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HIGHLIGHTS

+ A user-friendly, infrastructure-free, and accurate model based on XGBoost.

» Hyperparameters tuning is applied to exploit optimal modeling performance.

» Interpreting cooling energy predictions and feature interactions by using SHAP.

» Surface to volume ratio estimated is beneficial for cooling energy use estimation.

# Degree hour data outperforms temperature for cooling energy estimation in XGBoost.

ARTICLE INFO ABSTRACT
Keywords: The energy used for space cooling in residential buildings has a significant influence on household energy
Cooling energy performance. This study aims to develop a user-friendly, infrastructure-free, and accurate prediction model based

Energy prediction

Utility data

Machine learning method
XGBoost model

on large-scale utility datasets from anonymized volunteer homes located in three different climate zones in the
US, along with the corresponding weather data and building information. Notably, several new weather- and
building characteristics-related parameters were designed in the modeling procedure and tested to be useful for

Parameter tuning enhancing the model's prediction performance. A few regression techniques were examined and compared
Building characteristics through hyperparameter optimization and k-fold cross-validation. Subsequently, a workflow was also described
Weather features for how to implement the developed model. The research results showed that the eXtreme Gradient Boosting

(XGBoost) model offered optimal performance, and the feature importance analysis also identified as well as
ranked the key predictors to enhance the interpretability of this model. An R? value of around 97% was obtained
with that model on the whole dataset, while an R? value of 92% was achieved with various subsets of the dataset
through the cross-validation approach. The RMSE and RAE for this model were 0.294 and 0.153, respectively.
The resultant model for predicting cooling energy consumption will facilitate homeowners better understanding
their buildings’ performance levels with minimum input information and without additional hardware in-
stallations, ultimately aiding their decision making related to energy-saving strategies.

use in households, comprises averagely 14.7% of the annual home en-
ergy usage in the US [2]. Residential cooling energy demand can
significantly affect aggregate energy consumption. Minor energy
1.1. Background efficiency-based improvements could have a significant impact on the
overall building energy used and potentially provide substantial energy
cost savings. Studies also have indicated that residential energy use
could be reduced through highly economical behaviors such as by
developing encouraging cost-effective policies [3], taking effective
intervention strategies [4], and providing energy use feedback to
building occupants [5.6]. Thus, the collection of energy end-use data for

1. Introduction

The energy consumption of US households is increasing year by year,
based on the residential energy consumption survey distributed by the
US Energy Information Administration [1]. More specifically, the end-
use sector of residential buildings comprised approximately 21% of
the total US energy consumption in 2018. Space cooling, a major end-
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Nomenclature

Acronyms

ASHRAE The American Society of Heating, Refrigerating and Air-
Conditioning Engineers

CDD Cooling degree days

CDH Cooling degree hours

Ccv Coefficient of variation

Ccv Cross-validation

DBT Dry-bulb temperature

HDD Heating degree days

HDH Heating degree hours

HHH High humidity hours

HVAC  Heating, ventilation, and air conditioning
GHI Global horizontal irradiance

LHH Low humidity hours

NILM Non-intrusive load monitoring
RAE Relative absolute error

RH Relative humidity

RMSE Root mean squared error

SHAP SHapley Additive exPlanations

SQL Structured query language

S/V Surface-area-to-volume

WBT Wet-bulb temperature

Variables

Agoor Total floor area [m?]

E¢c Total monthly energy use per unit area [kWh/sq-m]

heq Cooling degree hours [°C-Hr]

hng Heating degree hours [°C-Hr]

hnn High humidity hours [Hrs]

hip Low humidity hours [Hrs]

Th Base temperature for the specific climate of the building’s
location [°C]

T, Average hourly dry bulb temperature [°C]

RHy Base humidity for the specific climate of the building’s
location [%]

RH, Average hourly relative humidity [%]

W Monthly average wind speed [m/s]

Y. Age of house [Year]

use in evaluating and measuring current energy performance on the
household level is essential.

1.2. Related work

The common approach adopted to resolve issues related to disag-
gregation and calculation of energy end-use using only total energy
consumption data measured by a single meter is called non-intrusive
load monitoring (NILM) which was primarily studied in the 1980s and
1990s [7]. NILM is economical and offers little complexity in terms of
installation, and effectively and efficiently disaggregates total energy
consumption into appliance-level energy use [8,9]. Earlier edge
detection-based methods, e.g., Sultanem [10], Norford and Mabey [11],
Laughman et al. [12] and Perez et al. [13], and subsequent machine
learning-based algorithms such as hidden Markov models by researchers
in [14,15], deep neural networks [16], and k-nearest neighbor (KNN)
[17] mostly rely on datasets comprised of circuit-specific electricity
usage to implement appliance-level energy monitoring. In other words,
NILM doesn’t mean hardware-free. Measurement of circuit-specific data
for high-frequency current and voltage waveform still relies on specific
monitoring hardware and requires certain levels of computation for
further analysis. The Reference Energy Disaggregation Dataset is a
representative data sample for NILM-based methods that has frequently
been utilized to explore different calculation algorithms [18]. In addi-
tion to restrictions on data collection, it is also difficult to generalize
inferred end-use results for convenient and practical application by
building users.

Other widely used alternative statistical approaches include estab-
lishing quantitative correlations between cooling energy consumption
and influential factors, and developing prediction models based on
historical data obtained from utility bills. It is generally understood that
both the climatic environment and building-specific information have a
significant influence on a building’s energy consumption. Earlier
studies, e.g., by Sonderegger [19], Dhar et al. [20] and Dong et al. [21]
have examined the substantial influence of weather-related parameters,
utilizing regression methods and outdoor temperature and degree-days
parameters for 12 months to predict a baseline of daily and monthly
aggregated energy consumption for a single building, without address-
ing appliance-level energy consumption. Study in [20] developed a
simplified Fourier series model to predict hourly cooling energy con-
sumption for one year, considering the effects of outdoor temperature,
humidity, and solar radiation using hourly monitored energy data from

several buildings in the same city. Similar influential parameters were
considered in research [21] using support vector machines (SVM) to
develop and test a prediction model for total energy consumption, using
utility bills for commercial buildings in a tropical region. The sample
commercial buildings in these two studies were located in one climate
region. Thus, further work is needed to verify the model’s applicability
to building sites with different climate features. The effect of the length
of the measurement period on prediction accuracy was evaluated in
[22]. The authors argued that prediction accuracy would be improved
with energy measurement data collected over a longer time span.

The aforementioned statistical approaches have delved into the real-
world problem of HVAC energy consumption, and all have reported
acceptable levels of performance normally evaluated by goodness-of-fit
indicators such as coefficient of determination (R2), percentage error,
coefficient of variation (CV) of root mean squared error (RMSE) and
relative absolute error (RAE). The results provided by [21] had a CV
value smaller than 3% and a percentage error less than 4%, while [23]
obtained results with an average deviation of 3.4% and a prediction rate
ranging from 94.8% to 98.5%. However, their limitations cannot be
ignored. The datasets used in these studies are typically obtained from a
very limited number of buildings and mostly in the commercial building
sector. The weather feature selected in these studies is also limited to a
particular climatic zone. More importantly, building-specific informa-
tion such as size, geometry, etc., have not been taken into account in the
modeling process. To address these issues, some studies such as [23,24]
have incorporated building energy simulation programs to add building-
specific information such as orientation and insulation thickness and
used the output of simulated energy use as reference values for evalu-
ating or enhancing the prediction accuracy of their models. An improved
method using Gaussian Process Regression was proposed in [25] to
model the electricity use of office buildings. Actual energy consumption
data were used as the validation data to calculate accuracy. However,
the research objective of these simulation-related studies mainly focuses
on overall building energy assessment, optimization, or system diag-
nosis rather than generalizable models to decompose the whole building
energy to end-use. In brief, these machine learning-based statistical
methods are promising for predicting performance but still rely on
sensor or monitor installation to form a large enough training dataset for
modeling. Moreover, some weather-based energy disaggregation
methods have provided infrastructure-free opportunities, but it remains
challenging to achieve high accuracy and generalizability in models
based on pure weather data. Although some research effort has involved



Y. Feng et al.

simulated energy use data, building-specific information and variety
have not been fully engaged.

In addition to the NILM, weather-based, and simulation-
incorporated methods described above, some studies have explored
the utilization of more user-ended information such as utility bills for
specific energy use prediction and then recommended and/or imple-
mented energy savings strategies. Local governments and public utilities
are now supporting grid modernization in collaboration with other
influential parties by deploying technologies such as smart sensors,
computers, and telecommunications, making utility bills more acces-
sible [26]. Moreover, a home scoring methodology was proposed by the
US Department of Energy in 2017, which evaluates a building’s overall
energy performance as compared to similar building types and provides
cost-effective retrofits based on two influential factors [27]. Publicly
shared large-scale datasets comprised of utility bills provide new op-
portunities for space cooling energy usage prediction and energy effi-
ciency improvements that can be generally applied. Additional energy
bill analysis methods have been explored to identify and simplify model
input parameters while ensuring prediction accuracy. Researchers in
[28] utilized an optimization algorithm to disaggregate energy bills into
three groups of end uses based on the principles of electricity and
cooling energy balance, considering input data including monthly
electricity bills, building design data, weather conditions, and HVAC
operation information. However, that model requires relatively detailed
HVAC user input data on specific heating and cooling energy con-
sumption. The authors of [29] developed a change-point linear regres-
sion model, using utility billing data and weather information to
estimate gas and electricity usage for end uses such as space cooling and
heating in residential buildings with radiant floor heating systems
installed. The proposed method can accurately predict gas used for
heating but had only average prediction accuracy for electricity con-
sumption. [30] conducted a multiple linear regression analysis of com-
mercial buildings’ overall energy consumption in tropical regions, using
utility bills and weather data; the authors argued that more significant
variables were needed to improve estimation accuracy. However, in that
work, due to the limited input information, issues related to parameter
collection and identification for the models’ prediction performance
were identified, and the practical usefulness to homeowners was chal-
lenged. Briefly, utility bill-based methods offer new opportunities for
energy disaggregation, but accurate monthly cooling energy use with
limited user input has yet to be achieved.

1.3. Motivation and contribution

Although the statistical regression models have been applied in many
studies as described above and obtained satisfactory prediction results,
some limitations or challenges are identified in these studies. Firstly,
sample buildings used in such modeling research were mostly situated in
the same city and climate regions and locations which decrease the input
data information quantity and complexity for model enhancement.
Second, the weather data and building information were not fully
considered and incorporated for the input predictors to facilitate the
modeling procedure. Thus, the modeling process was complex in order
to guarantee a satisfactory prediction accuracy, and the developed
model is difficult to be implemented by homeowners with the compli-
cated processed input information. Third, the interpretability of devel-
oped machine learning models in terms of the feature importance and
interactions has received more attention in recent years but still has not
been studied fully. Moreover, the performance of commonly used ma-
chine learning methods in estimation building cooling energy con-
sumption has not been compared thoroughly in terms of their prediction
accuracy and identifying key predictors. In this work, several research
questions were of particular focus during the modeling processes to
address the issues in previous studies, including how to process and yield
more useful weather data from readily available weather databases, how
the first principles of building physics should be combined, and what
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new (readily available) parameters might be incorporated to facilitate
the modeling procedure and to simplify the manipulation process for
homeowners with the minimum input information. We aim to apply
machine learning modeling techniques and methods with parameters
optimization to develop a user-friendly, infrastructure-free, and accu-
rate prediction model for estimating cooling energy use based on readily
available utility bills, weather data, and simple user input information
(i.e. physical home address) to simplify the manipulation process for
homeowners with the minimum input information.

Relative to previous studies, one major contribution of this work is
that we intentionally bring building characteristics such as floor area,
age, and surface-to-volume ratio into the modeling process, yielding a
more generalizable model that can be applied to various residential
buildings. Another novelty is that several new weather- and building
characteristics-related parameters by combining the first principles of
building physics have been proposed, processed, analyzed, examined,
and determined to be effective at enhancing the model’s performance
regarding cooling energy use prediction. Also, different prediction
models are compared in terms of their prediction power and computa-
tion complexity through hyperparameters tuning and k-fold cross-
validation. More practically, sensitivity analysis by interpreting
feature interactions is conducted for the input variables to identify the
most influential variables in the models. From a broader scope, the so-
cial impact of this work is in its support of homeowners seeking to
quantitatively understand their use of building heating and cooling
energy, ultimately aiding their energy-saving-related decision making.

The remaining of this paper is organized as follows: Section 2 pro-
vides the modeling processes for disaggregating total energy consump-
tion into space cooling energy use and introduces a few new parameters
with underlying building physics principles. Section 3 presents the re-
sults of the different modeling methods. Section 4 discusses problems
and limitations related to the input variables that affect the accuracy of
the prediction, as well as implementation workflows of applying the
established model to solve real-world home energy issues. Finally,
conclusions are outlined in Section 5.

2. Method
2.1. Data collection

The volunteer buildings selected for model development were ano-
nymized via exclusive IDs provided by the Pecan Street organization
[31]. The buildings were located in the cities of Austin, Texas, Boulder,
Colorado, and San Diego, California. These three cities represent hot-
humid (Zone 2A), cold (Zone 5B), and hot-dry (Zone 3B) climates,
respectively. Hourly utility data were collected and converted using
structured query language (SQL) commands to obtain the hourly, daily,
and monthly total energy consumption levels, as well as space cooling
energy usage over the span of four years, from 2014 to 2017 [31]. After
preliminary data processing such as extraction of the feature informa-
tion, deletion of missing data, and removal of outliers, 391 houses
located in the above three cities, a total of 6690 observations were used
to conduct the monthly cooling energy usage per unit area modeling
process. The distribution of the observations for each of these three cities
is shown in Fig. 1.

The corresponding weather information for the three cities from
2004 to 2007 could also be accessed and retrieved from the same
database provided by the Pecan Street organization through SQL com-
mands [31]. The typical weather parameters, which were directly ob-
tained, included the dry-bulb temperature (DBT), wet-bulb temperature
(WBT), relative humidity (RH), and wind speed. The hourly weather
data for these parameters were also converted to monthly data by
averaging all the values in a month. The historical monthly solar radi-
ation data for the three cities were obtained from the TMY3 database
[32]. The monthly average DBT and global horizontal irradiance (GHI)
for the three cities are shown in Fig. 2.
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In addition, the metadata downloaded provided general building

characteristics such as the year built, building floor area, number of
floors, and city location, which from the future application’s perspective

2.2, Data pre-processing

2.2.1. Determination of summer cooling seasons

could also be retrieved from public property records based on home
address input. The total energy consumption, as well as space cooling
per square foot of the house, were also calculated to make figures
comparable for homes of various dimensions.

The monthly cooling energy usage per unit area for all houses located
in the three cities are summarized along the left y-axis of Fig. 3. There is
an apparent difference in monthly energy consumption. Although
different energy usage patterns appear for each of the three cities, in hot
weather seasons the buildings generally consumed much more
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electricity than they did in cold weather seasons. To develop a robust
and accurate energy estimation model that fits the bulk of the data,
unqualified data that might affect the model’s performance were iden-
tified, such as the minimum values in cold seasons and outliers. Austin
had obvious hot season cooling energy usage from May to October, with
peak values occurring in July and August. The maximum monthly
cooling energy usage could be around 10.0 kWh/sq-m. Boulder and San
Diego had less cooling energy demand compared to Austin. Similarly,
the maximum cooling energy usage was around 4.0 kWh/sq-m for
Boulder and 3.5 kWh/sq-m for San Diego.

To obtain a more specific cooling energy use dataset for cooling
seasons determination, we analyzed the percentage of monthly cooling
energy use as a proportion of monthly total energy use. In this work, we
used 5% as the threshold to determine the cooling season or cooling
months to ensure the reliability and validity of the measured data. In
other words, the cooling energy use data were assumed to be 0 and not
considered in the modeling procedure if the cooling energy percentages
fell to 5% of monthly total energy use. The right y-axis in Fig. 3 illus-
trates this information. The percentages during certain months are very
small or negligible, though the period has slight differences across the
three cities. In particular, these very small numbers may contain errors
induced by hard-to-detect or subtle reasons such as degradation of
measurement devices or occasional user cooling needs and behaviors (e.
g., indoor physical activities).

2.2.2. Heating and cooling degree hours calculations

Weather-related parameters usually focus on temperature and hu-
midity. Temperature-related parameters, including DBT, WBT, and dew
point are customarily included in this type of model. In most previous
studies, the degree-day parameters of cooling degree days (CDD) and
heating degree days (HDD) are typically considered and exhibited as
significant influences on energy use for building heating and cooling
purposes. We borrowed the analogous concept with higher-resolution
data: cooling degree hours (CDH) and heating degree hours (HDH)
that have been explored in some studies such as by researchers in
[33,34] to present the distribution of hourly average temperatures and
in [35,36] to estimate the energy usage of a building based on degree-
hour method. This hourly-based calculation quantifies the cumulative
value of the difference between the base temperature and hourly
average temperature, rather than the average daily temperature
considered in degree-day calculations. The motivation for this data
processing was that some large temperature swings could be ignored in
the calculation of CDD and HDD. For instance, similar CDD values can be
yielded by two different weather situations that may drive very different
space cooling energy use levels. Comparatively, the hourly-based
calculation method for CDH and HDH does not merely utilize a data-
base with the hourly resolution but also considers possible diurnal
temperature variations hidden in the weather dataset. The CDH and
HDH are calculated following Eqs. (1) and (2), respectively.

N
CDH = (T,~T,)" (§))

n=1

N
HDH =) (T,-T,)* (2)

n=I

where CDH is the cooling degree hours, HDH is the heating degree
hours, N is the number of hours in the defined period of analysis, T;, is
the base temperature for the specific climate of the building’s location,
and T, is the average hourly DBT.

Base temperature varies with the climate zone, and several different
values have been defined in the ASHRAE Handbook 2017 [27]. The base
temperatures for CDH and HDH calculation are commonly at the same
value, or a larger base temperature for calculation of CDH than HDH is
used, e.g., Papakostas and Kyriakis [34], Bolattiirk [35], and Shi et al.
[28]. The correlation coefficient was calculated to evaluate the influence
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of base temperature on the correlation between space cooling energy
usage per unit area and CDH or HDH for the selected buildings. The
results, as shown in Fig. 4, indicate their statistical relationship with the
base temperatures for CDH and HDH, ranging from 15°C (60°F) to 38 °C
(100°F) and 4 °C (40°F) to 27 °C (80°F), respectively. For both the CDH
and HDH calculations, the correlation coefficient has an approximate
maximum value when the base temperature equals 23.8 °C (75°F). The
selection of this base temperature maximizes the correlation between
the degree-hours and cooling energy usage while complying with the
practical norm and avoiding overlapping in the cooling and heating
temperature ranges. The base temperature, defined as 23.8 °C to
harmonize the degree hours calculations for CDH and HDH, is also
included because there is no noticeable difference in variations of the
correlation coefficients for cooling energy use. The monthly accumu-
lated CDH and HDH calculated for the three cities from 2014 to 2017 are
shown in Fig. 5. It is evident that the CDH in Austin is much larger than
those in the other two cities, and the maximum is around 4200 in the
cooling season. There is little difference between the CDH values for the
other two cities. The maximum numbers are 1100 and 1400 for San
Diego and Boulder, respectively. Also, the distributions of CDH and HDH
values over the course of a year appear to follow similar trends for each
city in those four years.

2.2.3. Low and high humidity hours calculations

Home space air conditioning energy use, especially cooling energy
use, can be affected by high humidity conditions. This has been studied
in several works, such as [39,40]. For air conditioning systems
embedded with humidity sensors, external humidity levels may influ-
ence both heating and cooling energy use. Therefore, similar to the
temperature parameter, low humidity hours (LHH) and high humidity
hours (HHH) were defined in this study to increase the resolution and
completion of the weather data. The LHH and HHH are represented by
Egs. (3) and (4), respectively.

LHH=Y"n_(RHy —RH,)" (3)

HHH =YY |(RH, — RHp)* (4)where LHH is the low humidity
hours, HHH is the high humidity hours, N is the number of hours in the
period of analysis, RHj, is the base humidity for the specific climate of the
building’s location, and RH, is the average hourly RH.

LHH and HHH may both affect cooling energy usage, so the corre-
lations between cooling energy usage and LHH and HHH with RH values
ranging from 10% to 80% were examined, as shown in Fig. 6. Both LHH
and HHH negatively correlated with space cooling energy consumption,
and the maximum correlation occurred when the base RH was 30% for
LHH computation. In sum, the statistical correlation of HHH with space
cooling energy usage was relatively small. The coefficient slowly
approached a maximum value when the base RH exceeded 80%. The
base RH values of 30% and 80% were selected. The monthly accumu-
lated humidity-related hours for the three cities are shown in Fig. 7,
where it can be seen that the values for LHH and HHH had an unex-
pectedly patchy distribution pattern.

2.2.4. Surface-area-to-volume ratio estimation

In the domain of building physics, different types of research have
been conducted on the effects of building geometry on energy use,
involving numerous aspects of building geometry, such as surface-to-
volume ratio [41], building orientation [42], building form [43], and
dynamic envelope [44.45]. The surface-area-to-volume (S/V) ratio, a
common measure of building compactness, has been found to signifi-
cantly impact overall heat gains and losses through a building envelope.
It is considered one of the building-specific variables most important to
consider [41]. It is commonly accepted that a compact building shape
introduces less heat gain and loss, and at the same time may interac-
tively influence heat transfer through the envelope via complicated
factors such as solar radiation, wind speed, and building orientation. The
S/V ratio can easily be estimated from a simple retrieval of public
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property records that provide the floor area and the number of floors.
The approximate calculation of S/V is expressed in Eq. (5). The floor-to-
floor height of 3 m is assumed to be the same for each building; the floor
shape was assumed roughly to be square. The values calculated for the
S/V ratio for the sample buildings examined in this work are displayed
in Fig. 8.

S/V= m (5)where Afoor is the total floor area and f is
the number of floors for each building.

2.3. Preparation and initial analysis of candidate predictor variables

The input features include the variables obtained directly from the
downloaded data and proposed wvariables that cover utility bills,

building-specific data, and weather data. The initial input variables
selected for cooling energy usage estimation are shown in Table 1. The
monthly total energy usage per square foot can be obtained from utility
bills. The building age and S/V ratio were used as representative char-
acteristics of a building. The weather conditions in terms of temperature,
humidity, solar radiation, and wind speed were fully considered. The
parameters of temperature, as well as the proposed CDH and HDH, were
selected as candidate parameters because they had different physical
meanings, and the evaluation of their relative importance is one aim of
this research. The same applies to the parameter of humidity, LHH, and
HHH.

Pearson’s correlation coefficients between the model variables were
used to check the strength of their collinearity between predictors (See
Fig. 9) firstly before developing models. This is to present the most basic
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and background information and relationship among the parameters
used in the next modeling processes. A positive correlation exists be-
tween two variables when the coefficient is positive, whereas a negative
correlation indicates a negative coefficient value. It should be noted that
a causal relationship is not implied. As the initial step, a correlation
analysis enables to visually examine the possible relationships between
the candidate predictors. It is important to note that the subsequently
applied models also had built-in algorithms for ranking the variables and
facilitating the parameter significance analysis for the candidate models.

2.4. Application of machine learning methods and performance
evaluation metrics

Statistical regression methods and machine learning techniques were
applied to develop the prediction models for space cooling energy usage

prediction biases and give full consideration to predictive accuracy.
Earlier studies [21,23] examined the feasibility and applicability of SVM
in forecasting the building energy consumption through investigating
the influence of different SVM parameters on the estimation accuracy
based on the SVM features such as mathematical kernel function defined
and structure risk minimization regression used. These studies demon-
strated the better prediction accuracy and model performance of SVM in
building energy prediction than the traditional neural network model
that had more free parameters to optimize. KNN method was imple-
mented in [17] to capture the nonlinearities of the appliance-specific
energy usage signals, and the study in [46] considered the inverse of
Euclidean distance as the weight for the KNN model and proposed a
short-term load prediction model with higher forecasting accuracy. The
random forest method applies a tree-based algorithm to estimate energy
consumption, and the study in [47] applied this homogeneous ensemble
approach to predict hourly building electricity usage by examining the
effect of parameter settings such as the numbers of variables on the
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prediction accuracy. XGBoost is based on an optimized gradient boost-
ing framework that can efficiently improve modeling accuracy [42].
Researchers in [49] used the XGBoost method on the time series data by
feature selection to forecast the electricity load for a single time interval
with efficient computing time while [50] proposed a hybrid model
combining the XGBoost algorithm to evaluate the features’ importance.

In this research, the data processing and machine learning analysis
were conducted using the R package of “mlr3” available on CRAN [51].
This package is developed with a robust object-oriented framework for
machine learning algorithms. The random search algorithm, which is an
efficient and effective technique for hyper-parameter optimization, was
applied for parameter tuning using k-fold cross-validation to improve
the models’ performance [52]. K-fold cross-validation with the value
five assigned to k was adopted in this work to randomly generate the
training and test sets and to estimate the tuning parameters for optimal
model performance. The candidate models were developed using the
first fold as the testing data and the remaining four folds as the training
data. Using R? for the model with parameter A, prediction accuracy was
computed using the test data. This process was repeated five times, until
each of the five subsets was taken as the training data exactly once.
Cross-validation accuracy was evaluated by averaging the k estimates of
R? from each iteration. The calculation of R? and MSE from each itera-
tion as well as k-fold CV accuracy were based on Egs. (6)-(8),
respectively.

5 3 -y @)

R4 =1 ——W (6)

MSE;(3) = (y; — 32 (7)

CV(i) = }‘—Eg‘:lMSEi(l)(S)where ¥; is the observed response value,
¥;(4) is the predicted response value for the parameter 4, and ¥; is the
mean value of the responses.

The value of & that made the CV (1) value the largest was selected for
optimal model development in each candidate model algorithm. The
optimal models were then developed for the whole dataset. The optimal
models’ R? coefficients resulting from the k-fold cross-validation and
using the whole dataset were compared to evaluate the models’ validity.
The prediction accuracy of all of the optimal energy usage models
developed with the whole dataset was evaluated using the R%, RMSE,
and RAE. The final model was obtained from the candidate optimal
models after a comprehensive comparison. The feature selection and
importance of the final model were identified and compared to deter-
mine the most influential factors in each model for space cooling energy
use. The model development framework is summarized in Fig. 10.

3. Results
3.1. Model development and performance comparison

The polynomial model, GLM, and machine learning models were
then developed. Table 2 summarizes the models’ prediction perfor-
mances according to the criteria of R2, MSE, RMSE, and RAE. The
models’ R? coefficients and MSE were obtained via the cross-validation
approach, which were named CV_R? and CV_MSE, respectively. The
optimal models built from the whole dataset were selected mainly based
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Table 2
Prediction Performances of the Nine Models Developed using various evaluation
metrics.

Method CV_R2 CV_MSE M_R2 MSE RMSE RAE

polynomial 0.818 0.519 0.820 0.514 0.717 0.382
glm 0.802 0.566 0.802 0.565 0.752 0.403
xgboost 0.922 0.221 0.970 0.086 0.294 0.153
ranger 0.852 0.420 0.977 0.065 0.256 0.132
cforest 0.829 0.489 0.862 0.395 0.629 0.331
knn 0.806 0.553 0.869 0.373 0.611 0.332
svm 0.836 0.470 0.855 0.413 0.643 0.336
gamboost 0.833 0.478 0.848 0.435 0.659 0.351
glmboost 0.804 0.562 0.805 0.557 0.746 0.399

on MSE. To more clearly understand and evaluate the best model, the
bar plot in Fig. 11 was developed to depict the models’ performances.

The XGBoost model had the second-lowest MSE value with 0.086 and
a maximum value of CV_R?, approximately 92.2%. The small difference
between CV_MSE and MSE with the value of 0.135, and between the
values of CV_R? and M _R? indicated a low risk of overfitting. The low
RMSE and RAE values also indicated good predictive accuracy. A ranger
model was obtained with the lowest MSE value of 0.065 and a maximum
R2 value of around 97.7%; however, that model had a much larger
CV_MSE value and lower CV_R? value of 85.2%, showing that much
uncertainty or bias could be introduced into the prediction by using the
whole dataset, reducing the model’s reliability and validity. Average
predictive performance was found in the SVM, cforest, and GAMBoost
models, and less predictive accuracy was obtained from the GLM,
glmboost, and polynomial models.

The model performance also differs in terms of computational re-
sources, including computation time and memory space usage. The
generated polynomial model and GLM models took much less time than
that it took to attain the machine learning models, but these two models
had a relatively lower prediction performance with R? around 0.8. The
machine learning model development relied much on the hardware for a
smooth and quick computation, and the average time for developing the
XGBoost model in this study was around 30 min. On the other hand,
there was not a significant difference in the computation time among
these machine learning models when using the package *mlr3™.
Comparatively speaking, the XGBoost model with much better predic-
tion performance is worthwhile at the cost of acceptable computing time
and efforts.

Through comparison and analysis of these models, the XGBoost
model was finally selected as the optimal model for this modeling sce-
nario. The XGBoost model implements parallel tree learning and allows
users to custom evaluation criteria, and also it has a built-in cross-vali-
dation procedure at each boosting iteration [45]. The tree-specific pa-
rameters that were optimized using cross-validation for overfitting and
under-fitting control in this study were shown in Table 3.

3.2. Application of the XGBoost model and the prediction performance

The XGBoost model was applied to the collection of datasets, of
which the data for Austin comprised the most substantial proportion.

Step 1. Step 2. Step 3. Step 4. Step 5. Step 6.
Data preparation  Model candidates Model evaluation Optimal model selection Performance of Feature importance
from each algorithm final model
Utility data Full dataset
e i K-fold cross -
Building Regression models validation MSE (CV) R?
information | —* [, .. Teatnl — | RMSE —+ | Importance
Slgors mm‘“g Hyperparameter MSE (Full dataset) RAE o score
tuning using San Diego
}::m random search I—I

Fig. 10. Model development framework.



Y. Feng et al. Applied Energy 291 (2021) 116814
|
xgboost- h xgboost-
e — |
renger [ — ranger-
i - T
i Criteria Criteria
3 krnd ‘ B cv mse nn- T CV.rsq
= B vsE |
"
[ - BB
I A i
I
0.000 0.001 0.002 0.003 0.004 0.005 0.00 0.25 0.50 0.75 1.00
Prediction performance with MSE Prediction performance with R-squared
Fig. 11. Prediction performance comparison plots for selected algorithms.
Table 3
Tree-specific parameters tuning for XGBoost model.
Tree-specific parameters max_depth gamma min_child weight subsample colsample _bytree
Value 3 0 1 0.9 0.9

The regression line of the truth and response values are shown in
Fig. 12a. The whole dataset included data for three cities, and thus the
model’s applicability for each individual city was examined by rela-
tionship plots (see Fig. 12b, 12¢, and 12d for Austin, Boulder, and San
Diego, respectively). The diagonal lines’ adjusted R? values indicated
the goodness-of-fit of the XGBoost model for the three cities in different
climate zones.

The model was then evaluated in terms of its prediction accuracy for
each individual building (defined by a specific building ID). There were
377 houses with multiple observations, 324 of them with a minimum of
10 observations. These were sorted out as representative buildings for
the predictive analysis, buildings with too few observations may have
yielded unwanted errors. Fig. 13 shows the distribution of the R? values
for each building. The model appeared unsuitable for three buildings
with negative R? values (not shown in Fig. 13). Other than those nega-
tive values, R” values less than 80% for 18 buildings were obtained. The
prediction accuracy for 13 buildings ranged between 80% and 85%.

That is to say that using the model developed for this research, 290
buildings, 90% of the dataset, could be evaluated with no less than 85%
prediction accuracy in terms of their cooling energy usage.

3.3. Feature importance in the XGBoost model

The model obtained consisted of the parameters of utility bills,
building-specific information, and weather-related data. The relative
importance level of each input variable was evaluated to determine the
major factors influencing cooling energy estimation. The input variables
were compared and ranked using feature importance scores intelligently
obtained by the boosted trees of the XGBoost algorithm [48,51]. Feature
importance is shown in Fig. 14a, which indicates that the total energy
usage obtained from utility data was the most influential predictor
variable for cooling energy estimation. The wvariable of secondary
importance was the S/V ratio, which represents the critical building
characteristic of compactness. Almost equal significance was found for

Austin

w
@
- |
®00-
>
'é Boulder San Diego
G2
b=
&

0.9-

Rl
0.6- R_‘.UJ =0.97
RZ,=0.96
0.3- <
0.0-
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(€ True values (d)

Fig. 12. True values vs. predicted response values.
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the CDH variable, which outperformed DBT. Thus, CDH would well
reflect temperature information and its influence on a building’s cooling
energy demand. Building age was found to be another relatively
important parameter influencing building cooling energy consumption.
Other weather-related variables, including RH, humidity-related degree
hours, wind speed, and GHI were of little importance compared to the
other variables analyzed above. Further analysis was conducted to
consider the influence of the number of input variables in the model on
its predictive accuracy (see Fig. 14b). The variables selected for the
model with different numbers of input predictors were based on their
relative importance scores based on gradient boosting algorithm
[48,53]. The maximum R?at approximately 97% could be reached with
a minimum of four input parameters: total energy use, S/V ratio, CDH,
and DBT.

The developed model has accurate prediction accuracy, but it is still
necessary to understand and interpret the relationship between each of
the four features and cooling energy usage in this model. The inter-
pretability of complex models would lead to a better understanding of
how the model makes a decision and thus enhance model acceptance
and adoption. The SHapley Additive exPlanations (SHAP) approach,
which is deemed as an advanced method to interpret individual pre-
diction for tree-based models, was employed to display the relationship
by computing the contribution of each variable to the expected model
prediction [54]. Fig. 15 shows the SHAP dependence plot to illustrate
the effects of the key features on the response prediction interacted with
other features. The horizontal axis represents the actual value of the
feature being depicted. The vertical axis, the SHAP value, represents
how much of the contribution of that feature’s value to the model pre-
diction output. The SHAP dependence also shows the variance on the y-
axis. Especially in the case of interactions, the SHAP dependence plot
will be much more dispersed in the y-axis. The color corresponds to a
second feature that may have an interaction effect with the feature we
selected. As shown in Fig. 15a, the overall energy usage’s SHAP value
distributions indicate its strong effects on the model, which aligns with
the results of feature relative importance analysis above. The upward
trend of the slopes indicates a positive and nonlinear relationship be-
tween the overall energy use and the target variable — cooling energy
use, which is also consistent with the basic correlation analysis in section
2.3. Also, the cluster of greenish colored dots in the range of 0-10.8 total
energy use shows a possible interaction effect of the total energy use
with the dry bulb, which will be further analyzed in the next part. The
SHAP dependence plot for the S/V ratio in Fig. 15b has a large dispersion
in the vertical direction, especially in the low S/V region (<0.66), which
suggests that this building shape-related feature may affect the predic-
tion by interacting considerably with the other variables. The relation-
ship between the cooling energy use and S/V in this region is monotonic.
However, intuitively, we know under the same volume conditions, the
greater the building surface area, the greater the potential heat gain or
loss through it. This relationship is well captured in the high S/V region
(>0.66) as there is a relatively important and positive correlation be-
tween the S/V and cooling energy use in this region. Similarly, in the
plot of Fig. 15c, there exists a positive nonlinear relationship between
CDH and cooling energy use. Meanwhile, the variation of dry bulb
temperature was colored, and the color pattern aligns with the definition
of CDH in which the higher the dry bulb temperature, the larger the CDH
value will be. Dry bulb temperature and its SHAP values in Fig. 15d
show an interesting pattern in which the dry bulb temperature seems to
be an important feature that negatively affects the model prediction
value when it is below approximately 23.8 °C (75°F), while the rela-
tionship between dry bulb temperature and its effects on cooling energy
use is monotonic. However, there exists a linear and positive relation-
ship between the feature and the target when the dry bulb temperature
is higher than 23.8 °C (75°F). This also echoes the earlier finding on the
use of 23.8 °C (75°F) as the CDH base temperature.

As mentioned above, we noticed that potential interaction exists
between features — the dry bulb temperature and the total energy use at
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the energy use region (0-10.8). Therefore, after accounting for the in-
dividual feature effects, we also studied the interaction effect (or called
the combined feature effect) on the model output by using the SHAP
interaction values. Such values are computed after subtracting the main
effect of the features so that the interaction effect between features on
the model can be obtained [55]. Fig. 16 presents the SHAP interaction
value plots for the feature pair of the total energy use and the dry bulb
temperature. By plotting the SHAP interaction values, we can visualize
that the total use interacted with the dry bulb temperature range
18.0-23.8 °C (65-75°F) (greenish dots) has a rapidly sloping distribu-
tion (negative relationship to the prediction) and relatively higher SHAP
values mainly stay in the 0-10 total energy use range. The same inter-
action effect is not visualized for any other temperature regions. This
finding using the SHAP interaction value framework is fully compre-
hensible because the increase of the total energy use should not be
mostly contributed by the cooling use when the outdoor temperature is
within the comfort zone (18.0-23.8 °C) (65-75°F). Also, this informa-
tion is supportive of our earlier pre-processing of the cooling-dominant
data.

4. Discussion

The typical machine learning algorithms were adopted and
compared in this study. Hyperparameter tuning was applied to each
method for exploiting their optimal performance and making them
comparable with each other. Also, k-fold cross-validation was utilized in
the process of solving the hyperparameters to reduce the risk of over-
fitting and increase the model’s validity. Through the model develop-
ment and comparison, we identified problems and limitations related to
the input variables that affect the accuracy of the prediction, as well as
opportunities to apply this model to solve real-world building energy
performance issues.

4.1. The reliability and consistency of building energy usage data

It is important to note that the sample buildings selected in this study
were located in three different climate zones (i.e., Zones 2A, 3B, and 5B),
which was an intentional effort to take various weather-related pa-
rameters into account. However, the number of observations for the
sample buildings located in the three target cities were not equal due to
limitations on the quantity of qualified data. This may have had an
adverse effect on the predictive performance of buildings located in
various climates. The results of applying the XGBoost model on indi-
vidual cities showed a 1% lower prediction accuracy for the city of San
Diego. Further research should be conducted to increase the observa-
tions and balance the number of sample buildings from different cities to
improve prediction accuracy.

The data pre-processing, including data cleaning, data trans-
formation, and the feature candidate selection was firstly performed
before model development. The process of data cleaning was intended to
remove unqualified data such as extremely low cooling energy con-
sumption data in cold seasons to ensure the quality of the collected data.
For example, the results of the prediction accuracy of the XGBoost model
for each individual building showed negative R? values for three
buildings. These three buildings were found to have far lower monthly
cooling energy usage compared to buildings with similar building
characteristics. The unusual cooling energy consumption indicates that
there may be uncontrolled or unconsidered factors, such as individual
living habits and occupancy information, that affect the cooling needs.
For the 18 buildings with R? values less than 80%, it was found that
there were large variations of monthly cooling energy usage for a
building with similar monthly total energy usage or a significant dif-
ference in monthly total energy usage with almost the same cooling
energy usage. The data consistency for these 18 buildings’ energy usage
needs further evaluation. It is an important work to identify the cooling-
dominant data and remove unqualified data in the data pre-processing
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Fig. 16. SHAP interaction values for interpreting the interaction effect.

phase to ensure data reliability and a more effective modeling proced-
ure. The problem of model application in cold seasons would be possibly
overcome by integrating more reliable measured data in low-
temperature conditions for a building to enhance model generalization
or by incorporating a decision-tree-based structure to determine
whether the cooling energy use occurs before applying this cooling use
estimation model. Overall speaking, this developed prediction model
could support occupants understand the influence of their behaviors on
building energy performance and thus promote energy-saving
behaviors.

4.2. Evaluation and comparison of parameters’ importance in various
models

These different modeling methods demonstrated consistency in
terms of feature importance. In the XGBoost model, cooling energy use
was found to be more sensitive to the CDH parameter than to DBT.
Comparatively, the RH parameter and proposed humidity hours played
insignificant roles in this model. The GHI variable was also not

cforest
0.8-

ranger

Relative importance
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particularly sensitive to cooling energy prediction, which seems incon-
sistent with the first principles of building physics. To further explore
the possibility of taking GHI into account, we roughly estimated the
solar radiation received by the building envelope by using the enve-
lope’s area and GHI. Unfortunately, this did not improve the correlation
coefficient. The reason might be that the detailed building characteris-
tics information related to the solar radiation received (such as building
orientation, window-to-wall ratio, and tree shading) dramatically affects
the actual solar heat gain received but remains obscure in our modeling
process. In other words, more information is needed to identify the in-
fluence of solar radiation. However, it can be envisioned that success-
fully adding solar radiation to the model would be a key factor in
boosting its performance.

In addition to these general reflections, we chose the four best
models to further analyze with regards to feature importance, including
XGBoost, Ranger, GAMBoost, and cforest. Fig. 17 displays the relative
importance of the most influential variables in these four models. The
importance scores for each model were normalized, and the relative
importance of the features was compared. The top six ranked variables

GAMBoost
g ] -
XGBoost
— [ |

RH Windspeed Age HDH SV CDH Dry bulb Total use

Fig. 17. Relative importance of features in the comparison models.
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for each model were selected, and it was discovered that the importance
ranking of the variables differed by modeling technique. However, the
variable of total use was always the most important predictor. DBT and
CDH remained the second most important in the cforest, ranger, and
XGBoost models. As discussed previously, based on building physics
knowledge, the building S/V ratio should have a significant effect on
cooling energy consumption; a compact building shape will benefit
energy savings. Interestingly, the significance of the S/V ratio was only
detected in the ranger and XGBoost models, which might be the reason
behind their improved accuracy over all other models. Overall, the
model performance would benefit from the integration of the processed
CDH and S/V variables when predicting cooling energy usage (in
addition to the weather features traditionally employed).

4.3. Workflow implementation

The model identified and developed here can be written via a pro-
gramming language to form an executable file, which could then be used
by homeowners seeking to analyze their energy use. Fig. 15 depicts a
schematic for using this model. Homeowners need only to input a
selected month’s overall home energy use data from their utility bills
and their physical home address. Based on the geographic location, two
data extraction and computation processes would be carried out. First,
the historical weather data in that particular month (consistent with the
utility bill’s month) would be retrieved from public databases such as
the National Weather Service and National Oceanic and Atmospheric
Administration. Then, the CDH parameter would be calculated based on
Eq. (1) and an assumed base temperature of 23.8 °C (75°F). Second, the
physical address input by the homeowner would be used to retrieve the
building characteristics from public record databases of real property
(handled by individual counties or cities, or property search engines
such as US Reality Records). The S/V and age parameters would then be
output according to the building profile-related data extracted,
including the number of floors, overall area, and year built. Overall
energy use, weather-related features, and building characteristics would
then be used to yield the cooling energy use in the month indicated.

Building upon the aforementioned information, various external
calculations, and strategies related to energy savings could be combined
and used for a wide variety of purposes. For instance, in our previous
work, we developed an in situ window measurement sensor module that
can conveniently be assembled and used to report key home window
properties, including the thermal coefficient, visible transmittance, and
solar transmittance [56]. Combining information related to window
properties and space cooling energy use in a particular month, we
should be able to provide more accurate information regarding energy
use and cost percentages home windows may account for, allowing for
the presentation of comparable quantities obtained by upgrading the
windows or window films. Consider, for example, behavioral interven-
tion strategies designed and implemented to increase household energy-
saving behaviors by providing normative energy use feedback [57,52].
More detailed energy disaggregation data (such as cooling energy use
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identifying more meaningful reference groups and providing more
personalized feedback.

5. Conclusions

This study compared several statistical modeling techniques and
developed a reliable XGBoost model that accurately predicts cooling
energy use for residential buildings using the input variables of utility
bill information, building surface-to-volume ratio, cooling degree hours,
and dry-bulb temperature. The k-fold cross-validation and parameter
tuning were applied to evaluate the model’s reliability and validity. The
XGBoost model developed offers optimal performance compared to the
other commonly used statistical methods. An R? value of 92% was ob-
tained to estimate the accuracy using k-fold cross-validation. This model
was also individually applied to cities located in three different climate
zones. The results indicated good reliability of prediction and goodness-
of-fit.

Furthermore, several new weather- and building characteristics-
related parameters were designed and tested in the modeling proced-
ure, among which predictors of cooling degree hours and surface-to-
volume ratio were found to be effective in enhancing the model’s pre-
diction performance. Models using degree hours and surface-to-volume
ratio exhibit a great potential to increase model performance for future
energy prediction studies. Although some other newly designed pa-
rameters impacted the model results when specific modeling methods
were used, they were not statistically significant for determining the
space cooling energy use results in our research. It is possible that they
may have a more beneficial effect in other climatic zones, such as with
high humidity hours in extremely humid climates. This issue also in-
forms one of this work’s limitations.

To summarize, this work demonstrated the feasibility of excellent
prediction of space cooling energy use based on readily available data-
sets and simple user input, without computation complexity or the need
for additional hardware. To enhance the generalizability of the models,
we intentionally incorporated local weather data and physical charac-
teristics of the buildings into the modeling procedure; we also included
three climatic zones. However, the model’s performance may still be
limited in terms of building and weather features in the database
selected. More external validation is required to ensure the generaliz-
ability of the model. Additionally, the original datasets used to build this
model stem from disaggregated hourly energy use datasets in the single-
family house sector in which the implementation of the model is limited
to. That being said, to expand the use of this model or follow modeling
methods and predictors in other studies such as other residential ty-
pologies (e.g., apartments, dormitories, townhouses), similar levels of
detail for the training dataset are still necessary.
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