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Self-similar generalized Riemann problems for the 1-D isothermal Euler system

Helge Kristian Jenssen@® and Yushuang Luo

Abstract. We consider self-similar solutions to the 1-dimensional isothermal Euler system for compressible gas dynamics.
For each 8 € R, the system admits solutions of the form

p(t,z) =t7Q(E)  u(t,z) =U(E) ¢=2,

where p and u denote the density and velocity fields. The ODEs for €2 and U can be solved implicitly and yield the solution
to generalized Riemann problems with initial data

Rl|z|ﬁz<0 U <0
p(o’x):{R,-wB x>0 w0.2) =13y, 2 >0,

where R;, R > 0 and U;, U, are arbitrary constants. For 8 € (—1,0), the data are locally integrable but unbounded at
x = 0, while for 8 € (0,1), the data are locally bounded and continuous but with unbounded gradients at * = 0. Any
(finite) degree of smoothness of the data is possible by choosing 3 > 1 sufficiently large and U; = U,.. (The case 8 < —1 is
unphysical as the initial density is not locally integrable and is not treated in this work.) The case 8 = 0 corresponds to
standard Riemann problems whose solutions are combinations of backward and forward shocks and rarefaction waves. In
contrast, for 8 € (—1,00) ~\ {0}, we construct the self-similar solution and show that it always contains exactly two shock
waves. These are necessarily generated at time 04 and move apart along straight lines. We provide a physical interpretation
of the solution structure and describe the behavior of the solution in the emerging wedge between the shock waves.

Mathematics Subject Classification. 35165, 351.67, 76N10.
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1. Introduction and main result

Consider a system of hyperbolic conservation laws in one space dimension,
v+ F(v), =0 (1.1)

where v = v(t, x) takes values in an open set V C R™. A standard Riemann problem (SRP) refers to the
particular type of initial value problem where the initial data consist of two constant states separated by
a jump discontinuity, i.e.,

v x<0
U(O’x):{vim>0

where v, v, € V are constant vectors. The study of SRPs was initiated by Riemann in the foundational
work ‘On the propagation of planar air waves of finite amplitude’ (see [14]) where the SRP for isentropic
Euler flows was resolved. Later progress in fluid flow motivated a general study of such problems, cul-
minating in Lax’ resolution of SRPs for general systems (1.1) [9]. In 1965, Glimm [6] showed how SRPs
can be used as building blocks in a numerical scheme which provides existence of global-in-time weak
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solutions to (1.1) whenever the initial data v(0,z) have sufficiently small variation. For comprehensive
treatments, see [4,15].

A generalized Riemann problem (GRP) refers to an initial value problem for (1.1) where the data are
of the form

v(z) <0
v(0,z) = {vlr(x) x>0,

where v; and v, now denote given, smooth functions. In this work, we study a special class of GRPs for
the isothermal Euler system

pe+ (pu)e =0 (1.2)
(pu)i + (pu® + a®p), =0, (1.3)

where p and u are the density and velocity fields, respectively. The pressure field is p = a?p, where a > 0
is a constant.

The GRPs in question are obtained by insisting that the initial data should generate self-similar
solutions of the form

pltr) = 708 ultx) = U(E) £=2, (1.4)

for a similarity exponent (3 € R. We shall see that for this to be the case, the initial data must necessarily
be of the form

Rl|$|ﬁ xz <0 U(O 1’) _ {Ul z <0 (1.5)

p(o’x)_{Rrxﬁ z>0 U, x>0,

where R;, R, > 0 and U;, U, are constants. See Section 2.

We observe that when § < —1 the initial density in (1.5) is not locally integrable at = 0, and the
initial data are thus unphysical in this case. It is noteworthy that no self-similar solution appears to solve
(1.2)—(1.3) in this case. Throughout, we shall deal exclusively with (-values strictly larger than —1.

Another particular case is § = 0: (1.5) then prescribes an SRP whose solution consists of constant
states connected by one forward and one backward wave, each of which is either a centered rarefaction
wave or a shock wave (see [15]). There are thus four different solution structures in the standard case:
RR, RS, SR, and SS.

The main goal of the present work is to show that for all values of § € (—1,00) \ {0} the GRP for
(1.2)—(1.3) with data (1.5) necessarily generates exactly two shock waves propagating along straight lines
emanating from z = 0 at ¢t = 0. Thus, the solution structure is in a sense simpler than in the case of
SRPs (8 = 0); see Remark 3.1 for a discussion of the technical reason for the difference between the two
cases.

Our main result is the following.

Theorem 1.1. For 8 € (—1,00) {0} and for any choice of constants Ry, R, > 0 and U}, U, € R, the self-

similar GRP (1.5) for the I-dimensional isothermal Euler system (1.2)—(1.3) has a self-similar solution
(1.4) of the following form.:

0 (5) <& U-(§) <&
plte) =4 P00 (5) 6 <2 <& ulta)={ Uo() & <2 <E (16)
04 (5) § > & Ut (%) > &+

where the smooth functions Q4 o, Uy o, and the constants fi are determined from the initial data as
described in Sects. 4.1-4.2. The solution necessarily contains exactly two entropy admissible (compressive)

shocks: a 1-shock moving along © = £_t and a 2-shock moving along x = £,t. The shocks are present for
all times t > 0.



ZAMP Self-similar generalized Riemann problems Page 3 of 18 61

The proof of the theorem, while making up most of the present work, requires only elementary con-
siderations based on monotonicity properties of functions that are explicitly available. The argument
amounts to showing how the Rankine-Hugoniot conditions for the two shocks select a unique self-similar
solution in the central region between them.

We have found it useful to contrast the resolution of GRPs, as described in Theorem 1.1, with the
simpler construction of solutions to SRPs (see Sect. 1.1). Before doing so, we include some observations
about the result and how it relates to other works in the field.

First, the solutions described by Theorem 1.1 provide non-trivial examples of weak entropy admissible
solutions to the isothermal Euler system. Besides their intrinsic interest, they supply relevant test cases
for computational codes. Concerning the initial data, we note the following points:

(i) for 8 € (—1,0), the initial density is locally integrable but unbounded at z = 0;
(ii) for B € (0, 1), the initial density is locally bounded and continuous, but with unbounded gradients
as |z| | 0;
(iii) for B > 1, the initial density is locally bounded and belongs to C*(R);
(iv) for any integer k& > 1, by choosing 3 > k and U; = U,, we obtain C*(R) initial data.

According to (i) and (ii), it is unsurprising that the resulting solution necessarily contains two shock
waves when | 3] < 1. Indeed, for 8 € (—1,0) the initial density, and hence pressure, contains an unbounded
spike at the origin. It is to be expected that such a pressure field will always generate shocks in both
characteristic families, no matter what (constant) velocities the fluid has initially on either side of = = 0.
When g € (0, 1), the infinite pressure gradients on either side of = 0 lead to the same type of behavior:
immediate generation of shock waves.

On the other hand, it might appear somewhat surprising that the same solution structure necessarily
prevails for g > 1, independently of the initial velocities U, and U;. For example, it would appear
reasonable that a GRP with initial data (1.5) where, say, R, = R; and U, = —U,., with U, large positive,
would generate a smooth flow—at least for an initial time interval. However, Theorem 1.1 asserts that
this is not what happens, and instead the flow suffers immediate shock formation also in this case. In
fact, as highlighted by (iv) above, our result implies that no (finite) degree of smoothness of the data
prevents the presence of shocks at time ¢ = 0+.

Of course, this is less surprising once we take into account that whenever 8 > 0 the initial density
vanishes at the origin, i.e., there is a vacuum state present at ¢ = 0. The result in Theorem 1.1 demon-
strates that the pressure gradients that are present near the initial vacuum at x = 0, although small
for 0 large, are always sufficiently strong to cause immediate shock formation in the type of self-similar
solutions under consideration.

Remark 1.1. (Vacuum and shock formation) The Euler system degenerates at p = 0 and the presence of a
vacuum state is analytically challenging. The general problem of obtaining and accurately describing Euler
flows with vacuum has received much attention. There are general existence results available for both
isentropic (i.e., the pressure is proportional to p? with v > 1) and isothermal flows with initially bounded,
and possibly vanishing, density field ([5,11,12]). These results, established via vanishing viscosity and
compensated compactness, give abstract existence theorems. They do not provide detailed information
about the solution near a fluid-vacuum interface. For the latter, see [8].

Closer to the setting of the present work, we note that it is well known how SRPs for isentropic flow
yields a self-similar solution with shock and rarefaction waves (see Sect. 1.1). This includes cases with a
vacuum on one side as well as cases where the density is strictly positive initially but a vacuum opens
up at time ¢ = 0+; see [7,15]. In contrast, the latter scenario is not possible for the isothermal model
considered in this work: a solution with vacuum-free initial data (of locally bounded variation) remains
vacuum-free for all times, [13].

Finally, the issue of finite time singularity formation in 1-D Euler flows has recently received renewed
attention. Building on Lax’ classic analysis of gradient blowup, the formation of shocks in isentropic flow
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with (possibly large) C! data away from vacuum has been characterized, [1,10]. A key step in [1] is the
proof of a lower bound on the density; see also [2,3]. Theorem 1.1 highlights the possibility of immediate
shock formation (for isothermal flow) in the absence of either upper or lower bounds on the initial density.

1.1. Solving SRPs versus GRPs

The proof of Theorem 1.1 is detailed in Sects. 3-5 and requires only elementary arguments. However, it
is also somewhat involved and we want to indicate why this is so by contrasting it with the well-known
procedure for resolving SRPs.

First, recall the construction of the solution to the SRP ((R;, U;), (Ry, U,)) for (1.2)—(1.3). The solution
is a function of only { = % (i.e., # = 0in (1.4)), and it is assembled from two types of self-similar ‘building
blocks’: constant states and smooth rarefaction solutions. The latter are given by l-parameter families
(one for each characteristic field) of solutions of the ODE system (2.4)—(2.5) with 8 = 0; they are explicitly
given in (3.14). With these explicit building blocks available, the issue reduces to determining which waves
(either a shock or a centered rarefaction) will appear in each characteristic family. As is well known (see
[15]), this is conveniently done by first identifying the so-called wave curves in the (p, u)-plane through,
say, the left state (R, U;). These curves partition the (p, u)-plane into four regions, and the wave structure
(f{f{, RS, SR, or §§) of the solution is determined by identifying which region contains the right state
(R, U,.).

Turning to GRPs with initial data (1.5), the situation is different. For SRPs, the wave curves mentioned
above connect those pairs of constant states that can be joined by a single shock or rarefaction. For GRPs,
the ‘states’ to be connected are not constant states but instead dynamically changing solutions of the
form (1.4). This is the main reason why resolving GRPs is more involved than resolving SRPs. It requires
a detailed study of the similarity ODEs satisfied by the functions 24 o and UL ¢ appearing in Theorem
1.1.

A simplifying feature of the isothermal Euler system is that the ODE for U(£) decouples and can
be solved in isolation and yields an implicit relation between & and U; see (3.3)—(3.4). (This is essen-
tially a consequence of the fact that the density appears linearly in (1.2)—(1.3).) In turn, this gives the
corresponding Q(&)-values in terms of U(§); see (3.6)—(3.7).

From the initial data (1.5), we first need to identify the solution in the regions on the far right and
far left in the (x,t)-plane, i.e., for || > 1. (In contrast, for SRPs these parts of the solution are simply
the constant states given by the initial data.) These ‘extreme’ solutions, denoted (Q+,U+) in Theorem
1.1, are implicitly given in terms of the initial data via (4.2)-(4.4) and (4.7). Having determined the far
left and far right parts of the solution, it remains to connect them to the, as yet unknown, ‘intermediate’
solution (U, ) via admissible shocks. It is part of the problem to determine the locations of these
shocks.

We show below how the Rankine-Hugoniot relations for the two shocks yield four nonlinear equations
for four unknown constants C, K, and .. The first two specify the intermediate solution (Up, €g), while
&4 give the paths of the emerging shock waves. An argument based on monotonicity shows that the four
equations possess a unique solution. We have found it convenient to organize the analysis so that one first
identifies C' from an explicitly given equation (see (4.28)), which in turn yields K (Lemma 4.2). Finally,
&4+ are determined as the unique roots of two explicitly available equations (see (4.15)—(4.16) and Lemma
4.1).

1.2. Plan of the paper

The rest of the work is organized as follows. Section 2 reviews briefly the form of self-similar solutions to
the isothermal Euler model, describes their initial data, and derives the associated similarity ODEs. In
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Sect. 3, we record certain symmetry properties of these ODEs and derive their solutions (in implicit form).
We introduce two types of reference solutions, and record their properties, which differ for g € (—1,0)
and 3 € (0,00). Section 3 also includes a brief outline of how these solutions are used to resolve GRPs of
the form (1.5) for (1.2)—(1.3). The, somewhat lengthy, details for the case § € (—1,0) are given in Section
4. The argument for the case § € (0,00) is almost identical and is outlined in Sect. 5, concluding the
proof of Theorem 1.1. Finally, Sect. 6 provides some additional qualitative (and S-dependent) properties
of the solutions in the region between the two shock waves.

2. Self-similar solutions
2.1. Self-similar GRPs and similarity ODEs

Let (p,u) be a solution of (1.2)—(1.3) with initial data
p(0,2) = po(x) w(0,2) = uo(2).
For A € R, set
pa(t,z) == Mp(\Bt, \x) ux(t, z) == \Pu(A\Pt,\x).

A direct calculation shows that (py,uy) is again a solution of (1.2)—(1.3) provided C' = B and D = 0.
Self-similarity of the given solution requires further that (px,uy) = (p,u) for all A € Ry, i.e.,

Mp(ABt, ABr) = p(t, x) u(NPt, \Bx) = u(t, ) (2.1)
for all A € R4, and for all (¢,z) € R4 xR. Choosing A = ¢t~ and setting 8 := —% show that a self-similar
solution of the isothermal FEuler system must have the form

x
p(t,z) = 1°Q(€) u(t,z) = U(§), =7 (2.2)

On the other hand, evaluating (2.1) at time ¢ = 0 yields
Mpo(ABx) = po(z) and uo(A\Bx) = ug(z) for all A € Ry and all z € R.

Applying this with A\ = ||~ 5 shows that |z|®po(sgn(z)) = po(z) and ug(sgn(z)) = uo(z) for all z € R.
This shows that the initial data of a self-similar solution must have the form

Ri|z® 2 <0 U <0
p(o’”"):{RﬁxﬂL x>0 “(O’x):{Uim>0, (2:3)

where R;, R, > 0 and Uj, U, are arbitrary constants (cf. (1.5)). The similarity exponent 3 is free at this
stage.

In the following, we refer to GRPs with initial data of the form (2.3) as self-similar GRPs. It requires
further analysis to identify the corresponding solutions to (1.2)—(1.3). We do this in Sect. 3, and then use
the result to resolve any self-similar GRPs when 8 € (—1,00) \ {0} in Sects. 4 and 5.

Before doing so, we derive the ODEs that describe self-similar solutions, and also review the jump
relations and entropy conditions for discontinuous flows. First, using (2.2) in (1.2)—(1.3) shows that the
similarity variables Q) and U satisfy the ODEs

(U—§)%+U’+ﬂ:0 (2.4)

a2% +(U-8U' =0, (2.5)
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where ' = d%. A simplifying feature of the isothermal case is that U satisfies a single, decoupled ODE:

solving for U’ and % yields

o P
U= o (2.6)

Q (U-92-a?
We refer to these equations as the similarity ODEs. The latter system is equivalent to (2.4)—(2.5) provided
the determinant (U — £)? — a? does not vanish. We shall verify below that this is indeed the case for the
solutions we consider in this work. In fact, it is immediate to verify that U(£) = £ + a, together with
0(¢) = const.exp($§), provide solutions to (2.4)—(2.5) if and only if 3 = 0. This is the case of an SRP,
which is not part of the following analysis. See Remark 3.1 for a comparison of GRPs and SRPs.

2.2. Characteristics; jump relations; similarity shocks

In isothermal flow (1.2)—(1.3), the sound speed is constant equal to a, and the characteristic speeds are
AM=u—a Ao = u + a. (2.8)

If the solution suffers a jump discontinuity across the curve z = z(t), the Rankine-Hugoniot relations
take the form

i[p] = [pu] i[pu] = [p(v® +a?)]. (2.9)
Here and below, we use the convention that for any flow quantity g,
l[qd] ==a" —a™ =q(t,z(t)+) — a(t,z(t)-).
The Lax entropy condition for 1- and 2-shocks requires
A>3 >\ ie, u >i+a>ut, (2.10)
and
Ay > &>\, ie, wu >i-—a>u", (2.11)

respectively. A calculation shows that these conditions amount to compressivity of the shocks: a parcel
of fluid passing through a shock suffers an increase in density (see [15]).

Next consider a ‘similarity shock’ in 1-d isothermal flow: the shock is assumed to propagate along a
path of the form ¢ = &, i.e., z(t) = &t. It is assumed that the density and velocity on each side of the
shock are of the form (2.2), with 3 taking the same value on both sides. Letting (U, Q%) and (U~, Q")
denote the parts of the solution on the right and left of the shock, respectively, the Rankine-Hugoniot
relations (2.9) reduce to

(o] = [ov]  €ou] = [ow + )], 212)
where [ ]I now denotes jump across £ = £. The Lax entropy conditions (2.10)-(2.11) take the form
U (§)>&+a>UT() for a 1-shock (2.13)
U () >E—a>UT(E) for a 2-shock. (2.14)

Setting V* := & — UT, where UT = U*(¢), the Rankine-Hugoniot conditions take the form
[@v] =0 (2.15)
[Q(V? +a*)] =0. (2.16)
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It follows from these that

VIVT =d?, (2.17)
and that an equivalent form of the jump conditions is given by
2 - _ A2
Ut —f— " apa ot =9 (2.18)
U-—-¢ a?
Equivalently, solving for V'~ and Q~, we have
_ 2 U+ _ A2
U-—f=—" a0 =T =9 (2.19)
Ut —¢ a?

3. Integration of similarity ODEs

We proceed to solve the ODE system (2.6)—(2.7), and focus first on the decoupled ODE for U(&). We
start with two observations that effectively reduce the general case to one of two particular cases.

Lemma 3.1. Assume that U (&) is a solution of (2.6); then so are the functions & — C'+U(§ —C) for any
constant C, as well as the function & — —U(=£).

Proof. Direct calculation. O

This shows that a 45° translate in the (£, U)-plane of the graph of a solution to (2.6) yields the graph
of another solution; ditto for its reflection about the origin.

In the following, we restrict attention to S-values in the set (—1, 00)~\{0}; see Remark 3.1. To integrate
(2.6), we first interchange the roles of the dependent and independent variables and introduce the new
unknown V(U) := &(U) — U to obtain the ODE

1
= a2

= ay/1+ 3> 0. (3.2)

The two trivial solutions V(U) = +u of (3.1) yield two special, straight line solutions U(§) = £ &+ p of
(2.6). It turns out that the latter solutions are irrelevant for the resolution of the self-similar GRPs under
consideration in this work. Their only role is that of providing the asymptotic behavior of solutions that
are relevant for resolving self-similar GRPs. (See Figs. 1 and 2.)

All other solutions of (3.1), and thus of (2.6), are obtained by direct integration, giving £ as a function
of U. These solutions are of one of two types:

V/(U) = — (V2 = 22), (3.1)

where we have set

Type I: & =U — pcoth[a(U — O], (3.3)
and
Type II: & =U — ptanh[a(U — C)], (3.4)
where C is an arbitrary constant of integration and
p 1+p0
= = : 3.5
@ Ba? af3 (3.5)

With £ —U expressed in terms of U by (3.3)—(3.4), it is immediate to integrate (2.5) and obtain € in terms
of U. For each type of U-solution given by (3.3) and (3.4), we obtain the corresponding Q-solutions:

Type L Q(¢) = K|sinh[a(U(¢) - O)]| 77, (3.6)
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(3=0.75
=1 ptanhiall)
——— ] peoth(all) R -
---------- E=U=a //
——=¢=Uxp 8
C
S
Fi1G. 1. Type I (thick solid line) and Type II (thin solid line) reference solutions when 8 = —0.75
and
Type I (&) = K(coshla(U(€) — €))7, (3.7)

where K > 0 denotes an arbitrary constant of integration, and C is as in (3.3) and (3.4), respectively.
Returning to the velocity field, we introduce the ‘45°-strip’

Su=A{(&U) U =&l <pp
in the (¢, U)-plane. It follows from Lemma 3.1 that:

e the graphs of all Type I solutions are located outside of S,, and are 45° translates of the graphs of
the solutions U () of (2.6) given implicitly by

§ = U(§) — pcoth[aU(E)]; (3.8)

o the graphs of all Type II solutions are located within S,, and are 45° translates of the graphs of the
solutions U (€) of (2.6) given implicitly by

¢ = U(€) — ptanh[al(9)] (3.9)

3.1. Reference solutions for 3 € (—1,0)

Figure 1 shows the Type I and Type II solutions given by (3.8) and (3.9) in a representative case for
8 € (—1,0). In fact, as illustrated by the graphs in Fig. 1, (3.8) yields four distinct branches of solutions
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=2

ptanh{al)

E=1
——— (]~ peoth{al’)
U+ta
{

T4 p

IS
S

Fi1c. 2. Type I (thick solid line) and Type II (thin solid line) reference solutions when 8 = 2

U(€). Two of these have U (&) positive and are defined for £ > £*, where £* is given implicitly by

tanh[|a|(£* — a)] = /1 + 5. (3.10)
The other two (negative-valued) branches are obtained from the former ones by reflection about the origin
in the (¢, U)-plane.

The two positive branches meet at the point (§*,£* —a), where they both have infinite slope. In solving
self-similar GRPs, we shall only need the lower of these two branches, which we from now on refer to as
the Type I reference solution for 3 € (—1,0) and denote by U({) We note that U(f) is strictly decreasing
on [£*,00) and tends to zero as £ T oo; its graph is located below the straight line U = ¢ — a. For later
reference, we note that U* := U(g*) = &* — a is given implicitly by

tanh[|a|U*] = /1 + 3. (3.11)
As illustrated in Fig. 1, for 8 € (=1,0), (3.9) yields a single, strictly increasing solution; we refer to it as
the Type II reference solution for B € (—1,0) and denote it by U(£). We note that its graph is located
within the 45°-strip {(&,U) : |U —&| < p}.

3.2. Reference solutions for 3 € (0, c0)

Figure 2 shows the Type I and Type II solutions in a representative case for 5 € (0,00). The situation
in this case is as follows. There are now two solutions U(£) to (3.8) whose graphs are located outside the
45°-strip {(§,U) : |U — &| < p}; they are both defined for all £ € R, and are reflections of each other
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through the origin. The one whose graph is located below the straight line U = & — i is referred to as the
Type I reference solution for 3 € (0,00) and again denoted by U ().

Finally, as illustrated in Fig. 2, for 8 € (0,00), (3.9) yields an ‘S’-shaped curve located within the
45°-strip {(&,U) : |U — €| < p}. This curve defines three solution branches. Two are located within the
45°-strips {(&,U) : a < |U —&| < p}. The subsequent analysis outlined in Sect. 5 shows that these curves
are not used in the solution of self-similar GRPs. The remaining branch, which will be of use, defines a
strictly decreasing solution to (3.9). We refer to it as the Type IT reference solution for 3 € (0,00) and
again denote it by U(&). We note that its graph is located within the 45°-strip {(&,U) : |U —¢| < a} and
that U(€) is defined for £ € (—£*,£%), where £* > 0 is now implicitly given by

tanh[a(a — %)) = \/1176 (3.12)
It follows that, for 3 € (0,00), the value U* := U(—£*) = a — £* is given implicitly by
tanh[aU*] = \/117 (3.13)

Remark 3.1. As noted earlier, the situation is different in the case of SRPs, i.e., when 8 = 0. In that
case

(U, Q) = (E+a,Cexp(F5))  (CER) (3.14)

are solutions of (2.4)—(2.5), and together with constant vectors they provide all self-similar solutions
(p(t,x),u(t,z)) = (F),U(F)) of the isothermal Euler system in this case.

This points out a key difference between SRPs and self-similar GRPs. As is evident from the preceding
analysis, the graphs of the Type I and Type II solutions U(¢) and U(€) for 3 € (—1,00) ~ {0} never
intersect the special straight line solutions U = £ 4+ p. In contrast, for § = 0 the special straight line
solutions are U = £ + a, and these intersect any constant U-solution.

The upshot is that in the latter case it is possible to continuously connect any constant solution to one
of the special, straight line solutions. This corresponds to the presence of weak discontinuities (gradient
discontinuities), and this is how centered rarefaction waves connect to constant states in the resolution of
SRPs. This feature is absent in self-similar GRPs with 8 # 0, which explains why the solutions described
in Theorem 1.1 contain shocks and no weak discontinuities.

3.3. Resolving self-similar GRPs: outline

The Type I and Type II reference solutions defined above, together with their 45°-translates and re-
flections about the origin in the (£, U)-plane, will provide the building blocks required to resolve any
self-similar GRP.

Before giving the details in Sects. 4 and 5, we give an outline of the solution procedure. For concrete-
ness, consider a (-value in (—1,0). Recalling the derivations in Sect. 2.1, we pose the self-similar GRP
data (1.5) for the isothermal Euler system (1.2)—(1.3). The first step is to observe that if z > 0, say, then

§ =% 1 ooast | 0. Therefore, the solution U(§) of (2.6) to be used for ‘large,” positive §-values must
satisfy

lim U(&) = U,.

lm U(¢)

It follows from the analysis above that this requirement singles out a unique solution U, (§) of (2.6): its
graph must necessarily be (a part of) a certain 45°-translate of the graph of the Type I reference solution
in this case. (This follows because the latter solutions are the only type of solutions with a finite limit at
& = oo in this case.) Specifically, U, (§) must satisfy (3.3) with C' = U,.
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An entirely similar argument selects a unique solution U_ () to be used for large, negative values of

&, and which must satisfy

Al{noo U_(&) =1,
Its graph is obtained from that of the Type I reference solution in this case by a 45°-translation followed
by reflection about the origin. In particular, U_ () must satisfy (3.3) with C' = U;. With this, we have
used the initial U-values in (1.5) to determine what the self-similar velocity field must be for large values
of |¢| = 2.

The next step is to determine the velocity field for intermediate &-values, and we shall see that
this can always be accomplished (in a unique manner) by inserting two shock waves that connect the
solutions Uy (§) determined above to a certain translate of the Type II reference solution. For this, the
issue is to identify unique jump locations &1 (with €& < &), together with a unique 45°-translate
Uo(§) = C+ U(€ — O) of the Type II reference solution U (which satisfies (3.9)), so that the following
criteria are met:

(%) U_(&) and U4 (&) are defined for & < gfiand € > &, respectively; B
(#x) the discontinuity between U_ and Uy at £_, and between Uy and Uy at &, both satisfy the Rankine—
Hugoniot relations (2.12).

We note that once these criteria are met, then the Lax entropy conditions in (2.13)—(2.14) are automati-
cally satisfied. This follows because the graphs of U_(£), Uy (&), and Uy () are, by construction, located
above, below, and within the 45°-strip {(£,U) : |U — £| < a}, respectively. The Lax conditions (2.13)—
(2.14) follow from this: the jump from U, (£;) to Up(€y) satisfies the entropy condition for a 2-shock,
while the jump from U_(£_) to Uy(£_) satisfies the entropy condition for a 1-shock.

It remains to describe the density field of the solution, which has the form in (1.4);. Let Q4 and Qg
denote the solutions of (2.7) corresponding to Uy and Up; according to the analysis above, their functional
forms are given by (3.6) and (3.7). These Q-solutions are therefore determined once their multiplicative
constants K+ and K are found. In Sect. 4.1, we detail how the initial data (specifically, the constants R;
and R,) determine the K-values K4 for the two Type I solutions which is used for large values of |¢]. The
remaining K-value K for the Type II solution to be used in the intermediate range & € (£_, &) must be
determined together with the parameters £4 and C. The details of this argument are given in Sect. 4.2.

Summing up: to identify the solution of the self-similar GRP (1.5) with 8 € (—1,0) for (1.2)—(1.3),
we need to identify the four parameters &4, C, and K. It will follow from the analysis in Sect. 4.2 that
there is a unique choice of these parameters which provides a solution to the self-similar GRP under
consideration. Finally, a similar procedure provides the solution of self-similar GRPs with 5 € (0, 00), see

Sect. 5.

4. Self-similar GRPs for 3 € (—1,0)

Throughout this section, the similarity exponent § € (—1,0) is fixed, and we consider the GRP for
(1.2)—(1.3) with the initial data in (1.5).

4.1. The solution for large values of ||

As explained in the previous section, the initial velocities U,. and U; determine the unique Type I solutions
that result for large values of |{| = #. Namely, the resulting velocity field for large positive values of &
must be u(t, z) = Uy (%) where U, satisfies (3.3) with C' = U,:

E=U4 (&) — peoth[a(Us (&) — U, for £ large positive. (4.1)
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Similarly, the resulting velocity field for large negative values of §{ must be u(t,z) = U_(7) where U_
satisfies (3.3) with C = U;:

E=U_(§) — peothfa(U_(&) — Uy)] for £ large negative. (4.2)
Next, the Q-solutions Q4 (§) corresponding to Uy (§) are of the form (3.6):

QL (&) = K¢ |sinh[a(U(€) = U]~ for £ large positive, (4.3)
and

Q_(&) = K_|sinh[a(U_(¢) — U))]| 77 for & large negative. (4.4)

where the multiplicative constants K4+ must be determined from the coefficients R, and R; in the initial
data (1.5). To do so, we use the identity |sinh s| = (coth? s — 1)~ 2, together with the expressions in (4.2)
and (4.2), to rewrite (4.4) and (4.4) as

Qu(6) = SHIE~ () —s1F for € lnge positive (45)
and
Q_(& = %[(5 —U_(8)* - ,Lﬂg for ¢ large negative, (4.6)

respectively. Consider the resulting density field p(¢, ) for > 0, say, and small times ¢, which according
to (4.6) is given by
T K T B
plt.a) = 704 () = (o — W (3)) = 2172,
Since U4 (&) by construction tends to the finite limit U, as € T 0o, we deduce that
. Ky 4
lt%l p(t,x) = M—Bx for x > 0,
confirming the derivation in Sect. 2.1. A similar conclusion holds when x < 0. Comparing with the
prescribed initial data (1.5), it follows that the integration constants K4 appearing in (4.4) and (4.4) are
given by
K, =u’R, and K_= /"R, (4.7)
With this, the solution (p(t, ), u(t,x)) of (1.2)—(1.3) with data (1.5) has been determined for large values
|z]
of .
i

4.2. The solution for intermediate values of |£|; resolution of GRPs

As outlined above, the initial data (1.5) determine the resulting solutions (U (), Q+(&)) of (2.6)—(2.7),
which in turn provide the solution of the self-similar GRP (1.2)—(1.3)—(1.5) for large values of |¢| = %

To complete the solution, we shall show that there is a unique Type II solution (Up(€), 20(€)) with the
property that it connects to the far left solution (U_(£),Q_(£)) through an admissible 1-shock at some
¢ = ¢, and to the far right solution (U (£), Q2 (£)) through an admissible 2-shock at some & =&, > £_.
As noted in Sect. 3.3, these requirements amount to the validity of the Rankine-Hugoniot relations (2.19)
at &4. (In particular, the Lax entropy conditions will be automatically satisfied due to the properties of
the solutions under consideration.)

Letting C' and K denote the constants of integration determining the Type II solution (Up(€),20(£))
to be used for £ € (£_,£,), we have from (3.4) and (3.7) that

¢ = Uo(§) — ptanhla(Uo(€) — O]
Q(€) = K (cosh[a(Un(€) — O)) 7.
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The goal is to show that there is a unique choice of parameters C, K, and £ so that the criteria () and
(*x) in Sect. 3.3 are both met. -

We proceed to write out the Rankine-Hugoniot relations at 1. This will give four equations relating
the four parameters C, K, £1. We then demonstrate that these equations have a unique solution. At &4,
we substitute from (4.2), (4.4), (4.8), and (4.9) into the Rankine-Hugoniot relations (2.19) to obtain the
relations

tanh[a(U4 (€,) — U,)] = (1 + 8) tanh[a(Un(&} ) — C)] (4.10)
and
K (cosh[a(Up (&) = O))) 7
— (14 B)K|sinbla(U, (€4) — U]~ coth?[a(U (€4) — Uy)], (4.11)
where we have also used (3.2).
Similarly, at {_ we substitute from (4.2), (4.4), (4.8), and (4.9) into the Rankine-Hugoniot relations
(2.19) to obtain the relations
tanhla(U-(§-) — Up)] = (1 + B) tanh[a(Up(¢-) — O] (4.12)
and
K (cosh[a(Uy(€-) = O)N) ™7
— (14 B)K_|sinh[a(U_ (&) — U)]|~ coth?[a(U_(€_) - U)]. (4.13)
(In the formulae above, Ky are given by (4.7).) To analyze the four equations (4.10)—(4.13), it is convenient

to express the various Type I and Type II solutions in terms of the Type I reference solution U and the
Type II reference solution U that were introduced in Sect. 3.1. For convenience, we also let

U :=-U(=¢) (4.14)

denote the reflection of U about the origin. We then have
Ui -U,=UE-1,), U_(-U=U0E-U), Uo§)-C=U(-0).

With these, we have that (4.10) and (4.12) take the forms
tanh(ja|0 (€, — U)] = (1 + ) tanh[|a|T (¢, — C)], (4.15)

and

tanh[|a|U (- — U;)] = (1 + B) tanh[|a|U (¢ — O], (4.16)
respectively (recall that a < 0 for 8 € (—1,0), cf. (3.5)). Note that K does not appear in these two last

equations. - -
The strategy is now to first argue that (4.15) and (4.16) define {1 as functions of C' (see Lemma 4.1).

We shall then show that the Rankine-Hugoniot relation (4.11) yields K as a function K, (C) of C, and
similarly that (4.13) yields K as a function K_(C) of C'. The argument is completed once we verify that
there is a unique value of C for which K (C) = K_(C); see Lemma 4.2.

Lemma 4.1. For any choice of C € R, each of Eqgs. (4.15) and (4.16) has unique solutions £ =£6,(0)
and §_ = £_(C), respectively. Furthermore, both of £4(C') are increasing functions of C' and satisfy

£-(C) < C <& (0).
Proof. Introducing the functions
f(&U) o= tanh[|a|U(€ = U,)l,  [-(&Th) == tanh[|a|U (¢ — U))],

and

f(&C) = (1 + B) tanh[la|U(§ - O)],
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Egs. (4.15) and (4.16) take the forms
F&C) = f1(&U,)  and  f(&CO) = f- (&), (4.17)

respectively. We have that both of f are strictly decreasing functions of &, while f is a strictly increasing
function of £&. More precisely, with

gmin = Ur + f* and fmax = Ul - 5*7
where &* is given by (3.10), the following points are direct consequences of the monotonicity properties

of the reference solutions U and U recorded in Sect. 3.1:

o & f1(&U,) is defined for € € [£min, 00) and decreases from /1 + 3 to 0+;
e £ fo (fiUl) is defined for £ € (—00, {max) and decreases from 0— to —/1 + ;

e for each C € R, §{ — f(&; (;’) is defined for all £ € R and increases from —(1 + f3) to 1+ 3; and
o for each £ € R, C'+— f(&;C) is defined for all C' € R and is a decreasing function.

Since —1 < 8 < 0, we have 1 + 8 < /1 + (3, and the existence of unique solutions to the two equations
in (4.17) is a direct consequence. Finally, since f(&;C') vanishes at £ = C, the result follows. O

For later reference, we introduce Ei = gi(Ur) and £* = £* (U)) as the unique values for which

fr(EsU) =148  and [ (E&:01) = —(1+0), (4.18)
respectively. It follows from the proof of Lemma 4.1 that the range of C— &.(0) is (Ej‘r, o0), and that
the range of C' +— £_(C) is (—o0,£%).

Next, consider the remaining Rankine-Hugoniot relations in (4.11) and (4.13). With the notation
introduced above, these take the forms
K (cosh(|a]U(& — ON) ™ = Ky (1 + )| sinh[|o|U (&4 — U))| ™ coth®(|a|U (& = U,)]  (4.19)
and
E_(coshja|U(E_ — O)])~# = K_(1+ B)|sinh[|a|U (- — U)]| coth®[lalU(E_ — U))],  (4:20)

respectively, where we have written K, for K in (4.11) and K_ for K in (4.13). According to Lemma
4.1, Egs. (4.19) and (4.20) define K as functions of C, and the goal is to argue that there is a unique
value of C for which K, (C) = K_(C).

First, consider (4.19) and use the relations |sinhs| = |tanhs|(1 — tanh®s)~2 and coshs = (1 —
tanh? s)~ 2 to obtain

K, (1 —tanh?[ja|U(E, — O))*

= Ky (1+ B)| tanh(|a]U (&, — U] 2(1 ~ tanh®[Jo|U(&, ~ U] 7.
Using (4.15) to express tanh[|a|U (€, — C)] in terms of tanh[|a|U (£, — U,)] and solving for K give
Ky =K, F(X) (4.21)
where
1-x 1°
TroreE) - 0

A calculation shows that F'(X) is a strictly decreasing function of X € (0, (1+ 3)?) (which is the relevant
range of X-values according to (4.15)), and that

F(X)Too as X |0, and F(X)]0 as X1 (1+03)> (4.23)

X = tanh?[a[0(E, —U,)]  and F<X><1+5>1+Bx<€+l>{

A similar argument using (4.20) and (4.16) shows that

K_=K_F(Y) (4.24)
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where
Y = tanh*[|o|U (£ — U))].

Introducing the strictly decreasing function

h(z) i= tanb?la|0 (=),
so that X = h(¢; — U,.), and defining the function

G:=Foh, (4.25)

we rewrite (4.24) as

Ky =K G(& —Up). (4.26)
Finally, recalling (4.14) which gives Y = h(U; — £_), we rewrite (4.24) as

K =K GU —-¢&.). (4.27)

According to Lemma 4.1, the solutions &4 (C') of (4.15) and (4.16) are functions of C. Using this together
with (4.27)—(4.27), we deﬁne the functions

Ki(C)=K,GE(C)-U,) and K_(C):=K_G(U, —E (C)). (4.28)

Lemma 4.2. The functions Ky satisfy:

o K, (C) is a strictly increasing function with range (0,0) a

as C
o K (C) is a strictly decreasing function with range (0,00) as

It follows that there is a unique value of C such that K (C) = K_

_ ranges over R.
C ranges over R.
(@

).

Proof. According to Lemma 4.1, both of £4(C) are increasing functions of C. More precisely, as C
increases from —oo to +o00, &, (C ) increases from the lower value £*  and up to +oo, while ¢_(C) increases
from —oo and up to the upper value £* (see (4.18)).

Now consider K (C) and recall the properties of the function f+(& U,) introduced in the proof of
Lemma 4.1. It follows from what was just stated about the function & (C ) that f(£4(C); U,) decreases
from 14 /3 to 0 as C' increases from —oo to +o0, and therefore h(£, (C) —U,.) = f1 (&, (C);U,)? decreases
from (1 + 3)? to 0. In turn, (4.23), (4.25), and (4.28); then give that K (C) increases from 0 to +o0o as
C increases from —oo to +00.

Finally, consider K_(C). Again, from the proof of Lemma 4.1 we have that f_(¢_(C); Ul) decreases
from 0 to —(1+ ) as C' increases from —oo to +o00. Therefore, h(U; —£_(C)) = f-(£-(C); U;)? increases
from 0 to (1 + 3)2. It then follows from (4.23), (4.25), and (4.28); that K_(C) decreases from +oco to 0
as C increases from —oo to +oc. O

Letting C be the unique value determined by Lemma 4.2, we make the definitions
K=K (C)=K_(0), & :=6(0), & :=&(0).

The analysis above shows that with this choice the four parameters C, K, and &4, all of the Rankine—
Hugoniot conditions (4.10)—(4.13) are satisfied. Finally, it follows from Lemma 4.1 that £ and &, are
distinct numbers, showing that the solution of the GRP necessarily contain ezactly two shock waves. This
completes the proof of Theorem 1.1 for the case 5 € (—1,0).
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5. Self-similar GRPs for 3 € (0, c0)

In this section, we consider self-similar GRPs for the isothermal Euler system (1.2)—(1.3) with initial data
(1.5) when 8 > 0. The analysis is quite similar to the case e (—1,0) and we therefore omit the details.

For g > 0, the Type I and Type II reference solutions U, U were given in Sect. 3.2. The difference
with the case § € (—1,0) is that §, and hence also «, now are positive (cf. (3.5)). This causes qualitative
changes in the functions U, U, as reflected in Fig. 2. In particular, the solution U (€) is now increasing
and defined for all ¢ € R, while the solution U(¢) is decreasing and only defined for & € [—¢*,£*], with
&* is given by (3.12).

The analysis in Sect. 4.1, which shows how the initial data determine the self-similar solution for large
values of |£] = \r\ , applies verbatim. The same holds for the calculations in Sect. 4.2 up to and including
the statement of Lemma 4.1. The only difference is that the unique roots £1(C) are both located within
the interval (C — &*,C + €*). The rest of the analysis in Sect. 4.2 applies to the case 3 > 0 with only
minor changes in the arguments. In particular, the statement of Lemma 4.2 remains valid as stated. This
completes the argument for the case 8 > 0 and thus the proof of Theorem 1.1.

6. Further properties

We include two results that describe the behavior of the solution along particle trajectories within the
central region £_t < x < &4 t.

Proposition 6.1. Assume 3 € (—1,00) \
for the isothermal Fuler system (1.2)—(1.
located within the central wedge &_ < 7 <
—1<p<0(B>0)

Proof. Let x(t) denote any particle trajectory within the central region, and let Uy and €2y be the solutions
of the similarity ODEs (2.6)—(2.7) that give the self-similar solution there. Using these ODEs, we obtain

(with € = £(1) = 28)

{0} and let (p(t,x),u(t,x)) be the solution of a self-similar GRP
3) given by Theorem 1.1. Consider any particle trajectory x(t)
&y. Then, the density decreases (increases) along z(t) when

L plt,a(1) = S (6)] = 1~ Q€)1 + T (Ui(e) )]
Q0(8)
Uo(§) —&)* —a*
Recalling from Sects. 4 and 5 that the graph of the Type II solution Uy(&) by construction is located
within the 45°-strip {(&,U) | |U — €| < a}, while Q) is strictly positive, the claims follow. O

= —a?pt’!

Proposition 6.2. With the same assumption as in Proposition 6.1, we have that each particle trajectory
x(t) in the central wedge satisfies

1. . t — —~
lim () = C,
where C' is given by Lemma 4.2

Proof. Since the two straight lines = £_t and = = £t are admissible 1- and 2-shocks, respectively, it
follows that particle trajectories cross into the central wedge as time increases. We have

(t) = u(t, 2(t)) = Uo(§(1)),

where £(t) = L(t) . Since Uy is continuous and satisfies Uy(C') = C by construction, it suffices to verify
that

lim £(t) = (6.1)

tToo
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For concreteness, consider a trajectory z(t) that enters through the left edge 2 = £_t at some time o > 0
and consider the case 3 > 0. For t > t3, we have

() = § Uo((t) — £(0). (62)

which is nonnegative since the point (£(t), Up(£(¢))) in this case lies within the 45°-strip {(,U) |0 <
U — & < a}. Thus £(t) increases with time. Assume for contradiction that (6.1) fails; there is then an
€ > 0 such that

Et)y<C—e  forallt>tg. (6.3)
As Up(€) is strictly decreasing in the case under consideration, we get that there is a § > 0 so that
Uo(€() > C +6 for all ¢ > . (6.4)

Recalling that Uy is a 45°-translate of the reference Type II solution, we obtain from (3.4), (6.2), and
(6.4) that

£(t) = %tanh[a(Uo(g(t)) -O) > %tanh[aé] for all ¢ > .

Since p, «, and § are all strictly positive numbers, integrating the last inequality from ¢ = ¢ty to t = oo
yields a contradiction. The other cases are proved by a similar argument. O
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