'goo(aq E[ZLOO q)”

(4.2)

2 sup
a0

qeP

=L00
Maximal Stochastic Deviation in ZK (', )

Finally, for h = hp, SubOptp,K(a,?;SAA, hp(in)) is also
bounded by the right-hand side of Equation (4.2).

Proof. By definition of ocSO SAA Z'-OO( OR
(045’0_ SAA p,) = 0. Therefore,

=L00
Po) — Zx

SubOpt,, ( S- SAA)
< ZK( S- SAAIPO) —ZK(OL,C,)R,PO)

+ 720 (a9R, po) = Zi° (a5, o

<2 S‘ig’|z< (@ po) - z1L<OO(0‘I P0)|

<2 SEEEK(a, po) — EZk(a, p0)|

+2 sg%) ZIQOO (@, py) - EZIIQOO(O‘/ Po)l
az

+ 2 sup|EZk (o, py) — IE:ZIL<OO (0‘/?’0)"
a>0

By Lemma 3.1, the last term is zero, which establishes
the first statement. The proof of the second statement
is similar, but, in the second inequality, we take
an additional supremum over g € P to replace h(i#).
Ttngoproof of the third statement is similar, using

(ah SAA Ip(1i)) < ZK (agR,q%R) and taking a
supremum over @ > 0, g € P in the second inequality.

Proving a performance guarantee for ap S*A thus
reduces to bounding the rnax1mal deviations in the
lemma. Recall that Zx (o, q) = + &, Zk(a, q) and ZK
(a,q) =125, ZL0%(a, g). Both processes have a special
form: they are the empirical average of K independent
stochastic processes (indexed by k). Fortunately, there
exist standard tools to bound the maximal deviations
of such empirical processes that rely on bounding
their metric entropy.

To keep our paper self-contained, we summarize
one such approach presented in Pollard (1990), spe-
cifically in equation (7.5) of that work. Recall that, for
any set S C RY, the e-packing number of S, denoted by
D(e, S), is the largest number of elements of S that can

be chosen so that the Euclidean distance between any
twoisatleaste. Intuitively, packing numbers describe
the size of S at scale €.

Theorem 4.1 (A Maximal Inequality; Pollard 1990). Let
W(t) = (Wi(t),..., Wk(t)) € RK be a stochastic process
indexed by t € T and let Wi(t) =L 5K, Wi(t). Let F e
RX be a random wvariable such that |Wi(t)| < Fy for all
teT,k=1,...,K. Finally, define the random variable

J=J{W(): t e T}, F)
1
= 9|IFl, / Viog D(I[Flu, (W(H) : € 7 Ddu.  (43)

Then, forany p > 1 and any 0 < 6 < 1, with probability at
least 1 -6,

sup|Wi(t) - E[Wk(t)]| < 5"7/plljll, K677
teT

If 7 is finite, then one can bound the maximal devi-
ation with a union bound. Theorem 4.1 extends be-
yond this simple case to cases where |7| = co. The
random variable F in the theorem is called an envelope
for the process W(t). The random variable ] is often
called the Dudley integral. Whereas packing numbers
describe the size of a set at scale €, the Dudley inte-
gral roughly describes the size of the set at varying
scales. We again refer the reader to Pollard (1990)
for discussion.

Our overall proof strategy is to use Theorem 4.1 to
bound the two suprema in Lemma 4.1 and thus
obtain a bound on the suboptimality. Specifically,
define the following stochastic processes:

Z(a,q) = (Z1(a,q), .., Zk(a, 9)),
Z"%(a,q) = (2°°(w,q), .., Z°(a q) -

Our proof strategy will be to (1) compute envelopes
for both processes; (2) compute the packing numbers
and Dudley integrals for the relevant aforementioned
sets; (3) apply Theorem 4.1 to bound the relevant
maximal deviations; and (4) use these bounds in
Lemma 4.1 to bound the suboptimality. We execute
this strategy for several special cases in the remainder
of the section.

As a first step, we identify envelopes for each
process. We restrict attention to the case where the
optimal value of each subproblem is bounded for any
choice of anchor and shrinkage.

Assumption 4.1 (Bounded Optimal Values). There ex-
ists C such that for all i=1,...,d, and k=1...,K,

SUP gep, |cxi(xx (o0, q))] < C.
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Notice that sup,.q e, lc(x(@, 9)| = sup,e,, lewi(xi
(c0,9)|, so that the assumption bounds the optimal
value associated to every policy. Assumption 4.1 is a
mild assumption and follows, for example, if ci(-) is
continuous and X is compact. However, the as-
sumption also holds, for example, if cy(-) is un-
bounded but coercive. With it, we can easily compute
envelopes. Recall that Npax = max; N;.

Lemma 4.2. (Envelopes for Z,Z"°°). Under Assump-
tion 4.1,

1. the vector FPerf = CA/Aqvg is an envelope for Z(a, q)
with |[FPel, = 35 JIAll,;

2. the random vector F-O0 = C— is an envelope for

2%, q) with [F-°, = g ||N||2

The proof is immediate from the definitions
and omitted.

Our next step is to bound the packing numbers (and
Dudley integrals) for the sets {Z(a,q) : a >0, g € P} C
RX, and {Z"9°(a, p,) : @ > 0} C RX, for the case of fixed
anchors, and the sets {Z(«,q) : « > 0, g € P} C RX, and
{Z°%(a,q) : @ > 0, g € P} C RK, for the case of data-
driven anchors. Bounding these packing numbers
is subtle and requires exploiting the specific structure
of the optimization problem (2.2). We separately con-
sider two general classes of optimization problems—
strongly convex optimization problems and discrete
optimization problems—in the remainder of the ar-
ticle. Although we focus on these classes, we expect
that a similar proof strategy and technique might
be employed to attack other classes of optimiza-
tion problems.

Remark 4.1. (Performance of a5~ in the Large-

Sample Regime). Although we focus on performance
guarantees for aS5~SM in settings where K is large and
the expected amount of data per problem is fixed, one
could also ask how aS~SAA performs in the large-
sample regime, that is, where K is fixed and Ny — o0
for all k. Using similar techniques, namely, reducing the
problem to bounding a certain maximal stochastic
deviation, one can show that x;(aS~SAA, p,, 1) performs
comparably to the full-information solution in Prob-
lem (2.2) in this limit. The proof uses somewhat stan-
dard arguments for empirical processes. Moreover,
the result is perhaps unsurprising; many data-driven
methods converge to full-information performance in
the large-sample regime (see, e.g., Kleywegt et al. 2002
for the case of SAA) since p, is consistent for p, for all k
in this regime. Consequently, we focus on the small-
data, large-scale regime, where Shrunken SAA enjoys
strong suboptimality guarantees not enjoyed by
SAA. This small-data, large-scale focus, however,
causes the N dependence in our bounds to be looser
than that obtained from a direct large-sample analysis.

Developing a unified analysis of data pooling for any
sequence of N,K remains an open question. O

4.2. Fixed Anchors and Strongly Convex
Optimization Problems

In this section, we treat the case where the K sub-

problems are smooth enough so that xx(«, g, 7i) is

smooth in @ and gq for each k. Specifically, in this

section we assume the following.

Assumption 4.2 (Lipschitz, Strongly-Convex Optimization).
There exists L,y such that the c;(x)’s are y-strongly convex
and L-Lipschitz over X, and, moreover, X}, is nonempty and
convex, forallk=1,... K, andi=1,...,d.

Theorem 4.2 (Shrunken-SAA with Fixed Anchors for
Strongly Convex Problems). Fix any p,. Suppose that
Assumptions 3.1,4.1, and 4.2 hold, K > 2, and N Aymin > 1.
Then, there exists a universal constant A such that, for any
0 < 6 < 1/2, with probability at least 1 — 6, we have that

SubOpt, x (a;’o‘SAA)

5/4
< A -max (C,L\/é) . (@)
)/ /\mir\

log?(1/6) - log*?(K)
X .
VK
The proof follows our strategy from Section 4.1 (see

Section C.1 in Online Appendix C). We sketch the
main ideas:

We first bound the packing numbers of {Z(a, p,) :
a>0} and {Z'9(a,p,) : a > 0}. The key observa-
tion is that, since the subproblems are strongly
convex, the optimal solutions xi(a, p,, #itc) are con-
tinuous as functions of . We utilize this continuity to
construct a packing.

Specifically, consider {Z(a, p,) : @ > 0}. Continuity
in @ implies that, by evaluating x(a, p,, i) on a suf-
ficiently dense grid of a’s, we can construct a covering
of {(xk(a,py, in))ee; : @ > 0}, which in turn yields a
covering of {Z(a,p,) : @ > 0}. By carefully choosing
the initial grid of a’s, we can ensure that this last
covering is a valid (e/2)-covering. By (Pollard 1990, p.
10), the size of this covering bounds the e-packing
number as desired. Figure 2 illustrates this intuition
and further argues that the initial grid of a’s should
be of size O(1/€?). A similar argument holds for
D(e, {Z"°C(a, p,) : a > 0}), using a grid of a’s to cover
{Gala, py, i —e):i=1,...,d, k=1,...,K):a > 0}.
The packing is also of size O(1/€?).

To complete the proof, we use these packing num-
bers in Theorem 4.1 to bound the maximal deviations
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Figure 2. (Color online) Covering a Continuous Process

T2

gl

Notes. The set {(x(a, py, fitx))kq : @ > 0} can be thought of as a
parametric curve indexed by a in the space [TX; X . Because of the
continuity in « (see part iii of Lemma C.1 in Online Appendix C), to
cover this curve for any compact set @ € [0, dmax] requires O(1/¢) balls
of size €. Because of the continuity at & = oo (see part iv of Lemma C.1
in Online Appendix C), it suffices to take amax = O(1/€). This yields a
packing number bound of O(1/€2) (see Lemma C.2 in Online Ap-
pendix C).

of ZK(~,pO),ZIL<OO(-,pO). Substituting into Lemma 4.1
proves Theorem 4.2.

4.3. Data-Driven Anchors and Strongly
Convex Problems

We next consider the case of a data-driven anchor
h(#i) € P. Our performance guarantees will depend
on the complexity of P as measured by the size of its
{1-packing numbers. Namely, we let D1(e, P) be the
largest number of elements of P that can be chosen so
that the ¢;-distance between any two is at least €.’
Then, we have the following.

Theorem 4.3 (Shrunken-SAA with Data-Driven Anchors for
Strongly Convex Problems). Suppose that Assumptions
3.1, 4.1, and 4.2 hold, K > 2. Let dy > 1 be such that for
any 0 <e <1/2, logDi(e, P) < dylog(l/e). Then, there
exists a universal constant A such that for any 0 < 6 < 1/2,
with probability at least 1 — 6, we have that

SubOpt, (e~ 5*)

2 5/4
< A - max C,L—+L E(@)
7/ 7/ /\min

B 1log”/2(K) log?(1/5)
X .
VK

In the special case of hp(-), we can prove an even
stronger result, namely, that Shrunken-SAA with hp

performs comparably to pooling in an optimal way to
the best anchor within the class P.

Theorem 4.4. (Shrunken-SAA with hp for Strongly
Convex Problems). Under the assumptions of Theorem 4.3,
there exists a universal constant A such that for any
0 < 0 < 1/2, with probability at least 1 — 0, we have that

SubOpty (oz;?; SAA hP(ﬁ"))

2 5/4
< A -max C,L— + L c (Amax)
7/ 7/ /\min

| @B log”(K) log?(1/0)
VK

In both theorems, the constant dy measures the com-
plexity of P. Without loss of generality, dy < 3d since
P C Ay and logDi(e, Ay) < 3dlog(1/e) (Pollard 1990,
lemma 4.1). In practice, we might choose flexible,
parametric families for P with small dy that do not
scale with d. An example might be when P consists
of all (truncated) Poisson distributions with mean
at most A, in which case, one can take dy = 2max
(1,10g(A)), independently of d (and the truncation).
Another example is given in Section 6 using beta
distributions. In general, we expect that our perfor-
mance bounds must depend on the complexity of Pin
some way, because we impose no assumptions on the
function h(#1) that selects the anchor and, hence, must
control behavior across all of P.

Both proofs follow the strategy of Section 4.1 (see
Section C.2 of Online Appendix C). The key idea to
bounding the packing numbers is again to leverage
continuity and cover the set {(o,q):a>0,q € P}
Since both proofs leverage Lemma 4.1, the right-hand
sides of the bounds are the same.

By contrast, the left-hand sides of Theorems 4.3
and 4.4 are different: the first measures suboptimality
relative to an oracle with a prespecified anchor, whereas
the second is relative to an oracle that can optimize the
choice of anchor. This distinction mirrors the difference
between “estimate-then-optimize” procedures and
those which choose parameters in an optimization-
aware fashion. Continuing our example where P is a
set of Poisson distributions, Theorem 4.3 bounds the
suboptimality of Shrunken-SAA when using (all)
the data to fit a Poisson distribution without regard
to the downstream optimization, for example, by
maximum likelihood, and then choosing & and xx(-) to
optimize. By contrast, Theorem 4.4 bounds the per-
formance of Shrunken-SAA when choosing the anchor,
a and xi(-) simultaneously to optimize the down-
stream optimization.
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4.4. Fixed Anchors and Discrete
Optimization Problems

In this section, we consider the case where the K
subproblems are discrete optimization problems.
Specifically, we require |X;|<oco foreachk=1,...,K.
This encompasses, for example, binary linear or non-
linear optimization and linear optimization over a
polytope, since we may restrict to its vertices.

Unlike the case of strongly convex problems, the
optimization defining xi(a, p,,, 7it) (see Equation (2.4))
may admit multiple optima, and, hence, x(a, p,, 7it;)
requires a tie-breaking rule. For our results, we as-
sume that this tie-breaking rule is consistent in the
sense that if the set of minimizers to Equation (2.4) is
the same for two distinct values of (a, p,), then the tie-
breaking minimizer is also the same for both. We
express this requirement by representing the tie-
breaking rule as a function from a set of minimizers
to a chosen minimizer.

Assumption 4.3 (Consistent Tie-Breaking). For each k,
there exists oy : 2% — Xy such that

xi(a, po, 1i1) = ok arg}r{rgl Prla) T er(xp) |-
k k

Then we have the following.

Theorem 4.5 (Shrunken-SAA with Fixed Anchors for Dis-
crete Problems). Suppose that |Xy| < oo for each k, K > 2,
and that Assumptions 3.1, 4.1, and 4.3 hold. Then, there
exists a universal constant A such that for any 0 < 6 < 1/2
we have that, with probability at least 1 -6,

SubOpt, « (arfo‘SAA)

K
<A CAmax . Jlog (ZNmax Z|Xk|) :
/\min k=1

" log¥2(K) - log®/2(1/0)
TR )

We stress that |A}| occurs logarithmically in the
bound, so that the bound is reasonably tight, even
when the number of feasible solutions per subprob-
lem may be large. For example, consider binary op-
timization. Then, |X}| often scales exponentially in the
number of binary variables, so thatlog(|X|) scales like
the number of binary variables. Thus, as long as the
number of binary variables per subproblem is much
smaller than K, the suboptimality will be small with
high probability.

We also note that, unlike Theorem 4.2, the afore-
mentioned bound depends on 10g(Nmax). This mild

dependence stems from the fact that we have made
no assumptions of continuity on the functions ¢(x, &) in
x or & Since these functions could be arbitrarily
nonsmooth, we need to control their behavior sepa-
rately across all of the LOO iterations, which intro-
duces the Npa.x dependence. With stronger assump-
tions, it might be possible to remove this dependence.
However, since we are mostly interested in the setting
where Ny is moderate to small for all k, we do not
pursue this idea.

To prove Theorem 4.5, we again follow the ap-
proach outlined in Section 4.1. However, since the
policy x(a, p,, i1) need not be smooth in a, we adopt
a different strategy than in Section 4.2. Specifi-
cally, we bound the cardinality of {Z(a, p,) : @ > 0},
{2°9(a, p,) : @ > 0}, directly. (Recall that the cardi-
nality of a set bounds its e-packing number for any €.)

First note that the cardinality of {Z(a,p,) : @ > 0} is
at most that of {(xk(a,po,n%k))f:l ca >0} A trivial
bound on this latter set’s cardinality is [TX,|X|. This
bound is too crude for our purposes; it grows expo-
nentially in K, even if |&}| is bounded for all k. Intu-
itively, this bound is crude, because it supposes that
we can vary each solution xy(a, p,, 1) independently
of the others to achieve all [TX_|Xi| possible combi-
nations. In reality, we can only vary a single pa-
rameter, «, that simultaneously controls all K solu-
tions, rather than varying them separately. We use
this intuition to show that a much smaller bound, that
is, 22K | Ak, is valid.

To this end, we fix k and study the dependence of
xi(a, py, i) on av. In the trivial case N =0, x(ar, Po, ity
takes only one value: xi (oo, p,). Hence, we focus on the
case Nk > 1.

Consider reparameterizing the solution in terms of

0 =-2¢€[0,1), and let a(0) = ;% Ni. Then for any

a+Ny
x € X}, define the linear function

9a(6) = (1~ 0)p + 6p") (), 6 €[0,1).
Since gy, (-) is linear, the function 6 = minyex, g, (0) is
concave and piecewise linear with at most |A}]
-1 break points. By construction, x(a(0),p,, i) €
argmin,_ . 8k(60). More precisely, for any 0, the set of
active supporting hyperplanes of minyex, gi.(-) at 0
is {(p° — pp) " er(x) x € argmin, .y 8kx(0)}.

Since the set of active supporting hyperplanes is
constant between break points, the set of minimizers
argmin, ngkx(G) is also constant between break
points. By Assumption 4.3, this implies that 0 — x;
(a(0), p,y, 1i1y) is piecewise constant with at most |X;| — 1
points of discontinuity (see also Figure 3). Viewed in
the original parameterization in terms of «, it follows
that a = x(a, p,, 1) is also piecewise constant with
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Figure 3. (Color online) Counting Discrete Solutions

=(0)

{1} = arg mip gz(0) —y ' {1, @y, @3} = arg in g,

0

Notes. A concave piecewise-linear function consisting of || lines
has at most |Xx| — 1 break points, between which the set of active
supporting lines is constant. Any function of this set of active
supporting lines is piecewise constant with at most |Xx| -
discontinuities.

at most |Xy| — 1 points of discontinuity. Thus we have
the following.

Lemma 4.3. Suppose that Assumption 4.3 holds. Fix any
p, and #iy. Then, the function a — xi(a, p,, 1it) is piece-
wise constant with at most | Xy| — 1 points of discontinuity.

Taking the union of all these points of disconti-
nuity over k proves that (xk(oz Po, 1))y, is also
piecewise constant with at most XK, (|| — 1) points of
discontinuity. Therefore, it takes at most 2 XX |}
— 2K +1 different values—a distinct value for each
of the XK (|A|—1) break points plus a distinct
value for the X, (|| — 1) + 1 regions between break
points. This gives the desired cardinality bound on
{Z(a,p,) : @ > 0}|. A similar argument considering
the larger (xk(a Po, 1 — €;)), ez, o1, Where Iy = {i =
1,...,d:fy; >0}, gives a correspondmg cardinality
bound on |{ZLOO(a po) : @ = 0}]. Noting |Z| < min
d,Ny) gives the following (proof omitted):

Corollary 4.1 (Size of Discrete Solutions Sets). Suppose
that Assumption 4.3 holds. Then,

K
HZ(a,py) > 0} <2 >4,
k=1
K
[{Z"C(a, py) : a > 0} <1 +2 > min(d, Ni)| Xl.
k=1

The additional “1” in the case of [{Z"9°(a, p,) : a > 0}
covers the case where Npax =0 and {Z'9%(a, Po)
a >0} = {0}. Although these bounds may appear
large, an important feature is that they are only linear
in K as long as the |X;|’s are bounded over k.

We use these cardinality bounds to bound the
packing numbers and then apply our usual strategy

via Theorem 4.1 and Lemma 4.1 to prove Theorem 4.5.
The details are in Section C.3 of Online Appendix C.

4.5. Data-Driven Anchors and Discrete
Optimization Problems

We next extend the results of Section 4.4 to the case
of a data-driven anchor, h(#i1). As in Section 4.3, our
bounds will depend on a measure of complexity of P,
namely, the dimension of spn(P)={X%_, 0.q,0/€
R,q,€P,t=1,...,d} when viewed as a linear sub-
space. Denote this dimension by dy, and note 1 <
dog < d. A canonical example might be when P consists
of mixture distributions with dy (specified) compo-
nents. We prove the following.

Theorem 4.6 (Shrunken-SAA with Data-Driven Anchors for
Discrete Problems). Suppose that |Xy| < oo for each k, that
span(P) has dimension dy, and that Assumptions 3.1, 4.1,
and 4.3 hold. Then, there exists a universal constant A such
that, for all 0 < 6 < 1/2, we have that, with probability at
least 1 -0,

SubOpt;, x (a5*)

Amax <
<A- C/\— J do log (Nmax Z|Xk|)

min k=1

log®/?(K) log?(1/6)

VK '
Theorem 4.7 (Shrunken-SAA with hp for Discrete
Problems). Under the assumptions of Theorem 4.6, there

exists a universal constant A such that, forany 0 < 6 < 1/2
with probability at least 1 — 0, we have that

SubOpt ¢ (a,?;SAA,hp(m))

K
< A hma J dp log (Nmax Z|Xk|)
Amin k=1

log®*(K) log?(1/6)
VK .

Both proofs follow the strategy from Section 4.1
(see Section C.4 of Online Appendix C) and, hence,
lead to the same right-hand sides. However, the left-
hand sides are distinct. We sketch the main ideas of
the proof:

We first bound |{ Z-°%(a, q) :
a>0,q € P}|. The key is to generalize the argument
of Section 4.4 from counting break points in a uni-
variate piecewise-affine function to counting the
pieces in a multivariate piecewise affine function.
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First, we reparameterize our policies. Let the col-
umns of V € R™% be a basis of spn(P). Then, inter-
preting 0/0 as e/d € Ay,

{Z(a,q): @ >0,q9 € P}|
< {(xk(a, q,mk))le cqeEP,a> 0}’

< [{elolly, w/ llewlly sine) s -
w € span(P) N R?}|

= [{(x(IVOlly, VO/ VOl s, -
0 € R™, VO e RY}|.

(4.4)

Hence, it suffices to bound the right-most side of
Equation (4.4). An advantage of this 0-parameteri-
zation over the original (a,q)-parameterization is
that, for N > 0,

x(|[VOlly, VO/|[VO|| fing) € arg min (VO+iy) "cr(x),
(4.5)

and 0 occurs linearly in this representation.
The set of O where we are indifferent between
Xxi, Xxj € Xy in Equation (4.5) is the hyperplane

Hyy; = {0 € R : (VO + 7)™ (cx(xis) — ce(xi)) = 0}
(4.6)

Consider drawingall 3K | (P;k |) such hyperplanes, asin

Figure 4. Then, for any 6 € R%, consider the poly-
hedron given by the equality constraints of those
hyperplanes containing 6 and the inequality con-
straints defined by the side on which 0 lies for the
remaining hyperplanes. The relative ordering of {(VO +
fitg) " (xg) = x¢ € X} is constant for all 0 in this poly-
hedron’s interior. Hence, (x(||V 0|, VO/||V 0|, ﬁzk)),f:l

Figure 4. (Color online) Solution-Induced
Hyperplane Arrangement

:»a;k(HV0||17V0/HV9”1’mk) .

4 is constant Vk =1, ..., K .........

.............................................................................................

(VO + 1) ei(zyy) = (VO + 1) Ter(xr2)

KA

b1

Notes. The hyperplanes Hy; (see Section 4.6) in RY are indifference
curves between solutions x;; and x;; in Section 4.5. The total ordering
oneachset X induced by the objective of Section 4.5 is thus constant on
the interior of the fully specified polyhedra defined by the hyperplanes.

isalso constant. Thus, tobound {Z(«a, q) :a > 0,9 € P},
it suffices to count the number of such polyhedra. We
do this counting in Section C.4 of Online Appendix C.
A similar argument (with a different hyperplane ar-
rangement) can be used to bound the cardinality of
{2°°(ar, q) : @ > 0,q € P}. We summarize the results
as follows.

Lemma 4.4 (Size of Discrete Solutions Sets). Under the
assumptions of Theorem 4.6,

K do
HZ(a,q):a>0,g € P}| < (Z|Xk|2) /
k=1
K do
{2 @ :a20geP)<1+K8, (Zlelz) ~
k=1

Importantly, both bounds are polynomial in K if the
| Xk|’s are bounded over k. We then apply Theorem 4.1
to bound the maximal deviations in Lemma 4.1,
proving the theorems.

4.6. Performance Guarantees for
Continuous Distributions

None of the bounds in Theorems 4.2-4.7 or Algo-
rithm 1 depend on d, the size of the support of p,,
suggesting that similar guarantees might hold for
continuous distributions. In Online Appendix F, we
prove such results for strongly convex optimization
problems by discretizing and taking a limit as the
granularity tends to zero. The details are straightfor-
ward. Unfortunately, for discrete optimization prob-
lems, it is not clear that similar results hold without
additional assumptions. Again, see Online Appendix F.

5. The Sub-Optimality-Instability
Trade-Off: An Intuition for Data Pooling

Shrunken SAA also provides intuition into when and
why data pooling improves upon decoupling. For
simplicity, first consider a non-data-driven anchor p,,.
Lemma 3.1 shows that E[Zk(a,p,)| = E[Zioo(a,po)].
Theorems 4.2 and 4.5 further establish that, under
mild conditions,

Zx (a, Po) - ZIL<OO
—_———

True Performance of a

< @,,(1/\/?) .

Stochastic Error

(@py) |

LOO Performance of a

sup|

a>0

Hence, optimizing ZK(a,pO) over « is roughly equiv-
alent to optimizing Z;OO(a,po) for large K.
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A simple algebraic manipulation then shows that

ZL(OO (c, o) = N)\l (SAA SubOpt(a) + Instability (a)
+ SAA(O)),
where
SAA-SubOpt(a)
= _Z Z mkl(ckz xk(a pO’mk)) - Ck’(xk(o Pos mk)))
K& =
Instability(a)
1 K d
= E;‘ Z;‘ ritgi(cii (e (e, po, it — e1)) = cui (xe(cv, po, 1itk))),
SAA(0)
1 K d
= EZ Z Thkicki(Xk(O,PO/ ﬁlk))r

and SAA(0) does not depend on a. Hence, optimizing
00
Zx x (a,p,) is roughly equivalent to

m>151 SAA-SubOpt(a) + Instability(a).

We term this last optimization the “Sub-Optimality-
Instability Trade-Off.”

For intuition, SAA-SubOpt(a) is nonnegative and
measures the average degree to which each xi(a, p,,
fiy) is suboptimal with respect to a (scaled) SAA
objective. It is minimized at & = 0, and we expect it is
increasing in a. By contrast, Instability(«) measures
the average degree to which the (scaled) performance
of xi(a, po, fix) changes in-sample if we use one fewer
data point. Itis minimized at @ = oo, since xi (oo, p,, 7ity)
does not depend on the data at all. One might expect
Instability(a) to be decreasing. However, although
Instability(a) is often decreasing for large «, its be-
havior for small a can be subtle. In sum, intuitively,
Shrunken-SAA improves performance by seeking an
a in the “sweet spot” that balances this fundamental
trade-off.

This trade-off also illuminates when data pooling
offers an improvement. Intuitively, a5~SAA > 0 only if
Instability(0) is large and decreasing fast enough that
the (in-sample) suboptimality incurred by choosing a
small positive a is outweighed by the increased sta-
bility. Thus, we intuit that data pooling offers a
benefit whenever (i) the SAA solution is unstable, (ii)
the fully shrunken solution xi(co,p,, ) is not too
suboptimal, and (iii) K is large. In particular, when Ny
is small for most k, the SA A solution is likely to be very
unstable. Hence, intuition suggests that data pooling
provides a benefit whenever Ny is small but K is large,
that is, the small-data, large-scale regime.

The intuition for a data-driven anchor h(sm) is
similar. The proofs of Theorems 4. 3 and 4.6 show
that the approximation Zg(a, py) ~ ZK (a p,) holds
uniformly in a and p,. Thus, the Sub-Optimality-
Instability Trade-Off also holds for the data-driven
anchor h(in).

The Sub-Optimality-Instability Trade-Off resem-
bles the bias-variance trade-off; however, it applies to
general optimization problems, not just MSE. Even in
the case of MSE, these trade-offs still exhibit differ-
ences (see Section D.2 of Online Appendix D).

Finally, for simple problems, we may analytically
study the benefits of data pooling (see Theorem 2.1),
but, for more complex problems, such a study is
not possible. Fortunately, both SAA-SubOpt(a) and
Instability(a) can be evaluated directly from the data.
Thus, evaluating the Sub-Optimality-Instability Trade-
Off for various a for a particular instance explains
why (or why not) data pooling improves performance
for that instance. We illustrate this idea in Section D.1
of Online Appendix D.

6. Computational Experiments

We next study the empirical performance of Shrunken-
SAA on synthetic and real data. All code is available at
https: // github.com/vguptal/JS_SAA. Our focus is
assessing the degree to which Shrunken-SAA is ro-
bust to violations of the assumptions underlying
Theorems 4.2—4.7. Specifically, we ask how Shrunken-
SAA performs when (i) K is small to moderate;
(ii) each Ny is fixed and nonrandom; (iii) the true Py do
nothave finite, discrete support; or (iv) N grows large.

Each subproblem is a newsvendor problem with
critical fractile s = 95%. We use real sales data from a
chain of European pharmacies to specify the distri-
butions p, (see Section E.3 in Online Appendix E).

We compare 10 policies: The SAA and KS polices

are our decoupled benchmarks. Recall that, for the
newsvendor problem, SAA is also the optimal solu-
tion to a distributionally robust formulation using a
Wasserstein ambiguity set (Esfahani and Kuhn 2018).
We define KS to be an optimal solution to a dis-
tributionally robust formulation of the newsvendor
problem using the Kolmogorov-Smirnov ambiguity
set (see Section E.2 in Online Appendix E).
The policies JS-Fixed, S-SAA-Fixed, and Oracle-Fixed
each shrink toward the uniform distribution. JS-
Fixed, x(ap ,Po, ), pools according to Theorem 2.1;
S-SAA- leed x(as SAA Py 1), is our Shrunken-SAA
algorithm; and Oracle-leed x(ap , Py, M) is the ora-
cle shrinkage.

The policies S-SAA-Beta and Oracle-Beta each
shrink toward a data-driven anchor in P, a set of
scaled beta distributions (see Section E.3 of Online
Appendix E). S-SAA, x(a$SAA, hip (i), 1), uses hp, and

Oracle-Beta, x(a%R, q%R,m), uses the oracle anchor.
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Finally, the policies JS-GM, S-SAA-GM, and Oracle-
GM each shrink toward the grand-mean anchor, p&M.
JS-GM pools according to Theorem 2.1, S-SAA-GM is
our Shrunken-SAA Algorithm, and Oracle-GM is the
oracle pooling.

Contrasting the JS policies and the decoupled pol-
icies illustrates the value of data pooling in a “generic”
fashion. Contrasting the Shrunken-SAA policies and
JS policies quantifies the additional benefit of data
pooling in an optimization-aware fashion. Contrasting
the “Beta” and “Fixed” anchor versions quantifies the
value of a good anchor.

Before presenting details, we summarize our main
findings. When N is moderate to large, all methods
perform comparably to the full-information solution.
When N is small to moderate, however, our Shrunken-
SAA policies provide a significant benefit over SAA
and a substantial benefit over ]S variants that do not
leverage the optimization structure. This is true even
for moderate K (K < 100) and even when the Ni’s are
fixed (violating Assumption 3.1). The value of d has
little effect on the performance of Shrunken-SAA; it
strongly outperforms decoupling, even as d — oo.
Finally, our GM heuristic has very strong perfor-
mance, comparable to the Beta variants that optimize
the choice of anchor, at a much smaller computa-
tional cost.

We present all results as “% Benefit over SAA”; that
is, bigger values are better.

6.1. An Idealized Synthetic Data Set

We first consider an ideal setting. Specifically, af-
ter discretizing demand for each store into d =20
buckets, we set p, to be the (store-level) empirical
distribution of demand. We then simulate synthetic
data according to Section 2.1 under Assumption 3.1.

Figure 5. (Color online) Robustness to Assumption 3.1
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We train each policy and then evaluate its true per-
formance using the p,. We repeat this process 200
times. The left panel of Figure 5 shows the average
results for a subset of the policies (see Table EC.1 in
Online Appendix E for all policies).

Shrunken-SAA significantly outperforms decou-
pling even for K as small as 10. For large K, the
benefit is as large as 10%-15%. Both Shrunken-SAA
policies converge quickly to their oracle benchmarks.
JS policies also outperform the decoupled solutions
but by a smaller amount (5%-10%). Shrinking to the
grand mean outperforms shrinking to the uniform
distribution, since, as observed earlier, the true dis-
tributions are far from uniform and have quantiles far
from the uniform quantile. The grand-mean policies
perform comparably to our Beta policies (see Ta-
ble EC.1).

Section E.4 in Online Appendix E presents addi-
tional results such as the standard deviation of per-
formance and the amount of pooling for each variant.
Overall, Shrunken-SA A methods are less variable and
pool more than competitors. In particular, S variants
pool very little because of the demand heterogeneity.

6.2. Relaxing Assumption 3.1

We next repeat the experiment of the previous section
but now simulate data with N; = 10 for all k and all
runs. Results are shown in the second panel of Figure 5
and in Section E.4 in Online Appendix E. We see the
same qualitative features. Specifically, our Shrunken-
SAA methods converge to oracle performance, and,
even for moderate K, they significantly outperform
decoupling. The JS methods offer a much smaller
improvement over SAA. Many of the other features
with respect to convergence in @ and standard devi-
ation of the performance are also qualitatively similar.

(b)

—o— Oracle-GM
-4 -S-SAA-GM
—®-JS-GM

—+{— Oracle-Fixed
- %4 - S-SAA-Fixed

- JS-Fixed

10 100 1000

N, =10 (non-random)

Notes. Simulated data. In panel (a), the amount of data per store follows Assumption 3.1. In panel (b), it is fixed (nonrandom) for all runs. Error

bars show +1 standard error.
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Figure 6. (Color online) Historical Backtest
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Notes. We evaluate our policies on historical data using d = 20. Error
bars show +1 standard error.

These results support our claim that Assumption 3.1
is not crucial to performance.

6.3. Historical Backtest

We next consider a more realistic setting. We employ
repeated random subsampling validation with our
data to assess each method: for each store, we select
10 daysrandomly from the data set for training and an
additional 10 days for testing. Since store k may be
missing data on these days, we train (respectively, test)
with at most 10 points. We use repeated, random sub-
sampling validation instead of five-fold cross-validation
in order to limit the number of data points Ny used in
each subproblem.

Figure 6 shows results with d = 20 for a subset of
policies. See Table EC.3 in Online Appendix E for all
policies. Importantly, we see the same features as in
our synthetic data experiment: our Shrunken-SAA
methods converge to oracle optimality and offer a
substantive improvement over SAA for large enough
K. They also outperform JS variants that do not le-
verage the optimization structure.

6.4. Other Experiments with Synthetic and Real Data
Sections E.6-E.8 in Online Appendix E study the ro-
bustness of Shrunken-SAA to the number of support
points d, its performance as N — oo, and compares
computationally cheaper variants of the algorithm
that substitute two-fold or five-fold cross-validation
for the LOO validation step. We omit details for space.
Generally, we find that (i) Shrunken-SAA is quite
robust to d; (ii) as N increases, Shrunken-SAA retains
many of SAA’s strong large-sample properties; (iii)
Other forms of cross-validation perform quite well
and are viable alternatives in computationally lim-
ited settings.

7. Conclusion

We introduce the data-pooling phenomenon for sto-
chastic optimization—when simultaneously solving
many data-driven stochastic optimization subprob-
lems, pooling data across subproblems may improve

performance, even when (1) subproblems are unre-
lated and (2) data for each subproblem are inde-
pendent. We propose Shrunken-SAA, a simple al-
gorithm that exploits this phenomenon, and prove
that, as the number of subproblems grows large,
Shrunken-SAA identifies whether pooling can im-
prove upon decoupling and, if so, the ideal amount to
pool, even if the amount of data per subproblem is
fixed and small. Empirical evidence further suggests
that Shrunken-SAA offers significant benefits for a wide
variety of problems. We hope that our work inspires
researchers to think of data pooling as an “additional
knob” to leverage in data-driven decision-making
under uncertainty.
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Endnotes

'Section 4.6 discusses relaxing this discrete support assumption.
2This solution is nonunique, and the solution T[f;; > 1+ le 1 —por)lis
also valid. We adopt the former solution in what follows, but our
comments apply to either solution.

*In particular, E[Wf(W)] = Z%_, wf (w)e ™ ;‘U—U, =AXS f (w)e™? (;‘):1) =
AE[f(W+1)].

*Strictly speaking, equation (7.5) of Pollard (1990) shows that
EJ| supteT|WK(t) - ]E[WK(t)]“V] < ZVCzE[]F’]K‘V, for some constant C,
that relates the £, norm of a random variable and a particular Orlicz
norm. In Lemma B.4 in Online Appendix B, we prove that it suf-
fices to take C, = 51/7’\/212. The result then follows from Mar-
kov’s inequality.

$Recall that D(e, S) is defined with respect to {,-distance.
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