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ABSTRACT. — This paper centers around proving variants of the Ax–Lindemann–
Weierstrass (ALW) theorem for analytic functions which satisfy Schwarzian di�er-
ential equations. In previous work, the authors proved the ALW theorem for the
uniformizers of genus zero Fuchsian groups, and in this work, we generalize that
result in several ways using a variety of techniques from model theory, di�erential
Galois theory and complex geometry.

RÉSUMÉ. — Dans cet article, nous démontrons des variantes du théorème d’Ax–
Lindemann–Weierstrass (ALW) pour des fonctions analytiques satisfaisant des équa-
tions di�érentielles de type « Schwarzienne ». Dans des travaux antérieurs, nous avons
prouvé le théorème ALW pour les uniformisantes de groupes fuchsiens de genre zéro.
Dans ce travail, nous généralisons ce résultat de plusieurs manières en utilisant des
techniques variées provenant de la théorie des modèles, de la théorie de Galois di�é-
rentielle et de la géométrie complexe.
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1. Introduction

Let X and Y be algebraic varieties over C and let „ : X
an æ Y

an be a
complex analytic map which is not algebraic. In this case, for most algebraic
subvarieties X0 µ X, the image „(X0) is not algebraic. The pairs of algebraic
subvarieties (X0, Y0) with X0 µ X and Y0 µ Y such that „(X0) = Y0 are
called bi-algebraic for „. Bi-algebraic subvarieties should be rare and reveal-
ing of important geometric aspects of the analytic map „. This manuscript
centers around the problem of determining the bi-algebraic subvarieties of
analytic maps and several related problems of functional transcendence. The
maps we consider satisfy nonlinear di�erential equations of a certain general
form.

The condition that X is an algebraic variety is in fact slightly too re-
strictive for many of the specific interesting examples both here and in the
literature, and so generally we will allow X to be an open subset of an
algebraic variety. Then an algebraic subvariety of X is a set given by the
vanishing of a finite system of polynomial equations on the open set. We will
be especially interested in the case that X is the universal cover of Y , where
open domains such as H, the complex upper half-plane arise naturally. For
a survey of recent developments in this area mainly centering on approaches
using o-minimality, see [11]. Our approach, started in [5], is much di�erent.

We approach the problem through studying the di�erential equations
satisfied by the function „. Then the bi-algebraic subvarieties correspond in a
natural way to algebraic relations between solutions of systems of di�erential
equations. The classification of such relations for a given system is one of the
central preoccupations of di�erential Galois theory and the model theory of
di�erential fields, two of the central tools we employ. In [5], we solved the
bi-algebraicity problem with „ given by the map applying j� and its first two
derivatives to any number of coordinates in H

n, where j� is a uniformizing
function associated with the quotient �\H where � is a Fuchsian group of
the first kind and genus zero, and therefore �\H is a n-punctured sphere. In
this case, denoting a coordinate in the domain by t, we have that j�(t) is a
solution of the Schwarzian equation:

St(y) + 1
2(yÕ)2

R�(y) = 0,

where R� is a rational function with coe�cients in C, y
Õ = dy

dt
, and St(y) =

y
ÕÕÕ

yÕ ≠ 3
2
!

y
ÕÕ

yÕ

"2 denotes the Schwarzian. In this paper we wish to consider the
bi-algebraicity problem for solutions of an arbitrary (no assumption on the
rational function R) Schwarzian equation:

St(y) + 1
2(yÕ)2

R(y) = 0.
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In the case of a Fuchsian group �, the rational function R� depends on
the group � and the choice of a uniformizing function j�, and as there are
only countably many Fuchsian groups of the first kind of genus zero, the
results of [5] only apply to a very particular (and countable) class of rational
functions R. The bi-algebraicity problem has an equivalent statement in
terms of functional transcendence, see [5, 26]. We will, following [26], refer
to both forms as Ax–Lindemann–Weierstrass type theorems.

In this paper, we make two significant steps towards the solution of the
general bi-algebraicity problem for analytic functions satisfying Schwarzian
equations. In Section 4, we consider those R which are of the same general
form as those in the Schwarzian equations satisfied by analytic functions
which are uniformizers of Fuchsian triangle groups. In that case, the function
R�(y) takes the form

R–,—,“(y) = 1
2

3
1 ≠ —

≠2

y2 + 1 ≠ “
≠2

(y ≠ 1)2 + —
≠2 + “

≠2 ≠ –
≠2 ≠ 1

y(y ≠ 1)

4

where –, —, “ correspond to the angles of the triangle which is a fundamental
half domain for the triangle group �. In Section 4 we consider first the case
of “generic Schwarz triangle equations” where –, —, “ œ C are algebraically
independent over Q. In this case, we give a complete solution to the problem
of bi-algebraicity, even with di�erent such analytic functions applied to each
coordinate. The case of generalized triangle equations is generally interesting
(it includes, for instance the ALW result for the j-function associated with
elliptic curves), but it also allows for an important and interesting general-
ization of our ALW result from [5], which we describe next.

For a Fuchsian group of the first kind � the quotient �\H can be repre-
sented as an algebraic curve, not necessarily complete. By the genus of the
group � we mean the genus of the unique non singular completion of �\H.
In [5] we proved the ALW theorem for �\H genus zero. In Section 4.22 we
drop the assumption that �\H is genus zero, but assume that �\H is given
by an algebraic curve over Q

alg. Belyi [3] proved that any nonsingular pro-
jective algebraic curve over Q

alg gives a cover of the Riemann sphere which
is ramified at only three points. Belyi’s theorem allows us to apply our re-
sult for triangle groups to prove the ALW theorem in the case that �\H has
arbitary genus but is an algebraic curve over Qalg. We leave the general case
in which �\H is not assumed to be defined over Q

alg as an open problem
for future work. In Proposition 4.24, we also establish a nice general fact
showing that ALW results are not sensitive to finite index changes in �, a
result used implicitely in [6] for the modular group.

In our previous work, we intensively studied the Schwarzian equation with
R� the rational function coming from a genus zero Fuchsian group of the first
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kind. In Section 4 we generalized our work under various assumptions on the
form of the rational function R or of the field of definition of �\H, but pur-
sued similar conclusions as in [5]. The second setting we consider in Section 5
assumes only a generic hypothesis about the rational function R (that the
Riccati equation associated with the rational function R has no algebraic
solutions, this is related to the di�erential Galois group of the linearized
Schwarzian equation and it is satisfied by all uniformization equations), a
much more general setting than any of the previously mentioned work. In
this very general setting, we obtain slightly weaker results by characterizing
bi-algebraic curves rather than all varieties. Our results also allow for under-
standing the bi-algebraic curves for analytic maps (J1, J2) where J1, J2 are
solutions to Schwarzian equations associated with di�erent rational functions
R1, R2. The developments of Section 5 are interesting functional transcen-
dence results in their own right and point to the possibility of developing
generalizations of our results in [5] and Section 4.

Acknowledgements

This work was mainly done at the School of Mathematics at the Institute
for Advanced Study as a part of the 2019 Summer Collaborators Program.
We thank the Institute for its generous support and for providing an excel-
lent working environment. The authors also thank Peter Sarnak for useful
conversations during our time at IAS. We also would like to thank the anony-
mous referee for careful reading of the paper and for very helpful comments
and suggestions.

2. Model theory and di�erential algebra

In this section, we provide a concise introduction to the model theory of
di�erential fields, which we use in an essential way throughout much of the
paper. Our introduction is not meant to be comprehensive, but we hope it
provides the context and references for readers without a background in this
area. A di�erential ring R is a commutative unitary ring with a derivation

ˆ : R æ R. A derivation ˆ : R æ R is an additive homomorphism satisfying
Leibniz rule:

ˆ(xy) = xˆ(y) + ˆ(x)y.

Any di�erential ring has a subring of constants CR := {x œ R | ˆx = 0}.

When R is a di�erential ring, by R{x̄}, we denote the ring of di�erential
polynomials in variables x̄ = (x1, . . . , xn). R{x̄} is (as a ring) the ring of
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polynomials in x̄ and their derivatives of every order over R, equipped with
the natural derivation extending the derivation on R. When K is a di�er-
ential field and F/K is an extension of di�erential fields with a œ F , by
KÈaÍ denotes the di�erential field generated by a over K. All of the fields
considered in this text will be of characteristic zero.

Di�erential algebraic geometry (studying solution sets of systems of dif-
ferential polynomials over di�erential rings) along the lines of classical alge-
braic geometry was largely initiated by Ritt (see [13, 29]). The connection
to model theory began with Robinson [30], who axiomatized di�erentially

closed fields of characteristic zero, DCF0. We give the simpler axiomatiza-
tion of Blum [4]:

• The axioms of algebraically closed fields of characteristic zero.
• ˆ is a derivation.
• Given two nonconstant di�erential polynomials f , g in a single vari-

able x, such that the order of g is less than the order of f , there is
some x such that f(x) = 0 and g(x) ”= 0.

Di�erential fields K |= DCF0 satisfying the axioms were shown by Blum
to have quantifier elimination (Robinson shows a slightly weaker property
called model completeness). For the reader not familiar with the terminology
of model theory, we will give a geometric explanation of quantifier elimination
in this setting. Any di�erential field K comes equipped with the Kolchin

topology, in which the closed subsets of K
n are the zero sets of systems of

di�erential polynomials in n variables. The Ritt–Raudenbush Basis Theorem
implies that this topology is Noetherian and every closed set is given as
the zero set of a finite system of di�erential polynomial equations. Such
closed sets are called a�ne di�erential varieties. A constructible set in the
Kolchin topology is finite Boolean combination of closed sets. In this setting
of DCF0, quantifier elimination simply means that coordinate projections
of constructible sets are again constructible. Concretely, given a system of
di�erential polynomial equations(1)

p1(x̄, ȳ) = 0
...

pk(x̄, ȳ) = 0
q(x̄, ȳ) ”= 0,

(1) Any system of di�erential polynomial equations and inequalities is equivalent to
one of the form given.
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then the set {x̄ œ K | ÷ ȳ, p1(x̄, ȳ) = · · · = pk(x̄, ȳ) = 0, q(x̄, ȳ) ”= 0} is also
given by some system of di�erential polynomial equations and inequalities
in x̄ over K.

Above, we described the axioms of di�erentially closed fields and quanti-
fier elimination informally using systems of algebraic di�erential equations.
Next, we will describe the model theoretic perspective more formally. Our
discussion assumes some familiarity with the basic notion of a first order
formula in language, and we direct the reader to Section 1 of the very good
survey article [19] for more details about the basics of model theory.

The model theory of di�erential fields employs the language of di�erential
rings,

Lˆ = (0, 1, +, · , ˆ).
The above axioms of Blum can be written as first order sentences in the
language Lˆ , while the axioms of algebraically closed fields (used as part
of Blum’s axioms) can be written as first order sentences in the simpler
language of rings,

L = (0, 1, +, · ).

If K is a di�erentially closed field, F a subfield, b œ F
m and „(x̄, ȳ) is an

Lˆ-formula with free variables x and y, then the set X defined by
X := {a œ K

n | „(a, b) is true}
= {a œ K

n | K |= „(a, b)}

is called a definable set with parameters (i.e., the tuple b) from F or an F -
definable set for short. For the reader uncomfortable with the general notion
of a definable set, recall, in this setting, by quantifier elimination, „(x̄, ȳ)
can be assumed to be given by a system of di�erential polynomial equations
and inequalities (as in the discussion above).

We now assume that U is a universal di�erential field in the sense of [12];
equivalently, we assume that U is a saturated di�erentially closed field in
the sense of model theory [19, Section 6]. So all di�erential fields discussed
below are assumed to embed in U . Let C µ U denote the constant field. In
later sections of the paper, we will often assume that C is the field of complex
numbers (often, for the results we pursue, this assumption entails no loss of
generality).

Fact 2.1. — The field C is algebraically closed and any definable subset

of Cn
definable with Lˆ-formulas using parameters from a di�erential field

F is definable with L-formulas using parameters from CF . The F -definable

subsets of Cn
are precisely the CF -constructible subsets of Cn

in the Zariski

topology.
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A proof can be found in [8, Lemma 1.11] and [9, Fact 1.6]. From Fact 2.1
together with quantifier elimination, one can obtain the following result
which we use extensively in later sections:

Fact 2.2. — Let ◊(x1, x2, . . . , xn) be a Lˆ-formula with parameters in

a subfield field F of C. Suppose we have (–1, –2, . . . , –n) œ Cn
which is

a generic point on some irreducible algebraic variety V over F such that

U |= ◊(–1, –2, . . . , –n). Then for an F -definable (thus Zariski-constructible)

Zariski dense subset U of V , we have U |= ◊(ā) for all ā œ U .

To see that this fact holds,(2) note that the collection W of elements
ā œ Cn such that U |= ◊(ā) is an F -definable subset of Cn. By Fact 2.1,
we have that W is an F -constructible subset of Cn in the Zariski topology.
But since the formula ◊ holds for a generic point –̄ of V over F , the set
U = W fl V must be Zariski dense in V .

Both of the previous facts center around establishing structural results
around definable sets in DCF0. Developing a deep structure theory for de-
finable sets (including e.g. dimension theory and understanding invariants
of definable sets) is a central goal in most parts of model theory. Such a
structural theory is, in general, impossible to develop due to certain phe-
nomena which arise in general in first order logic (e.g. incompleteness and
undecidability). The approach of much of modern model theory is to make
some tameness assumption about the class of structures one considers, and
then to attempt to understand definable sets in the more restrictive setting.
For instance, a structure is o-minimal if it is totally ordered and the defin-
able sets in one variable are finite unions of points and open intervals. Many
disparate modern applications of model theory share this same very general
theme.

With the new axiomatization of DCF0, Blum [4] was able to observe that
DCF0 satisfies a strong structural property, called Ê-stability. So, deep re-
sults from that setting can be brought to bear in understanding constructible
sets in the Kolchin topology. The previous two facts can be seen as a special
case of a more general principle called stable-embeddedness which holds in
even more general settings [28]. It is not feasible to give a comprehensive
and accessible overview of Ê-stability, but in the portions the next section of
the paper where the theory is utilized, we attempt to give a self-contained
statement and explanation of the relevant results as the need arise (for in-
stance, in Section 4.2). The notions we use from geometric stability theory
can be found in the comprehensive reference [27].

(2) This fact is mild a generalization of [22, Fact 2.11].
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3. Summary of the Genus zero case

Let us begin with a quick review of the results in [5]. We recall them here
so that the paper is self-contained.

3.1. Schwarzian Equation

By a Schwarzian di�erential equation, we mean an equation of the form
St(y) + (yÕ)2

R(y) = 0. (ı)

where St(y) =
!

y
ÕÕ

yÕ

"Õ≠ 1
2
!

y
ÕÕ

yÕ

"2 denotes the Schwarzian derivative (Õ = d
dt

) and
R is a rational function over C. The equation naturally appears in the study
of automorphic functions. Indeed, the Riemann mapping theorem states that
if D is a non-empty simply connected open subset of C which is not all of
C, then there exists a biholomorphic mapping f from D onto the upper
half complex plane H. Furthermore, if D is bounded by a simple closed
contour, then f extends to a homeomorphism from the closure of D onto
H = H fi P

1(R). ⇥

In the case when D is a circular polygon with vertices v1, v2, . . . , vn and
with respective internal angles fi

–1
,

fi

–2
, . . . ,

fi

–2
, Schwarz (cf. [1, Section 5.8])

showed that there exist 2n real numbers a1, . . . , an and —1, . . . , —n such that
the (unique up to action of PSL2(R)) biholomorphic mapping J : D æ H

satisfies a Schwarzian equation (ı) with R given by

RJ(y) = 1
2

rÿ

i=1

1 ≠ –
≠2
i

(y ≠ ai)2 +
rÿ

i=1

—i

y ≠ ai

.

Example 3.1. — In the special case when D is a circular triangle
—(–, —, “) with vertices v1, v2, v3 and with respective internal angles fi

–
, fi

—

and fi

“
, one can completely determine the constants appearing in the equa-

tions. Indeed, if we impose that J sends the vertices v1, v2, v3 to Œ, 0, 1
respectively, then

R(y) = R–,—,“(y) = 1
2

3
1 ≠ —

≠2

y2 + 1 ≠ “
≠2

(y ≠ 1)2 + —
≠2 + “

≠2 ≠ –
≠2 ≠ 1

y(y ≠ 1)

4
.
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The function J(t) (as well as its inverse) is called a Schwarz triangle function.
On the other hand, by a Schwarz triangle equation we mean the equation
(ı) where the parameters –, —, “ are any complex numbers. By a generic
Schwarzian triangle equations we mean the ODE (ı) with R = R–,—,“ and
such that –, —, “ are algebraically independent over Q.

Some di�erential algebraic properties of solutions of equation (ı) can be
understood by means of its linearization. Let us consider the following second
order linear di�erential equation

d2
Â

dy2 + 1
2R(y)Â = 0. (3.1)

A direct substitution shows that the logaritmic derivative u = d log Â

dy
of any

solution satisfies the Riccati equation
du

dy
+ u

2 + 1
2R(y) = 0. (3.2)

Moreover, if Â1 and Â2 are linearly independent solutions of (3.1) then the
quotient t = Â1

Â2
satisfies d2

t

dy2 = ≠2u
dt

dy
and it follows,

Sy(t) = R(y). (3.3)

From the inversion formula for Schwarzian derivatives we obtain that the
inverse function of t is a solution of (ı). The definition of t as the quotient of
two linearly independent solutions of (3.1) ensures that the group of PSL2(C)
acts freely and transitively in the space of solutions of (3.3): if t1 and t2 are
two such solutions then t2 = at1+b

ct1+d
for certain a, b, c, d œ C with ad ≠ bc = 1.

Let us fix a local solution y(t) for (ı) and let t(y) be its inverse function. Let
us denote by ṫ, ẗ the derivatives of t with respect to y. We have

y
Õ = 1

ṫ(y)
, y

ÕÕ = ≠ ẗ(y)
ṫ3(y)

.

Let us consider C(t)ÈyÍ d
dt

the field of the variety defined by equation (ı), it
is C(t, y, y

Õ
, y

ÕÕ) endowed with the derivation

d
dt

= ˆ

ˆt
+ y

Õ
ˆ

ˆy
+ y

ÕÕ
ˆ

ˆyÕ
+

3
3
2

y
ÕÕ2

yÕ
≠ y

Õ3
R(y)

4
ˆ

ˆyÕÕ
.

If one does the same construction for the equation (3.3) we get a di�erential
field C(y)ÈtÍ d

dy
described by the field C(y, t, ṫ, ẗ) with derivation

d
dy

= ˆ

ˆy
+ ṫ

ˆ

ˆt
+ ẗ

ˆ

ˆ ṫ
+

3
3
2

ẗ
2

ṫ
+ R(y)ṫ

4
ˆ

ˆ ẗ
.
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By the above considerations we have an identity of fields (but not di�erential
fields),

C(t)ÈyÍ d
dt

= C(t, y, y
Õ
, y

ÕÕ) = C(y, t, ṫ, ẗ) = C(y)ÈtÍ d
dy

.

Such aforementioned di�erential structures are, of course, related. Both rep-
resent the same di�erential equation with di�erent choices of independent
variables; they are proportional, d

dt
= y

Õ d
dy

. The next proposition summa-
rizes the elements of di�erential Galois theory needed in this article for more
detail the reader may consult the booklet [16].

Proposition 3.2. — The di�erential field extension C(y) µ C(y)ÈtÍ is

a Picard–Vessiot extension with Galois group in PSL2(C). The following are

equivalent

(1) t, y, y
Õ
, y

ÕÕ
are algebraically independent over C.

(2) The di�erential Galois group Aut(C(y)ÈtÍ/C(y)) is PSL2(C).
(3) The Riccati equation (3.2) has no solution in C(y)alg

.

Proof. — Let us write t as the quotient t = Â1
Â2

of two solutions of (3.1).
Then C(y) µ C(y)ÈÂ1, Â2Í is a Picard–Vessiot extension. Its di�erential Ga-
lois group, Aut(C(y)ÈÂ1, Â2Í/C(y)), is represented in SL2(C) as a group of
special linear matrices,

5
Â1
Â2

6
‘æ

5
a b

c d

6 5
Â1
Â2

6
.

It follows, from Galois correspondence, that the intermediate extension
C(y) µ C(y)ÈtÍ is a Picard–Vessiot extension whose di�erential Galois group
Aut(C(y)ÈtÍ/C(y)) is the image of Aut(C(y)ÈÂ1, Â2Í/C(y)) in PSL2(C).

Let us see the equivalence.

(1) ∆ (2). — In such case the transcendence degree of C(y) µ C(y)ÈtÍ is
3, so its di�erential Galois group is the only 3-dimensional group of PSL2(C).

(2) ∆ (3). — As it is shown in the preliminary considerations to
Kovacic’s algorithm; see [14, Section 1.3] the di�erential Galois group of
C(y) µ C(y)ÈÂ1, Â2Í is a proper subgroup of SL2(C) if and only if the asso-
ciated Riccati equation has an algebraic solution. Having into account that
the image of any proper subgroup SL2(C) is PSL2(C) is also a proper sub-
group we finish.

(3) ∆ (1). — By the same reasons, the di�erential Galois group of
C(y) µ C(y)ÈÂ1, Â2Í is SL2(C). Thus, by Galois correspondence the dif-
ferential Galois group of Aut(C(y)ÈtÍ/C(y)) is PSL2(C) of dimension 3, its
transcendence degree over C(y) is thus 3 and then t, y, y

Õ
, y

ÕÕ are algebraically
independent over C. ⇤
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3.2. Irreducibly à-la-Umemura and strong minimality

We fix a universal di�erentially closed field U and assume that the field
of constants of U is C.

Definition 3.3. — A definable set Y is said to be strongly minimal if

it is infinite and every definable subset is finite or co-finite.

Strong minimality is a central notion in model theory for both appli-
cations and theoretical reasons. For instance, the Baldwin–Lachlan theo-
rem gives a characterization of uncountably categorical theories in terms of
strongly minimal sets [2]. If the definable set Y is defined by an ODE of the
form y

(n) = f(t, y, y
Õ
, . . . , y

(n≠1)), where f is rational over C (like in the case
of the Schwarzian equations), then Y is strongly minimal if and only if for
any di�erential field extension K of C and solution y œ Y, tr. deg.

K
KÈyÍ = 0

or n. Strong minimality has many interesting consequences on the relations
between solutions of the equation.

Definition 3.4. — Let Y be a strongly minimal set defined by an order

n ODE over C. Then

(1) Y is geometrically trivial if for any di�erential field extension K

of C and for any distinct solutions y1, . . . , ym, if the collection con-

sisting of y1, . . . , ym together with all their derivatives y
(j)
i

up to

order n ≠ 1 is algebraically dependent over K then for some i < j,

the collection yi, yj together with their derivatives is algebraically

dependent over K.

(2) Y is strictly disintegrated if for any di�erential field extension K

of C and y1, . . . , yn are distinct solutions that are not algebraic over

K, then

tr. deg.
K

K(y1, y
Õ

1, y
ÕÕ

1 , . . . , yn, y
Õ

n
, y

ÕÕ

n
) = 3n.

Any strongly minimal set can be given the structure of a matroid (or
pregeometry) and the notion of geometric triviality has its origin from ma-
troid theory. An exposition of this very general model theoretic phenomenon
and its application to DCF0 can be found in [18]. The papers [22] and [23]
discuss strict disintegratedness and the related notion Ê-categoricity in more
details.

For order 1 definable sets defined over C, (so in particular autonomous
di�erential equations), strong minimality implies geometric triviality.

Fact 3.5 ([5, Proposition 5.8]). — Let Y be a strongly minimal set of

order > 1 and suppose that Y is defined over C. Then Y is geometrically

trivial.
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Schwarzian equations are autonomous and we aim to prove that alge-
braic relation between theirs solutions have very specific arithmetic origins.
Proposition 3.2 can be seen as the 0-step version of strong minimality theo-
rem below has it involves no field extensions.

Fact 3.6 ([5, Theorem 3.2]). — Let (K, ˆ) be any di�erential field exten-

sion of C and let us assume that the Riccati equation (3.2) has no algebraic

solution. For any solution jR of the Schwarzian equation (ı) we have that

tr. deg.
K

KÈjRÍ = 0 or 3.

In other words, the set defined by the equation (ı) is strongly minimal.

A particular case of strong minimality already appear in the work of
H. Umemura on the irreducibility of Painlevé equations [36, 37]. Follow-
ing the classification of transcendency of solutions of di�erential equations
started by Painlevé in his 21st Leçon de Stockholm [25], Umemura defined
the notion of irreducible equation ([36]) and proved the irreducibility of the
first Painlevé equation. Then, for a second order di�erential equation with-
out algebraic solutions, irreducibility is a consequence of the condition (J)
(see [37, p. 169]).

Umemura’s condition (J) is equivalent to strong minimality. Umemura’s
theorem is stated in the case of second order di�erential equation. It is not
hard to generalize Umemura’s work to higher order equations. A general
statement is given by: If a di�erential equation defines a strongly minimal

set, then its generic solution is not contained in a di�erential field obtained by

successive iteration of strongly normal extensions and extensions by solutions

of lower order di�erential equation. While not published anywhere, all the
ingredients needed to prove this statement can be found in [23, Appendix A]
and [21, Chapter 3].

3.3. Fuchsian triangle groups

We will now describe the main object of study of the paper [5]. We will re-
strict ourselves to Fuchsian triangle groups. For details about other Fuchsian
groups of genus zero, we direct the reader to Section 2 of that paper.

Let �(k,l,m) µ PSL2(R) be a Fuchsian triangle group(3), that is assume
that �(k,l,m) is a Fuchsian group of the first kind with signature is (0; k, l, m).
It is known that �(k,l,m) is a subgroup of index 2 of the group generated by
the reflections in the sides of a hyperbolic triangle —(k, l, m); namely circular

(3) In the remainder of the text all triangle groups will be assumed Fuchsian.
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triangles such that the parameters k, l, m satisfying the relation 1
k

+ 1
l
+ 1

m
<

1 and such that k, l, m œ N fi {Œ}. The group �(k,l,m) has the following
presentation

�(k,l,m) =
+
g1, g2, g3 œ PSL2(R)

-- g
k

1 = g
l

2 = g
m

3 = g1g2g3 = I
,

and acts on H by linear fractional transformation: for
!

a b

c d

"
œ �(k,l,m) and

· œ H, 3
a b

c d

4
· · = a· + b

c· + d
.

We will assume, without loss of generality, that 2 6 k 6 l 6 m 6 Œ.

Example 3.7. — The group PSL2(Z) is a triangle group of type (0;2,3,Œ).
It is well known that the generators of SL2(Z) can be taken to be

T =
3

1 1
0 1

4
, S =

3
0 ≠1
1 0

4
.

By setting g1 = ≠S, g2 = ≠T
≠1

S and g3 = T we have that

SL2(Z) =
+
g1, g2, g3

-- g
2
1 = g

3
2 = g1g2g3 = ≠I

,
.

We have that the Schwarz triangle function J(k,l,m)(t) for a hyperbolic
triangle —(k, l, m) satisfies the Schwarzian equation (ı) with the rational
function RJ given as in Example 3.1 and with – = k, — = l, “ = m (cf. [1,
Chapter 5]). Very importantly, the functions J(k,l,m)(t) are automorphic uni-
formizers for �(k,l,m):

J(k,l,m)(g · ·) = J(k,l,m)(·) for all g œ �(k,l,m) and · œ H.

The first two main results of [5] are as follows

Fact 3.8 ([5, Theorem 2.12]). — Assume that —(k, l, m) is a hyperbolic

triangle, that is assume that k, l, m œ Nfi{Œ} and satisfy the relation
1
k

+ 1
l
+

1
m

< 1. Then the set defined by the ODE (ı) (with R–,—,“ as in Example 3.1

and setting – = k, — = l, “ = m) is strongly minimal and so geometrically

trivial.

Fact 3.9. — Assume that the set defined by the Schwarzian equation

(ı) is strongly minimal and let K be any di�erential field extension of C.

Then for any distinct solutions y1, . . . , yn of (ı) not in K
alg

, if there is an

algebraic relation between

y1, y
Õ

1, y
ÕÕ

1 · · · , yn, y
Õ

n
, y

ÕÕ

n

over K, then there is a polynomial P œ C[X1, X2] and some i < j such that

P (yi, yj) = 0
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This fact is obtained by putting together several results from [5]: If the
set defined by (ı) is strongly minimal, it follows from Fact 3.5 that it also
is geometrically trivial. So for any distinct solutions y1, . . . , yn of (ı) not in
K

alg, if there is an algebraic relation between y1, y
Õ
1, y

ÕÕ
1 · · · , yn, y

Õ
n
, y

ÕÕ
n

over K,
then for some i < j there is an algebraic relation between yi, y

Õ

i
, y

ÕÕ

i
, yj , y

Õ

j
, y

ÕÕ

j

over K (indeed over C). But then [5, Theorem 5.10] gives the desired result
(see also [5, Remark 5.14]).

A natural diving lines among the triangle groups is the notion of arith-
meticity. This notion plays a central role when tackling functional transcen-
dence questions. We now give some details (for more see [38]).

Let F be a totally real number field of degree k + 1 and denote by OF

its ring of integers. Let A be a quaternion algebra over F that is ramified at
exactly one infinite place, that is,

A ¢Q R ƒ M2(R) ◊ Hk

where H is Hamilton’s quaternion algebra
!

≠1,≠1
R

"
. Let fl be the unique

embedding of A into M2(R) and let O be an order in A, namely a finitely
generated OF -module such that O ¢OF F ƒ A. The image fl(O1) of the
norm-one group of O under fl is a discrete subgroup of SL2(R). We denote
by �(A, O) the projection in PSL2(R) of the group fl(O1).

Definition 3.10. — A triangle group �(k,l,m) is said to be arithmetic if

it is commensurable with a group of the form �(A, O).

Recall that two subgroups G and H of PSL2(R) are commensurable,
denoted by G ≥ H, if their intersection G fl H has finite index in both G

and H. We now explain how commensurability and arithmeticity give rise
to polynomials that violates the algebraic independence of solutions. First
let us recall some facts about commensurable Fuchsian groups.

Fact 3.11 ([32, Proposition 1.30 and 1.31]). — Let � and �1 be two

commensurable Fuchsian groups, i.e., assume � ≥ �1. Then

(1) � and �1 have the same set of cusps; and

(2) � is of the first kind if and only if �1 is of the first kind.

Let � = �(k,l,m) be a triangle group and let Comm(�) be the commen-
surator of �, namely

Comm(�) =
)

g œ PSL2(R)
-- g�g

≠1 ≥ �
*

.

If g œ Comm(�) \ � then by Fact 3.11, the intersection �g = g�g
≠1 fl � is

a Fuchsian group of the first kind with the same set of cusps as �. Since
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the functions J(k,l,m)(t) and J(k,l,m)(g≠1
t) are respective automorphic uni-

formizers for � and g�g
≠1, we have that they also are automorphic functions

for �g.

A classical theorem of Poincaré (cf. [15, Chapter 5, Section 6]) states that
any two automorphic functions for a Fuchsian group are algebraically depen-
dent over C. So there is a polynomial �g œ C[X, Y ], such that �g(J(k,l,m)(t),
J(k,l,m)(gt)) = 0. We call such polynomial a �(k,l,m)-special polynomial and
say that the uniformizers are in Comm(�)-correspondence. The following re-
sult of Margulis gives a characterization of arithmeticity in terms of �(k,l,m)-
special polynomials.

Fact 3.12 ([17]). — The group �(k,l,m) is arithmetic if and only if

�(k,l,m) has infinite index in Comm(�) and so there are infinitely many

�(k,l,m)-special polynomials.

This is a special case of a more general result of Margulis. For a proof
we refer the reader to [40, Chapter 6]. We can now state the next two main
results from [5].

Fact 3.13 ([5, Theorem 2.13]). — Suppose that � = �(k,l,m) is arith-

metic and suppose that j�(g1t), . . . , j�(gnt) are distinct solutions of the

Schwarzian equation (ı) that are pairwise not in Comm(�)-correspondence.

Then the 3n functions

j�(g1t), j
Õ

�(g1t), j
ÕÕ

�(g1t), . . . , j�(gnt), j
Õ

�(gnt), j
ÕÕ

�(gnt)

are algebraically independent over C(t).

Fact 3.14 ([5, Theorem 2.14]). — Suppose that � = �(k,l,m) is non-

arithmetic. Then there is a s œ N such that if j�(g1t), . . . , j�(gnt) are distinct

solutions of the Schwarzian equation (ı) satisfying

tr. deg.C(t) CÈt, j�(g1t), . . . , j�(gnt)Í = 3n,

then for all other solutions j�(gt), except for at most n · s,

tr. deg.C(t) CÈt, j�(g1t), . . . , j�(gnt), j�(gt)Í = 3(n + 1).

In Section 4 we will explain how one can refine these results in the non-
arithmetic case. Finally, we state the Ax–Lindemann–Weierstrass Theorem
with derivatives for the triangle groups � = �(k,l,m).
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Definition 3.15. — We say that t1, . . . , tn are �-geodesically indepen-

dent if ti is nonconstant for i = 1, . . . , n and there are no relations of the

form ti = “tj for i ”= j, i, j œ {1, . . . , n} and “ œ Comm(�).

The term geodesically independent comes from Pila’s work [26]; it is
related to the earlier notion of a totally geodesic subvariety of a Shimura
variety studied by Moonen [20].

Fact 3.16 ([5, Theorem 2.16]). — Let C(V ) be an algebraic function

field, where V µ A
n

is an irreducible algebraic variety defined over C. Let

t1, . . . , tn œ C(V )
take values in the upper half complex plane H at some P œ V and are �-

geodesically independent. Then the 3n-functions

J(k,l,m)(t1), J
Õ

(k,l,m)(t1), J
ÕÕ

(k,l,m)(t1), . . . , J(k,l,m)(tn), J
Õ

(k,l,m)(tn), J
ÕÕ

(k,l,m)(tn)
(considered as functions on V (C) locally near P ) are algebraically indepen-

dent over C(V ).

4. The generic Schwarz triangle equation and Belyi Surfaces

Throughout we assume that (U , ˆ) is a saturated di�erentially closed
field of characteristic 0 and that C is its field of constants. We work in
the language Lˆ = (0, 1, +, · , ˆ) of di�erential rings. Recall by a generic
Schwarzian triangle equations we mean the ODE (ı) with

R–,—,“(y) = 1
2

3
1 ≠ —

≠2

y2 + 1 ≠ “
≠2

(y ≠ 1)2 + —
≠2 + “

≠2 ≠ –
≠2 ≠ 1

y(y ≠ 1)

4
.

and such that –, —, “ are three complex numbers algebraically independent
over Q (see Example 3.1).

4.1. Strong Minimality

We now aim to prove the following result.
Proposition 4.1. — The set defined by a generic Schwarz triangle equa-

tion (ı) is strongly minimal.

Proof of Proposition 4.1. — Assume that –, —, “ are algebraically inde-
pendent over Q. We denote by C the field of constants generated by –, —, “

over Q, that is C = Q(–, —, “). Let us denote by X(–, —, “) the set de-
fined by ODE (ı). We write „(y, u1, u2, u3) for the Lˆ-formula such that
X(–, —, “) = {y œ U | |= „(y, –, —, “)}.
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Of course „(y, u1, u2, u3) is obtained from the equation (ı) with the
added condition that y

Õ ”= 0, which is required once we clear the denom-
inators. More precisely since the numerator and denominator of R–,—,“(y)
are r(y, –, —, “) = (1≠—

≠2)(y≠1)2+(1≠“
≠2)y2+(—≠2+“

≠2≠–
≠2≠1)y(y≠1)

and s(y) = 2y
2(y ≠ 1)2 respectively, if we let

Ï(y, u1, u2, u3)

=
3

s(y)yÕ
y

ÕÕÕ ≠ 3
2s(y)(yÕÕ)2 + r(y, u1, u2, u3)(yÕ4) = 0

4
· (yÕ ”= 0),

then „(y, u1, u2, u3) := Ï(y, u1, u2, u3) · (uÕ
1 = 0) · (uÕ

2 = 0) · (uÕ
3 = 0).

For contradiction, assume that X(–, —, “) is not strongly minimal. Then
by definition, there exists a di�erential field extension K of C and z œ
X(–, —, “), such that tr. deg.

K
KÈzÍ = 1 or 2. We can assume that(4)

K =
CÈbÍ for some b œ Um and m œ N. So it follows that there exists a di�erential
polynomial F œ K{y} of order 1 or 2, such that F (z) = 0. We will use the
fact that we have a true first-order Lˆ-sentence (◊(–, —, “) below) asserting
that: there exists a finite tuple of parameters b from U , such X(–, —, “)
(–, —, “ constants) has a subvariety given by the vanishing of a non-trivial
di�erential polynomial of order 1 or 2 and with coe�cients in QÈ–, —, “, bÍ.

We write F (y) as F (y, –, —, “, b) to emphasize that those parameters ap-
pear in F (y) and let Pi(–, —, “, b) (for i = 1, . . . , r and some r œ N) be
the non-zero coe�cients of F (y) as a polynomial in y, y

Õ
, y

ÕÕ. Here each
Pi œ K = CÈbÍ. Let us also write fl(u1, u2, u3, v) for the Lˆ-formula such
that fl(–, —, “, b) is the true Lˆ-sentence

’ y
!
F (y, –, —, “, b) = 0 æ „(y, –, —, “)

"
.

In other words, fl(u1,u2,u3, v) := ’ y(F (y,u1,u2,u3,v) = 0 æ „(y,u1,u2,u3))
and U |= fl(–, —, “, b).

Claim. — We have a Lˆ-formula ◊(u1, u2, u3) such that if U |=
◊(–0, —0, “0), then –0, —0, “0 are constants and there exists an order 1 or 2 de-

finable subset of X(–0, —0, “0) defined over QÈ–0, —0, “0, cÍ for some c œ Um
.

Proof of Claim. — The formula ◊(u1, u2, u3) is simply chosen so that
◊(–, —, “) is the above-mentioned true Lˆ-sentence, namely

÷ v

A
fl(–, —, “, v) ·

rfi

i=1
Pi(–, —, “, v) ”= 0

B
.

(4) For example, b can be taken to be the coe�cients appearing in the polynomial
witnessing tr. deg.K KÈzÍ = 1 or 2.
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If U |= ◊(–0, —0, “0), then the formula (uÕ
1 = 0) · (uÕ

2 = 0) · (uÕ
3 = 0) gives

that –0, —0, “0 are constants and the second statement of the claim follows
by construction. ⇤

So we have ◊(–, —, “) is true in U and so we can apply Fact 2.2 with
V = A

3 and F = Q. We obtained k, l, m œ N such that 2 6 k 6 l 6 m

and U |= ◊(k, l, m). By making our initial choice of k large enough (say
k > 6) we can also ensure that 1

k
+ 1

l
+ 1

m
< 1. But now by the above claim,

there exists an order 1 or 2 definable subset of X(k, l, m). This contradicts
Fact 3.8, namely that X(k, l, m) is strongly minimal. ⇤

Remark 4.2. — By virtue of Fact 3.6 and Proposition 3.2, it follows that
we have obtained a di�erent proof of the fact that if –, —, “ œ C are alge-
braically independent over Q, then the Riccati equation

du

dy
+ u

2 + 1
2R–,—,“(y) = 0

has no solutions in C(t)alg.

In the previous proof, note that the only point at which we used the
fact that (–, —, “) are independent transcendental numbers was in the final
paragraph while applying Fact 2.2. Therefore, it is not hard to see that the
proof works identically in the following slightly more general case:

Corollary 4.3. — The set defined by (ı) with (–, —, “) a generic point

on an irreducible algebraic variety V µ A
3

over Q with a dense set of points

in (N>1)3
is strongly minimal.

By means of di�erential Galois theory we can also specify the kind of Q-
algebraic dependence relations that may appear between en the parameters
(–, —, “) for non-generic and non-strongly minimal triangle equations (ı).

Proposition 4.4. — Let us assume that equation (ı) with R = R–,—,“

with complex parameters (–, —, “) is not strongly minimal. One of the fol-

lowing holds:

(1) At least one of the four complex numbers, –
≠1 +—

≠1 +“
≠1

, ≠–
≠1 +

—
≠1 + “

≠1
, –

≠1 ≠ —
≠1 + “

≠1
, –

≠1 + —
≠1 ≠ “

≠1
is an odd integer.
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(2) The quantities –
≠1

or ≠–
≠1

, —
≠1

or ≠—
≠1

and “
≠1

or ≠“
≠1

take,

in an arbitrary order, values given in the following table:

±–
≠1 ±—

≠1 ±“
≠1

1
1
2 + ¸

1
2 + m arbitrary

2
1
2 + ¸

1
2 + m

1
2 + n

3
2
3 + ¸

1
3 + m

1
4 + n ¸ + m + n even

4
1
2 + ¸

1
3 + m

1
4 + n

5
2
3 + ¸

1
4 + m

1
4 + n ¸ + m + n even

6
1
2 + ¸

1
3 + m

1
5 + n

7
2
5 + ¸

1
3 + m

1
3 + n ¸ + m + n even

8
2
3 + ¸

1
5 + m

1
5 + n ¸ + m + n even

9
1
2 + ¸

2
5 + m

1
5 + n ¸ + m + n even

10
3
5 + ¸

1
3 + m

1
5 + n ¸ + m + n even

11
2
5 + ¸

2
5 + m

2
5 + n ¸ + m + n even

12
2
3 + ¸

1
3 + m

1
5 + n ¸ + m + n even

13
4
5 + ¸

1
5 + m

1
5 + n ¸ + m + n even

14
1
2 + ¸

2
5 + m

1
3 + n ¸ + m + n even

15
3
5 + ¸

2
5 + m

1
3 + n ¸ + m + n even

where ¸, m, n stand for arbitrary integer numbers.

Proof. — First, let us recall the criterion of strong minimality given in
Fact 3.6. If Riccati equation (3.2) has no algebraic solutions, then equa-
tion (ı) is strongly minimal. On the other hand, Riccati equation (3.2) has
an algebraic solution if and only if linear equation (3.1) is Liouville integrable
(see [14, Section 1.3]). Linear equation (3.1) is a Fuchsian equation with sin-
gular regular singularities at 0, 1 and Œ. Let us recall that two second order
linear di�erential equations are projectively equivalent if the quotients be-
tween its pairs of linearly independent solutions satisfy the same Schwarzian
equation (see [31, Proposition VIII.3.2, p. 211]). The logarithmic deriva-
tive of solutions of projectively equivalent equations satisfy the same Riccati
equation. It follows inmediately that a second order di�erential quation is
Liouville integrable if and only if any projectively equivalent equation is
so. Finally, any Fuchsian equation with singularities at 0, 1, Œ projectively
equivalent to an hypergeometric equation,

t(1 ≠ t)yÕÕ + (c ≠ (a + b + 1)t)yÕ ≠ aby = 0 (4.1)
with the same exponent di�erences [31, IX.2 p. 240]. A direct computation
of the exponent di�erences for (3.1) gives —

≠1, “
≠1 and –

≠1 at 0, 1 and Œ
respectively. The exponent di�erences of the hypergeometric equation (4.1)
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are 1 ≠ c, c ≠ a ≠ b and a ≠ b at 0, 1 and Œ. Thus we obtain equations,
1 ≠ c = —

≠1
, c ≠ a ≠ b = “

≠1
, a ≠ b = –

≠1

(cf. [39, p. 68]) and therefore we have,

a = 1
2(1 + –

≠1 ≠ —
≠1 ≠ “

≠1), b = 1
2(1 ≠ –

≠1 ≠ —
≠1 ≠ “

≠1), c = 1 ≠ —
≠1

.

the parameters of an hypergeometric equation which is projectively equiva-
lent to (3.1). Finally, Liouville integrable hypergeometric equations (4.1) are
completely classified by their exponent di�erences which, in this case, are
–

≠1, —
≠1, “

≠1. By application of Theorem I in [10] we obtain the desired
result. ⇤

Remark 4.5. — Possibilities (1) and (2) in the statement of Proposi-
tion 4.4 correspond to di�erent reductions of the Galois group. Case (1) is
satisfied whenever the Galois group is triangularizable. Case (2) line 1, corre-
sponds to a Galois group contained in the infinite dihedral group. Cases (2)
lines 2 to 15, correspond to di�erent realizations of symmetry groups of
platonic solids. Hence, they are not completely exclusive one of the other:
for instance, a diagonal group is triangularizable and also contained in the
infinite dihedral group.

Now that we have proved strong minimality in various cases, we aim to
understand the existence of possible algebraic relations between solutions of
the given equation. We are only able to do so in the generic case and leave
other cases for future work. By Proposition 4.1, we have that the conclusion
of Fact 3.9 holds for a generic Schwarz triangle equation (ı), and our next
step will be to prove that no such polynomial as in Fact 3.9 exists. That is,
there are no algebraic relations between solutions of a generic Schwarzian
equation. Our argument exploits the fact that arithmetic triangle groups are
rare.

Fact 4.6 ([35]). — Up to PSL2(R)-conjugation, there are finitely many

arithmetic triangle groups; 76 cocompact and 9 non-cocompact. A complete

(finite) list of triples (k, l, m) with 2 6 k 6 l 6 m 6 Œ such that �(k,l,m) is

arithmetic can be found in [35, Theorem 3].

So most triangle groups are non-arithmetic. We will use this to our advan-
tage. We also need a finer analysis of the non-arithmetic groups, especially
those groups which are equal to their commensurators (and thus have no
associated special polynomials).

Definition 4.7. — A Fuchsian group � is maximal if � cannot be prop-

erly embedded, with finite index, in any Fuchsian group.
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Fact 4.8. — Let � = �(k,l,m) be a triangle group. The following holds:

(1) Any Fuchsian group containing � is itself a triangle group.

(2) If � is non-arithimetic, then Comm(�) is a triangle group. Indeed,

it is the unique maximal triangle group containing �.

Proof. — The first assertion follows from [7, Theorem 1] (see also [33,
Proposition 1 and Section 6]. For (2), if � is non-arthimetic we have, by
Fact 3.12, that � has finite index in Comm(�). From this we get that
Comm(�) is a Fuchsian group. Now from (1) it follows that Comm(�) is
a triangle group. Finally, if �1 is a maximal Fuchsian group containing �,
then it is not hard to see using [�1 : �] < Œ, that g�g

≠1 ≥ � for any g œ �1.
So �1 ™ Comm(�) and the statement follows. ⇤

So from Fact 4.8 a non-arithmetic triangle group � is maximal if and only
if � = Comm(�). In this case there are no �-special polynomials. We have a
precise description of when this occurs:

Fact 4.9 ([33, Theorem 2]). — A triangle group �(k,l,m) is maximal if

and only if (k, l, m) is not of the form

(1) (2, l, 2l)
(2) (3, l, 3l)
(3) (k, l, l)

with k, l, m œ N fi {Œ} not necessarily in increasing order.

We can now give a finer version of some results in [5]. We will denote by
M the set of triples of natural numbers that has form given in Fact 4.9.

Theorem 4.10. — Let � = �(k,l,m) be a non-arithmetic triangle group.

(1) If (k, l, m) œ M, then there is s œ N>1 such that if y1, . . . , yn are

distinct solutions of the Schwarzian equation (ı) (with – = k, — = l,

“ = m) satisfying

tr. deg.C CÈy1, . . . , ynÍ = 3n,

then for all other solutions y, except for at most n · s,

tr. deg.C CÈy1, . . . , yn, yÍ = 3(n + 1).
(2) If (k, l, m) ”œ M, then for any distinct solutions y1, . . . , yn of the

Schwarzian equation (ı) (with – = k, — = l, “ = m) we have that

tr. deg.C CÈy1, . . . , ynÍ = 3n,

Proof. — As mentioned above this is basically just a refinement of Theo-
rem 2.14 in [5]. The ideas of the proof are as follows. First for triangle groups,
Fact 3.9 is more precise. By Lemmas 5.15 and 5.16 of [5], the polynomials (in
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C[X1, X2]) that can witness algebraic dependencies among solutions must all
be �-special.

Now, if (k, l, m) œ M, then � is properly contained in Comm(�). But
since � is non-arithmetic, � has finite index (say s > 1) in Comm(�). From
this we get the desired result. On the other hand, if (k, l, m) ”œ M, then
� = Comm(�) and so there all no �-special polynomials. ⇤

We are now ready to prove our next theorem.

Theorem 4.11. — The set defined by a generic Schwarz triangle equa-

tion (ı) is strictly disintegrated. That is, if K is any di�erential field exten-

sion of C and y1, . . . , yn are distinct solutions that are not algebraic over K,

then

tr. deg.
K

K(y1, y
Õ

1, y
ÕÕ

1 , . . . , yn, y
Õ

n
, y

ÕÕ

n
) = 3n.

We will again make use of Fact 2.2. In what follows W will denote the
union of M with the finite set consisting of triples of natural number corre-
sponding to arithmetic triangle groups.

Proof of Theorem 4.11. — We begin with the same conventions as in
the proof of Proposition 4.1. Let –, —, “ be algebraically independent over Q
and denote by C the field of constants generated by –, —, “ over Q. We write
X(–, —, “) for the set defined by ODE (ı) and assume X(–, —, “) = {y œ U |
|= „(y, –, —, “)} for some Lˆ-formula „(y, u1, u2, u3). By Proposition 4.1, we
have that X(–, —, “) is strongly minimal.

Let y1, . . . , yn be distinct elements of X(–, —, “) and for contradiction
assume that there is an algebraic relation between

y1, y
Õ

1, y
ÕÕ

1 · · · , yn, y
Õ

n
, y

ÕÕ

n
.

Using Fact 3.9, we have a polynomial P œ C[x, y] and some i < j such
that P (yi, yj) = 0. Let us write P (x, y) as P (x, y, –, —, “, b) where b is a
tuple of complex numbers all distinct from –, —, “. We let fl(u1, u2, u3) be
the Lˆ-formula such that fl(–, —, “) is the true Lˆ-sentence

÷ v ÷ x ÷ y
!
v

Õ = 0 · x ”= y · „(x, –, —, “) · „(y, –, —, “) · P (x, y, –, —, “, v) = 0
"
.

We can now use Fact 2.2 with V = A
3 and F = Q to obtain a triple (k, l, m)

of natural number such that (k, l, m) ”œ W, 2 < k < l < m, 1
k

+ 1
l
+ 1

m
< 1 and

U |= fl(k, l, m). But this means that there is a polynomial in C[x, y] which
vanishes on two distinct element of X(k, l, m). This contradicts case (2) of
Theorem 4.10. ⇤
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Similar to Proposition 4.1, the proof of the previous result applies in
slightly more generality, so similarly to Corollary 4.3, we next sketch the
most general version of Theorem 4.11 which can be established with the
methods we used above.

Corollary 4.12. — Suppose that (–, —, “) is the generic point on an

irreducible algebraic variety V µ A
3

over Q of dimension at least one such

that V has a dense set of points with coordinates in N
3
. Work with coordinates

(x, y, z). Assume further that

(1) V is not the curve given by x = 2, z = 2y.

(2) V is not the curve given by x = 3, z = 3y.

(3) V is not contained in surface y = z.

The set defined by the Schwarz triangle equation (ı) is strictly disintegrated.

That is, if K is any di�erential field extension of C and y1, . . . , yn are distinct

solutions to (ı) with parameters (–, —, “) that are not algebraic over K, then

tr. deg.
K

K(y1, y
Õ

1, y
ÕÕ

1 , . . . , yn, y
Õ

n
, y

ÕÕ

n
) = 3n

Proof. — The argument used in the proof of Theorem 4.11 applies di-
rectly to the triple (–, —, “) whenever it has the property that

• The Zariski closure of (–, —, “) over Q contains a dense set of points
of N3 which correspond to maximal triangle groups.

Work with coordinates (x, y, z) in A
3 in what follows. So, when V is any

algebraic surface with dense N-points and V is not given by y = z, the result
follows. Suppose that V is any algebraic curve with dense N-points such that
none of the following hold:

• V is given by x = 2, z = 2y.
• V is given by x = 3, z = 3y

• V lies on the surface y = z.

As long as none of the three conditions holds we have infinitely many points
of N

3 corresponding to maximal triangle groups in the Zariski closure of
(–, —, “) over Q, and thus the argument of the proof of Theorem 4.11 applies
to yield our result. ⇤

4.2. Orthogonality

We will now study the possible algebraic relations between solutions of
two generic Schwarzian equations. We will show that the definable sets are
orthogonal:
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Definition 4.13. — Let X and Y be two strongly minimal sets both

defined over some di�erential field K.

(1) X and Y are nonorthogonal if there is some definable (possibly with

additional parameter) relation R µ X ◊ Y such that the images of

the projections of R to X and Y respectively are infinite and these

projections are finite-to-one.

(2) X and Y are non weakly orthogonal if they are nonorthogonal, that

is there is an infinite finite-to-finite relation R ™ X ◊ Y, and the

formula defining R can be chosen to be over K
alg

.

Remark 4.14. — Suppose X and Y (as above) are nonorthogonal and that
the relation R µ X ◊ Y witnessing nonorthogonality is defined over some
di�erential field F extending K. Then by definition for any x œ X \ F

alg

there exist y œ Y \ F
alg such that (x, y) œ R. In that case F ÈxÍalg = F ÈyÍalg,

that is x, y and derivatives are algebraically dependent over F .

We will need the following important fact. We restrict ourselves to strictly
disintegrated strongly minimal sets as this is all we need for the Schwarzian
equations. We direct the reader to [27, Corollary 2.5.5] for the more general
context.

Fact 4.15. — Let X and Y be strongly minimal sets both defined over

some di�erential field K. Assume further that they are both strictly disinte-

grated. If X and Y are nonorthogonal, then they are non weakly orthogonal.

So by Theorem 4.11, we see that if the solution sets of two generic
Schwarzian equations are nonorthogonal, then they are non weakly orthog-
onal. As with the proofs of 4.1 and 4.11 our strategy is to make a “descent”
argument to the triangle groups. We review the relevant results in [5].

Let �1 and �2 be two triangle group. We say that �1 is commensurable
with �2 in wide sense if �1 is commensurable to some conjugate of �2. In
particular, if �1 is commensurable with �2 in wide sense, then Comm(�1) is
conjugate to Comm(�2).

Remark 4.16. — Suppose that �1 = �(k1,l1,m1) and �2 = �(k2,l2,m2)
are two distinct maximal non-arithmetic triangle groups (that is assume
Comm(�1) = �1 and Comm(�2) = �2). We have that �1 is not commensu-
rable with �2 in wide sense. This follows since �1 is not conjugate to �2 -
the two group not being of same type.

Fact 4.17 ([5, Theorem 6.5]). — Suppose that �(k1,l1,m1) and �(k2,l2,m2)
are two triangle groups that are not commensurable in wide sense. Then the

sets defined by the two Schwarzian equations (ı) (with parameters (k1, l1, m1)
and (k2, l2, m2) respectively) are orthogonal.
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Proof. — This is simply Theorem 6.5 of [5] restricted to the case of two
triangle groups. ⇤

This is all we need to prove the desired result.

Proposition 4.18. — Let –1, —1, “1, –2, —2, “2 œ C be algebraically in-

dependent over Q. Let X (–1, —1, “1) and X (–2, —2, “2) be the set defined by

the two generic Schwarzian equations (ı) (with parameters (–1, —1, “1) and

(–2, —2, “2) respectively). Then X (–1, —1, “1) is orthogonal to X (–2, —2, “2).

Proof. — As before, W will denote the union of M (the set of triples of
natural numbers that has form given in Fact 4.9) with the finite set consisting
of triples of natural number corresponding to arithmetic triangle groups.

For contradiction, if X1 = X (–1, —1, “1) is nonorthogonal to X2 =
X (–2, —2, “2), then there is a definable finite-to-finite relation R µ X1 ◊ X2
between the two sets and we can assume that the relation is defined over
Q(–1, —1,“1, –2, —2,“2)alg. Let ‡(u1, v1, w1, u2, v2, w2) be the Lˆ-formula such
that ‡(–1, —1, “1, –2, —2, “2) is the true Lˆ-sentence stating that R µ X1 ◊X2
is a definable finite-to-finite relation.

We can now use Fact 2.2 with V = A
3 and F = Q(–2, —2, “2) to specialize

(–1, —1, “1) and get a triple of integers (k1, l1, m1) ”œ W such that 2 < k1 <

l1 < m1, 1
k1

+ 1
l1

+ 1
m1

< 1 and U |= ‡(k1, l1, m1, –2, —2, “2). Notice that
�(k1,l1,m1) is a maximal non-arithmetic triangle group.

Now we again apply Fact 2.2 with V = A
3 and F = Q, this time to

specialize (–2, —2, “2), and choose a triple of integers (k2, l2, m2) ”œ W fi
{(k1, l1, m1)} such that 2 < k2 < l2 < m2, 1

k2
+ 1

l2
+ 1

m2
< 1 and U |=

‡(k1, l1, m1, k2, l2, m2). This time we have a maximal non-arithmetic triangle
group �(k2,l2,m2) which is distinct from �(k1,l1,m1).

But this means that there is a definable relation between X (k1, l1, m1)
and X (k2, l2, m2), that is they are nonorthogonal. But the triples where
chosen so that �(k1,l1,m1) is not commensurable with �(k2,l2,m2) in wide sense
(see Remark 4.16). This contradicts Fact 4.17 above. ⇤

4.3. Non-zero Fibers of generic Schwarzian triangle equations

In this subsection we consider the di�erential operator
‰

–,—,“,
d

dt
(y) := St(y) + (yÕ)2

R—(y) (4.2)

and for a œ U , study equations of the form
‰

–,—,“,
d

dt
(y) = a.
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We call such equations the fibers of the Schwarzian triangle equations. For
Fuchsian groups of the first kind and genus zero we have a complete descrip-
tion of the structure of the set of solutions of the fibers of the corresponding
Schwarzian equations. The main result, stated in the case of the triangle
groups, is as follows

Fact 4.19 ([5, Theorem 6.2]). — Let a œ U . Assumme that —(k, l, m)
is a hyperbolic triangle. Then the set defined ‰

–,—,“,
d

dt
(y) = a (with – = k,

— = l, “ = m) is strongly minimal and geometrically trivial. Furthermore

if a1, . . . , an œ U satisfy ‰
–,—,“,

d
dt

(ai) = a and are dependent
(5)

, then there

exist i < j 6 n and a �-special polynomial P , such that P (ai, aj) = 0.

Remark 4.20. — Note that if (k, l, m) ”œ W, where W still denotes the
union of M with the finite set of triples for arithmetic triangle groups, then
�-special polynomials do not exists. As such Theorem 4.19 tell us that if
in addition (k, l, m) ”œ W, then the set defined ‰

–,—,“,
d

dt
(y) = a is strictly

disintegrated.

It is now clear from the work in [5] and [6] that, in the case of a Fuchsian
group �, if one is able to show that the corresponding Schwarzian equation
is strongly minimal, then one can conclude that any non-zero fiber of the
equation is strongly minimal. This follows since the solutions of the non-zero
fibers can be written in terms of the automorphic uniformizer j� of �. Using
this fact and the chain rule, one can then reduce the problem to determining
strong minimality of the zero fiber (see [5, Section 6] for more details).

Outside the context of Fuchsian groups, one cannot write all solutions of
non-zero fibers in terms of some solution of the zero fiber. Nevertheless, we
are able to use the same techniques as in the previous subsections to study
non-zero fibers of the generic Schwarzian triangle equations.

Theorem 4.21. — Let a œ U be non-zero. Assume that –, —, “ are

algebraically independent over C. Then the set defined by ‰
–,—,“,

d
dt

(y) = a is

strongly minimal and strictly disintegrated.

Proof. — Assume that –, —, “ are algebraically independent over Q. As
before, denote by C the field of constants generated by –, —, “ over Q,
that is C = Q(–, —, “). Let us denote by X(–, —, “, a) the set defined by
‰

–,—,“,
d

dt
(y) = a.

The proof of strong minimality has some similarity to that of the proof
of Proposition 4.1. So some details are omitted. For contradiction, assume
that X(–, —, “, a) is not strongly minimal. Then for some di�erential field

(5) That is, there is a di�erential field extension K of QÈaÍ such that
tr. deg.K KÈa1, . . . , anÍ < 3n
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K = CÈa, bÍ, where b œ Um and some z œ X(–, —, “, a), we have that
tr. deg.

K
KÈzÍ = 1 or 2. So we have a di�erential polynomial F œ K{y}

of order 1 or 2, such that F (z) = 0. We write F (y) as F (y, –, —, “, a, b) to
emphasize that those parameters appear in F (y) and write Pi(–, —, “, a, b)
(for i = 1, . . . , r) for the non-zero coe�cients of F (y). Let us also write
fl(u1, u2, u3, u, v) for the Lˆ-formula such that fl(–, —, “, a, b) is the true Lˆ-
sentence

’ y
!
F (y, –, —, “, a, b) = 0 æ y œ X(–, —, “, a)

"
.

Claim. — We have a Lˆ-formula ◊(u1, u2, u3) such that if U |=
◊(–0, —0, “0), then –0, —0, “0 are constants and there exists a0 œ U and an or-

der 1 or 2 definable subset of X(–0, —0, “0, a0) defined over QÈ–0, —0, “0, a0, cÍ
for some c œ Um

.

Proof of Claim. — The formula ◊(u1, u2, u3) is simply chosen so that
◊(–, —, “) is the true Lˆ-sentence

÷ u ÷ v

A
fl(–, —, “, u, v) ·

rfi

i=1
Pi(–, —, “, u, v) ”= 0

B
⇤

We have that ◊(–, —, “) is true in U and so we can apply Fact 2.2 with
V = A

3 and F = Q. We obtained k, l, m œ N such that 2 6 k 6 l 6 m,
1
k

+ 1
l
+ 1

m
< 1 and U |= ◊(k, l, m). But now by the above claim, there is a0 œ U

such that there exists an order 1 or 2 definable subset of X(k, l, m, a0). This
contradicts Theorem 4.19.

Now to the proof of strict disintegratedness: For contradiction, assume
that X(–, —, “, a) is not strictly disintegrated. Then for some di�erential field
K = CÈa, bÍ, where b œ Um and some z1, . . . , zn+1 œ X(–, —, “, a), we have
that tr. deg.

K
KÈz1, . . . , zn+1Í ”= 3(n+1). By strong minimality we have that

zn+1 œ KÈzÍalg, where z = (z1, . . . , zn).

Let Ï(u, v, –, —, “, a, b) be the Lˆ-formula that witness this, i.e. U |=
Ï(zn+1, z, –, —, “, a, b) and for any yn+1, y such that U |= Ï(yn+1, y, –, —, “,

a, b), we have that yn+1 œ KÈyÍalg. Note here that the variables u and v are
in the sorts X(–, —, “, a).

Consider the Lˆ-formula ◊(u1, u2, u3) so that ◊(–, —, “) is the true Lˆ-
sentence

÷ u ÷ v ÷ w ÷ x (Ï(u, v, –, —, “, x, w)) .

If U |= ◊(–0, —0, “0), then –0, —0, “0 are constants and there exists a0 œ U
and y1, . . . , yn+1 œ X(–0, —0, “0, a0) such that y1, . . . , yn+1 are interalgebraic
over QÈ–0, —0, “0, a0, cÍ for some c œ Um. But then if we apply Fact 2.2 with
V = A

3, we obtain a triple (k, l, m) of natural number such that (k, l, m) ”œ
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W, 2 < k < l < m, 1
k

+ 1
l

+ 1
m

< 1 and U |= ◊(k, l, m). But then this
contradicts Fact 4.19 (also see Remark 4.20). ⇤

4.4. Belyi Surfaces

Let � be a Fuchsian Group of the first kind and not necessarily of genus
zero. If the compactification C� of the quotient � \ H is defined over Q

alg,
then C� is called a Belyi surface. The following theorem, proved by Belyi [3]
(in this form see for example [34, Theorem 4.1]), will play an important role.

Fact 4.22. — Let � be a Fuchsian group of the first kind.

(1) If � is cocompact, then C� is a Belyi surface if and only if � is a

finite index subgroup of a cocompact triangle group �(k,l,m).
(2) If � is not cocompact, then C� is a Belyi surface if and only if one

of the following holds

(i) � is a finite index subgroup of �(2,3,Œ); or

(ii) � is a finite index subgroup of �(2,Œ,Œ); or

(iii) � is a finite index subgroup of �(Œ,Œ,Œ).

It follows from Fact 4.22 that C� is a Belyi surface if and only if there
exists a morphism f : C� æ P

1 that is ramified only over 0, 1 and Œ. Our
main result in this section is

Theorem 4.23. — Let � be a Fuchsian group of the first kind and as-

sume that C� is a Belyi surface. Then the set defined by the Schwarzian

equation for � is strongly minimal and geometrically trivial. Furthermore

the Ax–Lindemann–Weierstrass Theorem holds for �.

Recall that if � is a Fuchsian group and j� a uniformizing function, then
we say that the Ax–Lindemann–Weierstrass Theorem (ALW) holds for � if
the following condition is proven to hold: Let C(V ) be an algebraic function
field, where V µ A

n is an irreducible algebraic variety defined over C. Let
t1, . . . , tn œ C(V ) take values in the upper half complex plane H at some
P œ V and are �-geodesically independent. Then the 3n-functions

j�(t1), j
Õ

�(t1), j
ÕÕ

�(t1), . . . , j�(tn), j
Õ

�(tn), j
ÕÕ

�(tn)
(considered as functions on V (C) locally near P ) are algebraically indepen-
dent over C(V ).

We have the following very general proposition.
Proposition 4.24. — Let � be a Fuchsian group of the first kind and as-

sume that �1 is a finite index subgroup of �. The Ax–Lindemann–Weierstrass

Theorem holds for � if and only if it holds for �1.
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Proof. — Let j and j1 be uniformizing functions for � and �1 respectively.
Since �1 < �, we have that j and j1 are automorphic functions for �1. So as
in the discussion following Fact 3.11, we have that j and j1 are algebraically
dependent over C. Furthermore notice that � is commensurable with �1 and
so Comm(�) = Comm(�1).

If � œ C[X1, X2] is the non-zero polynomial that witnesses that j and
j1 are algebraically dependent over C, that is �(j(t), j1(t)) = 0, then for
any g œ PSL2(C), we have that �(j(gt), j1(gt)) = 0. The Ax–Lindemann–
Weierstrass Theorem for � completely describes the possible algebraic re-
lations between of j(t) and j(gt). So using that j(gt) and j1(gt) are alge-
braically dependent over C, we have that for any g1, . . . , gn which lie in dis-
tinct cosets of Comm(�), the functions j1(g1t), . . . , j1(gnt) (and derivatives)
are algebraically independent over C. Clearly, the above argument works
with the roles of j and j1 interchanged. From this the result follows. ⇤

Corollary 4.25. — Let G1 and G2 be two Fuchsian groups of the first

kind which are commensurable in the wide sense. Then the Ax–Lindemann–

Weierstrass Theorem holds for G1 if and only if it holds for G2.

Proof. — Recall that we say that G1 and G2 are commensurable in the
wide sense if some conjugate of G1 is commensurable to G2. That is, G1 and
G2 are commensurable in the wide sense if G1 and G2 have the property that
for some conjugate of G1, say gG1g

≠1 for g œ PSL(R), G = gG1g
≠1 fl G2 is

a finite index subgroup of both gG1g
≠1 and G2. Applying Proposition 4.24,

first with �1 = G and � = gG1g
≠1 and then again with �1 = G and � = G2,

the result can be seen to follow if one shows that the ALW holds for G1
if and only if it follows for gG1g

≠1
. This last equivalence is true because if

jG1 is a uniformizer for G1, then jgG1g≠1(t) := jG1(g≠1
t) is a unformizer for

gG1g
≠1. ⇤

Proof of Theorem 4.23. — We fix a triangle group �(k,l,m) such that
� < �(k,l,m) as in Fact 4.22. Since the uniformizers j� and J(k,l,m) are inter-
algebraic over C, by Fact 3.8, the type of j� over C is strongly minimal.(6)

Let V be the di�erential variety which is given by the closure of j� over
C (given by the vanishing of the Schwarzian equation). The main theorem
of Nishioka [24] for the automorphic function j� gives that for any func-
tion f which lies in V , f satisfies no di�erential equation of order less than
three. From this it follows that the set defined by the Schwarzian equation
for � is strongly minimal. Finally, Proposition 3.5 gives geometric triviality

(6) The type of j� over C is a specific instance of the general model theoretic notion of
a type. In this setting, the type j� over C is the set defined by the collection of di�erential
polynomial equations over C satisfied by j� along with the (possibly infinitely many)
di�erential polynomial inequations satisfied by j� over C.
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and Fact 3.16 and Proposition 4.24 gives the Ax–Lindemann–Weierstrass
Theorem for �. ⇤

5. Bi-algebraic curves of general Schwarzian equations in genus 0.

Let Y1 and Y2 be two hyperbolic algebraic curves over C of genus zero
(di�eomorphic to CP

1 \ S with #S > 3), y1 and y2 be a�ne coordinates
on Y1 and Y2 and R1 and R2 be rational functions on Y1 and Y2 respec-
tively. Consider the following di�erential equations over the di�erential field!
C(t1, t2), ˆ

ˆt1
,

ˆ

ˆt2

"
:

St1(y1) +
3

ˆy1
ˆt1

42
R1(y1) = 0 ; ˆy1

ˆt2
= 0 (5.1)

St2(y2) +
3

ˆy2
ˆt2

42
R2(y2) = 0 ; ˆy2

ˆt1
= 0 (5.2)

We fix a solution (J1, J2) with J1 : U1 æ Y1 and J2 : U2 æ Y2 holomorphic
on some domains of C and consider the map J : U1 ◊ U2 æ Y1 ◊ Y2 sending
(t1, t2) on (J1(t1), J2(t2)). An algebraic curve C µ C

2 is bi-algebraic with

respect to J (or simply bi-algebraic) if the Zariski closure of J(C fl (U1 ◊U2))
is an algebraic curve in Y1 ◊Y2. This algebraic curve will be denoted by J(C).

Remark 5.1. — With the assumption above

(1) If Ây1 = h(y1) is a di�erent a�ne coordinate on CP
1 with h œ

PSL2(C), then the relevant Schwarzian equation is given with ÂR1 =
R1 ¶h

≠1!
ˆh

≠1

ˆt1

"2 and the solution of this new equation is ÂJ1 = h¶J1.
(2) Being bi-algebraic is independent of the choice of the solution (J1, J2)

since any other solution will be of the form (J1 ¶ h1, J2 ¶ h2) with
(h1, h2) œ PSL2(C) ◊ PSL2(C).

In Section 3 we gave some properties of the Schwarzian equation St(y) +!
ˆy

ˆt

"2
R(y) under the following hypothesis on R, called the Riccati hypothesis:

The equation
du

dy
+ u

2 + 1
2 R(y) = 0 has no solutions in C(y)alg

.

We will show that under the Riccati hypothesis, bi-algebraic curves are
very simple; namely, they are graphs of homographies. Moreover if one con-
trols the polar locus of the two rational functions R1 and R2 then the
curve J(C) is a Comm(�1)-correspondence between Zariski opens subsets
Y

ı

1 µ Y1 and Y
ı

2 µ Y2 for some Fuchsian group �1 given by the image of
fi1(Y ı

1 ) µ PSL2(C).

– 1294 –



Some functional transcendence results

Lemma 5.2. — With the above notation, if C µ C
2

is a bi-algebraic

curve, then R1 satisfies the Riccati hypothesis if and only if R2 does.

Proof. — From Proposition 3.2, since R1 satisfies the Riccati hypothesis
we have that the solution J1 of the equation (5.1) is such that t1, J1,

ˆJ1
ˆt1

,
ˆ

2
J1

ˆt
2
1

are algebraically independent over C, i.e., tr. deg.C C
!
t1, J1,

ˆJ1
ˆt1

,
ˆ

2
J1

ˆt
2
1

"
= 4.

Let C be a bi-algebraic curve for J = (J1, J2), where J2 is the solution
of the equation (5.2). Also let the polynomial equations of the bi-algebraic
curve be P (t1, t2) = 0 in C

2 and Q(y1, y2) = 0 in Y1 ◊ Y2.

Then on C:

• t1 œ C(t2)alg implying ˆt2
ˆt1

œ C(t2)alg,
• J1 œ C(J2)alg implying ˆJ1

ˆt2
œ C(J2,

ˆJ2
ˆt2

)alg,
• ˆJ1

ˆt1
= ˆJ1

ˆt2
ˆt2
ˆt1

œ C(t2, J2,
ˆJ2
ˆt2

)alg.

Using the chain rule (one more time), we obtain that

C

3
t1, J1,

ˆJ1
ˆt1

,
ˆ

2
J1

ˆt
2
1

4alg
™ C

3
t2, J2,

ˆJ2
ˆt2

,
ˆ

2
J2

ˆt
2
2

4alg

and so tr. deg.C C
!
t2, J2,

ˆJ2
ˆt2

,
ˆ

2
J2

ˆt
2
2

"
= 4. Using Proposition 3.2 we get that

R2 satisfies the Riccati hypothesis. Interchanging the roles of J1 and J2
proves the lemma. ⇤

Example 5.3. — If R1 is a constant then the Riccati equation has (one or)
two constant solutions ±

Ò
≠1
2 R1. It does not satisfy the Riccati hypothesis.

Example 5.4. — If R1(y1) = 2y1, the equation du

dy1
+ u

2 + y1 = 0 is the
Riccati equation attached to the Airy equation d2

z

dy
2
1

+y1z = 0. The di�erential
Galois group of the latter Airy equation is SL2(C) (cf. [16, Examples 4.29
and 6.21]). By Proposition 3.2, the rational function R1 satisfies the Riccati
hypothesis.

Example 5.5. — Using the Examples 5.3 and 5.4, and Lemma 5.2 one
gets: if R1 is a constant and R2(y2) = 2y2, then for any solutions J1 and
J2 of equations (5.1) and (5.2) respectively, there are no bi-algebraic curves
with respect to J = (J1, J2) but the vertical and horizontal ones.

Throughout, vertical and horizontal algebraic subvarieties of C2 will re-
spectively mean varieties of the form {b} ◊ C and C ◊ {b} with b œ C.
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Theorem 5.6. — Let J = (J1, J2) be a solution such that both (5.1)
and (5.2) satisfy the Riccati hypothesis. If C is neither a vertical nor a hori-

zontal bi-algebraic curve with respect to J , then C is the graph of an homog-

raphy.

Proof. — Vertical and horizontal curves are clearly bi-algebraic. Assume
that C is not vertical or horizontal.

Consider the field K1 = C(t1, y1, y
Õ
1, y

ÕÕ
1 ) with the four derivations

• D1 = ˆ

ˆt1
+y

Õ
1

ˆ

ˆy1
+y

Õ
1

ˆ

ˆy
Õ
1
+

1
3
2

y
ÕÕ2
1
y

Õ
1

≠(yÕ
1)3

R(y1)
2

ˆ

ˆy
ÕÕ
1

, is the derivation
such that K1 is the field generated by a generic solution of the
equation (5.1).

• X1 = ≠ ˆ

ˆt1
,

• H1 = ≠t1
ˆ

ˆt1
+ y

Õ
1

ˆ

ˆy
Õ
1

+ 2y
ÕÕ
1

ˆ

ˆy
ÕÕ
1

,

• Y1 = ≠ t
2
1
2

ˆ

ˆt1
+ t1y

Õ
1

ˆ

ˆy
Õ
1

+ (yÕ
1 + 2t1y

ÕÕ
1 ) ˆ

ˆy
ÕÕ
1

.

The last three derivations are the action of the Lie algebra psl2(C) seen as
the Lie algebra of infinitesimal generators of the group of fractional linear
maps : C d

dt
+ Ct

d
dt

+ C
t

2

2
d
dt

. Notice that the action of CX1 + CH1 + CY1
preserves C(t1) µ K1 and the induced action is the action of psl2(C). One
has [D1, X1] = 0, [D1, H1] = ≠D1 and [D1, Y1] = ≠t1D1.

We also define K2, D2, X2, H2 and Y2 analogously.

Let V µ C
4 ◊ C

4 be the Zariski closure of (t1, J1(t1), J
Õ
1(t1), J

ÕÕ
1 (t1), t2,

J2(t2), J
Õ
2(t2), J

ÕÕ
2 (t2)) for (t1, t2) œ C fl (U1 ◊ U2). By strong minimality and

transcendence of J1(t1) and J2(t2), C(V ) is an algebraic extension of K1 and
of K2.

Let X1, H1, Y1, D1, X2, H2, Y2, D2 be the lifts of these derivations on
C(V ). On this field D1 and D2 are colinear, indeed D1 = ‡D2 with ‡ = ˆt2

ˆt1
as a function on the algebraic curve C.

As X1, H1, Y1 and X2, H2, Y2 are two basis of C(J(C))-derivations of
C(V ), one has S

U
X1
H1
Y1

T

V = A

S

U
X2
H2
Y2

T

V ,

where A is a 3 ◊ 3 matrix with coe�cients in C(V ). The Lie bracket of

D1 = ‡D2 with each components of
5

X1
H1
Y1

6
gives

S

U
0

≠D1
≠t1D1

T

V = D1A

S

U
X2
H2
Y2

T

V+A

S

U‡D2,

S

U
X2
H2
Y2

T

V

T

V = D1A

S

U
X2
H2
Y2

T

V≠A

S

U
X2‡

(H2‡ ≠ 1)
(Y2‡ ≠ t2)

T

VD2.
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By independence of the derivations, A is a matrix of first integrals of D1.
As the vector field D1 has a Zariski dense trajectory on V , namely the an-
alytic curve parameterized by (t1, t2) ‘æ (t1, J1(t1), J

Õ
1(t1), J

ÕÕ
1 (t1), t2, J2(t2),

J
Õ
2(t2), J

ÕÕ
2 (t2)) for (t1, t2) œ C fl U1 ◊ U2, A is a matrix of complex numbers.

On V , one gets CX1 + CH1 + CY1 = CX2 + CH2 + CY2.

The derivations X1, H1, Y1, X2, H2 and Y2 preserve C(C) the field of
rational functions on the curve C and induce vector fields on C. From this,
we get that C is the graph of a correspondence on P

1 sending d
dt1

, t1
d

dt1
and

t
2
1
2

d
dt1

into C
d

dt2
+Ct2

d
dt2

+C
t

2
2
2

d
dt2

. Hence it is the graph of a homography. ⇤
A rational function R1 on Y1 is said to have a finite local Galois group at

a pole p if p is a regular singular point of the associated second order linear
di�erential equation d2

Â

dy2 + 1
2 R(y)Â = 0 with finite local monodromy at p.

By Fuch’s theory this condition is equivalent to the fact that any Schwarzian
primitive(7) of R1 near p, given by the quotient of two independant solutions
Â1
Â2

, belongs to Oalg
p

, the algebraic closure of the ring of germs of holomorphic
functions at p.

This condition implies that R1 has a pole at p of order less than or
equal to 2, i.e., R1(y) = 1

2
1≠–

2

(y≠p)2 + —

y≠p
+ f(y) with – œ Q

ú, — œ C and f

holomorphic in a neighborhood of p. Note that finite local Galois group at p

is not equivalent to p being a regular singular point with rational parameter
–, since when – œ Z, the solution may have a logarithmic singularity at p

with infinite monodromy.

Let Y
ú

1 be the curve Y1 punctured at poles of R1. Assume Y
ú

1 is hyperbolic
and choose a uniformizing function fl1 : H æ Y

ú
1 . Let �1 = fi1(Y ú

1 ) be the
fundamental group of the complex curve Y

ú
1 . As fl1 is a universal covering

of Y
ú

1 , one can see fi1(Y ú
1 ) a Fuchsian subgroup of PSL2(R). We define Y

ú
2

and �2, given a uniformization fl2, similarly.

Proposition 5.7. — Assume R1 and R2 have no poles with finite local

Galois groups. If C is a bi-algebraic curve with respect to J , then there exists

a uniformisation fl2 : H æ Y
ú

2 such that �1 ≥ �2 and J(C) is a Comm(�1)-
correspondence, i.e., a correspondence in Y

ú
1 ◊ Y

ú
2 which is the image under

(fl1, fl2) of the graph of some g œ Comm(�1)(= Comm(�2)).

Proof. — The proof consists of two lemmas.

Lemma 5.8. — Assume R1 and R2 have no poles with finite local Galois

groups. If p œ J(C) is such that one of the projection on Y1 or Y2 ramifies,

then the projection of p on Y1 (resp. Y2) is a pole of R1 (resp. R2).

(7) A function whose Schwarzian is R1.
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Proof. — By Theorem 5.6 and using the hypothesis, we may assume that
the curve C is the graph of g œ PSL2(C). Let p œ J(C) be a point such that
the first projection ramifies at p and its second projection is not a pole of R2.
Let ·2 be a Schwarzian primitive of R2 near the projection of p. Its pull back
on J(C) is an holomorphic function and its direct image near the projection
of p in Y1 belongs to Oalg

pr1(p). As it is a Schwarzian primitive of R1, and R1
has no poles of finite local Galois group, the first projection of p is not a pole
of R1. The lemma is proved. ⇤

Lemma 5.9 ([17, p. 337]). — If a correspondence X µ Y
ú

1 ◊ Y
ú

2 is a

covering of both factors then there exists a uniformization fl2 : H æ Y
ú

2 such

that �1 ≥ �2 and X is a Comm(�1)-correspondence.

Proof. — Let fl : H æ X be the uniformization map of X such that
fl1 = pr1 ¶fl. It defines a embedding of fi1(X) in PSL2(R) with image which
we denote by �. The uniformization of Y

ú
2 is fl2 = pr2 ¶fl and defines a

embedding of fi1(Y ú
2 ) in PSL2(R) with image which we denote by �2. As �

is a finite index subgroup of �1 and of �2, the two groups are commensurable.

Let Z µ H ◊ H be an irreducible component of the analytic variety
(fl1, fl2)≠1(X). The subset Z is a non-ramified covering of H and hence it
is the graph of automorphism from H to H. By the Schwarz lemma, it is
the graph of an homography g œ PSL2(C). General arguments ensure that
g œ Comm(�1), see for example Lemmas 5.15 and 5.16 in [5]. ⇤

The polar locus of R1 is mapped by J(C) on the polar locus of R2 and
these sets contained the projection of ramification points. Hence the restric-
tion of J(C) above Y

ú
1 ◊ Y

ú
2 is a covering of both factors.

Applying the second lemma, one gets that J(C) is a Comm(�1)-corresp-
ondence. ⇤

We conclude this section with an example showing that for any type of
singularities (regular, irregular, finite or infinite monodromy) there exists
example of couple of Schwarzian equations with bi-algebraic curves.

Example 5.10. — Let � : CP1 æ CP1 be a non constant rational map
with critical points B µ CP1 and t be an a�ne coordinate on CP1. For R

a rational function on CP1, let S1(R) be the set of poles with finite local
Galois group and S2(R) be the set of other poles. Consider the Schwarzian
equations with R1 = R and R2 = R� = R ¶ �( d�

dt
)2 + St�.

One has S2(R�) = �≠1(S2(R)) and S1(R�) = (�≠1(S1(R))fiB)\S2(R�).
If J2 is a solution of the second Schwarzian equation, then J1 = �(J2) is a
solution of first the Schwarzian equation. So, the diagonal in H ◊ H is sent
by (J1, J2) to the graph of �.
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