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HIGHLIGHTS 

•A user-frfiendfly, finfrastructure-free, and accurate modefl based on XGBoost. 

•Hyperparameters tunfing fis appflfied to expflofit optfimafl modeflfing performance. 

•Interpretfing cooflfing energy predfictfions and feature finteractfions by usfing SHAP. 

•Surface to voflume ratfio estfimated fis beneficfiafl for cooflfing energy use estfimatfion. 

•Degree hour data outperforms temperature for cooflfing energy estfimatfion fin XGBoost.  
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ABSTRACT  

The  energy  used  for  space  cooflfing  fin  resfidentfiafl  bufifldfings  has  a  sfignfificant  finfluence  on  househofld  energy 

performance. Thfis study afims to deveflop a user-frfiendfly, finfrastructure-free, and accurate predfictfion modefl based 

on flarge-scafle utfiflfity datasets from anonymfized voflunteer homes flocated fin three dfifferent cflfimate zones fin the 

US, aflong wfith the correspondfing weather data and bufifldfing finformatfion. Notabfly, severafl new weather- and 

bufifldfing characterfistfics-reflated parameters were desfigned fin the modeflfing procedure and tested to be usefufl for 

enhancfing  the  modefl’s  predfictfion  performance.  A  few  regressfion  technfiques  were  examfined  and  compared 

through hyperparameter optfimfizatfion and k-fofld cross-vaflfidatfion. Subsequentfly, a workflow was aflso descrfibed 

for how to fimpflement the devefloped modefl. The research resuflts showed that the eXtreme Gradfient Boostfing 

(XGBoost)  modefl  offered  optfimafl performance,  and  the  feature  fimportance  anaflysfis  aflso  fidentfified  as  weflfl  as 

ranked the key predfictors to enhance the finterpretabfiflfity of thfis modefl. An R2 vaflue of around 97% was obtafined 

wfith that modefl on the whofle dataset, whfifle an R2 vaflue of 92% was achfieved wfith varfious subsets of the dataset 

through the cross-vaflfidatfion approach. The RMSE and RAE for thfis modefl were 0.294 and 0.153, respectfivefly. 

The resufltant modefl for predfictfing cooflfing energy consumptfion wfiflfl facfiflfitate homeowners better understandfing 

thefir  bufifldfings’ performance  flevefls  wfith  mfinfimum  finput  finformatfion  and  wfithout  addfitfionafl  hardware  fin-

staflflatfions, ufltfimatefly afidfing thefir decfisfion makfing reflated to energy-savfing strategfies.   

1. Introductfion 

1.1. Background 

The energy consumptfion of US househoflds fis fincreasfing year by year, 

based on the resfidentfiafl energy consumptfion survey dfistrfibuted by the 

US Energy Informatfion Admfinfistratfion [1]. More specfificaflfly, the end- 

use  sector  of  resfidentfiafl  bufifldfings  comprfised  approxfimatefly  21%  of 

the totafl US energy consumptfion fin 2018. Space cooflfing, a major end- 

use fin househoflds, comprfises averagefly 14.7% of the annuafl home en-

ergy  usage  fin  the  US [2].  Resfidentfiafl  cooflfing  energy  demand  can 

sfignfificantfly  affect  aggregate  energy  consumptfion.  Mfinor  energy 

efficfiency-based fimprovements coufld have a sfignfificant fimpact on the 

overaflfl bufifldfing energy used and potentfiaflfly provfide substantfiafl energy 

cost  savfings.  Studfies  aflso  have  findficated  that  resfidentfiafl  energy  use 

coufld  be  reduced  through  hfighfly  economficafl  behavfiors  such  as  by 

deveflopfing  encouragfing  cost-effectfive  poflficfies [3],  takfing  effectfive 

finterventfion  strategfies [4],  and  provfidfing  energy  use  feedback  to 

bufifldfing occupants [5,6]. Thus, the coflflectfion of energy end-use data for 
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use in evaluating and measuring current energy performance on the 
household level is essential. 

1.2. Related work 

The common approach adopted to resolve issues related to disag
gregation and calculation of energy end-use using only total energy 
consumption data measured by a single meter is called non-intrusive 
load monitoring (NILM) which was primarily studied in the 1980s and 
1990s [7]. NILM is economical and offers little complexity in terms of 
installation, and effectively and efficiently disaggregates total energy 
consumption into appliance-level energy use [8,9]. Earlier edge 
detection-based methods, e.g., Sultanem [10], Norford and Mabey [11], 
Laughman et al. [12] and Perez et al. [13], and subsequent machine 
learning-based algorithms such as hidden Markov models by researchers 
in [14,15], deep neural networks [16], and k-nearest neighbor (KNN) 
[17] mostly rely on datasets comprised of circuit-specific electricity 
usage to implement appliance-level energy monitoring. In other words, 
NILM doesn’t mean hardware-free. Measurement of circuit-specific data 
for high-frequency current and voltage waveform still relies on specific 
monitoring hardware and requires certain levels of computation for 
further analysis. The Reference Energy Disaggregation Dataset is a 
representative data sample for NILM-based methods that has frequently 
been utilized to explore different calculation algorithms [18]. In addi
tion to restrictions on data collection, it is also difficult to generalize 
inferred end-use results for convenient and practical application by 
building users. 

Other widely used alternative statistical approaches include estab
lishing quantitative correlations between cooling energy consumption 
and influential factors, and developing prediction models based on 
historical data obtained from utility bills. It is generally understood that 
both the climatic environment and building-specific information have a 
significant influence on a building’s energy consumption. Earlier 
studies, e.g., by Sonderegger [19], Dhar et al. [20] and Dong et al. [21] 
have examined the substantial influence of weather-related parameters, 
utilizing regression methods and outdoor temperature and degree-days 
parameters for 12 months to predict a baseline of daily and monthly 
aggregated energy consumption for a single building, without address
ing appliance-level energy consumption. Study in [20] developed a 
simplified Fourier series model to predict hourly cooling energy con
sumption for one year, considering the effects of outdoor temperature, 
humidity, and solar radiation using hourly monitored energy data from 

several buildings in the same city. Similar influential parameters were 
considered in research [21] using support vector machines (SVM) to 
develop and test a prediction model for total energy consumption, using 
utility bills for commercial buildings in a tropical region. The sample 
commercial buildings in these two studies were located in one climate 
region. Thus, further work is needed to verify the model’s applicability 
to building sites with different climate features. The effect of the length 
of the measurement period on prediction accuracy was evaluated in 
[22]. The authors argued that prediction accuracy would be improved 
with energy measurement data collected over a longer time span. 

The aforementioned statistical approaches have delved into the real- 
world problem of HVAC energy consumption, and all have reported 
acceptable levels of performance normally evaluated by goodness-of-fit 
indicators such as coefficient of determination (R2), percentage error, 
coefficient of variation (CV) of root mean squared error (RMSE) and 
relative absolute error (RAE). The results provided by [21] had a CV 
value smaller than 3% and a percentage error less than 4%, while [23] 
obtained results with an average deviation of 3.4% and a prediction rate 
ranging from 94.8% to 98.5%. However, their limitations cannot be 
ignored. The datasets used in these studies are typically obtained from a 
very limited number of buildings and mostly in the commercial building 
sector. The weather feature selected in these studies is also limited to a 
particular climatic zone. More importantly, building-specific informa
tion such as size, geometry, etc., have not been taken into account in the 
modeling process. To address these issues, some studies such as [23,24] 
have incorporated building energy simulation programs to add building- 
specific information such as orientation and insulation thickness and 
used the output of simulated energy use as reference values for evalu
ating or enhancing the prediction accuracy of their models. An improved 
method using Gaussian Process Regression was proposed in [25] to 
model the electricity use of office buildings. Actual energy consumption 
data were used as the validation data to calculate accuracy. However, 
the research objective of these simulation-related studies mainly focuses 
on overall building energy assessment, optimization, or system diag
nosis rather than generalizable models to decompose the whole building 
energy to end-use. In brief, these machine learning-based statistical 
methods are promising for predicting performance but still rely on 
sensor or monitor installation to form a large enough training dataset for 
modeling. Moreover, some weather-based energy disaggregation 
methods have provided infrastructure-free opportunities, but it remains 
challenging to achieve high accuracy and generalizability in models 
based on pure weather data. Although some research effort has involved 

Nomenclature 

Acronyms 
ASHRAE The American Society of Heating, Refrigerating and Air- 

Conditioning Engineers 
CDD Cooling degree days 
CDH Cooling degree hours 
CV Coefficient of variation 
CV Cross-validation 
DBT Dry-bulb temperature 
HDD Heating degree days 
HDH Heating degree hours 
HHH High humidity hours 
HVAC Heating, ventilation, and air conditioning 
GHI Global horizontal irradiance 
LHH Low humidity hours 
NILM Non-intrusive load monitoring 
RAE Relative absolute error 
RH Relative humidity 
RMSE Root mean squared error 

SHAP SHapley Additive exPlanations 
SQL Structured query language 
S/V Surface-area-to-volume 
WBT Wet-bulb temperature 

Variables 
Afloor Total floor area [m2] 
Etc Total monthly energy use per unit area [kWh/sq⋅m] 
hcd Cooling degree hours [◦C⋅Hr] 
hhd Heating degree hours [◦C⋅Hr] 
hhh High humidity hours [Hrs] 
hlh Low humidity hours [Hrs] 
Tb Base temperature for the specific climate of the building’s 

location [◦C] 
To Average hourly dry bulb temperature [◦C] 
RHb Base humidity for the specific climate of the building’s 

location [%] 
RHo Average hourly relative humidity [%] 
Ws Monthly average wind speed [m/s] 
Yr Age of house [Year]  
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simulated energy use data, building-specific information and variety 
have not been fully engaged. 

In addition to the NILM, weather-based, and simulation- 
incorporated methods described above, some studies have explored 
the utilization of more user-ended information such as utility bills for 
specific energy use prediction and then recommended and/or imple
mented energy savings strategies. Local governments and public utilities 
are now supporting grid modernization in collaboration with other 
influential parties by deploying technologies such as smart sensors, 
computers, and telecommunications, making utility bills more acces
sible [26]. Moreover, a home scoring methodology was proposed by the 
US Department of Energy in 2017, which evaluates a building’s overall 
energy performance as compared to similar building types and provides 
cost-effective retrofits based on two influential factors [27]. Publicly 
shared large-scale datasets comprised of utility bills provide new op
portunities for space cooling energy usage prediction and energy effi
ciency improvements that can be generally applied. Additional energy 
bill analysis methods have been explored to identify and simplify model 
input parameters while ensuring prediction accuracy. Researchers in 
[28] utilized an optimization algorithm to disaggregate energy bills into 
three groups of end uses based on the principles of electricity and 
cooling energy balance, considering input data including monthly 
electricity bills, building design data, weather conditions, and HVAC 
operation information. However, that model requires relatively detailed 
HVAC user input data on specific heating and cooling energy con
sumption. The authors of [29] developed a change-point linear regres
sion model, using utility billing data and weather information to 
estimate gas and electricity usage for end uses such as space cooling and 
heating in residential buildings with radiant floor heating systems 
installed. The proposed method can accurately predict gas used for 
heating but had only average prediction accuracy for electricity con
sumption. [30] conducted a multiple linear regression analysis of com
mercial buildings’ overall energy consumption in tropical regions, using 
utility bills and weather data; the authors argued that more significant 
variables were needed to improve estimation accuracy. However, in that 
work, due to the limited input information, issues related to parameter 
collection and identification for the models’ prediction performance 
were identified, and the practical usefulness to homeowners was chal
lenged. Briefly, utility bill-based methods offer new opportunities for 
energy disaggregation, but accurate monthly cooling energy use with 
limited user input has yet to be achieved. 

1.3. Motivation and contribution 

Although the statistical regression models have been applied in many 
studies as described above and obtained satisfactory prediction results, 
some limitations or challenges are identified in these studies. Firstly, 
sample buildings used in such modeling research were mostly situated in 
the same city and climate regions and locations which decrease the input 
data information quantity and complexity for model enhancement. 
Second, the weather data and building information were not fully 
considered and incorporated for the input predictors to facilitate the 
modeling procedure. Thus, the modeling process was complex in order 
to guarantee a satisfactory prediction accuracy, and the developed 
model is difficult to be implemented by homeowners with the compli
cated processed input information. Third, the interpretability of devel
oped machine learning models in terms of the feature importance and 
interactions has received more attention in recent years but still has not 
been studied fully. Moreover, the performance of commonly used ma
chine learning methods in estimation building cooling energy con
sumption has not been compared thoroughly in terms of their prediction 
accuracy and identifying key predictors. In this work, several research 
questions were of particular focus during the modeling processes to 
address the issues in previous studies, including how to process and yield 
more useful weather data from readily available weather databases, how 
the first principles of building physics should be combined, and what 

new (readily available) parameters might be incorporated to facilitate 
the modeling procedure and to simplify the manipulation process for 
homeowners with the minimum input information. We aim to apply 
machine learning modeling techniques and methods with parameters 
optimization to develop a user-friendly, infrastructure-free, and accu
rate prediction model for estimating cooling energy use based on readily 
available utility bills, weather data, and simple user input information 
(i.e. physical home address) to simplify the manipulation process for 
homeowners with the minimum input information. 

Relative to previous studies, one major contribution of this work is 
that we intentionally bring building characteristics such as floor area, 
age, and surface-to-volume ratio into the modeling process, yielding a 
more generalizable model that can be applied to various residential 
buildings. Another novelty is that several new weather- and building 
characteristics-related parameters by combining the first principles of 
building physics have been proposed, processed, analyzed, examined, 
and determined to be effective at enhancing the model’s performance 
regarding cooling energy use prediction. Also, different prediction 
models are compared in terms of their prediction power and computa
tion complexity through hyperparameters tuning and k-fold cross- 
validation. More practically, sensitivity analysis by interpreting 
feature interactions is conducted for the input variables to identify the 
most influential variables in the models. From a broader scope, the so
cial impact of this work is in its support of homeowners seeking to 
quantitatively understand their use of building heating and cooling 
energy, ultimately aiding their energy-saving-related decision making. 

The remaining of this paper is organized as follows: Section 2 pro
vides the modeling processes for disaggregating total energy consump
tion into space cooling energy use and introduces a few new parameters 
with underlying building physics principles. Section 3 presents the re
sults of the different modeling methods. Section 4 discusses problems 
and limitations related to the input variables that affect the accuracy of 
the prediction, as well as implementation workflows of applying the 
established model to solve real-world home energy issues. Finally, 
conclusions are outlined in Section 5. 

2. Method 

2.1. Data collection 

The volunteer buildings selected for model development were ano
nymized via exclusive IDs provided by the Pecan Street organization 
[31]. The buildings were located in the cities of Austin, Texas, Boulder, 
Colorado, and San Diego, California. These three cities represent hot- 
humid (Zone 2A), cold (Zone 5B), and hot-dry (Zone 3B) climates, 
respectively. Hourly utility data were collected and converted using 
structured query language (SQL) commands to obtain the hourly, daily, 
and monthly total energy consumption levels, as well as space cooling 
energy usage over the span of four years, from 2014 to 2017 [31]. After 
preliminary data processing such as extraction of the feature informa
tion, deletion of missing data, and removal of outliers, 391 houses 
located in the above three cities, a total of 6690 observations were used 
to conduct the monthly cooling energy usage per unit area modeling 
process. The distribution of the observations for each of these three cities 
is shown in Fig. 1. 

The corresponding weather information for the three cities from 
2004 to 2007 could also be accessed and retrieved from the same 
database provided by the Pecan Street organization through SQL com
mands [31]. The typical weather parameters, which were directly ob
tained, included the dry-bulb temperature (DBT), wet-bulb temperature 
(WBT), relative humidity (RH), and wind speed. The hourly weather 
data for these parameters were also converted to monthly data by 
averaging all the values in a month. The historical monthly solar radi
ation data for the three cities were obtained from the TMY3 database 
[32]. The monthly average DBT and global horizontal irradiance (GHI) 
for the three cities are shown in Fig. 2. 

Y. Feng et al.                                                                                                                                                                                                                                     
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In  addfitfion,  the  metadata  downfloaded  provfided  generafl  bufifldfing 

characterfistfics  such  as  the  year  bufiflt,  bufifldfing  floor  area,  number  of 

floors, and cfity flocatfion, whfich from the future appflficatfion’s perspectfive 

coufld  aflso  be  retrfieved  from  pubflfic  property  records  based  on  home 

address finput. The totafl energy consumptfion, as weflfl as space cooflfing 

per  square  foot  of  the  house,  were  aflso  caflcuflated  to  make  figures 

comparabfle for homes of varfious dfimensfions. 

2.2. Data pre-processfing 

2.2.1. Determfinatfion of summer cooflfing seasons 

The monthfly cooflfing energy usage per unfit area for aflfl houses flocated 

fin the three cfitfies are summarfized aflong the fleft y-axfis of Ffig. 3. There fis 

an  apparent  dfifference  fin  monthfly  energy  consumptfion.  Aflthough 

dfifferent energy usage patterns appear for each of the three cfitfies, fin hot 

weather  seasons  the  bufifldfings  generaflfly  consumed  much  more 

Ffig. 1.Observatfion dfistrfibutfion for sampfle bufifldfings.  

Ffig. 2.Monthfly temperature and GHI for the three cfitfies.  

Ffig. 3.Monthfly dfistrfibutfion of cooflfing energy and percentage of manfifest energy usage by month.  

Y. Feng et afl.                                                                                                                                                                                                                                     
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eflectrficfity than they dfid fin cofld weather seasons. To deveflop a robust 

and  accurate  energy  estfimatfion  modefl  that  fits  the  buflk  of  the  data, 

unquaflfified data that mfight affect the modefl’s performance were fiden-

tfified, such as the mfinfimum vaflues fin cofld seasons and outflfiers. Austfin 

had obvfious hot season cooflfing energy usage from May to October, wfith 

peak  vaflues  occurrfing  fin  Jufly  and  August.  The  maxfimum  monthfly 

cooflfing energy usage coufld be around 10.0 kWh/sq⋅m. Bouflder and San 

Dfiego had fless cooflfing energy demand compared to Austfin. Sfimfiflarfly, 

the  maxfimum  cooflfing  energy  usage  was  around  4.0  kWh/sq⋅m  for 

Bouflder and 3.5 kWh/sq⋅m for San Dfiego. 

To  obtafin  a  more  specfific  cooflfing  energy  use  dataset  for  cooflfing 

seasons determfinatfion, we anaflyzed the percentage of monthfly cooflfing 

energy use as a proportfion of monthfly totafl energy use. In thfis work, we 

used  5%  as  the  threshofld  to  determfine  the  cooflfing  season  or  cooflfing 

months to ensure the reflfiabfiflfity and vaflfidfity of the measured data. In 

other words, the cooflfing energy use data were assumed to be 0 and not 

consfidered fin the modeflfing procedure fif the cooflfing energy percentages 

feflfl to 5% of monthfly totafl energy use. The rfight y-axfis fin Ffig. 3 fiflflus-

trates thfis finformatfion. The percentages durfing certafin months are very 

smaflfl or negflfigfibfle, though the perfiod has sflfight dfifferences across the 

three cfitfies. In partficuflar, these very smaflfl numbers may contafin errors 

finduced  by  hard-to-detect  or  subtfle  reasons  such  as  degradatfion  of 

measurement devfices or occasfionafl user cooflfing needs and behavfiors (e. 

g., findoor physficafl actfivfitfies). 

2.2.2. Heatfing and cooflfing degree hours caflcuflatfions 

Weather-reflated  parameters  usuaflfly  focus  on  temperature  and  hu-

mfidfity. Temperature-reflated parameters, fincfludfing DBT, WBT, and dew 

pofint are customarfifly fincfluded fin thfis type of modefl. In most prevfious 

studfies, the degree-day parameters of cooflfing degree days (CDD) and 

heatfing  degree  days  (HDD)  are  typficaflfly  consfidered  and  exhfibfited  as 

sfignfificant  finfluences  on  energy  use  for  bufifldfing  heatfing  and  cooflfing 

purposes. We borrowed the anaflogous concept wfith hfigher-resoflutfion 

data:  cooflfing  degree  hours  (CDH)  and  heatfing  degree  hours  (HDH) 

that  have  been  expflored  fin  some  studfies  such  as  by  researchers  fin 

[33,34] to present the dfistrfibutfion of hourfly average temperatures and 

fin [35,36] to estfimate the energy usage of a bufifldfing based on degree- 

hour method. Thfis hourfly-based caflcuflatfion quantfifies the cumuflatfive 

vaflue  of  the  dfifference  between  the  base  temperature  and  hourfly 

average  temperature,  rather  than  the  average  dafifly  temperature 

consfidered  fin  degree-day  caflcuflatfions.  The  motfivatfion  for  thfis  data 

processfing was that some flarge temperature swfings coufld be fignored fin 

the caflcuflatfion of CDD and HDD. For finstance, sfimfiflar CDD vaflues can be 

yfieflded by two dfifferent weather sfituatfions that may drfive very dfifferent 

space  cooflfing  energy  use  flevefls.  Comparatfivefly,  the  hourfly-based 

caflcuflatfion method for CDH and HDH does not merefly utfiflfize a data-

base  wfith  the  hourfly  resoflutfion  but  aflso  consfiders  possfibfle  dfiurnafl 

temperature  varfiatfions  hfidden  fin  the  weather  dataset.  The  CDH  and 

HDH are caflcuflated foflflowfing Eqs. (1) and (2), respectfivefly. 

CDH=
∑N

n=1

(To−Tb)
+ (1)  

HDH=
∑N

n=1

(Tb−To)
+ (2)  

where  CDH  fis  the  cooflfing  degree  hours,  HDH  fis  the  heatfing  degree 

hours, N fis the number of hours fin the defined perfiod of anaflysfis, Tb fis 

the base temperature for the specfific cflfimate of the bufifldfing’s flocatfion, 

and To fis the average hourfly DBT. 

Base temperature varfies wfith the cflfimate zone, and severafl dfifferent 

vaflues have been defined fin the ASHRAE Handbook 2017 [37]. The base 

temperatures for CDH and HDH caflcuflatfion are commonfly at the same 

vaflue, or a flarger base temperature for caflcuflatfion of CDH than HDH fis 

used, e.g., Papakostas and Kyrfiakfis [34], Boflattürk [35], and Shfi et afl. 

[38]. The correflatfion coefficfient was caflcuflated to evafluate the finfluence 

of  base temperature on the  correflatfion between  space cooflfing  energy 

usage  per  unfit  area  and  CDH  or  HDH  for  the  seflected  bufifldfings.  The 

resuflts, as shown fin Ffig. 4, findficate thefir statfistficafl reflatfionshfip wfith the 

base temperatures for CDH and HDH, rangfing from 15 ◦C (60◦F) to 38 ◦C 

(100◦F) and 4 ◦C (40◦F) to 27 ◦C (80◦F), respectfivefly. For both the CDH 

and  HDH caflcuflatfions,  the correflatfion  coefficfient  has  an approxfimate 

maxfimum vaflue when the base temperature equafls 23.8 ◦C (75◦F). The 

seflectfion of thfis base temperature maxfimfizes the correflatfion between 

the degree-hours and cooflfing energy usage whfifle compflyfing wfith the 

practficafl  norm  and  avofidfing  overflappfing  fin  the  cooflfing  and  heatfing 

temperature  ranges.  The  base  temperature,  defined  as  23.8 ◦C  to 

harmonfize  the  degree  hours  caflcuflatfions  for  CDH  and  HDH,  fis  aflso 

fincfluded because there fis no notficeabfle dfifference fin varfiatfions of the 

correflatfion  coefficfients  for  cooflfing  energy  use.  The  monthfly  accumu-

flated CDH and HDH caflcuflated for the three cfitfies from 2014 to 2017 are 

shown fin Ffig. 5. It fis evfident that the CDH fin Austfin fis much flarger than 

those fin the other two cfitfies, and the maxfimum fis around 4200 fin the 

cooflfing season. There fis flfittfle dfifference between the CDH vaflues for the 

other  two  cfitfies.  The  maxfimum  numbers  are  1100  and  1400  for  San 

Dfiego and Bouflder, respectfivefly. Aflso, the dfistrfibutfions of CDH and HDH 

vaflues over the course of a year appear to foflflow sfimfiflar trends for each 

cfity fin those four years. 

2.2.3. Low and hfigh humfidfity hours caflcuflatfions 

Home space afir condfitfionfing energy use, especfiaflfly cooflfing energy 

use, can be affected by hfigh humfidfity condfitfions. Thfis has been studfied 

fin  severafl  works,  such  as [39,40].  For  afir  condfitfionfing  systems 

embedded wfith humfidfity sensors, externafl humfidfity flevefls may finflu-

ence  both  heatfing  and  cooflfing  energy  use.  Therefore,  sfimfiflar  to  the 

temperature parameter, flow humfidfity hours (LHH) and hfigh humfidfity 

hours (HHH) were defined fin thfis study to fincrease the resoflutfion and 

compfletfion of the weather data. The LHH and HHH are represented by 

Eqs. (3) and (4), respectfivefly. 

LHH=
∑N
n=1(RHb−RHo)

+(3) 

HHH=
∑N
n=1(RHo−RHb)

+ (4)where  LHH  fis  the  flow  humfidfity 

hours, HHH fis the hfigh humfidfity hours, N fis the number of hours fin the 

perfiod of anaflysfis, RHb fis the base humfidfity for the specfific cflfimate of the 

bufifldfing’s flocatfion, and RHo fis the average hourfly RH. 

LHH and HHH may both affect cooflfing energy usage, so the corre-

flatfions between cooflfing energy usage and LHH and HHH wfith RH vaflues 

rangfing from 10% to 80% were examfined, as shown fin Ffig. 6. Both LHH 

and HHH negatfivefly correflated wfith space cooflfing energy consumptfion, 

and the maxfimum correflatfion occurred when the base RH was 30% for 

LHH computatfion. In sum, the statfistficafl correflatfion of HHH wfith space 

cooflfing  energy  usage  was  reflatfivefly  smaflfl.  The  coefficfient  sflowfly 

approached a maxfimum vaflue when the base RH exceeded 80%. The 

base RH vaflues of 30% and 80% were seflected. The monthfly accumu-

flated  humfidfity-reflated  hours  for  the  three  cfitfies  are  shown  fin Ffig.  7, 

where fit can be seen that the vaflues for LHH and HHH had an unex-

pectedfly patchy dfistrfibutfion pattern. 

2.2.4. Surface-area-to-voflume ratfio estfimatfion 

In the domafin of bufifldfing physfics, dfifferent types of research have 

been  conducted  on  the  effects  of  bufifldfing  geometry  on  energy  use, 

finvoflvfing  numerous  aspects  of  bufifldfing  geometry,  such  as  surface-to- 

voflume ratfio [41], bufifldfing orfientatfion [42], bufifldfing form [43], and 

dynamfic  enveflope [44,45].  The  surface-area-to-voflume  (S/V)  ratfio,  a 

common measure of bufifldfing compactness, has been found to sfignfifi-

cantfly fimpact overaflfl heat gafins and flosses through a bufifldfing enveflope. 

It fis consfidered one of the bufifldfing-specfific varfiabfles most fimportant to 

consfider [41]. It fis commonfly accepted that a compact bufifldfing shape 

fintroduces fless heat gafin and floss, and at the same tfime may finterac-

tfivefly  finfluence  heat  transfer  through  the  enveflope  vfia  compflficated 

factors such as soflar radfiatfion, wfind speed, and bufifldfing orfientatfion. The 

S/V  ratfio  can  easfifly  be  estfimated  from  a  sfimpfle  retrfievafl  of  pubflfic 
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property records that provfide the floor area and the number of floors. 

The approxfimate caflcuflatfion of S/V fis expressed fin Eq. (5). The floor-to- 

floor hefight of 3 m fis assumed to be the same for each bufifldfing; the floor 

shape was assumed roughfly to be square. The vaflues caflcuflated for the 

S/V ratfio for the sampfle bufifldfings examfined fin thfis work are dfispflayed 

fin Ffig. 8. 

S/V=

̅̅̅̅̅̅̅
Affloor
f

√
×4×10+

Affloor
f

Affloor×10 
(5)where Affloor fis the totafl floor area and f fis 

the number of floors for each bufifldfing. 

2.3. Preparatfion and finfitfiafl anaflysfis of candfidate predfictor varfiabfles 

The finput features fincflude the varfiabfles obtafined dfirectfly from the 

downfloaded  data  and  proposed  varfiabfles  that  cover  utfiflfity  bfiflfls, 

bufifldfing-specfific  data,  and  weather  data.  The  finfitfiafl  finput  varfiabfles 

seflected for cooflfing energy usage estfimatfion are shown fin Tabfle 1. The 

monthfly totafl energy usage per square foot can be obtafined from utfiflfity 

bfiflfls. The bufifldfing age and S/V ratfio were used as representatfive char-

acterfistfics of a bufifldfing. The weather condfitfions fin terms of temperature, 

humfidfity, soflar radfiatfion, and wfind  speed were fuflfly consfidered. The 

parameters of temperature, as weflfl as the proposed CDH and HDH, were 

seflected  as  candfidate  parameters  because  they  had  dfifferent  physficafl 

meanfings, and the evafluatfion of thefir reflatfive fimportance fis one afim of 

thfis research. The same appflfies to the parameter of humfidfity, LHH, and 

HHH. 

Pearson’s correflatfion coefficfients between the modefl varfiabfles were 

used to check the strength of thefir coflflfinearfity between predfictors (See 

Ffig. 9) firstfly before deveflopfing modefls. Thfis fis to present the most basfic 

Ffig. 4.Influence of base temperature on the correflatfion coefficfient between degree-hours and space cooflfing energy usage per unfit area.  

Ffig. 5.Monthfly accumuflated CDH and HDH from 2014 to 2017.  

Ffig. 6.Influence of base RH on the correflatfion coefficfient between LHH and space cooflfing energy usage and HHH and space cooflfing energy usage.  
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and  background  finformatfion  and  reflatfionshfip  among  the  parameters 

used  fin  the  next  modeflfing  processes.  A posfitfive  correflatfion  exfists  be-

tween two varfiabfles when the coefficfient fis posfitfive, whereas a negatfive 

correflatfion findficates a negatfive coefficfient vaflue. It shoufld be noted that 

a  causafl  reflatfionshfip  fis  not  fimpflfied.  As  the  finfitfiafl  step,  a  correflatfion 

anaflysfis enabfles to vfisuaflfly examfine the possfibfle reflatfionshfips between 

the candfidate predfictors. It fis fimportant to note that the subsequentfly 

appflfied modefls aflso had bufiflt-fin aflgorfithms for rankfing the varfiabfles and 

facfiflfitatfing the parameter sfignfificance anaflysfis for the candfidate modefls. 

2.4. Appflficatfion of machfine flearnfing methods and performance 

evafluatfion metrfics 

Statfistficafl regressfion methods and machfine flearnfing technfiques were 

appflfied to deveflop the predfictfion modefls for space cooflfing energy usage 

per  square  foot.  Aflfl  of  the  predfictors  were  numerficafl  varfiabfles.  The 

generaflfized flfinear modefl (GLM) and poflynomfiafl modefl were seflected as 

representatfive regressfion modefls to express the predfictfion modefl usfing a 

sfimpfle finterpretabfle equatfion. Machfine flearnfing technfiques, fincfludfing 

SVM,  KNN,  random  forest,  eXtreme  gradfient  boostfing  (XGBoost), 

GAMBoost,  and  GLMBoost  were  aflso  adopted  fin  thfis  study.  These 

methods that are most commonfly used fin each aflgorfithm baflance thefir 

predfictfion  bfiases  and  gfive  fuflfl  consfideratfion  to  predfictfive  accuracy. 

Earflfier studfies [21,23] examfined the feasfibfiflfity and appflficabfiflfity of SVM 

fin  forecastfing  the  bufifldfing energy consumptfion  through  finvestfigatfing 

the finfluence of dfifferent SVM parameters on the estfimatfion accuracy 

based on the SVM features such as mathematficafl kernefl functfion defined 

and structure rfisk mfinfimfizatfion regressfion used. These studfies demon-

strated the better predfictfion accuracy and modefl performance of SVM fin 

bufifldfing energy predfictfion than the tradfitfionafl neurafl network modefl 

that  had  more  free  parameters  to  optfimfize.  KNN  method  was  fimpfle-

mented fin [17] to capture the  nonflfinearfitfies of the appflfiance-specfific 

energy usage sfignafls, and the study fin [46] consfidered the finverse of 

Eucflfidean  dfistance  as  the  wefight  for  the  KNN  modefl  and  proposed  a 

short-term fload predfictfion modefl wfith hfigher forecastfing accuracy. The 

random forest method appflfies a tree-based aflgorfithm to estfimate energy 

consumptfion, and the study fin [47] appflfied thfis homogeneous ensembfle 

approach to predfict hourfly bufifldfing eflectrficfity usage by examfinfing the 

effect  of  parameter  settfings  such  as  the  numbers  of  varfiabfles  on  the 

Ffig. 7.Monthfly accumuflated LHH and HHH from 2014 to 2017.  

Ffig. 8.Dfistrfibutfion of the S/V ratfios for the sampfle bufifldfings.  

Tabfle 1 

Symbofl and definfitfion of the finput Parameters for Cooflfing Modefl Anaflysfis.  

Parameter  Symbofl  Definfitfion Unfit 

Cooflfing Ec Monthfly cooflfing energy use per unfit 

area 

kWh/ 

sq⋅m 

Totafl use Etc Totafl monthfly energy use per unfit area  kWh/ 

sq⋅m 

Dry buflb Td Monthfly average dry buflb temperature ◦C 

CDH (T >23.8) hcd Cooflfing degree hours ◦C⋅Hr 

HDH (T <23.8) hhd Heatfing degree hours ◦C⋅Hr 

Reflatfive 

humfidfity 

RH Monthfly average reflatfive humfidfity  % 

HHH (RH >

70%) 

hhh Hfigh humfidfity hours Hrs 

LHH (RH <30%) hflh Low humfidfity hours Hrs 

Soflar radfiatfion GHI Monthfly gflobafl horfizontafl firradfiance  Wh/m2 

Wfind speed Ws Monthfly average wfind speed m/s 

S/V S/V Surface-area-to-voflume ratfio m−1 

Age Yr Age of house Year  

Ffig.  9.Correflatfion  matrfix  of  predfictors  and  responses  for  space  cooflfing  en-

ergy estfimatfion. 
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predfictfion accuracy. XGBoost fis based on an optfimfized gradfient boost-

fing  framework  that  can  efficfientfly  fimprove  modeflfing  accuracy [48]. 

Researchers fin [49] used the XGBoost method on the tfime serfies data by 

feature seflectfion to forecast the eflectrficfity fload for a sfingfle tfime fintervafl 

wfith  efficfient  computfing  tfime  whfifle [50] proposed  a  hybrfid  modefl 

combfinfing the XGBoost aflgorfithm to evafluate the features’ fimportance. 

In thfis research, the data processfing and machfine flearnfing anaflysfis 

were conducted usfing the R package of “mflr3” avafiflabfle on CRAN [51]. 

Thfis package fis devefloped wfith a robust object-orfiented framework for 

machfine flearnfing aflgorfithms. The random search aflgorfithm, whfich fis an 

efficfient and effectfive technfique for hyper-parameter optfimfizatfion, was 

appflfied for parameter tunfing usfing k-fofld cross-vaflfidatfion to fimprove 

the  modefls’ performance [52].  K-fofld  cross-vaflfidatfion  wfith  the  vaflue 

five assfigned to k was adopted fin thfis work to randomfly generate the 

trafinfing and test sets and to estfimate the tunfing parameters for optfimafl 

modefl  performance.  The  candfidate  modefls  were  devefloped  usfing  the 

first fofld as the testfing data and the remafinfing four foflds as the trafinfing 

data. Usfing R2 for the modefl wfith parameter λ, predfictfion accuracy was 

computed usfing the test data. Thfis process was repeated five tfimes, untfifl 

each  of  the  five  subsets  was  taken  as  the  trafinfing  data  exactfly  once. 

Cross-vaflfidatfion accuracy was evafluated by averagfing the k estfimates of 

R2 from each fiteratfion. The caflcuflatfion of R2 and MSE from each fitera-

tfion  as  weflfl  as  k-fofld  CV  accuracy  were  based  on  Eqs.  (6)–(8), 

respectfivefly. 

Rfi
2(λ) =1−

∑
j
(yj−̂yj(λ))

2

∑
j
(yj−yj)

2 (6) 

MSEfi(λ) = (yj−ŷfi)
2 (7) 

CV(λ) =1k
∑k
fi=1MSEfi(λ)(8)where yj fis  the  observed  response  vaflue, 

ŷj(λ)fis the predficted response vaflue for the parameter λ, and yj fis the 

mean vaflue of the responses. 

The vaflue of λ that made the CV (λ) vaflue the flargest was seflected for 

optfimafl  modefl  deveflopment  fin  each  candfidate  modefl  aflgorfithm.  The 

optfimafl modefls were then devefloped for the whofle dataset. The optfimafl 

modefls’ R2 coefficfients  resufltfing  from  the  k-fofld  cross-vaflfidatfion  and 

usfing the whofle dataset were compared to evafluate the modefls’ vaflfidfity. 

The  predfictfion  accuracy  of  aflfl  of  the  optfimafl  energy  usage  modefls 

devefloped wfith the whofle dataset was evafluated usfing the R2, RMSE, 

and  RAE.  The  finafl  modefl  was  obtafined  from  the  candfidate  optfimafl 

modefls  after  a  comprehensfive  comparfison.  The  feature  seflectfion  and 

fimportance of the finafl modefl were fidentfified and compared to deter-

mfine the most finfluentfiafl factors fin each modefl for space cooflfing energy 

use. The modefl deveflopment framework fis summarfized fin Ffig. 10. 

3. Resuflts 

3.1. Modefl deveflopment and performance comparfison 

The  poflynomfiafl  modefl,  GLM,  and  machfine  flearnfing  modefls  were 

then  devefloped. Tabfle  2 summarfizes  the  modefls’ predfictfion  perfor-

mances  accordfing  to  the  crfiterfia  of  R2,  MSE,  RMSE,  and  RAE.  The 

modefls’ R2 coefficfients and MSE were obtafined vfia the cross-vaflfidatfion 

approach,  whfich  were  named  CV_R2 and  CV_MSE,  respectfivefly.  The 

optfimafl modefls bufiflt from the whofle dataset were seflected mafinfly based 

on MSE. To more cflearfly understand and evafluate the best modefl, the 

bar pflot fin Ffig. 11 was devefloped to depfict the modefls’ performances. 

The XGBoost modefl had the second-flowest MSE vaflue wfith 0.086 and 

a maxfimum vaflue of CV_R2, approxfimatefly 92.2%. The smaflfl dfifference 

between  CV_MSE and  MSE wfith  the vaflue  of 0.135,  and  between the 

vaflues of CV_R2 and M_R2 findficated a flow rfisk of overfittfing. The flow 

RMSE and RAE vaflues aflso findficated good predfictfive accuracy. A ranger 

modefl was obtafined wfith the flowest MSE vaflue of 0.065 and a maxfimum 

R2 vaflue  of  around  97.7%;  however,  that  modefl  had  a  much  flarger 

CV_MSE  vaflue  and  flower  CV_R2 vaflue  of  85.2%,  showfing  that  much 

uncertafinty or bfias coufld be fintroduced finto the predfictfion by usfing the 

whofle  dataset,  reducfing  the  modefl’s  reflfiabfiflfity  and  vaflfidfity.  Average 

predfictfive performance was found fin the SVM, cforest, and GAMBoost 

modefls,  and  fless  predfictfive  accuracy  was  obtafined  from  the  GLM, 

gflmboost, and poflynomfiafl modefls. 

The  modefl  performance  aflso  dfiffers  fin  terms  of  computatfionafl  re-

sources,  fincfludfing  computatfion  tfime  and  memory  space  usage.  The 

generated poflynomfiafl modefl and GLM modefls took much fless tfime than 

that fit took to attafin the machfine flearnfing modefls, but these two modefls 

had a reflatfivefly flower predfictfion performance wfith R2 around 0.8. The 

machfine flearnfing modefl deveflopment reflfied much on the hardware for a 

smooth and qufick computatfion, and the average tfime for deveflopfing the 

XGBoost modefl fin thfis study was around 30 mfin. On the other hand, 

there was not a sfignfificant dfifference fin the computatfion tfime among 

these  machfine  flearnfing  modefls  when  usfing  the  package “mflr3”. 

Comparatfivefly speakfing, the XGBoost modefl wfith much better predfic-

tfion performance fis worthwhfifle at the cost of acceptabfle computfing tfime 

and efforts. 

Through  comparfison  and  anaflysfis  of  these  modefls,  the  XGBoost 

modefl was finaflfly seflected as the optfimafl modefl for thfis modeflfing sce-

narfio. The XGBoost modefl fimpflements paraflflefl tree flearnfing and aflflows 

users to custom evafluatfion crfiterfia, and aflso fit has a bufiflt-fin cross-vaflfi-

datfion procedure at each boostfing fiteratfion [48]. The tree-specfific pa-

rameters that were optfimfized usfing cross-vaflfidatfion for overfittfing and 

under-fittfing controfl fin thfis study were shown fin Tabfle 3. 

3.2. Appflficatfion of the XGBoost modefl and the predfictfion performance 

The  XGBoost  modefl  was  appflfied  to  the  coflflectfion  of  datasets,  of 

whfich the data for Austfin comprfised the most substantfiafl proportfion. 

Ffig. 10.Modefl deveflopment framework.  

Tabfle 2 

Predfictfion Performances of the Nfine Modefls Devefloped usfing varfious evafluatfion 

metrfics.  

Method  CV_R2  CV_MSE  M_R2  MSE  RMSE  RAE 

poflynomfiafl  0.818  0.519  0.820  0.514  0.717  0.382 

gflm 0.802  0.566  0.802  0.565  0.752  0.403 

xgboost  0.922  0.221  0.970  0.086  0.294  0.153 

ranger  0.852  0.420  0.977  0.065  0.256  0.132 

cforest  0.829  0.489  0.862  0.395  0.629  0.331 

knn 0.806  0.553  0.869  0.373  0.611  0.332 

svm 0.836  0.470  0.855  0.413  0.643  0.336 

gamboost  0.833  0.478  0.848  0.435  0.659  0.351 

gflmboost  0.804  0.562  0.805  0.557  0.746  0.399  
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The  regressfion  flfine  of  the  truth  and  response  vaflues  are  shown  fin 

Ffig. 12a. The whofle dataset fincfluded data for three cfitfies, and thus the 

modefl’s  appflficabfiflfity  for  each  findfivfiduafl  cfity  was  examfined  by  refla-

tfionshfip pflots (see Ffig. 12b, 12c, and 12d for Austfin, Bouflder, and San 

Dfiego,  respectfivefly). The  dfiagonafl flfines’ adjusted  R2 vaflues  findficated 

the goodness-of-fit of the XGBoost modefl for the three cfitfies fin dfifferent 

cflfimate zones. 

The modefl was then evafluated fin terms of fits predfictfion accuracy for 

each findfivfiduafl bufifldfing (defined by a specfific bufifldfing ID). There were 

377 houses wfith mufltfipfle observatfions, 324 of them wfith a mfinfimum of 

10 observatfions. These were sorted out as representatfive bufifldfings for 

the predfictfive anaflysfis, bufifldfings wfith too few observatfions may have 

yfieflded unwanted errors. Ffig. 13 shows the dfistrfibutfion of the R2 vaflues 

for  each  bufifldfing. The modefl appeared  unsufitabfle for  three bufifldfings 

wfith negatfive R2 vaflues (not shown fin Ffig. 13). Other than those nega-

tfive vaflues, R2 vaflues fless than 80% for 18 bufifldfings were obtafined. The 

predfictfion  accuracy  for  13  bufifldfings  ranged  between  80%  and  85%. 

That  fis  to  say  that  usfing  the  modefl  devefloped  for  thfis  research,  290 

bufifldfings, 90% of the dataset, coufld be evafluated wfith no fless than 85% 

predfictfion accuracy fin terms of thefir cooflfing energy usage. 

3.3. Feature fimportance fin the XGBoost modefl 

The  modefl  obtafined  consfisted  of  the  parameters  of  utfiflfity  bfiflfls, 

bufifldfing-specfific  finformatfion,  and  weather-reflated  data.  The  reflatfive 

fimportance flevefl of each finput varfiabfle was evafluated to determfine the 

major factors finfluencfing cooflfing energy estfimatfion. The finput varfiabfles 

were compared and ranked usfing feature fimportance scores finteflflfigentfly 

obtafined by the boosted trees of the XGBoost aflgorfithm [48,51]. Feature 

fimportance fis shown fin Ffig. 14a, whfich findficates that the totafl energy 

usage  obtafined  from  utfiflfity  data  was  the  most  finfluentfiafl  predfictor 

varfiabfle  for  cooflfing  energy  estfimatfion.  The  varfiabfle  of  secondary 

fimportance  was  the  S/V  ratfio,  whfich  represents  the  crfitficafl  bufifldfing 

characterfistfic of compactness. Aflmost equafl sfignfificance was found for 

Ffig. 11.Predfictfion performance comparfison pflots for seflected aflgorfithms.  

Tabfle 3 

Tree-specfific parameters tunfing for XGBoost modefl.  

Tree-specfific parameters max_depth gamma mfin_chfifld_wefight subsampfle coflsampfle_bytree 

Vaflue 5 0 1 0.9 0.9  

Ffig. 12.True vaflues vs. predficted response vaflues.  
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Ffig. 13.Dfistrfibutfion of predfictfion accuracy for each bufifldfing.  

Ffig. 14.(a) Feature fimportance, and (b) the finfluence of the number of seflected varfiabfles on the R2.  

Ffig. 15.SHAP dependence pflot for sfignfificant features.  
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the CDH variable, which outperformed DBT. Thus, CDH would well 
reflect temperature information and its influence on a building’s cooling 
energy demand. Building age was found to be another relatively 
important parameter influencing building cooling energy consumption. 
Other weather-related variables, including RH, humidity-related degree 
hours, wind speed, and GHI were of little importance compared to the 
other variables analyzed above. Further analysis was conducted to 
consider the influence of the number of input variables in the model on 
its predictive accuracy (see Fig. 14b). The variables selected for the 
model with different numbers of input predictors were based on their 
relative importance scores based on gradient boosting algorithm 
[48,53]. The maximum R2 at approximately 97% could be reached with 
a minimum of four input parameters: total energy use, S/V ratio, CDH, 
and DBT. 

The developed model has accurate prediction accuracy, but it is still 
necessary to understand and interpret the relationship between each of 
the four features and cooling energy usage in this model. The inter
pretability of complex models would lead to a better understanding of 
how the model makes a decision and thus enhance model acceptance 
and adoption. The SHapley Additive exPlanations (SHAP) approach, 
which is deemed as an advanced method to interpret individual pre
diction for tree-based models, was employed to display the relationship 
by computing the contribution of each variable to the expected model 
prediction [54]. Fig. 15 shows the SHAP dependence plot to illustrate 
the effects of the key features on the response prediction interacted with 
other features. The horizontal axis represents the actual value of the 
feature being depicted. The vertical axis, the SHAP value, represents 
how much of the contribution of that feature’s value to the model pre
diction output. The SHAP dependence also shows the variance on the y- 
axis. Especially in the case of interactions, the SHAP dependence plot 
will be much more dispersed in the y-axis. The color corresponds to a 
second feature that may have an interaction effect with the feature we 
selected. As shown in Fig. 15a, the overall energy usage’s SHAP value 
distributions indicate its strong effects on the model, which aligns with 
the results of feature relative importance analysis above. The upward 
trend of the slopes indicates a positive and nonlinear relationship be
tween the overall energy use and the target variable – cooling energy 
use, which is also consistent with the basic correlation analysis in section 
2.3. Also, the cluster of greenish colored dots in the range of 0–10.8 total 
energy use shows a possible interaction effect of the total energy use 
with the dry bulb, which will be further analyzed in the next part. The 
SHAP dependence plot for the S/V ratio in Fig. 15b has a large dispersion 
in the vertical direction, especially in the low S/V region (<0.66), which 
suggests that this building shape-related feature may affect the predic
tion by interacting considerably with the other variables. The relation
ship between the cooling energy use and S/V in this region is monotonic. 
However, intuitively, we know under the same volume conditions, the 
greater the building surface area, the greater the potential heat gain or 
loss through it. This relationship is well captured in the high S/V region 
(>0.66) as there is a relatively important and positive correlation be
tween the S/V and cooling energy use in this region. Similarly, in the 
plot of Fig. 15c, there exists a positive nonlinear relationship between 
CDH and cooling energy use. Meanwhile, the variation of dry bulb 
temperature was colored, and the color pattern aligns with the definition 
of CDH in which the higher the dry bulb temperature, the larger the CDH 
value will be. Dry bulb temperature and its SHAP values in Fig. 15d 
show an interesting pattern in which the dry bulb temperature seems to 
be an important feature that negatively affects the model prediction 
value when it is below approximately 23.8 ◦C (75◦F), while the rela
tionship between dry bulb temperature and its effects on cooling energy 
use is monotonic. However, there exists a linear and positive relation
ship between the feature and the target when the dry bulb temperature 
is higher than 23.8 ◦C (75◦F). This also echoes the earlier finding on the 
use of 23.8 ◦C (75◦F) as the CDH base temperature. 

As mentioned above, we noticed that potential interaction exists 
between features – the dry bulb temperature and the total energy use at 

the energy use region (0–10.8). Therefore, after accounting for the in
dividual feature effects, we also studied the interaction effect (or called 
the combined feature effect) on the model output by using the SHAP 
interaction values. Such values are computed after subtracting the main 
effect of the features so that the interaction effect between features on 
the model can be obtained [55]. Fig. 16 presents the SHAP interaction 
value plots for the feature pair of the total energy use and the dry bulb 
temperature. By plotting the SHAP interaction values, we can visualize 
that the total use interacted with the dry bulb temperature range 
18.0–23.8 ◦C (65–75◦F) (greenish dots) has a rapidly sloping distribu
tion (negative relationship to the prediction) and relatively higher SHAP 
values mainly stay in the 0–10 total energy use range. The same inter
action effect is not visualized for any other temperature regions. This 
finding using the SHAP interaction value framework is fully compre
hensible because the increase of the total energy use should not be 
mostly contributed by the cooling use when the outdoor temperature is 
within the comfort zone (18.0–23.8 ◦C) (65–75◦F). Also, this informa
tion is supportive of our earlier pre-processing of the cooling-dominant 
data. 

4. Discussion 

The typical machine learning algorithms were adopted and 
compared in this study. Hyperparameter tuning was applied to each 
method for exploiting their optimal performance and making them 
comparable with each other. Also, k-fold cross-validation was utilized in 
the process of solving the hyperparameters to reduce the risk of over
fitting and increase the model’s validity. Through the model develop
ment and comparison, we identified problems and limitations related to 
the input variables that affect the accuracy of the prediction, as well as 
opportunities to apply this model to solve real-world building energy 
performance issues. 

4.1. The reliability and consistency of building energy usage data 

It is important to note that the sample buildings selected in this study 
were located in three different climate zones (i.e., Zones 2A, 3B, and 5B), 
which was an intentional effort to take various weather-related pa
rameters into account. However, the number of observations for the 
sample buildings located in the three target cities were not equal due to 
limitations on the quantity of qualified data. This may have had an 
adverse effect on the predictive performance of buildings located in 
various climates. The results of applying the XGBoost model on indi
vidual cities showed a 1% lower prediction accuracy for the city of San 
Diego. Further research should be conducted to increase the observa
tions and balance the number of sample buildings from different cities to 
improve prediction accuracy. 

The data pre-processing, including data cleaning, data trans
formation, and the feature candidate selection was firstly performed 
before model development. The process of data cleaning was intended to 
remove unqualified data such as extremely low cooling energy con
sumption data in cold seasons to ensure the quality of the collected data. 
For example, the results of the prediction accuracy of the XGBoost model 
for each individual building showed negative R2 values for three 
buildings. These three buildings were found to have far lower monthly 
cooling energy usage compared to buildings with similar building 
characteristics. The unusual cooling energy consumption indicates that 
there may be uncontrolled or unconsidered factors, such as individual 
living habits and occupancy information, that affect the cooling needs. 
For the 18 buildings with R2 values less than 80%, it was found that 
there were large variations of monthly cooling energy usage for a 
building with similar monthly total energy usage or a significant dif
ference in monthly total energy usage with almost the same cooling 
energy usage. The data consistency for these 18 buildings’ energy usage 
needs further evaluation. It is an important work to identify the cooling- 
dominant data and remove unqualified data in the data pre-processing 
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phase to ensure data reflfiabfiflfity and a more effectfive modeflfing proced-

ure. The probflem of modefl appflficatfion fin cofld seasons woufld be possfibfly 

overcome  by  fintegratfing  more  reflfiabfle  measured  data  fin  flow- 

temperature condfitfions for a bufifldfing to enhance modefl generaflfizatfion 

or  by  fincorporatfing  a  decfisfion-tree-based  structure  to  determfine 

whether the cooflfing energy use occurs before appflyfing thfis cooflfing use 

estfimatfion  modefl.  Overaflfl  speakfing,  thfis  devefloped  predfictfion  modefl 

coufld support occupants understand the finfluence of thefir behavfiors on 

bufifldfing  energy  performance  and  thus  promote  energy-savfing 

behavfiors. 

4.2. Evafluatfion and comparfison of parameters’ fimportance fin varfious 

modefls 

These  dfifferent  modeflfing  methods  demonstrated  consfistency  fin 

terms of feature fimportance. In the XGBoost modefl, cooflfing energy use 

was  found  to  be  more  sensfitfive  to  the  CDH  parameter  than  to  DBT. 

Comparatfivefly, the RH parameter and proposed humfidfity hours pflayed 

finsfignfificant  rofles  fin  thfis  modefl.  The  GHI  varfiabfle  was  aflso  not 

partficuflarfly sensfitfive to cooflfing energy predfictfion, whfich seems fincon-

sfistent wfith the first prfincfipfles of bufifldfing physfics. To further expflore 

the  possfibfiflfity  of  takfing  GHI  finto  account,  we  roughfly  estfimated  the 

soflar  radfiatfion  recefived  by  the  bufifldfing  enveflope  by  usfing  the  enve-

flope’s area and GHI. Unfortunatefly, thfis dfid not fimprove the correflatfion 

coefficfient. The reason mfight be that the detafifled bufifldfing characterfis-

tfics finformatfion reflated to the soflar radfiatfion recefived (such as bufifldfing 

orfientatfion, wfindow-to-waflfl ratfio, and tree shadfing) dramatficaflfly affects 

the actuafl soflar heat gafin recefived but remafins obscure fin our modeflfing 

process. In other words, more finformatfion fis needed to fidentfify the fin-

fluence of soflar radfiatfion. However, fit can be envfisfioned that success-

fuflfly  addfing  soflar  radfiatfion  to  the  modefl  woufld  be  a  key  factor  fin 

boostfing fits performance. 

In  addfitfion  to  these  generafl  reflectfions,  we  chose  the  four  best 

modefls to further anaflyze wfith regards to feature fimportance, fincfludfing 

XGBoost, Ranger, GAMBoost, and cforest. Ffig. 17 dfispflays the reflatfive 

fimportance of the most finfluentfiafl varfiabfles fin these four modefls. The 

fimportance  scores  for  each  modefl  were  normaflfized,  and  the  reflatfive 

fimportance of the features was compared. The top sfix ranked varfiabfles 

Ffig. 16.SHAP finteractfion vaflues for finterpretfing the finteractfion effect.  

Ffig. 17.Reflatfive fimportance of features fin the comparfison modefls.  
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for each modefl were seflected, and fit was dfiscovered that the fimportance 

rankfing of the varfiabfles dfiffered by modeflfing technfique. However, the 

varfiabfle of totafl use was aflways the most fimportant predfictor. DBT and 

CDH  remafined  the  second  most  fimportant  fin  the  cforest,  ranger,  and 

XGBoost  modefls.  As  dfiscussed  prevfiousfly,  based  on  bufifldfing  physfics 

knowfledge, the bufifldfing S/V ratfio shoufld have a sfignfificant effect on 

cooflfing  energy  consumptfion;  a  compact  bufifldfing  shape  wfiflfl  benefit 

energy savfings. Interestfingfly, the sfignfificance of the S/V ratfio was onfly 

detected fin the ranger and XGBoost modefls, whfich mfight be the reason 

behfind  thefir  fimproved  accuracy  over  aflfl  other  modefls.  Overaflfl,  the 

modefl performance woufld benefit from the fintegratfion of the processed 

CDH  and  S/V  varfiabfles  when  predfictfing  cooflfing  energy  usage  (fin 

addfitfion to the weather features tradfitfionaflfly empfloyed). 

4.3. Workflow fimpflementatfion 

The modefl fidentfified and devefloped here can be wrfitten vfia a pro-

grammfing flanguage to form an executabfle fifle, whfich coufld then be used 

by homeowners seekfing to anaflyze thefir energy use. Ffig. 18 depficts a 

schematfic  for  usfing  thfis  modefl.  Homeowners  need  onfly  to  finput  a 

seflected month’s overaflfl home energy use data from thefir utfiflfity bfiflfls 

and thefir physficafl home address. Based on the geographfic flocatfion, two 

data extractfion and computatfion processes woufld be carrfied out. Ffirst, 

the hfistorficafl weather data fin that partficuflar month (consfistent wfith the 

utfiflfity bfiflfl’s month) woufld be retrfieved from pubflfic databases such as 

the  Natfionafl  Weather  Servfice  and  Natfionafl  Oceanfic  and  Atmospherfic 

Admfinfistratfion. Then, the CDH parameter woufld be caflcuflated based on 

Eq. (1) and an assumed base temperature of 23.8 ◦C (75◦F). Second, the 

physficafl address finput by the homeowner woufld be used to retrfieve the 

bufifldfing characterfistfics from pubflfic  record databases of  reafl property 

(handfled  by  findfivfiduafl  countfies  or  cfitfies,  or  property  search  engfines 

such as US Reaflfity Records). The S/V and age parameters woufld then be 

output  accordfing  to  the  bufifldfing  profifle-reflated  data  extracted, 

fincfludfing  the  number  of  floors,  overaflfl  area,  and  year  bufiflt.  Overaflfl 

energy use, weather-reflated features, and bufifldfing characterfistfics woufld 

then be used to yfiefld the cooflfing energy use fin the month findficated. 

Bufifldfing  upon  the  aforementfioned  finformatfion,  varfious  externafl 

caflcuflatfions, and strategfies reflated to energy savfings coufld be combfined 

and used for a wfide varfiety of purposes. For finstance, fin our prevfious 

work, we devefloped an fin sfitu wfindow measurement sensor modufle that 

can convenfientfly be assembfled and used to report key home wfindow 

propertfies, fincfludfing the thermafl coefficfient, vfisfibfle transmfittance, and 

soflar  transmfittance [56].  Combfinfing  finformatfion  reflated  to  wfindow 

propertfies  and  space  cooflfing  energy  use  fin  a  partficuflar  month,  we 

shoufld be abfle to provfide more accurate finformatfion regardfing energy 

use and cost percentages home wfindows may account for, aflflowfing for 

the  presentatfion  of  comparabfle  quantfitfies  obtafined  by  upgradfing  the 

wfindows or wfindow fiflms. Consfider, for exampfle, behavfiorafl finterven-

tfion strategfies desfigned and fimpflemented to fincrease househofld energy- 

savfing behavfiors by provfidfing normatfive energy use feedback [57,58]. 

More detafifled energy dfisaggregatfion data (such as cooflfing energy use 

data) woufld sfignfificantfly enhance the effectfiveness of these strategfies by 

fidentfifyfing  more  meanfingfufl  reference  groups  and  provfidfing  more 

personaflfized feedback. 

5. Concflusfions 

Thfis  study  compared  severafl  statfistficafl  modeflfing  technfiques  and 

devefloped  a  reflfiabfle  XGBoost  modefl  that  accuratefly  predficts  cooflfing 

energy use for resfidentfiafl bufifldfings usfing the finput varfiabfles of utfiflfity 

bfiflfl finformatfion, bufifldfing surface-to-voflume ratfio, cooflfing degree hours, 

and  dry-buflb  temperature.  The  k-fofld  cross-vaflfidatfion  and  parameter 

tunfing were appflfied to evafluate the modefl’s reflfiabfiflfity and vaflfidfity. The 

XGBoost modefl devefloped offers optfimafl performance compared to the 

other commonfly used statfistficafl methods. An R2 vaflue of 92% was ob-

tafined to estfimate the accuracy usfing k-fofld cross-vaflfidatfion. Thfis modefl 

was aflso findfivfiduaflfly appflfied to cfitfies flocated fin three dfifferent cflfimate 

zones. The resuflts findficated good reflfiabfiflfity of predfictfion and goodness- 

of-fit. 

Furthermore,  severafl  new  weather-  and  bufifldfing  characterfistfics- 

reflated parameters were desfigned and tested fin the modeflfing proced-

ure,  among  whfich  predfictors  of  cooflfing  degree  hours  and  surface-to- 

voflume ratfio were found to be effectfive fin enhancfing the modefl’s pre-

dfictfion performance. Modefls usfing degree hours and surface-to-voflume 

ratfio exhfibfit a great potentfiafl to fincrease modefl performance for future 

energy  predfictfion  studfies.  Aflthough  some  other  newfly  desfigned  pa-

rameters fimpacted the modefl resuflts when specfific modeflfing methods 

were  used,  they  were  not  statfistficaflfly  sfignfificant  for  determfinfing  the 

space cooflfing energy use resuflts fin our research. It fis possfibfle that they 

may have a more beneficfiafl effect fin other cflfimatfic zones, such as wfith 

hfigh  humfidfity  hours  fin  extremefly  humfid  cflfimates.  Thfis  fissue  aflso  fin-

forms one of thfis work’s flfimfitatfions. 

To  summarfize,  thfis  work  demonstrated  the  feasfibfiflfity  of  exceflflent 

predfictfion of space cooflfing energy use based on readfifly avafiflabfle data-

sets and sfimpfle user finput, wfithout computatfion compflexfity or the need 

for addfitfionafl hardware. To enhance the generaflfizabfiflfity of the modefls, 

we fintentfionaflfly fincorporated flocafl weather data and physficafl charac-

terfistfics of the bufifldfings finto the modeflfing procedure; we aflso fincfluded 

three  cflfimatfic  zones.  However,  the  modefl’s  performance  may  stfiflfl  be 

flfimfited  fin  terms  of  bufifldfing  and  weather  features  fin  the  database 

seflected. More externafl vaflfidatfion fis requfired to ensure the generaflfiz-

abfiflfity of the modefl. Addfitfionaflfly, the orfigfinafl datasets used to bufifld thfis 

modefl stem from dfisaggregated hourfly energy use datasets fin the sfingfle- 

famfifly house sector fin whfich the fimpflementatfion of the modefl fis flfimfited 

to. That befing safid, to expand the use of thfis modefl or foflflow modeflfing 

methods  and  predfictors  fin  other  studfies  such  as  other  resfidentfiafl  ty-

poflogfies (e.g., apartments, dormfitorfies, townhouses), sfimfiflar flevefls of 

detafifl for the trafinfing dataset are stfiflfl necessary. 
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