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abstract

Incoming solar radiation is a key factor influencing solar architecture design. It determines the thermal

and optical regime of the building envelope and affects the solar heat and light transfer between the

indoors and outdoors. Computational analysis is an essential tool in solar architecture design. Usually, an

entire year’s weather data in a conventional weatherfile can be imported into such computational an-

alyses. Solar irradiance data used in a conventional solar architecture design analytics are broadband (the

total of UV, VIS, and NIR); however, these three components play different roles in building energy ef-

ficiency. So, analyzing individual solar components separately can be desirable. This research is to

develop estimation models of the VIS and NIR components that can be captured efficiently from readily

available datasets collected from the ground weather stations; such a model can then be conveniently

implemented into current solar architecture design and research. We explored and tested classification-

based modeling methods for decomposing hourly broadband global horizontal solar irradiance data in

conventional weatherfiles into hourly global horizontal solar VIS and NIR components. Furthermore, a

workflow of how to implement these models in solar architecture design and analysis has been devel-

oped and discussed herein.

©2020 Elsevier Ltd. All rights reserved.
1. Introduction

Solar architecture is an architectural approach that makes the

best possible use of locally available solar energy by employing

both passive and active measures [1]. Thefirst solar architecture in

America was proposed by Tod Neubauer in the 1950s [2]. Research

in thisfield has addressed the theoretical background, simulation

techniques, and experimental testing. Computational analysis in

solar architecture design has been described and discussed widely

in recent decades [3]. Usually an entire year’s weather data are

imported in a conventional format (e.g., TMY, WYEC2 BLAST) into

an energy simulation program to calculate the energy consumption

of a building. Solar irradiance data in a complete weatherfile also

include global horizontal irradiation (GHI), diffuse horizontal irra-

diation (DHI), and direct normal irradiation (DNI). Regardless of the

three solar irradiance types noted above, the solar irradiance data

are broadband and represent the total of ultraviolet (UV), visible

light (VIS), and near-infrared radiation (NIR), three components of
yxf5136@psu.edu(Y. Feng),
the solar spectrum.

With two known solar data variables, the other variable can be

calculated via the mathematical relations among them. However,

these three components play different roles in solar architecture

design. Of these three major components, VIS always provides

benefits to indoor building energy savings (e.g., electrical lighting),

while solar NIR is beneficial to building energy savings in winter but

undesirable in summer [4]. Similarly, the COVID-19 pandemic has

heightened interest in the solar UV component and its potential

impact on the spread and seasonality of disease. Therefore, in some

in-depth building environment performance analyses, especially

building energy simulation work, separate analyses focusing on

each solar radiation component are desirable. With recent discov-

eries and engineering solutions emerging related to nanomaterials

and nanostructures, independent band modulation of solar radia-

tion on building envelopes (including glazing systems) has become

increasingly viable as a potential means of improving building

energy savings and indoor visual comfort. However, the meteoro-

logical data in conventional weatherfiles do not normally include

the spectral power distribution data of incident solar light because

measuring the narrowband spectral distribution of sunlight is

much more difficult and expensive than measuring broadband
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radiation (e.g., using pyranometers). As a consequence, there is a

pressing need for reliable performance estimations of spectral solar

radiation control and response on a building scale. To assess this,

we need solar spectral irradiance source data, or at least band (i.e.,

VIS and NIR) solar irradiance data as input.

To address this research gap and the practical need for solar

architecture design, this work has developed an estimation model

for VIS and NIR components that can be captured efficiently from

readily available datasets without the addition of new measure-

ments and associated sensors; this can then be conveniently

implemented into current solar architecture design and research. In

particular, several research questions have been answered,

including how to yield a reliable model with readily available

weather data such as dew point temperature, relative humidity,

and broadband solar irradiance information; how thefirst princi-

ples of solar radiation and building physics domains should be

combined, and what new (readily available) parameters can be

incorporated to facilitate the modeling procedure; and how to

simplify the manipulation process for building energy modelers to

apply new models in energy simulations. In this research, we

explored and tested classification-based modeling methods for

decomposing hourly broadband global horizontal solar irradiance

data in conventional weatherfiles into hourly global horizontal

solar VIS and NIR components, yielding two accurate models of the

VIS and NIR fractions of the overall solar irradiance (or GHI).

Furthermore, a data conversion workflow of how to implement this

in solar architecture design and analysis processes was developed

and is described herein. The methodology established in this work

presents a new, efficient, and accurate method based on readily

available weather data documented in conventional weatherfiles,

enabling more comprehensive and precise building energy and

performance-related analyses, especially with respect to building

elements and products that have features of spectral selectivity. The

uniqueness of this model is that the model development in this

work is targeting the solar system application or passive solar

strategies in building engineering and energy efficiency, so the

solar spectral bands defined in this work are consistent with the

requirements in solar architecture design and analysis. Another

novelty is that we only used the most basic meteorological ele-

ments, such as humidity, temperature, etc., which are normally

documented in ground weather stations, combined with several

new parameters based on solar radiation physics. This could sup-

port an ease-of-manipulation for building simulation by using

conventional weatherfiles in the architecture, construction, and

engineering industry.

2. Related work

Different spectral irradiance models have been proposed since

the 1940s. Moon’s spectral radiation curve [5], Leckner’s model [6],

Brine and Iqbal’s model [7], and SOLAR2000 [8] are empirical

models based on an understanding of solar spectral irradiance

combined with historically measured weather and other solar

irradiance data. The BRITE and FLASH [9], LOWTRAN 7 [10],

MODTRAN 6 [11], SEA [12], and SOLMOD models [13] consider the

physical characteristics of the atmosphere and use references or

measured vertical profiles of gaseous and aerosol constituents;

they are typically rigorous and sophisticated codes. The National

Renewable Energy Laboratory (NREL) provides the Bird Simple

Spectral Model (SPCTRAL2) [14] and the SMARTS model [15] that

simplify the atmosphere’s vertical profile and facilitate solar tech-

nology integration. Reconstruction models usually model solar

spectral irradiance variability by a linear combination of indicators

of solar activity [16]. Although these spectral irradiance models are

available and effective for the estimation of detailed spectra, the
669
approaches and resultant models are not suitable for building en-

ergy efficiency analysis due to wavelength range limitations, the

need for additional measurement and data input, implementation

complexities, etc. [17].

A relatively simpler method of integrating solar spectra into

application areas is to develop models of major solar spectral

components such as solar UV, VIS, and NIR irradiance. Most pre-

vious studies on this topic have determined simple representative

fractions for VIS and NIR. Comparatively, NIR/GHI has been less

frequently investigated than VIS/GHI. The NIR/GHI fraction was

reportedly around 46.5% in Brazil and 51.8% on the Tibetan plateau

[18,19]. Some studies have argued that these fractions could vary

significantly in different weather and atmospheric situations. For

instance, Szeicz verified that ratio of the visible energy to the total

received by the photosynthetically active part of the spectrum 0.5 is

a better general approximation according to a theoretical model

and an experiment, his study indicated the VIS/GHI fraction is

closely associated with two factors: the presence of clouds and

scattering caused by aerosol [20]. The NIR/GHI fraction is closely

related to the total amount of column water vapor [21]. Few studies

have attempted to developed regression models of these fractions.

The most representative work was done by Escobedo et al., who

established monthly and hourly fraction models for the UV, VIS, and

NIR solar components in Brazil [21]. In that work, they have found

that the clearness index (ratio of the global-to-extraterrestrial solar

radiation) of sky conditions can be a determinant factor to develop

the simple linear regression models for the hourly and daily fac-

tions of UV and GHI [21]. Comparatively, the linear regression

models derived to estimate the NIR and VIS components may be

obtained without sky condition conditions. However, it is worth

mentioning that the developed linear regression models in that

work were based on the specific variations or features of the sky

condition in the selected site, which was with a maximum variation

of 8%. In other words, the models may not be effective for other

situations with larger sky variations. Another characteristic

research done by Charuchittipan et al. was to estimate the diffuse

NIR radiation from satellite- and ground-based data including

atmospherical reflectivity, precipitable water, relative humidity,

and air temperature. This semi-empirical model is in reasonable

agreement with independent diffuse NIR data, giving an RMSD and

MBD of 16.7% and 1.5%, respectively [22]. The satellite data are

necessary for the estimation in this model, which seems suitable to

the mapping application purposes, presenting NIR data on satellite

images. However, such satellite data are not typically available or

utilized in the domain of solar buildings. Similar regression

modeling works using ground and/or satellite measurements were

also conducted by other researchers [23e30], but most of these

works focus on the VIS part of solar radiation and the agriculture

applications.

In summary, in these prior studies, we understand that various

atmospheric variables including clearness index, water vapor

pressure, ozone column, aerosol optical depth, air relative humid-

ity, etc. may significantly affect these spectral components; how-

ever, they are not always available in typical weatherfiles complied

from the measurements in ground weather stations. Meanwhile, it

is consistent among the above works that the sky clearness index

plays a very significant role in classifying the UV, VIS, and NIR solar

components, providing a valuable foundation for our work. As

mentioned above, the objectives of this work are different from

these previous studies in two key aspects. First, the model devel-

opment in this work is targeting the solar system application or

passive solar strategies in building engineering and energy effi-

ciency, so that the spectral band coverages are not exactly the same

with the ones in the previous works focusing on agriculture,

forestry, oceanography, or general atmospherical studies. Second,
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this work aims to achieve an ease-of-manipulation for building

simulation purposes by using basic meteorological elements

collected in typical ground weather stations and used in conven-

tional weatherfiles in the architecture, construction, and engi-

neering industry. Such concerns have to date not been addressed.

3. Methodology

Fig. 1shows the research framework and workflow of this study.

It illustrates that wefirst built a precise estimation modeling of VIS

and NIR components from hourly global solar radiation and hourly

meteorological parameters. This procedure consisted offive major

steps from data collection to processing, cleaning, classification,

regression trees (CART) technique application for modeling, and

model validation. After validation of the developed solar spectral

models, we proposed and designed a workflow to introduce how to

incorporate the models into solar architecture design and analysis.

Next, we will provide the details of each step shown in this

diagram.

3.1. Data collection

Two major datasets, hourly meteorological measurements

(HMM) and outdoor solar spectra data (WISER), in the location

(Latitude: 39.742 North, Longitude: 105.18 West, Elevation:

1828.8 m AMSL) were selected from the SRRL BMS database of the

NREL Solar Radiation Research Laboratory for the modeling done in

this study [31]. The HMM dataset was used to retrieve and process

the independent variables, including GHI, DNI, DHI, cloud coverage,

dry-bulb temperature, dewpoint, relative humidity, and wind

speed, while the key dependent variables (i.e., solar VIS and NIR

irradiance) were calculated from the WISER dataset [31].

The HMM dataset for 2018 and 2019 was used in this project. It

describes the basic solar radiation and meteorological elements

with hourly timestamps, which has identical variable types and

formats with the TMY weatherfile. Building upon this TMY format-

compliant dataset enables us to perform the conversion from the

hourly broadband solar irradiance to spectral components based on

typical weatherfiles in the future. Note that the average value of all

measured points each hour is defined as the value for the time-

stamp at the end of the 1-h interval [32]. For example, the value at
Fig. 1.Research framew
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timestamp 08:00 in the HMM dataset equals the average value of

all measurements taken from 07:00 to 08:00. This dataset is well-

organized and has been used widely to simulate the solar radia-

tion and building energy performance in the architecture, engi-

neering, and construction industries.

The WISER measurement database is formed from two spec-

troradiometers (i.e., MS-711 and MS-712) that are combined to

measure global horizontal spectral solar irradiance data [31]. MS-

711 covers the measurement range from 300 nm to 1100 nm, and

MS-712 focuses on the NIR range from 900 nm to 1700 nm [31]. We

selected data from the same period: 2018 and 2019. The WISER

database has a higher resolution measurement for both wave-

lengths (0.41 nm and 1.6 nm resolutions for the MS-711 and MS-

712, respectively) and time intervals (typically 5 min, but occa-

sionally 1 min). To coordinate these two solar datasets from

different sources, the 5-min interval data were processed using R

software. The hourly spectrum data were calculated by averaging

the 5-min interval data for each hour, following the criterion of

timestamp calculation regulated in the HMM dataset. The day-of-

year time format was also modified tofit the time format of UTC

(Coordinated Universal Time), as it was the same format used in the

HMM.
3.2. Data processing

First, to obtain the solar VIS and NIR components, we summed

the spectral data for the corresponding wavelength ranges of

380 nme780 nm and 781 nm to 1700 nm for VIS and NIR,

respectively, based on the International Standards Organization’s

spectral band definitions [33] and the spectroradiometer mea-

surement ranges in this work. We obtained the fractions ofVIS=GHI

andNIR=GHIby using the VIS and NIR values calculated from the

WISER dataset and GHI values calculated from the HMM dataset.

Second, to potentially enhance modeling accuracy, we gener-

ated several additional predictor variables. The primary principles

applied when adding these predictors were obtained from the

knowledge and theory of solar radiation and building physics, with

a focus on calculations that did not require new sensors and mea-

surements and demanded a minimum amount of computation.

1) Extraterrestrial solar radiationI0
ork and workflow.
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The hourly average extraterrestrial solar radiation on the hori-

zontal surfaceI0is determined using the following Equation [34].

I0¼IscðRav=RÞ
2 (1)

whereIscis a solar constant (1367 W/m
2),Ravis the mean Sun-Earth

distance, andRis the actual Sun-Earth distance depending on the

day of the year. An approximate equation for the effect of the Sun-

Earth distance is:

ðRav=RÞ
2¼1:00011þ0:034221 cosðbÞþ0:001280 sinðbÞ

þ0:000719 cosð2bÞþ0:000077sinð2bÞ

whereb¼2pn=365 radians andnis the day of the year.

2) Solar zenith anglez

The solar zenith anglezis the angle between the solar and the
vertical. We used AstroCalc4R, developed by Jacobson et al. in R

statistical software, to calculate the solar zenith angles based on

latitude, longitude, time of day, and date [35].

3) Clearness indexKt

The clearness indexKtis the ratio of the horizontal global irra-

diance to the corresponding irradiance available outside the at-

mosphere. It may be considered an attenuation factor of the

atmosphere and can be calculated by the following Equation [36].

Kt¼
GHI

I0cosðzÞ
(2)

whereGHIis the horizontal global irradiance,I0is extraterrestrial

solar radiation on the horizontal surface, andzis the solar zenith
angle.

4) Cloud transmittanceTcld

We formed a new parametric cloud transmittance Tcldbased on

our understanding of the physical behavior of solar irradiance

transmission.Tcld,defined as:

Tcld¼
1 0:1Topq 1 0:1Ttotþ0:1Topq

1 0:05Ttot

¼
1 0:1Topqð1 0:1TtrnÞ

1 0:05Ttot
(3)

whereTopqis the opaque sky cover transmittance,Ttotis the total

sky cover transmittance, andTtrnis the translucent sky cover

transmittanceTtrn¼Ttot Topq.

5) Air massAM

The relative air massAMwas given by Kasten as [14].

AM¼
1

cosðzÞþ0:15ð93:885 zÞ1:253
(4)
3.3. Data cleaning

After building up the datasets, including the original date,

calculated data, and additional data described above, the quality of

the raw data was enhanced by a data cleaning process thatfiltered
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it for any uncertainties or errors [37]. The following requirements

were taken into account for quality control of the datasets:

1) If there were missing data regarding global horizontal solar ra-

diation, diffuse horizontal solar radiation, pressure, relative

humidity, or dew and/or dry bulb temperatures, such data for

that hour were omitted.

2) If the ratios ofNIR=GHIorVIS=GHIwere greater than 1, the

corresponding data entries were omitted.

3) The clearness indexKtwas calculated and if the solar zenithz
was greater than 85.5, the corresponding data were dis-

regarded [38].

4) If theGHIwas smaller than 50 W/m2, the corresponding data

were disregarded.

After the above data cleaning process, thefinalized dataset

included 7583 observations.
3.4. Classification method

Classification and regression trees (i.e., CART) are a simple but

powerful technique for modeling. Unlike the generalized linear

regression model (GLM) that typically pre-specifies and tests the

relationship between the response and predictor, CART does not

develop a prediction relationship. It constructs a set of decision

rules for the predictor variables [39]. The data are partitioned along

the predictor axes into subsets with homogeneous values for the

dependent variable. The best split is chosen for all of the predictors

by an exhaustive search procedure. An analysis of variance

(ANOVA) is conducted to select the splits, which maximizes the

homogeneity of the two resulting groups with respect to the

response variable. The output is a tree diagram with the branches

determined by the splitting rules and a series of terminal nodes

that contain the mean response. The procedure initially grows full

trees and then uses a cross-validation process to prune the over-

fitted tree to an optimal size [40]. CART modeling has several dis-

advantages compared to conventional regression modeling,

including it being very close to a simple linear relationship when

the size of the tree is small; also, the predictions are unstable due to

high variance single regression trees. That is, small changes in data

can produce substantially different trees [41]. However, CART

analysis also has clear advantages over classical statistical methods,

effectively uncovering structures in data with hierarchical or

nonadditive variables. CART also provides the possibility of in-

teractions and nonlinearities among variables and has been found

to be very interpretable. It also makes it easy to understand a var-

iable’s importance in making predictions, and is quick to use

because there are no complicated calculations [42]. Such methods

have been useful in solar radiation modeling applications, including

both prediction and estimation [43e45].
3.5. Tree selection

CART uses a technique known as binary recursive partitioning

and outputs four indicators: the complexity parametercp, relative

errorrel error, cross-validation errorxerror, and standard errorxstd.

Therel erroris the ratio of the sum of the squared differences of the

observed and predicted values and the original variance. The in-

dicatorrel erroris the observations, whilexerrorandxstdare errors

from cross-validation of the data [39,46]. The indicatorxerroris

related to the predictive residual sum of squares (PRESS) statistic. If

it is assumed that the dataset is partitioned intoiregions (Ri), the

actual response isyiand the predicted constant isci, so the residual

sum of square errorSSEof the subtrees can be expressed as:



Q. Duan, Y. Feng and J. Wang Renewable Energy 165 (2021) 668e677
SSE¼
X

i2Ri

ðyi ciÞ
2 (5)

Thexerrorindicator is theSSEfrom the cross-validation data.

Thecpindicator is illustrated below.

Employing these indicators, two methods are normally used to

assess and select the tree structure and avoid overfitting the data.

1) Minimal cost complexity method

In a simple ANOVA, the objective at each node is to minimize the

SSEor maximize the between-group sum-of-squares. However,

minimizing theSSEis not a good measure for selecting a subtree

because it always prefers a bigger tree. The complexity parameter

cp, tree sizeT, andSSEof the tree with no splits (SSEðT1ÞÞis then

used as a penalty term to measure the cost complexity of the tree;

the objective function for pruning the tree is shown in Equation(6).

Ifcp¼ 0, then the biggest tree will be chosen because the

complexity penalty term is essentially dropped. Ascpapproaches

infinity, the Size 1 tree will be selected.

minimizefSSEðTÞþcp,jTj,SSEðT1Þg (6)

The optimal size of the tree is the fewest branches that still

minimize all errors. Typically, we evaluate multiple models across a

spectrum ofcpand use cross-validation to identify the optimal size,

and thus the optimal subtree that best generalizes to the data. If the

cost of adding another variable to the decision tree of the current

node is above the threshold, then tree building does not continue

and the threshold of complexity parametercpis reported.

2) One-standard-error (1-SE) rule

An alternative rule for post-pruning the tree model is the one-

standard-error (1-SE) rule. The 1-SE rule is based on cross-

validation estimates of the error of the subtrees in the initially

grown tree, together with thexstdof these estimates. This uses the

first level where thexerrorfalls into the±1xstdrange of min

(xerror) that is calculated based on a definedcp(e.g., 0.01), which is

expressed as follows:

xerror minðxerrorÞþxstd

The level at which thexerroris at or below horizontal is dis-

played as a red dotted line in the cross-validation error plots. Then,

the simplest model (i.e., the smallest tree size) is chosen. This

method takes into account the variability ofxerrorresulting from

cross-validation because in most practices, the plot ofxerrorhas an

initially sharp drop, followed by a relativelyflat plateau and then a

slow rise. In other words, the minimum cross-validation error rate

is no guarantee that the cross-validation error is a random quantity.
4. Results and discussion

In this study, we used therpartpackage in R software to build

regression trees forVIS=GHIandNIR=GHI. We split the entire

datasetDinto a training dataset (90% ofD) and a test dataset (10% of

D). Therpartimplementationfirstfit a fully grown tree onto the

training dataset withNterminal nodes. Then, it pruned the fully

grown tree byk-fold cross-validation (defaultk¼10).
Fig. 2.Cross-validation error plot for theVIS=GHItree.

2) Regression tree with minimum cross-validation error
4.1. CART results for the VIS=GHI fraction

1) Cross-validation error plot
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Fig. 2shows the cross-validation error plot for theVIS=GHItree.

The vertical axis represents the relative cross-validation

SSE(xerror). From thisfigure, we can see that whencp¼0.014,

the Size 7 regression tree has the minimum cross-validation error.

This tree model is shown inFig. 3. The red dotted line inFig. 2refers

to where the cross-validation error is just smaller than the sum of

the minimum cross-validation relative estimates errorxerrorand

the cross-validation standard errorxstdat that tree (i.e., the 1-SE

rule).

The CART procedure generated a regression tree with a mini-

mum cross-validation error containing seven terminal nodes for

VIS=GHI(seeFig. 3). The fraction ofVIS=GHIranged from 0.287 to

0.609 in these seven groups, among which the fraction 0.547 rep-

resented the major (33.5%) training observations that belonged to

that node. Comparatively, the visible solar radiation occupies about

49% (or 0.49) extraterrestrial solar radiation. So, in other words, the

fraction,VIS=GHI,should tend to 0.49 when the sky condition is

clear. On the contrary, under the cloudy situation, water vapor in

the Earth’s atmosphere may significantly absorb the sunlight,

especially in the infrared region, which leads to a relatively higher

fraction of visible solar radiation. The tree result inFig. 3confirms

these physical explanations and shows that thefirst variable

selected for splitting was the clearness indexKt.IfKt<0.415, the

group was further split according toRHandDew:In the other major

branch of this regression tree, ifKt 0.415, the parameters ofRH

andDewwere also used to form the groups further. The fractions in

the lowKtregions were relatively larger than the ones in the

highKtregions. In the meanwhile, bothRHandDewwere found

significant to determine the terminal tree nodes in the two major

branches, which also complies with the fact that the content of

water in the air plays an essential role to affect the fractions of.

VIS=GHI:

The red dotted line inFig. 2represents the highest cross-

validation error minus the minimum cross-validation relative es-

timates errorxerror, plus the cross-validation standard errorxstdat

that tree (via the 1-SE rule). A reasonable choice ofcpfor pruning is

often the leftmost value, where the mean is less than the horizontal

line. As shown inFig. 4, in this case, the optimal size of the tree

contained only three terminal nodes forVIS=GHI. The percentage of

VIS=GHIranged from 26.3% to 40.2% in these three groups. Thefirst

variable selected for splitting was the clearness indexKt.IfKt<

0.415, no further split was observed for Group 1: 26.3% ofVIS=GHI

data, with a mean value of 0.567. IfKt 0.415, the group was

further split according toDew<-1.05C(Group 2: 40.2% ofVIS=GHI



Fig. 3.Regression tree model forVIS=GHI.

3) Regression tree with the 1-SE rule

Fig. 4.Pruned regression tree model forVIS=GHI.

Fig. 5.Cross-validation error plot for theNIR=GHItree.

2) Regression tree with minimum cross-validation error

(The red dotted line refers to the simplest tree, following the 1-SE rule). . (For interpre-

tation of the references to colour in thisfigure legend, the reader is referred to the Web

version of this article.)

Fig. 6.Regression tree model forNIR=GHI.

3) Regression tree with the 1-SE rule
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data, with a mean value of 0.526) orDew -1.05C(Group 3: 33.5%

ofVIS=GHIdata, with a mean value of 0.547). Similarly, the fraction

values’differences depending on the sky clearness levels can still be

found in this resultant tree. Furthermore, although both parame-

ters - dewpoint temperature and relative humidity are related to

the water content in the air, the result demonstrated that theDew

parameter seemed more determinant to estimateVIS=GHI.
4.2. CART results for the NIR=GHI fraction

1) Cross-validation error plot

Fig. 5shows the cross-validation error plot for theNIR=GHItree.

From thisfigure, we can see that whencp¼0.01, the Size 10

regression tree has the minimum cross-validation error. This tree

model is shown inFig. 6.

The CART procedure generated a tree containing 10 terminal

nodes forNIR=GHI(seeFig. 6). The fraction ofNIR=GHIranged from

0.358 to 0.743 in these ten groups, among which the fraction 0.414

represented the primary (33.5%) training observations that

belonged to that node. As discussed above, the sky clearness con-

ditions, or cloudiness situations, are important to affect the trans-

mitted solar radiation features in terms of the visible and infrared

components through the atmospherical layer. Therefore, we could

find a similar but reversal relationship in the regression tree for
673
NIR=GHI:The clearness indexKtwas still the most determinant

parameter selected by the CART procedure, while most higher

fractionsNIR=GHIexisted in the higherKtregions because less

near-infrared solar radiation was absorbed by the atmosphere in

such situations. However, compared to the regression treeVIS=GHI,

the regression tree forNIR=GHIseemed more complicated. On the

one hand, a more scattered percentage could be found in the ter-

minal nodes. On the other hand, more predictors were involved in

the pruned regression tree model. In addition toRHandDew, dry

bulb temperatureDry, diffused horizontal solar irradianceDHI, and

cloud transmittanceTcldthat was newly proposed in this work were

used to form the terminal groups.

The dashed red line inFig. 5shows the position of the 1-SE rule

with the minimumxerrorþxstd;Fig. 7shows that the pruned tree

using the 1-SE rule forNIR=GHIcontained three terminal nodes. The

percentage ofNIR=GHIranged from 26.3% to 40.2% in these three

groups. Thefirst variable selected for splitting was the clearness

indexKt.IfKt<0.415, no further split was observed for Group 1:

26.3% ofNIR=GHI, with a mean value of 0.389. IfKt 0.415, the

group was further split according toDew -1.05C(Group 2: 33.5%

ofNIR=GHI, with a mean value of 0.414) orDew<-1.05C(Group 3:

40.2% ofNIR=GHI, with a mean value of 0.438). In this model,Ktand

Deware important parameters used to estimateNIR=GHI, which is

consistent with the regression tree for the visible component.

4.3. Estimation performance evaluation

The resultant tree models inFigs. 3 and 4andFigs. 6 and 7are



Fig. 7.Pruned regression tree model forNIR=GHI.
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named Model 1, Model 2, Model 3, and Model 4, respectively. To

further understand each model’s estimation performance, we

calculated the root mean squared error (RMSE) and the mean ab-

solute error (MAE) of these four tree models on the test dataset

with 758 observations. Thebyjvariable was the prediction.

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

j¼1

 

yj byj

!2
v
u
u
u
t (7)

MAE¼
1

n

Xn

j¼1

yj byj (8)

FromTable 1, we can see that the RMSE decreased as the tree

size decreased, but the MAE increased as the tree size decreased.

Comparing Models 1 and 2, the RMSE decreased by 0.24% and the

MAE increased by 6.6%. Comparing Models 3 and 4, the RMSE

decreased by 0.77% and the MAE increased by 1.4%. Regarding the

changes in RMSE, since the errors were squared before they were

averaged, larger errors receive a relatively higher weight. This

means that the RMSE is more useful when significant errors are

particularly undesirable. However, the RMSE did not necessarily

increase with the variance of the errors. The RMSE increased with

the variance of the frequency distribution of error magnitudesFig. 8

indicates the agreement level between the predicted data from the

four models and actual value in the validation tests. Based on the

information shown inFig. 8andTable 1, we canfind the accuracy

level differences among the models were negligible in this work.

Both Models 1 and 2 had excellent prediction performances forVIS=

GHI, and Models 3 and 4 had outstanding prediction performances

forNIR=GHI. This offers the opportunity to simplify the computa-

tion process if the weather data are insufficient.
Table 1

Comparison of RMSE and MAE by model.

Regression Tree VIS/GHI NIR/GHI

Model 1 Model 2 Model 3 Model 4

Tree size 7 3 10 3

RMSE 0.0425 0.0424 0.0391 0.0388

MAE 0.0225 0.0241 0.0213 0.0216
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5. Workflow of model incorporation in solar architecture

design and analysis

The tree models developed were written via a programming

language to form an executablefile that could then be used to

modify the weather file (e.g., TMY); the result was two new

weatherfiles labeled Weather_VIS and Weather_NIR. Note that the

HMM data following the TMY weatherfile’s format was selected in

this study, but not necessarily to be the inputfile. As long as the

required input data are available in any typical weatherfiles, the

decomposition computation can be processed.Table 2summarizes

the required input variables for each model. In brief,KtandDeware

the two most important variables to determine both trees, and

adding the parameter,RH,may slightly increase the accuracy for the

models. Comparatively, to get the most accurate model forNIR/GHI,

some other parameters would be needed, such asDryandTcld.

If the weather data variables were complete, Models 1 and 3

were adopted for Weather_VIS and Weather_NIRfile generation,

respectively. If some variables were missing, the simpler models

(i.e., Models 2 and 4) were applied, as those variables are normally

available or computable in most standard weatherfiles. For

instance, the cloud coverage data may not be recorded in some

weatherfiles; then, Model 2, rather than Model 3, would be applied

to calculate the NIR. The inputfiles do not have to be serially

complete or comprised of an entire year of 8760 h. A yearlyfile of

daylight hours, monthlyfile of daylight hours, or just a few hours of

data can be used for the computation. In the twofiles generated,

the original GHI data were replaced with the solar VIS and NIR

components calculated in each, which were based on the resultant

classification tree models and input of the original weatherfile.

Solar architecture designers can now use existing solar isolation

calculation engines embedded in design platforms, such as the

Solar Analysis plugin for Revit and Solar Exposure plugin for

Sketchup to calculate the solar insolation on building forms. These

new separate VIS and NIR solar analysis results will provide more

comprehensive and accurate quantities for designers during the

early design stage, guiding window placement, window-to-wall

ratios, and essential solar heat utilization or blockage.Fig. 9pre-

sents a schematic diagram of this model and examples of applica-

tions. Window energy performance includes both optical and

thermal aspects. The optical aspect is correlated to VIS and de-

termines the indoor daylighting benefits and electrical lighting

energy savings, while the NIR plays an important role in the ther-

mal aspect, especially for transparent NIR reflecting, blocking, or

photovoltaic window products, determining the indoor heating

and cooling energy use or electric power generated [47]. As more

and more spectrally controllable independent building elements

emerge, such simulation ability will enable designers and engi-

neers to perform more accurate and comprehensive analyses at the

early design stage.

6. Conclusion

This work demonstrated the feasibility and excellent prediction

performance of regression tree models for hourlyVIS=GHIand

NIR=GHI. The two-year solar spectra and TMY format-compliant

hourly weather data obtained from the SRRL BMS database of the

NREL Solar Radiation Research Laboratory were utilized for model

development. The solar spectra data, ranging from 300 nm to

1700 nm, was used in this study. After the data cleaning process,

based on the typical removal of missing and outlier values and

erroneous data upon physics-based calculations, thefinalized

dataset included 7583 observations. To build a more generalizable

model for different locations, we intentionally incorporated ten

local meteorological parameters, such as humidity, temperature,



Fig. 8.Actual vs. predicted value box plot of the four models.

Table 2

Required input variables.

VIS/GHI NIR/GHI

Model 1 Model 2 Model 3 Model 4

Kt;Dew;RH Kt;Dew Kt;Dew;RH;Dry;DHI;Tcld Kt;Dew
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etc., into the modeling procedure. Based on the knowledge and

theory of solar radiation and building physics, we also developed

five new predictor parameters such as cloud transmittanceTcldthat

can be derived by cloudiness values in typical weatherfiles. In total,

15 predictor variables were used to build estimation models for

hourlyVIS=GHIandNIR=GHI. This research yielded models capable

of converting the broadband solar irradiance data in weatherfiles

into two separate solar components, VIS and NIR, for building en-

ergy and performance-related studies in which independent solar

spectra products are examined, such as analyses of spectrally se-

lective glazing, transparent photovoltaic panels, etc. Solar compo-

nents, especially NIR, are significantly affected by atmospheric

parameters, but those parameters are not very well documented

observationally and dependent on local geographic and climatic

features. In general, the clearness indexKtand dew point tem-

peratureDewwere the most important variables for clustering the

two fractions of VIS and NIR. Adding the new parameterTcldwas

relatively effective in enhancing the model accuracy when it comes

to the NIR solar component. Additionally, the validation tests

indicated the MAE (2.13%e2.41%) and RMSE (3.88%e4.25%),

demonstrating the reliable performance of the classification tree

models developed. To briefly illustrate the importance of this study,

we can take the measured solar radiation data in 2019 in Boulder,

Denver, as an example. We can get the annual solar

resource,1.65 MWh/m [2], on a horizontal surface based on the

measured broadband solar data. If we take the simple fractions 40%

and 51% to represent the visible and infrared components [48],

respectively, we could get 0.66 MWh/m2annual solar energy in the

visible region and 0.84 MWh/m2annual solar energy in the infrared

region. However, applying the models developed in this work to the

broadband solar data can yield two very different numbers:

0.89 MWh/m2and 0.69 MWh/m2for solar visible and infrared
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energy, respectively. Such differences inform us of the potential

biases or errors in analyzing building energy performance when it

comes to spectrally selective materials or devices if we lack the data

of solar spectral components in our analysis.

The major contribution of this work is to provide an easy-of-use

tool that can transform the conventional weatherfiles with

broadband solar data into the weatherfiles with solar spectral

components. Furthermore, this transformation procedure does not

require costly solar spectral measurements but rather the typical

and readily accessible meteorological data. Combined with

computational solar analytic approaches in the current design and

engineering platforms, the clustering of solar visible and infrared

irradiance can provide a foundation for solar architecture design

and analysis. However, a variety of solar modeling algorithms (e.g.,

Perez model, Liu-Jordan model) used for calculating the incident

solar radiation on tilted or vertical building surfaces in different

solar building design and analysis programs. These embedded al-

gorithms determine how to retrieve and process the solar radiation

data (i.e., GHI, DHI, DNI) and other related weather data (e.g.,

cloudiness, dry bulb temperature) for computing the incident solar

radiation. Therefore, the question of how to fully utilize the solar

spectral weather data generated by the models in this work in

various design- and simulation-based programs has not been

addressed in this work. We plan to select several representative

programs in our future work and then carry out an in-depth

investigation of their inner solar analytic algorithms, incorporate

the solar spectral models, andfinally validate the simulation results

compared with the actual solar spectral measurement data. Addi-

tionally, validation tests based on different locations and solar

spectra data will also be conducted in our future work to demon-

strate the generalizability of the present research.



Fig. 9.Schematic diagram of the use of the clustering models.
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