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Abstract. We show that the Kru\v zkov solution of the Cauchy problem for a scalar conservation
law in one spatial dimension propagates regulated initial data into regulated solutions at later times.
The proof is based on standard front-tracking and an extension, due to Fra\v nkov\'a, of Helly's selection
principle.
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1. Introduction. It is well known that, in any space dimension, the spatial
variation of the unique admissible Kru\v zkov solution of a scalar conservation law is
nonincreasing with time [3, 7]. Furthermore, in the one-dimensional case, the use
of the space of functions with bounded variation (BV) as data space is particularly
convenient: it is large enough to include discontinuous functions, a sine qua non for
any discussion of global existence, while at the same time being equipped with a user-
friendly criterion for strong compactness (Helly's selection principle); the method of
front-tracking offers a direct, self-contained existence proof for BV solutions; and the
existence of one-sided traces along shock waves is guaranteed due to the propagation
of BV-regularity.

The goal of the present work is to extend the approach via front-tracking to the
larger class of regulated L\infty initial data for one-dimensional scalar conservation laws.
By definition, a function v : R \rightarrow R is regulated provided it possesses one-sided limits
at every point, i.e.,

(1.1) v(x+) := lim
y\downarrow x

v(y) and v(x - ) := lim
y\uparrow x

v(y)

exist as finite numbers for all x \in R. We note that regulated solutions provide the
natural setting for the study of generalized characteristics for conservation laws; see
[2, 3].

Recall that, strictly speaking, the Kru\v zkov solution (i.e., the unique admissible
solution) of a scalar conservation law is an equivalence class of almost everywhere
equal functions. We shall show that, whenever the initial data \=u are regulated, there
is a version u(t, x) of the Kru\v zkov solution to

\partial tu(t, x) + \partial x[f(u(t, x))] = 0, t > 0, x \in R(1.2)

u(0, x) = \=u(x),(1.3)
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REGULATED DATA 3115

with the property that u(t, x) is a regulated function of x at all times t > 0. The
proof makes use of an extension, due to Fra\v nkov\'a [5], of Helly's selection principle to
the space of regulated functions.

The key ingredient, introduced by Fra\v nkov\'a [5], is the notion of \varepsilon -variation and
its role in providing a criterion for relative compactness in the space of regulated
functions. (The \varepsilon -variation of a bounded function v on a compact interval [a, b]
is defined as the infimum of variations of BV functions uniformly \varepsilon -close to v; see
Definition 2.3 below.) Fra\v nkov\'a [5] shows that a function v defined on a compact
interval is regulated if and only if its \varepsilon -variation is finite for every \varepsilon > 0. Our main
result generalizes the property of nonincrease of variation along BV solutions to (1.2)
by providing the existence of a version of the Kru\v zkov solution whose \varepsilon -variation is
nonincreasing in time whenever the data are regulated and of compact support.

The analysis naturally divides into two parts. In the first part we verify that the
\varepsilon -variation of a solution does not increase in time when the initial data belong to
BV. This is done by monitoring the \varepsilon -variation in front-tracking approximations that
converge to the Kru\v zkov solution. Apart from the \varepsilon -variation aspect, the convergence
argument is standard; see Ole\u {\i}nik [8]. We stress that it uses Helly's selection principle
twice: first to define the solution candidate at rational times, and then again to define
its extension to all times t > 0. This last step requires some care: the solution
candidate is defined separately at each time as a pointwise everywhere limit, and it
is necessary to verify that the resulting function is jointly measurable in (t, x). (For
details see pages 122--123 in [8] or the proof of Theorem 2.4 in [1].) The standard
argument depends on the fact that BV regularity implies that the solution operator
t \mapsto \rightarrow u(t, \cdot ) is uniformly Lipschitz continuous as a map from R+

0,t into L1
loc(Rx).

The only new aspect in our treatment of the BV case is to verify that the \varepsilon -
variation is nonincreasing along front-tracking approximations in this case. Since the
solution is given as a pointwise everywhere limit of the front-tracking approximations,
a result of Fra\v nkov\'a (Proposition 2.7 below) implies that the same conclusion holds
for the exact solution as well.

The second part of the analysis is to argue that nonincrease of \varepsilon -variation con-
tinues to hold when the initial data are merely regulated. For this we are not able
to simply repeat the argument outlined above: BV regularity was there used in an
essential manner to obtain Lipschitz continuity of the solution operator. Instead we
shall exploit the following two facts. First, the Kru\v zkov solution operator has the L1-
contraction property, and second, the Kru\v zkov solution for general L\infty data belongs
to C0(R+

0 ;L
1
loc(R)), a result which is a consequence of the existence theory based,

e.g., on vanishing viscosity approximations (see sections 6.2 and 6.3 in [3]).
This last aspect of the argument renders our approach not fully self-contained,

i.e., it is not entirely based on front-tracking. On the other hand, other methods of
constructing the solution do not easily provide the type of ``fine"" pointwise information
about the Kru\v zkov solution which is required for monitoring its \varepsilon -variation. Instead,
we build a version u of the Kru\v zkov solution ``by hand"" via front-tracking, essentially
retracing the steps in the standard proof of existence for BV data. The differences are
that we now apply Fra\v nkov\'a's extension of Helly's selection principle, rather than the
latter, to obtain convergence and that we exploit L1-contractivity and mere continuity
of the solution operator to show that the regulated solution candidate we build is
indeed a version of the Kru\v zkov solution. This last step again requires an argument
for joint measurability of our solution candidate. By insisting on right-continuity of
the solution candidate at each time, we exploit the fact that it may be realized as the
limit of spatial Steklov averages.
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3116 HELGE KRISTIAN JENSSEN AND JOHANNA RIDDER

The rest of the paper is organized as follows. In section 2 we introduce regulated
functions and the notion of \varepsilon -variation. We also record some known properties, state
two key results from Fra\v nkov\'a's work [5], and formulate our main result. Section 3
establishes a series of results on step functions, their \varepsilon -variation, and how it changes
when values are added or removed. These results are then used in section 4 to show
that the \varepsilon -variation does not increase along a suitable version of the Kru\v zkov solution
when the initial data belong to BV. In section 5 we apply Fra\v nkov\'a's extension of
Helly's selection principle to build a solution candidate with nonincreasing \varepsilon -variation.
Finally, it is shown that this is a version of the Kru\v zkov solution, thereby establishing
the main result.

2. Regulated functions, \bfitvarepsilon -variation, and main result. For one-sided limits
we use the notations in (1.1) above.

Definition 2.1. Let I be any interval in R (i.e., I may be open, closed, half open,
finite, or infinite). A function u : I \rightarrow R is regulated on I provided its right and left
limits exist (as finite numbers) at all points in the interior of I and it has a finite
right limit at the left endpoint and a finite left limit at the right endpoint, whether or
not these endpoints are finite or belong to I. The class of regulated functions on I is
denoted \scrR (I); we write \scrR for \scrR (R) and \scrR [a, b] for \scrR ([a, b]).

Definition 2.2. With I as above, a function u : I \rightarrow R is of bounded (pointwise)
variation provided

(2.1) varu := sup

k\sum 
i=1

| u(xi) - u(xi - 1)| < \infty ,

where the sup is over all k \in N and all finite selections of points x0 < x1 < \cdot \cdot \cdot < xk

in I. We denote the set of such functions by BV(I) (writing BV[a, b] for BV([a, b])).

In what follows a and b always denote finite numbers with a < b. Also, through-
out, \| \cdot \| denotes sup-norm on [a, b]:

\| u\| := sup
a\leq x\leq b

| u(x)| .

Definition 2.3. For any function u : [a, b] \rightarrow R and any \varepsilon > 0, its \varepsilon -variation
on [a, b] is given by

(2.2) \varepsilon -varu := inf\{ var v : v \in \scrV (u; \varepsilon )\} ,

where

(2.3) \scrV (u; \varepsilon ) := \{ v \in BV[a, b] : \| v  - u\| \leq \varepsilon \} .

If need be, we use the notations \varepsilon -varba u and \scrV (u; \varepsilon ; a, b) to emphasize the dependence
on the interval [a, b].

We note that if u \in BV[a, b], then

(2.4) \varepsilon -varba u \leq varba u,

and that the inequality is typically strict. E.g., for the one-step function

u(x) =

\Biggl\{ 
uL x < 0,

uR x \geq 0,
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REGULATED DATA 3117

we have
\varepsilon -varu = max(| uL  - uR|  - 2\varepsilon , 0).

Definition 2.4. A set \scrA \subset \scrR [a, b] has uniformly bounded \varepsilon -variations provided
that for every \varepsilon > 0 there is a finite number K\varepsilon such that \varepsilon -varu \leq K\varepsilon for all u \in \scrA .

For u : [a, b] \rightarrow R we let J(u) denote the jump set of u, i.e.,

J(u) := \{ x \in [a, b] | at least one of u(x+) or u(x - ) differs from u(x)\} .

A function u : [a, b] \rightarrow R is a step function provided there is a finite, increasing
sequence of points x0 = a < x1 < \cdot \cdot \cdot < xN - 1 < xN = b such that u is constant
on each of the open intervals (xi, xi+1), i = 0, . . . , N . The following results about
regulated functions are known (see [5, 4]):

(R1) if u \in \scrR , then J(u) is a countable set;
(R2) a function u : [a, b] \rightarrow R is regulated if and only if \varepsilon -varba u < \infty for all \varepsilon > 0;
(R3) a function u : [a, b] \rightarrow R is regulated if and only if it is the uniform limit of a

sequence of step functions on [a, b].

Remark 2.5. It is immediate to verify that if u : [a, b] \rightarrow R is regulated and right-
continuous (i.e., u(x) = u(x+) for all x \in [a, b)), then the step functions in (R3) may
be chosen as right-continuous as well.

Fra\v nkov\'a's extension of Helly's selection principle takes the following form.

Theorem 2.6 (see [5, Theorem 3.8]). Assume that the sequence (vn) in \scrR [a, b]
has uniformly bounded \varepsilon -variations and (| vn(a)| ) is a bounded sequence. Then there
are a subsequence (vnk

) of (vn) and a function v0 \in \scrR [a, b] such that vnk
(x) \rightarrow v0(x)

for every x \in [a, b].

We shall also make use of the following result from [5].

Proposition 2.7 (see [5, Proposition 3.6]). Assume that the sequence (vn) in
\scrR [a, b] has uniformly bounded \varepsilon -variations. If vn(x) \rightarrow v(x) for each x \in [a, b], then
v(x) \in \scrR [a, b] and

\varepsilon -varba v \leq lim inf
n

\varepsilon -varba vn for every \varepsilon > 0.

The main result we establish is the following.

Theorem 2.8. Let f : R \rightarrow R be a locally Lipschitz continuous function, and
assume \=u \in \scrR has compact support contained in (a, b). Let L denote the Lipschitz
constant of f | range(\=u). Then there is a version u = u(t, x) of the Kru\v zkov solution

of the Cauchy problem (1.2)--(1.3) (i.e., an element in its L1
loc(R

+
t \times Rx)-equivalence

class) which satisfies

\varepsilon -varb+Lt
a - Lt u(t, \cdot ) \leq \varepsilon -varba \=u for all \epsilon > 0 and all t \geq 0.

We note that the version u(t, x) we construct in section 5 of the Kru\v zkov solution
is right-continuous at all times: u(t, x+) = u(t, x) for all x \in R, t \geq 0.

3. Preliminary results. Let u \in \scrR ; it follows from Definition 2.1 that the
function

(3.1) ur(x) := u(x+) \equiv lim
y\downarrow x

u(y)

is well defined for all x \in R. According to (R1), ur(x) = u(x) except for at most a
countable set of x-values.
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3118 HELGE KRISTIAN JENSSEN AND JOHANNA RIDDER

Lemma 3.1. Assume u \in \scrR , and define the function ur(x) as in (3.1). Then the
following hold.

(a) For any compact interval [a, b] where b is a point of continuity of u, and for
any \varepsilon > 0, we have \varepsilon -varba ur \leq \varepsilon -varba u. In particular, according to (R2),
ur \in \scrR [a, b].

(b) ur can be realized as the limit of right Steklov averages of u, i.e.,

ur(x) = lim
\delta \downarrow 0

u\delta (x),

where

u\delta (x) :=
1

\delta 

\int x+\delta 

x

u(\xi ) d\xi .

(c) ur is right-continuous at all points x \in R.
Proof. For (a) we first note that u is continuous at x = b by assumption, so that

ur(b) = u(b). Now, for \varepsilon > 0 fixed, we choose any v \in \scrV (u; \varepsilon ; a, b) and define the
function \~v : [a, b] \rightarrow R by

\~v(x) :=

\Biggl\{ 
v(x+) x \in [a, b),

v(b) x = b.

Then, for x \in [a, b) we have

| ur(x) - \~v(x)| = lim
y\downarrow x

| u(y) - v(y)| \leq \varepsilon ,

while for x = b we have

| ur(b) - \~v(b)| = | u(b) - v(b)| \leq \varepsilon .

Next, fix any partition a = x0 < \cdot \cdot \cdot < xN - 1 < xN = b and any \mu > 0. Consider any
other partition a < x\prime 

0 < \cdot \cdot \cdot < x\prime 
N - 1 < x\prime 

N := b. We have

N\sum 
i=1

| \~v(xi) - \~v(xi - 1)| \leq 
N\sum 
i=1

\bigl( 
| \~v(xi) - v(x\prime 

i)| + | v(x\prime 
i) - v(x\prime 

i - 1)| + | v(x\prime 
i - 1) - \~v(xi - 1)| 

\bigr) (3.2)

\leq varba v +
N - 1\sum 
i=1

| \~v(xi) - v(x\prime 
i)| +

N\sum 
i=1

| v(x\prime 
i - 1) - \~v(xi - 1)| ,(3.3)

where we have used that | \~v(xN ) - v(x\prime 
N )| = | \~v(b) - v(b)| = 0. Since \~v(x) = v(x+) on

[a, b), by choosing each x\prime 
i, i = 0, . . . , N  - 1, sufficiently close to and strictly larger

than each xi, we can arrange that

N - 1\sum 
i=1

| \~v(xi) - v(x\prime 
i)| +

N\sum 
i=1

| v(x\prime 
i - 1) - \~v(xi - 1)| < \mu .

As \mu > 0 is arbitrary it follows from (3.3) that

N\sum 
i=1

| \~v(xi) - \~v(xi - 1)| \leq varba v
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for any partition \{ xi\} Ni=0 of [a, b] (with x0 = a and xN = b), and thus var \~v \leq var v.
This shows that \~v \in BV[a, b] so that \~v \in \scrV (ur; \varepsilon ; a, b). Thus, for each v \in \scrV (u; \varepsilon ; a, b),
there is a \~v \in \scrV (ur; \varepsilon ; a, b) with var \~v \leq var v, showing that \varepsilon -varba ur \leq \varepsilon -varba u,
establishing part (a).

For (b), fix any point x \in R and any \delta > 0. Since u \in \scrR , there is an h > 0 with
the property that

(3.4) | u(\xi ) - ur(x)| < \delta whenever \xi \in (x, x+ h).

Thus,

| u\delta (x) - ur(x)| \leq 
1

\delta 

\int x+\delta 

x

| u(\xi ) - ur(x)| d\xi \leq \delta 

whenever 0 < \delta < h.
Finally, for (c), fix any x \in R and any \delta > 0. Then there is an h > 0 such that

(3.4) holds. We proceed to show that | ur(x + y)  - ur(x)| < 2\delta whenever 0 < y < h.
Fix any such y; as u \in \scrR , there is a k > 0 with the property that

(3.5) | ur(x+ y) - u(\eta )| < \delta whenever \eta \in (x+ y, x+ y + k).

Set \mu := min\{ h, y + k\} such that y < \mu \leq h. We then have (x + y, x + \mu ) \subset 
(x, x + h) \cap (x + y, x + y + k). Thus, using any \eta \in (x + y, x + \mu ), we have from
(3.4)--(3.5) that

| ur(x+ y) - ur(x)| \leq | ur(x+ y) - u(\eta )| + | u(\eta ) - ur(x)| < 2\delta 

whenever 0 < y < h, showing that ur is right-continuous at x.

In preparation for monitoring the \varepsilon -variation of piecewise constant approxima-
tions to scalar conservation laws, we consider \varepsilon -variation of step functions.

Lemma 3.2. Let u : [a, b] \rightarrow R be a right-continuous step function with suppu \subset 
(a, b). Then, for any \varepsilon > 0, we have that

(3.6) \varepsilon -varu = inf\{ var z | z \in \scrV s(u; \varepsilon )\} ,

where

\scrV s(u; \varepsilon ) \equiv \scrV s(u; \varepsilon ; a, b) :=\{ z : [a, b] \rightarrow R | z is a right-continuous step function,

J(z) \subset J(u), and \| z  - u\| \leq \varepsilon \} .(3.7)

Furthermore, the infimum in (3.6) is attained.

Proof. Since \scrV (u; \varepsilon ) \supset \scrV s(u; \varepsilon ), it is immediate that \leq holds in (3.6). To establish
the opposite inequality, we shall show that for each v \in \scrV (u; \varepsilon ) there is a z \in \scrV s(u; \varepsilon )
with var v \geq var z; equality in (3.6) then follows from definition (2.2) of \varepsilon -varu. For
this let x1 < \cdot \cdot \cdot < xN be the jump loci of u. (If u \equiv 0 the result is obvious.) Since u
is right-continuous with supp u \subset (a, b), we have x0 := a < x1, xN < xN+1 := b and
that u \equiv 0 on [xN , b]. Define the points

\xi i :=
1

2
(xi + xi+1) for i = 0, . . . , N.

Given v \in \scrV (u; \varepsilon ) we define z : [a, b] \rightarrow R to be the right-continuous step function
which takes the value v(\xi i) on [xi, xi+1) for each i = 0, . . . , N  - 1 and which takes the
value v(\xi N ) on [xN , b], i.e.,
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3120 HELGE KRISTIAN JENSSEN AND JOHANNA RIDDER

z(x) =
N - 1\sum 
i=0

zi1[xi,xi+1)(x) + zN1[xN ,b](x) , where zi = v(\xi i) for i = 0, . . . , N .

It follows that z \in \scrV s(u; \varepsilon ) and that var v \geq var z.
To show that the infimum in (3.6) is attained, let

u(x) =
N\sum 
i=0

ui1[xi,xi+1)(x), x \in [a, b],

and observe that the expression on the right-hand side of (3.6) agrees with the infimum
of the continuous function

RN+1 \ni z = (z0, . . . , zN ) \mapsto \rightarrow 
N - 1\sum 
i=0

| zi+1  - zi| 

when restricted to the compact set

N\prod 
i=0

[ui  - \varepsilon , ui + \varepsilon ].

By continuity and compactness this infimum is attained.

Remark 3.3. Assume u and \~u are two right-continuous step functions that take
the same values in the same order but possibly on different intervals, i.e.,

u(x) =
N\sum 
i=0

ui1[xi,xi+1)(x) and \~u(x) =
N\sum 
i=0

ui1[\~xi,\~xi+1)(x) , x \in [a, b] ,

with a = x0 < x1 < \cdot \cdot \cdot < xN < xN+1 = b and a = \~x0 < \~x1 < \cdot \cdot \cdot < \~xN < \~xN+1 = b.
Then

\varepsilon -varu(x) = \varepsilon -var \~u(x) .

This follows from (3.6), as for any z \in \scrV s(u; \epsilon ), there is \~z \in \scrV s(\~u; \epsilon ) such that

var z =
N\sum 
i=1

| z(xi+) - z(xi - )| =
N\sum 
i=1

| \~z(\~xi+) - \~zi(\~xi - )| = var \~z .

The next result shows that in approximating a regulated function u with a step
function that takes values of u, the \varepsilon -variation will not increase.

Lemma 3.4. Let u \in \scrR [a, b] with suppu \subset (a, b), and fix any sequence x1 < \cdot \cdot \cdot <
xN in (a, b) with the property that suppu \subset (a, xN ). Let \scrS [u] : [a, b] \rightarrow R be the
right-continuous step function which coincides with u at the left endpoints of each
subinterval, i.e.,

(3.8) \scrS [u](x) :=

\Biggl\{ 
u(xi) x \in [xi - 1, xi), i = 1, . . . , N,

u(xN ) x \in [xN , b],

where x0 := a. (Note that u(xN ) = 0 according to the assumptions on u.) Then, for
any \epsilon > 0 we have

(3.9) \varepsilon -var\scrS [u] \leq \varepsilon -varu.
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Proof. Fix the sequence x1 < \cdot \cdot \cdot < xN and \varepsilon > 0. According to definition (2.2)
and Lemma 3.2, (3.9) amounts to

(3.10) inf\{ var z | z \in \scrV s(\scrS [u]; \varepsilon ; a, b)\} \leq inf\{ var v | v \in \scrV (u; \varepsilon ; a, b)\} .

To establish this inequality we fix any v \in \scrV (u; \varepsilon ; a, b) and proceed to generate a
z \in \scrV s(\scrS [u]; \varepsilon ; a, b) with var z \leq var v. For this, consider the function \scrS [v], defined
as in (3.8) with u replaced by v. It is immediate to verify that \scrS [v] \in \scrV s(\scrS [u]; \varepsilon ; a, b)
(since \scrS [v] and \scrS [u] are both constant on each subinterval, their values there are
the values of v and u, respectively, at the left endpoints of the subintervals, and
\| v - u\| \leq \varepsilon ) and that var\scrS [v] \leq var v (since \scrS [v] takes on values of v). It follows that

inf\{ var z | z \in \scrV s(\scrS [u]; \varepsilon ; a, b)\} \leq var\scrS [v] \leq var v.

As v \in \scrV (u; \varepsilon ; a, b) is arbitrary, (3.10) follows.
We conclude this section by showing that the \varepsilon -variation of a step function does

not increase when some of its values are omitted and that it remains the same if values
are added in a monotone manner. This is the key property which will be used below
to show that approximate solutions of (1.2)--(1.3) generated via front-tracking do not
increase in \varepsilon -variation as time increases.

Lemma 3.5. Assume u : [a, b] \rightarrow R is a right-continuous step function with
suppu \subset (a, b). Let x1 < \cdot \cdot \cdot < xN be the jump loci of u, and set x0 := a and
xN+1 := b such that

u(x) =

N\sum 
i=0

ui1[xi,xi+1)(x), x \in [a, b],(3.11)

for constants ui (in particular u0 = uN = 0). Consider any sequence of N + 1 points
\~x1 < \cdot \cdot \cdot < \~xj < \^x < \~xj+1 < \cdot \cdot \cdot < \~xN in (a, b) and any value \^u \in R. Then the
right-continuous, simple function \~u : [a, b] \rightarrow R defined by

\~u(x) :=

\left\{     
ui x \in [\~xi, \~xi+1), i = 0, . . . , j  - 1, j + 1, . . . , N,

uj x \in [\~xj , \^x),

\^u x \in [\^x, \~xj+1),

where \~x0 := a and \~xN+1 := b, has the following properties: for any \varepsilon > 0,
1. \varepsilon -varu \leq \varepsilon -var \~u;
2. if uj \leq \^u \leq uj+1 or uj+1 \leq \^u \leq uj, then \varepsilon -varu = \varepsilon -var \~u.

Proof. Applying Lemma 3.2 to \~u, we obtain a right-continuous, simple func-
tion \~z : [a, b] \rightarrow R with the same jump set as \~u and satisfying \| \~z  - \~u\| \leq \varepsilon and
var \~z = \varepsilon -var \~u. Let the N + 2 consecutive values (from left to right) taken by \~z be
z0, . . . , zj , \^z, zj+1, . . . , zN . We then define the right-continuous, simple function z to
have the same jump set as the given function u and taking the N + 1 consecutive
values z0, . . . , zj , zj+1, . . . , zN . Then \| z  - u\| \leq \varepsilon such that

\varepsilon -varu \equiv inf\{ var v : v \in BV[a, b] : \| v  - u\| \leq \varepsilon \} 

\leq var z =

j\sum 
i=1

| zi  - zi - 1| + | zj+1  - zj | +
N\sum 

i=j+2

| zi  - zi - 1| 
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\leq 
j\sum 

i=1

| zi  - zi - 1| + | \^z  - zj | + | zj+1  - \^z| +
N\sum 

i=j+2

| zi  - zi - 1| 

= var \~z = \varepsilon -var \~u,

establishing part (1).
For part (2), assume for concreteness that uj+1 \leq \^u \leq uj . (The proof is entirely

similar when uj \leq \^u \leq uj+1.) Applying Lemma 3.2 to u, we obtain a right-continuous,
simple function z : [a, b] \rightarrow R with the same jump set as u and satisfying \| z  - u\| \leq \varepsilon 
and var z = \varepsilon -varu. Let the N + 1 consecutive values (from left to right) taken by z
be z0, . . . , zN .

Claim: we can choose a value \^z such that
(i) \^z is located between zj and zj+1 (possibly being equal to one of these), and
(ii) | \^z  - \^u| \leq \varepsilon .

Assuming for now that this claim is valid, we define the right-continuous, simple
function \~z as follows:

\~z(x) :=

\left\{     
zi x \in [\~xi, \~xi+1), i = 0, . . . , j  - 1, j + 1, . . . , N,

zj x \in [\~xj , \^x),

\^z x \in [\^x, \~xj+1).

In particular, \~z has the same jump set as \~u. As \| z  - u\| \leq \varepsilon , and by part (ii) of the
claim above, we have \| \~z  - \~u\| \leq \varepsilon . Also, according to part (i) of the claim we get

\varepsilon -var \~u = inf\{ var v : v \in BV[a, b], \| v  - \~u\| \leq \varepsilon \} 

\leq var \~z =

j - 1\sum 
i=0

| zi+1  - vi| + | \^z  - zj | + | zj+1  - \^z| +
N - 1\sum 
i=j+1

| zi+1  - vi| 

=

j - 1\sum 
i=0

| zi+1  - vi| + | zj+1  - zj | +
N - 1\sum 
i=j+1

| zi+1  - vi| = var z = \varepsilon -varu.

Together with part (1) of the lemma, we obtain part (2), modulo the claim above. For
this we observe that if \^u lies between zj and zj+1, then \^z := \^u obviously satisfies both
parts of the claim. For the case that \^u does not lie between zj and zj+1 we consider
separately the cases zj \gtrless zj+1, in each case considering the two possible locations of
\^u. This gives the following four subcases:

\bullet if \^u \geq zj \geq zj+1, we set \^z := zj ;
\bullet if zj \geq zj+1 \geq \^u, we set \^z := zj+1;
\bullet if \^u \geq zj+1 \geq zj , we set \^z := zj+1;
\bullet if zj+1 \geq zj \geq \^u, we set \^z := zj .

I.e., in each case we choose \^z to the one of zj and zj+1 closer to \^u. It is straightforward
to verify that this choice of \^z satisfies both parts of the claim.

4. \bfitvarepsilon -variation of BV-solutions. For completeness and later reference we pro-
vide a brief description of front-tracking as it applies to the scalar conservation law
(1.2) with a locally Lipschitz continuous flux f(u) and BV initial data \=u. (See [1, 3, 6]
for full details.)

Let (\=un) be a sequence of step functions that converge uniformly to \=u. For each
n let fn(u) be the continuous and piecewise affine function with break points at the
elements of the set
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\scrB n :=
1

n
Z \cup range(\=un),

at which points fn(u) coincides with f(u). An analysis shows that the unique Kru\v zkov
solution un(t, x) to the ``approximate"" Cauchy problem

\partial tu(t, x) + \partial x[fn(u(t, x))] = 0 for t > 0 and x \in R,(4.1)

u(0, x) = \=un(x),(4.2)

can be obtained in the following manner. At time t = 0 the Riemann problems at
the jumps locations \{ \=xi\} Nn

i=1 of \=un are resolved. The result is a fan of straight lines
(fronts) emanating from each jump location and separating constant values of un,
each of which belongs to the set \scrB n. The speed of any front in un is bounded by the
Lipschitz constant of f | range(\=u). In any Riemann problem these outgoing states form a
monotone sequence of u-values with the values of the Riemann data as extreme values.
The fronts are propagated until two or more of them meet (interact), at which point a
new Riemann problem is defined. This is then resolved into a new fan of propagating
fronts that separate constant u-values, again forming a finite monotone sequence from
the set \scrB n.

Assume an interaction occurs at time \=t. It will be convenient to consider the
resolution of the interaction as a two-step process where, first, all states between the
two extreme incoming fronts are removed (giving the solution precisely at time \=t),
followed by the resolution of the Riemann problem defined by the extreme incoming
states, u\pm , say.

The works [1, 3, 6] show that this algorithm is well defined: each solution un(t, x)
contains only finitely many interactions and fronts, globally in time. This is a conse-
quence of the fact that the spatial variation var un(t, \cdot ) is nonincreasing in time. More
precisely, an analysis shows that the variation remains constant across any interaction
where the incoming states form a monotone sequence, while the variation decreases
strictly in all other interactions.

Finally, an application of Helly's selection principle, together with uniform Lip-
schitz continuity of the solution maps R+ \ni t \mapsto \rightarrow un(t) \in L1

loc(Rx), show that the
solutions un tend to a limit function u(t, x) in L1

loc(R+ \times R) as n \rightarrow \infty . (As men-
tioned in the introduction, the argument that the limit u is jointly measurable in
(t, x) requires some care.) Due to locally uniform convergence of fn to f and strong
L1-convergence of the un to u, it follows that u is the unique Kru\v zkov solution of
(1.2). More precisely, if the Kru\v zkov solution is viewed as an L1-equivalence class
of almost everywhere defined functions, the function u generated by front-tracking is
one version (representative) of the Kru\v zkov solution.

Remark 4.1. To fix a unique version u(t, x) of the Kru\v zkov solution constructed
via front-tracking, we impose right-continuity of u(t, \cdot ) at each fixed time t. Pass-
ing from u(t, x) to u(t, x+) does not increase the variation or the \varepsilon -variation of the
solutions we consider (cf. part (a) of Lemma 3.1).

Our goal in the present work is to extend this approach to the case of regulated
data \=u \in \scrR . As noted in the introduction, the key property allowing such an extension
is the fact that not only the variation but also the \varepsilon -variation of a front-tracking
approximation is nonincreasing in time. This is a consequence of Lemma 3.5. We
start by considering the situation at the initial time.

Lemma 4.2. Let f : R \rightarrow R be a continuous, piecewise affine function. Consider
any right-continuous step function \=u(x) with compact support contained in (a, b) and
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3124 HELGE KRISTIAN JENSSEN AND JOHANNA RIDDER

with values among the break points of f . Let L be the Lipschitz constant of f | range(\=u),
and assume t\ast > 0 is the first time of interaction between fronts in the front-tracking
solution u(t, x) of (1.2)--(1.3). Then

\varepsilon -varb+Lt
a - Lt u(t, \cdot ) = \varepsilon -varba \=u for all t \in [0, t\ast ).

Proof. Fix any t \in [0, t\ast ). As outlined above, the function u(t, \cdot ) consists of a
finite number of wave fans emanating from the points where \=u jumps. Due to finite
speed of propagation, supp(u(t, \cdot )) \subset (a  - Lt, b + Lt). Each wave fan consists of a
monotone sequence of u-values separated by fronts. We can now let the initial data
\=u(x) play the role of the step function u(x) in Lemma 3.5 and then repeatedly apply
part 2 of that lemma. For each fixed wave fan connecting the states ui to ui+1 (see
(3.11)), say, we successively insert the values of the Riemann solution (which play
the role of \^u in the statement of Lemma 3.5). Since these values form a monotone
sequence with ui and ui+1 as extreme members, part 2 of Lemma 3.5 implies that the
\varepsilon -variation is unchanged in each step, and the conclusion follows.

Next we consider the behavior of the \varepsilon -variation at later times. First, from Re-
mark 3.3 it is clear that the \varepsilon -variation of a front-tracking solution does not change
during the open time intervals between interactions. Next, recall that the resolution
of an interaction in the front-tracking solution amounts to the removal of at least
one value present in the solution before the interaction, followed by the insertion of a
monotone sequence of values whose extreme values were present before the interaction.
We can therefore apply Lemma 3.5 and deduce that the \varepsilon -variation is nonincreasing
along any front-tracking solution. More precisely, we have the following.

Lemma 4.3. Let f : R \rightarrow R be a continuous, piecewise affine function. Consider
any right-continuous step function \=u(x) with compact support in (a, b) and values
among the break points of f . Let L denote the Lipschitz constant of f | range(\=u). Then
the front-tracking solution u(t, x) of (1.2)--(1.3) satisfies

(4.3) \varepsilon -varb+Lt
a - Lt u(t, \cdot ) \leq \varepsilon -varba \=u

for all t \geq 0 and all \varepsilon > 0.

Proof. Let \=t > 0 be any time at which two or more fronts meet in the solution
u(t, x). Without loss of generality we can assume that no other interactions occur at
different locations at time \=t. (There can be at most finitely many of them, and we
may treat each of them in turn in the same manner as explained in the following.)
Let u0, . . . , um denote the values taken by u(t, \cdot ) at times t just prior to \=t, i.e.,

u(t, x) =
m\sum 
i=0

ui1[xi(t),xi+1(t))(x) for t \in (\=t - \delta , \=t),

where \delta > 0 is so small that no other interaction occurs during [\=t  - \delta , \=t + \delta ] and
x0(t) < x1(t) < \cdot \cdot \cdot < xm(t) < xm+1(t) are affine functions on (\=t - \delta , \=t). Setting

\scrI = \{ i | xi(\=t) = xi+1(\=t)\} ,

we have that u(t, \cdot ) for t > \=t is the solution of the conservation law ut + f(u)x = 0
with initial data

u(\=t, x) =

m\sum 
i=0
i/\in \scrI 

ui1[xi(\=t),xi+1(\=t))(x)
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at time \=t, i.e., the states \{ ui\} i\in \scrI are removed in the interaction. We can now apply
Lemma 3.5 several times to compare the \varepsilon -variations of u(\=t - \delta , x) and u(\=t, x): letting
u(\=t  - \delta , x) play the role of \~u(x) in the lemma and then removing the values \{ ui\} i\in \scrI 
successively until we obtain u(\=t, x), part 1 of Lemma 3.5 yields

\varepsilon -varu(\=t, \cdot ) \leq \varepsilon -varu(\=t - \delta , \cdot ).

According to Lemma 4.2, applied with \=t as the initial time, we also have

\varepsilon -varu(\=t+ \delta , \cdot ) = \varepsilon -varu(\=t, \cdot ).

We conclude that \varepsilon -varu(\=t+\delta , \cdot ) \leq \varepsilon -varu(\=t - \delta , \cdot ). As the \varepsilon -variation does not change
between interactions, the conclusion follows.

Before considering regulated data it remains to establish, still in the setting of
BV data, that the \varepsilon -variation is nonincreasing also for general conservation laws (1.2)
with Lipschitz continuous flux function.

Proposition 4.4. Let f : R \rightarrow R be a locally Lipschitz continuous function,
and assume \=u \in BV (R) has compact support contained in (a, b). Let L denote the
Lipschitz constant of f | range(\=u). Then there is a right-continuous version u = u(t, x)
of the Kru\v zkov solution of the Cauchy problem (1.2)--(1.3) (i.e., an element in its
L1
loc(R

+
0,t \times Rx)-equivalence class) which satisfies

\varepsilon -varb+Lt
a - Lt u(t, \cdot ) \leq \varepsilon -varba \=u for all \epsilon > 0.

Proof. Step 1. Without loss of generality we may assume that \=u is right-
continuous. (If not, replace \=u by its right-continuous version \=ur defined in section
3; as \=u and \=ur agree almost everywhere, they generate the same Kru\v zkov solution.)
We start by constructing a sequence (\=un) of right-continuous step functions which
coincide with \=u at the left endpoints of each interval of constancy and that converge
uniformly to \=u as n \rightarrow \infty . To do this, first observe that as supp(\=u) is compact, prop-
erty (R3) in section 2 (applied to \=u| [a,b] \in \scrR [a, b]) yields a sequence of right-continuous
step functions (vk) that converge uniformly to \=u (cf. Remark 2.5). We then define
the sequence (\=un) as follows. For each n, let k(n) be such that

\| vk(n)  - \=u\| \leq 1

2n
.(4.4)

Let \{ xk,i\} Nk
i=1 denote the jump set of vk such that

vk(x) \equiv vk(xk,i) for x \in [xk,i, xk,i+1), i = 1, . . . , Nk  - 1,(4.5)

and vk(x) vanishes for x < xk,1 as well as for x \geq xk,Nk
. We then define

\=un(x) := \=u(xk(n),i) for x \in [xk(n),i, xk(n),i+1), i = 1, . . . , Nk(n)  - 1,

and \=un(x) := 0 everywhere else. As a consequence of (4.4) and (4.5), given any
x \in [a, b], x \in [xk(n),i, xk(n),i+1), say, we have

| \=un(x) - \=u(x)| = | \=u(xk(n),i) - \=u(x)| 
\leq | \=u(xk(n),i) - vk(n)(xk(n),i)| + | vk(n)(xk(n),i) - vk(n)(x)| 
+ | vk(n)(x) - \=u(x)| 

\leq 1

2n
+ 0 +

1

2n
=

1

n
.

As \=un(x) = \=u(x) = 0 for all x /\in [a, b], this shows that \=un converges uniformly to \=u.
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Step 2. Next we execute the front-tracking algorithm as outlined at the beginning
of the present section. Let fn denote the piecewise affine approximation of the flux f
that coincides with f at the points 1

nZ\cup range(\=un), and let un(t, x) denote the Kru\v zkov
solution of the conservation law ut + fn(u)x = 0 with initial data \=un. According to
Lemma 4.3 and Lemma 3.4 we have

(4.6) \varepsilon -varb+Lt
a - Lt un(t, \cdot ) \leq \varepsilon -varba \=un \leq \varepsilon -varba \=u.

As detailed in [1, 3, 6], Helly's selection principle and a diagonal argument give a
subsequence (unk

) and a function u(t, x) with the property that u(t, \cdot ) \in BV for all
t \in Q+ and such that

unk
(t, x) \rightarrow u(t, x) for all t \in Q+, x \in R.

Applying Proposition 2.7 together with (4.6) gives

(4.7) \varepsilon -varb+Lt
a - Lt u(t, \cdot ) \leq lim inf

k
\varepsilon -varb+Lt

a - Lt unk
(t, \cdot ) \leq \varepsilon -varba \=u for all t \in Q+.

Finally, one extends u to irrational times as follows. For a given t \in R+ r Q+, fix
a sequence (t\ell ) \subset Q+ with tl \rightarrow t, and apply Helly's selection principle to obtain a
subsequence (tlm) for which (u(tlm , x))m converges for all x \in R. We then define

u(t, x) := lim
m

u(tlm , x) for all x \in R.

Therefore, Proposition 3.6 in [5] together with (4.6) show that (4.7) holds also at
irrational times. According to the analysis in [1], it is known that u(t, x) is a version
the Kru\v zkov entropy solution of (1.2) with initial data (1.3). Finally, by passing to
the right-continuous version u(t, x+) and applying part (a) of Lemma 3.1, we obtain
the conclusion.

5. Proof of main result. We finally consider the original Cauchy problem,
repeated here for convenience:

\partial tu(t, x) + \partial x[f(u(t, x))] = 0, t > 0, x \in R,(5.1)

u(0, x) = \=u(x),(5.2)

where the initial data \=u are now any regulated function with compact support in
(a, b). As before let L denote the Lipschitz constant of f | range(\=u).

It is known that the Kru\v zkov solution of (5.1)--(5.2) is unique within the space
L1(R+

0 \times R; dt \otimes dx), whose elements are equivalence classes of functions agreeing
almost everywhere on R+

0 \times R; see Chapter 6 in [3]. To prove Theorem 2.8 we need to
establish the existence of a version u(t, x) of the Kru\v zkov solution of (5.1)--(5.2) with
the regularity property that

(5.3) \varepsilon -varb+Lt
a - Lt u(t, \cdot ) \leq \varepsilon -varba \=u for all t \geq 0 and all \varepsilon > 0.

Consider first any version \~u(t, x) of the unique Kru\v zkov solution of (5.1)--(5.2). The
map (t, x) \mapsto \rightarrow \~u(t, x) is then jointly measurable, and it is known that the solution
defines a continuous map into L1

loc(Rx) (see Theorem 6.2.2. in [3]):

(5.4) \~u \in C0(R+
0 ;L

1
loc(R)).
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On the other hand, merely as an element of L1(R+
0 \times R; dt \otimes dx) \cap C0(R+

0 ;L
1
loc(R)),

we do not have enough information to conclude that \~u(t, x) satisfies (5.3), or even
is a regulated function, at times t > 0. While it is possible that other constructive
approaches (e.g., vanishing viscosity) can be used, we shall base our argument on
front-tracking and approximation via BV solutions.

Without loss of generality we assume that \=u is right-continuous. As in Step 1 of
the proof of Proposition 4.4, we construct a sequence (\=un) of right-continuous step
functions which coincide with \=u at the left endpoints of each interval of constancy and
such that

(5.5) \=un \rightarrow \=u uniformly on [a, b].

Let un(t, x) denote the version of the Kru\v zkov solution of (5.1) with initial data \=un

given by Proposition 4.4. According to Proposition 4.4 and Lemma 3.4 we have

(5.6) \varepsilon -varb+Lt
a - Lt un(t, \cdot ) \leq \varepsilon -varba \=un \leq \varepsilon -varba \=u for all t \geq 0 and all \varepsilon > 0.

We also record the fact that the L1-contraction property (see section 6.2 of [3]),
together with (5.5), yield

(5.7) un(t, \cdot ) \rightarrow \~u(t, \cdot ) in L1
loc(R) at all times t \geq 0.

However, this is not sufficient to conclude that \~u(t, \cdot ), or a version of it, is regulated.
Instead we shall construct, via Fra\v nkov\'a's theorem (Theorem 2.6 above), an alterna-
tive version u(t, x) of the Kru\v zkov solution---a version for which we can monitor the
\varepsilon -variation. Note that the issue at this point is not existence of the Kru\v zkov solution.
Rather, the goal is to exploit its known properties and use Fra\v nkov\'a's extension of
Helly's selection principle to identify a ``good"" version of it.

So, with \=un and un(t, x) as above, consider the set of rational times s \in Q+
0 .

Applying Theorem 2.6, a standard diagonal argument, (5.6), and Proposition 2.7, we
obtain a subsequence (unk

) of (un) and a function

(5.8) v : Q+
0 \times R \rightarrow R

(at this stage only defined at rational times) with the following properties:
(A) unk

(s, x) \rightarrow v(s, x) for all s \in Q+
0 and all x \in R;

(B) v(s, \cdot ) is regulated for all s \in Q+
0 with

(5.9) \varepsilon -varb+Ls
a - Ls v(s, \cdot ) \leq \varepsilon -varba \=u for all s \in Q+

0 .

It follows from property (A) and (5.7) that

(5.10) v(s, \cdot ) = \~u(s, \cdot ) as L1(Rx)-functions at each time s \in Q+
0 .

We now want to extend v(s, x) to all of R+
0 \times R in such a manner that (5.9) and (5.10)

continue to hold for all t \geq 0. To this end, fix any t \in R+
0 r Q+

0 , choose a sequence
(sm) of rational times such that sm \rightarrow t, and consider the sequence (v(sm, \cdot )). Thanks
to property (B) above we can apply Theorem 2.6 and extract a subsequence (v(sml

, \cdot ))
(depending on t) with the property that (v(sml

, x)) converges for all x \in R; we define

(5.11) v(t, x) := lim
l
v(sml

, x).
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Together with (A) above this defines v(t, x) at all points in the upper half-plane.
According to (5.9) and Proposition 2.7, we then have

(5.12) \varepsilon -varb+Lt
a - Lt v(t, \cdot ) \leq \varepsilon -varba \=u for all t \in R+

0 and all \varepsilon > 0.

In particular, as a consequence of (R2) in section 2, it follows that

(5.13) v(t, \cdot ) is a regulated function at all times t \geq 0.

Furthermore, by exploiting the continuity property (5.4) of the Kru\v zkov solution,
together with (5.10) and the pointwise convergence in (5.11), we deduce that the
difference
(5.14)

\| \~u(t, \cdot ) - v(t, \cdot )\| 1 \leq \| \~u(t, \cdot ) - \~u(sml
, \cdot )\| 1+

��
���

���
���:

0 by (5.10)

\| \~u(sml
, \cdot ) - v(sml

, \cdot )\| 1+\| v(sml
, \cdot ) - v(t, \cdot )\| 1

can be made arbitrarily small by choosing l sufficiently large. It follows that

(5.15) v(t, \cdot ) = \~u(t, \cdot ) as L1(Rx)-functions for all times t \in R+
0 .

We finally define the function u(t, x) by setting

(5.16) u(t, x) := v(t, x+),

which is well defined according to (5.13) and part (a) of Lemma 3.1. We record that
(5.13) and property (R1) in section 2 imply that

(5.17) u(t, x) := v(t, x) for all but countably many values of x

at every time t \geq 0. This u is our candidate for the ``good"" version of the Kru\v zkov
solution. Indeed, (5.3) is an immediate consequence of (5.12) and part (a) of Lemma
3.1.

The only remaining issue is to verify that u(t, x) is a version of the Kru\v zkov
solution. I.e., we need to argue that u and \~u agree almost everywhere with respect
to the product measure dt \otimes dx on R+

0 \times R. This will follow from (5.15), (5.17),
and Fubini's theorem once we verify that u(t, x) is jointly measurable with respect to
(t, x). This is not immediate since u is defined separately at each time t; in particular,
it is not a consequence of the statement in (5.15). We follow [1] and exploit part (b)
of Lemma 3.1, according to which u can be realized as the limit of Steklov averages
of v(t, \cdot ):

(5.18) u(t, x) = lim
\delta \downarrow 0

v\delta (t, x),

where

v\delta (t, x) :=
1

\delta 

\int x+\delta 

x

v(t, \xi ) d\xi .

We proceed to show that each v\delta (t, x) jointly continuous in (t, x) for each fixed \delta .
First note that, thanks to (5.15),

(5.19) v\delta (t, x) =
1

\delta 

\int x+\delta 

x

\~u(t, \xi ) d\xi .
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We then consider continuity with respect to time of v\delta (t, x) for a fixed x. According
to (5.19) we have

(5.20) | v\delta (t, x) - v\delta (s, x)| \leq 1

\delta 

\int x+\delta 

x

| \~u(t, \xi ) - \~u(s, \xi )| d\xi \leq 1

\delta 
\| \~u(t) - \~u(s)\| 1.

By (5.4) the map t \mapsto \rightarrow \~u(t) \in L1
loc(R) is continuous, and it follows from (5.20) that

v\delta (t, x) is continuous with respect to t, uniformly with respect to x. Next, consider
continuity of v\delta (t, x) with respect to x for a fixed t: for any h \in (0, \delta ) we have

(5.21) | v\delta (t, x+ h) - v\delta (t, x)| \leq 1

\delta 

\Biggl\{ \int x+h

x

+

\int x+\delta +h

x+\delta 

\Biggr\} 
| \~u(t, \xi )| d\xi \leq 2

\delta 
\| \=u\| \infty | h| ,

where we have used that the Kru\v zkov solution is bounded in L\infty by its L\infty -norm at
time zero. The same estimate holds for h \in ( - \delta , 0). Thus, for a fixed \delta > 0, the
function v\delta is uniformly continuous, separately in time and space, on a neighborhood
of each point (t, x). It follows that v\delta is jointly continuous in (t, x). For completeness
we detail the argument for this. Fix any t \geq 0, x \in R, \delta > 0, and \epsilon > 0. Since
the Kru\v zkov solution \~u has compact support at all times and satisfies the continuity
property (5.4), there is a \mu > 0 such that

\| \~u(t) - \~u(s)\| L1(R) <
\epsilon \delta 

2
for any s with | t - s| < \mu ,

and therefore, by (5.20),\bigm| \bigm| v\delta (t, y) - v\delta (s, y)
\bigm| \bigm| < \epsilon 

2
for any s with | t - s| < \mu and any y \in R.(5.22)

Hence, for any s, y such that | t - s| + | x - y| \leq min(\mu , \epsilon \delta 
4\| \=u\| \infty 

), (5.21) and (5.22) give\bigm| \bigm| v\delta (t, x) - v\delta (s, y)
\bigm| \bigm| \leq \bigm| \bigm| v\delta (t, x) - v\delta (t, y)

\bigm| \bigm| + \bigm| \bigm| v\delta (t, y) - v\delta (s, y)
\bigm| \bigm| 

<
2

\delta 
\| \=u\| \infty \cdot \epsilon \delta 

4\| \=u\| \infty 
+

\epsilon 

2
= \epsilon .

This establishes joint continuity of v\delta (t, x). According to (5.18) the function (t, x) \mapsto \rightarrow 
u(t, x) in (5.16) is therefore the pointwise limit of continuous functions and hence
jointly (Borel) measurable.

Finally, thanks to the joint measurability of u(t, x) we can now apply Fubini's
theorem together with (5.17) and (5.15) and conclude that, for any T > 0,\int 

[0,T ]\times R
| u(t, x) - \~u(t, x)| dt\otimes dx =

\int 
[0,T ]

\int 
R
| u(t, x) - \~u(t, x)| dxdt

=

\int 
[0,T ]

\int 
R
| v(t, x) - \~u(t, x)| dxdt =

\int 
[0,T ]

0 dt = 0,

showing that u(t, x) = \~u(t, x) for almost all (t, x) \in R+
0 \times R. Therefore, viewed as

an element in L1(R+
0 \times R; dt\otimes dx), the function u coincides with the unique Kru\v zkov

solution of (5.1)--(5.2). This concludes the proof of Theorem 2.8.

Acknowledgment. The first author is indebted to Michael Benfield for pointing
out the reference [5].
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