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Abstract. We show that the Kruzkov solution of the Cauchy problem for a scalar conservation
law in one spatial dimension propagates regulated initial data into regulated solutions at later times.
The proof is based on standard front-tracking and an extension, due to Frankové, of Helly’s selection
principle.
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1. Introduction. It is well known that, in any space dimension, the spatial
variation of the unique admissible Kruzkov solution of a scalar conservation law is
nonincreasing with time [3, 7]. Furthermore, in the one-dimensional case, the use
of the space of functions with bounded variation (BV) as data space is particularly
convenient: it is large enough to include discontinuous functions, a sine qua non for
any discussion of global existence, while at the same time being equipped with a user-
friendly criterion for strong compactness (Helly’s selection principle); the method of
front-tracking offers a direct, self-contained existence proof for BV solutions; and the
existence of one-sided traces along shock waves is guaranteed due to the propagation
of BV-regularity.

The goal of the present work is to extend the approach via front-tracking to the
larger class of requlated L*° initial data for one-dimensional scalar conservation laws.
By definition, a function v : R — R is regulated provided it possesses one-sided limits
at every point, i.e.,

(1.1) v(z+) = limv(y) and v(z—) :=limv(y)

ylo ytx

exist as finite numbers for all x € R. We note that regulated solutions provide the
natural setting for the study of generalized characteristics for conservation laws; see
2, 3].

Recall that, strictly speaking, the Kruzkov solution (i.e., the unique admissible
solution) of a scalar conservation law is an equivalence class of almost everywhere
equal functions. We shall show that, whenever the initial data @ are regulated, there
is a version u(t, x) of the Kruzkov solution to

(1.2) Opu(t, ) + 0. [f (u(t, z))] =0, t>0,zeR
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with the property that wu(t,z) is a regulated function of z at all times ¢ > 0. The
proof makes use of an extension, due to Frankova [5], of Helly’s selection principle to
the space of regulated functions.

The key ingredient, introduced by Fraikovd [5], is the notion of e-variation and
its role in providing a criterion for relative compactness in the space of regulated
functions. (The e-variation of a bounded function v on a compact interval [a,b]
is defined as the infimum of variations of BV functions uniformly e-close to v; see
Definition 2.3 below.) Frankova [5] shows that a function v defined on a compact
interval is regulated if and only if its e-variation is finite for every € > 0. Our main
result generalizes the property of nonincrease of variation along BV solutions to (1.2)
by providing the existence of a version of the Kruzkov solution whose e-variation is
nonincreasing in time whenever the data are regulated and of compact support.

The analysis naturally divides into two parts. In the first part we verify that the
e-variation of a solution does not increase in time when the initial data belong to
BV. This is done by monitoring the e-variation in front-tracking approximations that
converge to the Kruzkov solution. Apart from the e-variation aspect, the convergence
argument is standard; see Oleinik [8]. We stress that it uses Helly’s selection principle
twice: first to define the solution candidate at rational times, and then again to define
its extension to all times ¢ > 0. This last step requires some care: the solution
candidate is defined separately at each time as a pointwise everywhere limit, and it
is necessary to verify that the resulting function is jointly measurable in (¢, ). (For
details see pages 122-123 in [8] or the proof of Theorem 2.4 in [1].) The standard
argument depends on the fact that BV regularity implies that the solution operator
t — u(t,-) is uniformly Lipschitz continuous as a map from Rait into L}, (R,).

The only new aspect in our treatment of the BV case is to verify that the e-
variation is nonincreasing along front-tracking approximations in this case. Since the
solution is given as a pointwise everywhere limit of the front-tracking approximations,
a result of Frankovéd (Proposition 2.7 below) implies that the same conclusion holds
for the exact solution as well.

The second part of the analysis is to argue that nonincrease of e-variation con-
tinues to hold when the initial data are merely regulated. For this we are not able
to simply repeat the argument outlined above: BV regularity was there used in an
essential manner to obtain Lipschitz continuity of the solution operator. Instead we
shall exploit the following two facts. First, the Kruzkov solution operator has the L!-
contraction property, and second, the Kruzkov solution for general L*>° data belongs
to CO(R§; L1, (R)), a result which is a consequence of the existence theory based,
e.g., on vanishing viscosity approximations (see sections 6.2 and 6.3 in [3]).

This last aspect of the argument renders our approach not fully self-contained,
i.e., it is not entirely based on front-tracking. On the other hand, other methods of
constructing the solution do not easily provide the type of “fine” pointwise information
about the Kruzkov solution which is required for monitoring its e-variation. Instead,
we build a version u of the Kruzkov solution “by hand” via front-tracking, essentially
retracing the steps in the standard proof of existence for BV data. The differences are
that we now apply Frankové’s extension of Helly’s selection principle, rather than the
latter, to obtain convergence and that we exploit L'-contractivity and mere continuity
of the solution operator to show that the regulated solution candidate we build is
indeed a version of the Kruzkov solution. This last step again requires an argument
for joint measurability of our solution candidate. By insisting on right-continuity of
the solution candidate at each time, we exploit the fact that it may be realized as the
limit of spatial Steklov averages.
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The rest of the paper is organized as follows. In section 2 we introduce regulated
functions and the notion of e-variation. We also record some known properties, state
two key results from Frankovd’s work [5], and formulate our main result. Section 3
establishes a series of results on step functions, their e-variation, and how it changes
when values are added or removed. These results are then used in section 4 to show
that the e-variation does not increase along a suitable version of the Kruzkov solution
when the initial data belong to BV. In section 5 we apply Frankova’s extension of
Helly’s selection principle to build a solution candidate with nonincreasing e-variation.
Finally, it is shown that this is a version of the Kruzkov solution, thereby establishing
the main result.

2. Regulated functions, e-variation, and main result. For one-sided limits
we use the notations in (1.1) above.

DEFINITION 2.1. Let I be any interval in R (i.e., I may be open, closed, half open,
finite, or infinite). A function u : I — R is regulated on I provided its right and left
limits exist (as finite numbers) at all points in the interior of I and it has a finite
right limit at the left endpoint and a finite left limit at the right endpoint, whether or
not these endpoints are finite or belong to I. The class of regulated functions on I is
denoted R(I); we write R for R(R) and Rla,b] for R([a,b]).

DEFINITION 2.2. With I as above, a functionu : I — R is of bounded (pointwise)
variation provided

k
(2.1) varu := sup Z lu(z;) — u(zi—1)] < oo,
i=1

where the sup is over all k € N and all finite selections of points xog < x1 < -+ < T
in I. We denote the set of such functions by BV(I) (writing BV|a,b] for BV([a,b])).

In what follows a and b always denote finite numbers with a < b. Also, through-
out, || - || denotes sup-norm on [a, b]:

[ul| :=sup |u(z)].
a<z<b

DEFINITION 2.3. For any function u : [a,b] — R and any € > 0, its e-variation
on [a,b] is given by

(2.2) e-varu = inf{varv : v € V(u;¢)},
where
(2.3) V(u;e) :={v € BVia,b] : |[v—u|] <e}.

If need be, we use the notations e-var® u and V(u;e;a,b) to emphasize the dependence
on the interval [a,b).

We note that if u € BVJa, b], then
(2.4) e-var® u < var® u,

and that the inequality is typically strict. E.g., for the one-step function

u(z) = {uL z <0,

ur x>0,
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we have
e-varu = max(jur — ur| — 2¢,0).

DEFINITION 2.4. A set A C R[a,b] has uniformly bounded e-variations provided
that for every € > 0 there is a finite number K. such that e-varu < K. for all u € A.

For u : [a,b] — R we let J(u) denote the jump set of u, i.e.,
J(u) := {z € [a,b] | at least one of u(z+) or u(x—) differs from u(z)}.

A function u : [a,b] — R is a step function provided there is a finite, increasing
sequence of points rg = a < 1 < --- < xny_1 < xny = b such that u is constant
on each of the open intervals (z;,z;+1), ¢ = 0,..., N. The following results about
regulated functions are known (see [5, 4]):

(R1) if u € R, then J(u) is a countable set;

(R2) a function u : [a,b] — R is regulated if and only if e-var® u < oo for all & > 0;

(R3) a function u : [a,b] — R is regulated if and only if it is the uniform limit of a

sequence of step functions on [a, b].

Remark 2.5. Tt is immediate to verify that if u : [a,b] — R is regulated and right-
continuous (i.e., u(x) = u(z+) for all x € [a,b)), then the step functions in (R3) may
be chosen as right-continuous as well.

Frankové’s extension of Helly’s selection principle takes the following form.

THEOREM 2.6 (see [5, Theorem 3.8]). Assume that the sequence (vy) in Rla, b
has uniformly bounded e-variations and (|v,(a)]) is a bounded sequence. Then there
are a subsequence (vy,) of (vy,) and a function vo € Rla,b] such that v, (x) = vo(z)
for every x € [a,b].

We shall also make use of the following result from [5].

PROPOSITION 2.7 (see [5, Proposition 3.6]). Assume that the sequence (vy,) in
Rla,b] has uniformly bounded e-variations. If v,(x) — v(x) for each x € [a,b], then
v(z) € Rla,b] and

e-var v < lirril inf e-var® v, for every e > 0.

The main result we establish is the following.

THEOREM 2.8. Let f : R — R be a locally Lipschitz continuous function, and
assume @ € R has compact support contained in (a,b). Let L denote the Lipschitz
constant of flrange(w)- Then there is a version u = u(t,x) of the Kruzkov solution
of the Cauchy problem (1.2)~(1.3) (i.e., an element in its L}, (R} x R,)-equivalence
class) which satisfies

s—vaerLLtt u(t,) < 5—varZ U for alle >0 and all t > 0.

We note that the version u(t, z) we construct in section 5 of the Kruzkov solution
is right-continuous at all times: u(¢,z+) = u(t,z) for all z € R, ¢t > 0.

3. Preliminary results. Let u € R; it follows from Definition 2.1 that the
function

(3.1) up(z) == u(z+) = lylg u(y)

is well defined for all x € R. According to (R1), u,.(z) = u(z) except for at most a
countable set of z-values.
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LEMMA 3.1. Assume u € R, and define the function u,.(x) as in (3.1). Then the
following hold.
(a) For any compact interval [a,b] where b is a point of continuity of u, and for
any € > 0, we have e-var u, < e-var®u. In particular, according to (R2),
u, € Rla,b].

(b) w, can be realized as the limit of right Steklov averages of u, i.e.,

ur (@) = limu’ (@),

(¢) w, is right-continuous at all points x € R.

where

Proof. For (a) we first note that u is continuous at x = b by assumption, so that
ur(b) = u(b). Now, for ¢ > 0 fixed, we choose any v € V(u;e;a,b) and define the
function v : [a,b] — R by

v(x+ T € [a,b),
o {re0) el

v(b) x =b.
Then, for z € [a,b) we have

Jur () — ()] = lim fu(y) —v(y)| <<,

while for = b we have

1, () = 5(0)] = |u(B) — v(B)] < =.

Next, fix any partition a = 29 < --- < xny-1 < zny = b and any p > 0. Consider any
other partition a < zf < --- < 2'y_; < 2y := b. We have

(3.2)
N N
EZ W(@i1) §jlv% )| + o) = v(@_ )| + |o(@)_) — #(zi1)])

N-1

(3.3) <varb v+ 3 [(a) - o(a] w+§jh)l D) = i),

i=1

where we have used that |0(zy) — v(2y)| = |9(b) — v(b)| = 0. Since ¥(x) = v(z+) on
[a,b), by choosing each x}, i = 0,..., N — 1, sufficiently close to and strictly larger
than each x;, we can arrange that

N

N-1
Y (o) = o)l + Y olaiy) = B(@im1)| < pe

=1 =1

As > 0 is arbitrary it follows from (3.3) that

N
Zf;xl ) — 0(mi— 1)|<Var v
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for any partition {z;}¥, of [a,b] (with 9 = a and x = b), and thus var o < varwv.
This shows that o € BV][a, b] so that © € V(u,;e;a,b). Thus, for each v € V(u;¢;a,b),
there is a o € V(u,;€;a,b) with vard < varv, showing that e-var® u, < e-var’u,
establishing part (a).

For (b), fix any point x € R and any § > 0. Since v € R, there is an h > 0 with
the property that

(3.4) [u(§) — ur(x)] < 9 whenever € € (z,x + h).

Thus,
40

@) - w@ <5 [ ) - ()]s <3

whenever 0 < § < h.

Finally, for (c), fix any € R and any 6 > 0. Then there is an h > 0 such that
(3.4) holds. We proceed to show that |u,(z +y) — u,(z)| < 20 whenever 0 < y < h.
Fix any such y; as u € R, there is a k > 0 with the property that

(3.5) |ur(z+y) —uln)| <o whenever n € (z +y,z +y+ k).

Set p := min{h,y + k} such that y < p < h. We then have (v + y,z + pu) C
(x,z+h)N(x+y,x+y+k). Thus, using any n € (x + y,z + p), we have from
(3.4)~(3.5) that

ur(z +y) = ur(@)] < fur(z +y) —un)] +[uln) —u(2)] <26

whenever 0 < y < h, showing that u, is right-continuous at x. 0

In preparation for monitoring the e-variation of piecewise constant approxima-
tions to scalar conservation laws, we consider e-variation of step functions.

LEMMA 3.2. Let u : [a,b] — R be a right-continuous step function with suppu C
(a,b). Then, for any e > 0, we have that

(3.6) e-varu = inf{var z | z € Vy(u;¢)},
where

Ve(use) = Vs(us€;a,b) :={z : [a,b] = Rz is a right-continuous step function,
(3.7) J(z) C J(u), and ||z — ul|| < €}.
Furthermore, the infimum in (3.6) is attained.

Proof. Since V(u;e) D Vy(u;¢€), it is immediate that < holds in (3.6). To establish
the opposite inequality, we shall show that for each v € V(u;¢) there is a z € V,(u;¢)
with var v > var z; equality in (3.6) then follows from definition (2.2) of e-varu. For
this let z; < -+ < 2y be the jump loci of w. (If u = 0 the result is obvious.) Since u
is right-continuous with suppu C (a,b), we have xg := a < x1, xy < Ty41 := b and
that v = 0 on [zx,b]. Define the points

1
& Z:§($i+l‘i+1) fori=20,...,N.

Given v € V(u;¢e) we define z : [a,b] — R to be the right-continuous step function
which takes the value v(§;) on [z, z;41) for each ¢ = 0,..., N — 1 and which takes the
value v(€y) on [zy,b], i.e.,
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N—1
z(x) = Z 21z, 2000) (@) + 2N 1[5y 5 (2),  Where z; = v(§;) for i =0,...,N.
i=0

It follows that z € Vs(u;e) and that varv > var z.
To show that the infimum in (3.6) is attained, let

N
u(r) = Zui]‘[ziﬁwl)(‘r% r € [a,b],
=0

and observe that the expression on the right-hand side of (3.6) agrees with the infimum
of the continuous function

N-1
RN 3 2 = (20,...,28) = Y |zig1 — 2il
i=0

when restricted to the compact set

N
H[ul —e,u; + €.
i=0
By continuity and compactness this infimum is attained. 0

Remark 3.3. Assume u and @ are two right-continuous step functions that take
the same values in the same order but possibly on different intervals, i.e.,

N N
u(x) = Zuil[mi’wiﬂ)(a‘) and a(z) = Zuil[ii’iiﬂ)(x), x € [a,b],
i=0 i=0
witha:x0<m1<~-~<a:N<xN+1:banda:a~:o<531<---<:iN<5cN+1:b.
Then
e-var u(x) = e-var a(z) .

This follows from (3.6), as for any z € Vs(u;€), there is Z € Vy(4; €) such that

N N
varz = Z |2(zi+) — 2(2i—)| = Z |2(Z+) — Zi(3—)| = var 2.

The next result shows that in approximating a regulated function v with a step
function that takes values of u, the e-variation will not increase.

LEMMA 3.4. Let u € Ra,b] with suppu C (a,b), and fiz any sequence 1 < --- <
xn in (a,b) with the property that suppu C (a,zn). Let Su] : [a,b] — R be the
right-continuous step function which coincides with u at the left endpoints of each
subinterval, i.e.,

() x € |ri—1,2:),i=1,...,N,
(3.8) Sul(x) := {u(xN) v on b,

where xo := a. (Note that u(xy) = 0 according to the assumptions on u.) Then, for
any € > 0 we have

(3.9 e-var S[u] < e-varu.
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Proof. Fix the sequence x1 < --- < &y and € > 0. According to definition (2.2)
and Lemma 3.2, (3.9) amounts to

(3.10) inf{var z | z € Vy(S[u]; e;a,b)} < inf{varv|v € V(u;e;a,b)}.

To establish this inequality we fix any v € V(u;¢;a,b) and proceed to generate a
z € Vs(S[ul;e;a,b) with varz < varv. For this, consider the function S[v], defined
as in (3.8) with u replaced by v. It is immediate to verify that S[v] € Vs(S[u]; &; a, b)
(since S[v] and S[u] are both constant on each subinterval, their values there are
the values of v and wu, respectively, at the left endpoints of the subintervals, and
|lv—ul| <€) and that var S[v] < var v (since S[v] takes on values of v). It follows that

inf{var z | z € Vy(S[u]; €;a,b)} < varS[v] < varw.

As v € V(u;¢;a,b) is arbitrary, (3.10) follows. |

We conclude this section by showing that the e-variation of a step function does
not increase when some of its values are omitted and that it remains the same if values
are added in a monotone manner. This is the key property which will be used below
to show that approximate solutions of (1.2)—(1.3) generated via front-tracking do not
increase in e-variation as time increases.

LEMMA 3.5. Assume u : [a,b] — R is a right-continuous step function with
suppu C (a,b). Let 1 < --- < xy be the jump loci of u, and set o := a and
TN+1 = b such that

N
(3.11) u(z) = Zuil[%ml)(x), x € [a, b],
i=0

for constants u; (in particular ug = uny = 0). Consider any sequence of N + 1 points
1 < <E <2< Zjp <--- < Iy oin(a,b) and any value & € R. Then the
right-continuous, simple function @ : [a,b] — R defined by

U; xE[i‘i,.’i‘H_l), 1=0,...,75—1j5+1,....N,
a(x) == ¢ uj x € [%;,1),
( xg[:%vjj+1)>

where To := a and Tyy1 = b, has the following properties: for any € > 0,
1. e-varu < e-var u;
2. ifu; <4 <ujpr orujp <4 <Ly, then e-varu = e-var 4.
Proof. Applying Lemma 3.2 to @, we obtain a right-continuous, simple func-
tion Z : [a,b] — R with the same jump set as @ and satisfying ||Z — @] < e and
var Z = e-var 4. Let the N + 2 consecutive values (from left to right) taken by Z be

2051 %j,2,%j41,---,2ZN- We then define the right-continuous, simple function z to
have the same jump set as the given function uw and taking the N + 1 consecutive
values zo,...,2,2j+1,...,2n. Then ||z — u|| < ¢ such that

e-varu = inf{varv : v € BVia,b] : ||[v—ul] <&}

J N
SV&I‘Z:Z|Z¢*Zi_1|+|2j+1fzj|+ Z |Zi*Zi—1
i=1 i=j+2
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j N
<Y i —zical 12—zl lzio — A+ D e — 2
i=1 i=j+2

=varz = e-var u,

establishing part (1).

For part (2), assume for concreteness that w11 < @ < u;. (The proof is entirely
similar when u; < @ < w;41.) Applying Lemma 3.2 to u, we obtain a right-continuous,
simple function z : [a,b] — R with the same jump set as u and satisfying ||z —ul| < &
and var z = e-varu. Let the N 4 1 consecutive values (from left to right) taken by z
be zg,...,zN.

Claim: we can choose a value 2 such that

(i) 2 is located between z; and zj41 (possibly being equal to one of these), and

(ii) |2 —a| <e.

Assuming for now that this claim is valid, we define the right-continuous, simple
function Z as follows:

2 xe[ii,£i+1), 1=0,....7—1,54+1,...,N,
Z(x) == Q 2 x € [%;,%),
Z S [f,‘%]q,l).

In particular, Z has the same jump set as 4. As ||z — u|| < ¢, and by part (ii) of the
claim above, we have ||Z — @|| < e. Also, according to part (i) of the claim we get

e-var @ = inf{varv : v € BV[a,b], ||v—al <&}

j—1 N-1
<SvarZ =Y lzip1 — vl + 2=zl + |z = 2+ Dz —
i=0 i=j+1
j—1 N-1
= Z |Zit1 — vil + |2j41 — 25| + Z |zi41 — vi| = var z = e-var u.
i=0 i=j+1

Together with part (1) of the lemma, we obtain part (2), modulo the claim above. For
this we observe that if @ lies between z; and z;11, then 2 := 4 obviously satisfies both
parts of the claim. For the case that & does not lie between z; and z;11 we consider
separately the cases z; 2 2,11, in each case considering the two possible locations of
. This gives the following four subcases:

o if 4 > Zj 2 Zj+1, we set z:= Zj5

o if z; > 2,411 > 1, we set 2 := z;j11;

o if 4> 241 > 25, weset 2= zjq1;

o if 2;11 > 2z; > 1, we set 2 := zj.
Le., in each case we choose Z to the one of z; and z;4; closer to @. It is straightforward
to verify that this choice of Z satisfies both parts of the claim. ]

4. e-variation of BV-solutions. For completeness and later reference we pro-
vide a brief description of front-tracking as it applies to the scalar conservation law
(1.2) with a locally Lipschitz continuous flux f(u) and BV initial data @. (See [1, 3, 6]
for full details.)

Let (@,) be a sequence of step functions that converge uniformly to @. For each
n let f,(u) be the continuous and piecewise affine function with break points at the
elements of the set
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1
B, := —7Z Urange(ty,),
n

at which points f,, (u) coincides with f(u). An analysis shows that the unique Kruzkov
solution u,(t,x) to the “approximate” Cauchy problem

(4.1) Opu(t, x) + Oz fu(u(t,z))] =0 for £ >0 and z € R,
(4.2) w(0,x) = Gy (x),

can be obtained in the following manner. At time ¢ = 0 the Riemann problems at
the jumps locations {jl}f\iﬁ of 4, are resolved. The result is a fan of straight lines
(fronts) emanating from each jump location and separating constant values of w,,
each of which belongs to the set ,,. The speed of any front in u,, is bounded by the
Lipschitz constant of f|,ange(a)- In any Riemann problem these outgoing states form a
monotone sequence of u-values with the values of the Riemann data as extreme values.
The fronts are propagated until two or more of them meet (interact), at which point a
new Riemann problem is defined. This is then resolved into a new fan of propagating
fronts that separate constant u-values, again forming a finite monotone sequence from
the set B,,.

Assume an interaction occurs at time t. It will be convenient to consider the
resolution of the interaction as a two-step process where, first, all states between the
two extreme incoming fronts are removed (giving the solution precisely at time t),
followed by the resolution of the Riemann problem defined by the extreme incoming
states, u+, say.

The works [1, 3, 6] show that this algorithm is well defined: each solution w, (¢, x)
contains only finitely many interactions and fronts, globally in time. This is a conse-
quence of the fact that the spatial variation var u, (¢, -) is nonincreasing in time. More
precisely, an analysis shows that the variation remains constant across any interaction
where the incoming states form a monotone sequence, while the variation decreases
strictly in all other interactions.

Finally, an application of Helly’s selection principle, together with uniform Lip-
schitz continuity of the solution maps RT 3 t + wu,(t) € L}, .(R;), show that the
solutions wu,, tend to a limit function u(t,z) in L}, (RT x R) as n — oo. (As men-
tioned in the introduction, the argument that the limit u is jointly measurable in
(t,x) requires some care.) Due to locally uniform convergence of f, to f and strong
L'-convergence of the u, to u, it follows that u is the unique Kruzkov solution of
(1.2). More precisely, if the Kruzkov solution is viewed as an L'-equivalence class
of almost everywhere defined functions, the function u generated by front-tracking is
one version (representative) of the Kruzkov solution.

Remark 4.1. To fix a unique version u(¢,x) of the Kruzkov solution constructed
via front-tracking, we impose right-continuity of w(t,-) at each fixed time ¢. Pass-
ing from wu(t,z) to u(t,z+) does not increase the variation or the e-variation of the
solutions we consider (cf. part (a) of Lemma 3.1).

Our goal in the present work is to extend this approach to the case of regulated
data € R. As noted in the introduction, the key property allowing such an extension
is the fact that not only the variation but also the e-variation of a front-tracking
approximation is nonincreasing in time. This is a consequence of Lemma 3.5. We
start by considering the situation at the initial time.

LEMMA 4.2. Let f: R — R be a continuous, piecewise affine function. Consider
any right-continuous step function u(x) with compact support contained in (a,b) and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/21/21 to 132.174.254.159. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

3124 HELGE KRISTIAN JENSSEN AND JOHANNA RIDDER

with values among the break points of f. Let L be the Lipschitz constant of f|range(a);
and assume t* > 0 is the first time of interaction between fronts in the front-tracking
solution u(t,x) of (1.2)~(1.3). Then

e-var’TE (¢, ) = e-varl @ for all t € ]0,¢%).

Proof. Fix any ¢t € [0,t*). As outlined above, the function wu(¢,-) consists of a
finite number of wave fans emanating from the points where @ jumps. Due to finite
speed of propagation, supp(u(t,-)) C (a — Lt,b + Lt). Each wave fan consists of a
monotone sequence of u-values separated by fronts. We can now let the initial data
u(x) play the role of the step function u(x) in Lemma 3.5 and then repeatedly apply
part 2 of that lemma. For each fixed wave fan connecting the states u; to u;+1 (see
(3.11)), say, we successively insert the values of the Riemann solution (which play
the role of @ in the statement of Lemma 3.5). Since these values form a monotone
sequence with u; and u; 41 as extreme members, part 2 of Lemma 3.5 implies that the
e-variation is unchanged in each step, and the conclusion follows. 0

Next we consider the behavior of the e-variation at later times. First, from Re-
mark 3.3 it is clear that the e-variation of a front-tracking solution does not change
during the open time intervals between interactions. Next, recall that the resolution
of an interaction in the front-tracking solution amounts to the removal of at least
one value present in the solution before the interaction, followed by the insertion of a
monotone sequence of values whose extreme values were present before the interaction.
We can therefore apply Lemma 3.5 and deduce that the e-variation is nonincreasing
along any front-tracking solution. More precisely, we have the following.

LEMMA 4.3. Let f: R — R be a continuous, piecewise affine function. Consider
any right-continuous step function @(x) with compact support in (a,b) and values
among the break points of f. Let L denote the Lipschitz constant of f|range(ny- Then
the front-tracking solution u(t,z) of (1.2)—(1.3) satisfies

(4.3) e-varbTh o (t, ) < evarl @

for allt >0 and all £ > 0.

Proof. Let t > 0 be any time at which two or more fronts meet in the solution
u(t,z). Without loss of generality we can assume that no other interactions occur at
different locations at time #. (There can be at most finitely many of them, and we
may treat each of them in turn in the same manner as explained in the following.)
Let ug, - . ., Uy, denote the values taken by wu(t,-) at times ¢ just prior to ¢, i.e.,

U(t,l’) = Zuil[wi(t),zi+1(t))(x) for t € ({* 6,1?),
=0

where § > 0 is so small that no other interaction occurs during [t — §,¢ 4+ d] and
zo(t) < z1(t) < -+ < () < Tymy1(t) are affine functions on (¢ — 4,t). Setting

T = {i|xi(t) = zip1()},

we have that u(t,-) for ¢ > ¢ is the solution of the conservation law u; + f(u), = 0

with initial data
m

u(t,z) = Z Uil[zi(t_),zﬁl(f))(x)
=
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at time ¢, i.e., the states {u;};cz are removed in the interaction. We can now apply
Lemma 3.5 several times to compare the e-variations of u(f — 6, z) and u(f, z): letting
u(t — &, x) play the role of @(z) in the lemma and then removing the values {u;}iezr
successively until we obtain u (¢, z), part 1 of Lemma 3.5 yields

e-varu(t,-) < e-varu(t —6,-).
According to Lemma 4.2, applied with ¢ as the initial time, we also have
e-varu(t + 6, -) = e-varu(t, ).

We conclude that e-var u(t+79, ) < e-var u(¢—49, ). As the e-variation does not change
between interactions, the conclusion follows. O

Before considering regulated data it remains to establish, still in the setting of
BV data, that the e-variation is nonincreasing also for general conservation laws (1.2)
with Lipschitz continuous flux function.

PROPOSITION 4.4. Let f : R — R be a locally Lipschitz continuous function,
and assume 4 € BV (R) has compact support contained in (a,b). Let L denote the
Lipschitz constant of fl|range(a). Then there is a right-continuous version u = u(t, x)
of the Kruzkov solution of the Cauchy problem (1.2)-(1.3) (i.e., an element in its
L}OC(R& x R )-equivalence class) which satisfies

5—vaerLLtt u(t,-) < s—varZ U for all e > 0.

Proof. Step 1. Without loss of generality we may assume that « is right-
continuous. (If not, replace % by its right-continuous version %, defined in section
3; as @ and @, agree almost everywhere, they generate the same Kruzkov solution.)
We start by constructing a sequence (@, ) of right-continuous step functions which
coincide with @ at the left endpoints of each interval of constancy and that converge
uniformly to @ as n — oo. To do this, first observe that as supp(@) is compact, prop-
erty (R3) in section 2 (applied to ([, € R[a, b]) yields a sequence of right-continuous
step functions (vg) that converge uniformly to @ (cf. Remark 2.5). We then define
the sequence (u,,) as follows. For each n, let k(n) be such that

4.4 -l < —.
(4.4) lonemy —ull < 5~
Let {z1;}¥* denote the jump set of v such that

(4.5) () = vi(xgk,:) for z € [wp i, Thit1), i =1,..., Ny — 1,

and vy (x) vanishes for x < 1 as well as for > zj n,. We then define

Up () = U(Tpmy,)  for € [Trm) Tem)iv1), 1 = 1,y Ny — 1,
and un(z) := 0 everywhere else. As a consequence of (4.4) and (4.5), given any
T e [aa b]a HS [xk(7l),i7$k(7b),i+1)7 say, we have
|t (2) — w(@)| = |u(zk(n),i) — wl(@)]
< Na(@k(n),i) = V) (Tr(n),i)| + Vk(n) (Tr(ny i) — Vk(n) ()]
+ [Vk(n) () — ()]
<lior ot
~ 2n on  n’

As @, (z) = a(x) =0 for all = ¢ [a, b], this shows that 4, converges uniformly to @.
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Step 2. Next we execute the front-tracking algorithm as outlined at the beginning
of the present section. Let f,, denote the piecewise affine approximation of the flux f
that coincides with f at the points 1ZUrange(i,, ), and let u, (t, z) denote the Kruzkov
solution of the conservation law u; + fy,(u), = 0 with initial data @,. According to
Lemma 4.3 and Lemma 3.4 we have

(4.6) e-var’TE o, (¢,) < evarb @, < e-varl a.

As detailed in [1, 3, 6], Helly’s selection principle and a diagonal argument give a
subsequence (uy, ) and a function wu(t, z) with the property that u(¢,-) € BV for all
t € Q" and such that

Up, (t,2) = u(t,z) forallteQt, zeR.

Applying Proposition 2.7 together with (4.6) gives

(4.7)  evartTh (¢, ) < limkinf e-vart Tty (t,) < e-varl @ for all t € Q.

Finally, one extends u to irrational times as follows. For a given t € RT \ QT, fix
a sequence (t;) C QF with ¢; — ¢, and apply Helly’s selection principle to obtain a
subsequence (t;, ) for which (u(t;,,,2))m converges for all € R. We then define

u(t,x) = 1171nn u(ty, ,z) for all z € R.
Therefore, Proposition 3.6 in [5] together with (4.6) show that (4.7) holds also at
irrational times. According to the analysis in [1], it is known that (¢, z) is a version
the Kruzkov entropy solution of (1.2) with initial data (1.3). Finally, by passing to
the right-continuous version u(t, z+) and applying part (a) of Lemma 3.1, we obtain
the conclusion. O

5. Proof of main result. We finally consider the original Cauchy problem,
repeated here for convenience:

(5.1) Buult,x) + 8, f(u(t,2))] =0, ¢>0,z€R,

where the initial data u are now any regulated function with compact support in
(a,b). As before let L denote the Lipschitz constant of f|.ange(a)-

It is known that the Kruzkov solution of (5.1)—(5.2) is unique within the space
Lt (R(’)L x R;dt ® dx), whose elements are equivalence classes of functions agreeing
almost everywhere on Rg x R; see Chapter 6 in [3]. To prove Theorem 2.8 we need to
establish the existence of a version u(t, z) of the Kruzkov solution of (5.1)—(5.2) with
the regularity property that

(5.3) e-var’ Ly (t, ) < e-varl @ for all t > 0 and all € > 0.

Consider first any version (t, z) of the unique Kruzkov solution of (5.1)—(5.2). The
map (t,x) — U(t,x) is then jointly measurable, and it is known that the solution
defines a continuous map into Lj,.(R,) (see Theorem 6.2.2. in [3]):

(5:4) @ € C°(RG; Lioc(R)).
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On the other hand, merely as an element of L'(R{ x R;dt ® dr) N CO(RS; LY (R)),
we do not have enough information to conclude that (¢, z) satisfies (5.3), or even
is a regulated function, at times ¢ > 0. While it is possible that other constructive
approaches (e.g., vanishing viscosity) can be used, we shall base our argument on
front-tracking and approximation via BV solutions.

Without loss of generality we assume that @ is right-continuous. As in Step 1 of
the proof of Proposition 4.4, we construct a sequence (@,,) of right-continuous step
functions which coincide with @ at the left endpoints of each interval of constancy and
such that

(5.5) Uy — T uniformly on [a, b].

Let u,(t,z) denote the version of the Kruzkov solution of (5.1) with initial data @,
given by Proposition 4.4. According to Proposition 4.4 and Lemma 3.4 we have

(5.6) E—Varl;‘tLLf5 Up(t, ) < E-VaI“Z Uy, < E—Varg U for all £ > 0 and all € > 0.

We also record the fact that the L'-contraction property (see section 6.2 of [3]),
together with (5.5), yield

(5.7) un(t,-) —a(t,-)  in L},.(R) at all times ¢ > 0.

However, this is not sufficient to conclude that (¢, -), or a version of it, is regulated.
Instead we shall construct, via Frankovad’s theorem (Theorem 2.6 above), an alterna-
tive version u(t,x) of the Kruzkov solution—a version for which we can monitor the
e-variation. Note that the issue at this point is not existence of the Kruzkov solution.
Rather, the goal is to exploit its known properties and use Frankova’s extension of
Helly’s selection principle to identify a “good” version of it.

So, with @, and u,(t,z) as above, consider the set of rational times s € Q.
Applying Theorem 2.6, a standard diagonal argument, (5.6), and Proposition 2.7, we
obtain a subsequence (uy, ) of (u,) and a function

(5.8) v:Qf xR R

(at this stage only defined at rational times) with the following properties:
(A) up, (s,2) = v(s,z) for all s € Qf and all z € R;
(B) v(s,-) is regulated for all s € QF with

(5.9) e-var’Ths o (s, ) < e-var

b for all s € Qf .
It follows from property (A) and (5.7) that
(5.10) v(s,-) =au(s,-) as L'(R,)-functions at each time s € Qg .

We now want to extend v(s, x) to all of R x R in such a manner that (5.9) and (5.10)
continue to hold for all ¢t > 0. To this end, fix any t € Rar ~ QS‘ , choose a sequence
(sm) of rational times such that s,, — ¢, and consider the sequence (v($,,)). Thanks
to property (B) above we can apply Theorem 2.6 and extract a subsequence (v(Sy,, ,-))
(depending on t) with the property that (v(s,,,,x)) converges for all z € R; we define

(5.11) v(t,x) == lilmv(sml,x).
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Together with (A) above this defines v(t,x) at all points in the upper half-plane.
According to (5.9) and Proposition 2.7, we then have

(5.12) e-var’TE ot ) < e-varb @ for all t € Ry and all € > 0.
In particular, as a consequence of (R2) in section 2, it follows that
(5.13) v(t,-) is a regulated function at all times ¢ > 0.

Furthermore, by exploiting the continuity property (5.4) of the Kruzkov solution,
together with (5.10) and the pointwise convergence in (5.11), we deduce that the
difference
(5.14)

0 by (5.10)

[a(t,-) =v(t, )l < lalt, ) =alsm,, )1 +[[@(sm,.- Smus )+ v(smes ) =0, )l

can be made arbitrarily small by choosing [ sufficiently large. It follows that
(5.15) o(t, ) = a(t,-) as L'(R,)-functions for all times t € R

We finally define the function u(¢,x) by setting

(5.16) u(t,z) == v(t, z+),

which is well defined according to (5.13) and part (a) of Lemma 3.1. We record that
(5.13) and property (R1) in section 2 imply that

(5.17) u(t,z) == v(t, x) for all but countably many values of =

at every time t > 0. This u is our candidate for the “good” version of the Kruzkov
solution. Indeed, (5.3) is an immediate consequence of (5.12) and part (a) of Lemma
3.1.

The only remaining issue is to verify that u(¢,z) is a version of the Kruzkov
solution. L.e., we need to argue that u and u agree almost everywhere with respect
to the product measure dt ® dz on RY x R. This will follow from (5.15), (5.17),
and Fubini’s theorem once we verify that (¢, z) is jointly measurable with respect to
(t,x). This is not immediate since u is defined separately at each time ¢; in particular,
it is not a consequence of the statement in (5.15). We follow [1] and exploit part (b)
of Lemma 3.1, according to which w can be realized as the limit of Steklov averages
of v(t,-):

_ 1 5
(5.18) u(t,x) = %1&)11) (t,z),

where s
1 T
Vo (t,x) = g/x v(t, &) d€.

We proceed to show that each v°(t,z) jointly continuous in (¢,z) for each fixed 6.
First note that, thanks to (5.15),

-+
(5.19) W (t,x) = %/ a(t, ) de.
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We then consider continuity with respect to time of v%(,x) for a fixed z. According
o (5.19) we have

z+48
G20) Pt o) <5 [ a6 sl de < ) i)l

By (5.4) the map t — a(t) € L, .(R) is continuous, and it follows from (5.20) that
v®(t, ) is continuous with respect to ¢, uniformly with respect to . Next, consider
continuity of v°(t,z) with respect to z for a fixed ¢: for any h € (0,5) we have

x+0+h
(5.21)  [v°(t,x +h) —°(t,2)| < < {/ / }utf)d£<|u||oo|h|

where we have used that the Kruzkov solution is bounded in L by its L°°-norm at
time zero. The same estimate holds for h € (—4,0). Thus, for a fixed § > 0, the
function v° is uniformly continuous, separately in time and space, on a neighborhood
of each point (¢, z). It follows that v° is jointly continuous in (¢,z). For completeness
we detail the argument for this. Fix any ¢t > 0, z € R, § > 0, and ¢ > 0. Since
the Kruzkov solution % has compact support at all times and satisfies the continuity
property (5.4), there is a u > 0 such that

5
() — @(s) || 1 gy < % for any s with [t — s| < p,
and therefore, by (5.20),

(5.22) |v5(t,y) — 0% (s, y)| < for any s with |t — s| < p and any y € R.

N

Hence, for any s, y such that |t —s| + | — y| < min(pu, ﬁ), (5.21) and (5.22) give

!Ué(t7$) _v6(87y | < ‘vé t {IJ - U(s ty ’—’_ |U6(t7y) _/U(S(Say)|

2 o g+ <
. :6'
" Malm

This establishes joint continuity of v°(¢,2). According to (5.18) the function (¢, )
u(t,z) in (5.16) is therefore the pointwise limit of continuous functions and hence
jointly (Borel) measurable.

Finally, thanks to the joint measurability of u(t,z) we can now apply Fubini’s
theorem together with (5.17) and (5.15) and conclude that, for any T > 0,

/ |u(t,x) — a(t,z)| dt ® dx = / / lu(t, z) — a(t, x)| dedt
[0,T]xR (0,7

/ /|vt:17 u(t, x)| dedt = / 0dt =0,
[0,T7] [0,T]

showing that u(t,z) = i(t,x) for almost all (t,x) € Rf x R. Therefore, viewed as
an element in Ll(Rg x R; dt ® dx), the function u coincides with the unique Kruzkov
solution of (5.1)—(5.2). This concludes the proof of Theorem 2.8.
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