
*Corresponding author, email: bkkarki@u.boisestate.edu 

Topological model of type II 
deformation twinning in 10M Ni-Mn-
Ga 
BIBEK KARKI a*, PETER MÜLLNER a, ROBERT PONDb 
a Micron School of Material Science and Engineering, Boise State University 
b College of Engineering, Mathematics and Physical Sciences, University of Exeter 

ABSTRACT 

The structure of type II twins in 10M Ni-Mn-Ga is modeled using the topological method. This method predicts the 

same twinning parameters as the kinematic model of Bevis and Crocker. Furthermore, topological modeling 

provides mechanistic insight into boundary migration rates, the twinning stresses and their temperature 

dependence. A type II twin is envisaged to form from a precursor, which is its type I conjugate. Disconnections on 

the precursor 𝐤𝟏 plane align into a tilt wall, which, after the relaxation of the rotational distortions, forms the type 

II boundary parallel on average to the 𝐤𝟐 plane. The component defects may align into a sharp wall or relax by 

kinking into a less orderly configuration. Both interfaces can host additional glissile disconnections whose motion 

along a boundary produces combined migration and shear. The ease of motion of these defects increases with their 

core width, and this, in turn, decreases with increasing sharpness of the boundary. Some experimental evidence in 

other materials suggests that type II twins can reduce their interfacial energy by adopting a configuration of low-

index facets, which reduces twin boundary mobility. Topological modeling suggests that such a coherently faceted 

structure is unlikely in 10M Ni-Mn-Ga, in agreement with the high mobility of type II twin boundaries.   

1   INTRODUCTION 

10M Ni-Mn-Ga (hereafter NMG) is a ferromagnetic shape memory alloy which produces force 

and deformation in response to an applied magnetic field [1–3]. An applied field reorients 

martensitic variants within the material through the motion of twin boundaries (TBs), causing 

transformation strains of about 6% with sub-millisecond response times [4–6]. Potential 

applications include actuation, energy harvesting, vibration damping, and sensing [6–11]. NMG 

is monoclinic and exhibits compound, type I, and type II twins [12–16]. Extensive experimental 

work has established that type II TBs have particularly high mobility and low twinning stress, so 

these twins are especially suitable for the manufacture of high-performance devices [15,16]. 

Several phenomenological models have been proposed to discuss the difference in boundary 

mobility of type I and type II twins [17–21]. The objective of the present work is to elucidate the 

structure of type II TBs, and hence provide some understanding of their exceptional properties.  

Twinning has been studied for many decades [22–29], and a theory for predicting their 

crystallographic forms was developed by Bevis and Crocker [22]; we refer to this kinematic 



treatment as the Classical Model (CM). Further insight into the atomic structure of compound 

and type I twins was accumulated over many years because they are amenable to experimental 

investigations using techniques such as transmission electron microscopy (TEM) [30–33] and X-

ray diffraction [13,15,34]. Boundary planes are rational for compound and type I twins, while 

the twinning direction is rational for the former but irrational for the latter. Of particular 

relevance to the present discussion, the mechanism of boundary migration for these twins was 

established to be through the motion of twinning dislocations along a boundary [35]. In a later 

theory of interfacial defects, called the topological theory [36], these defects were re-named 

“disconnections” to emphasize that they exhibit both dislocation and step character.  

By comparison with compound and type I twins, much less is known about type II twins 

[27,30,37]: this is mainly because type II TB planes are irrational, which makes TEM and atomic-

scale simulations problematic. However, a theoretical model for the formation of type II twins 

was suggested recently [38,39] and shown to be consistent with experimental observations in  

– U  and NiTi. Disconnection motion and assembly into arrays are central in this model, which 

we refer to as the Topological Model (TM) [36]. Thus, the principal aims of the present work are 

to analyze the structure of type II twins in NMG using the TM and to investigate boundary 

migration by disconnection motion. The relative ease with which disconnections move pertains 

not only to boundary migration rates but also to the magnitude and temperature dependence 

of twinning stress.  

Section 2 is a review of the crystal structure of NMG. It is important to demonstrate that the 

crystallographic twinning parameters for NMG predicted by the TM are the same as those 

obtained by the CM. In Section 3, we apply the original CM formulation to find all possible 

conventional twins in NMG. The type II TB structure, according to the TM, is described in 

Section 4. Three alternative boundary structures are proposed, and their differing migration 

rates and twinning stresses are discussed in Section 5. Section 6 is a summary of our 

conclusions. 

2   CRYSTALLOGRAPHY OF NI-MN-GA 

In our analysis, we refer to the axis systems with subscript 𝑐, 10𝑀, and 𝑚, for the cubic 

austenite structure, the modulated monoclinic martensite structure, and the approximated 

monoclinic martensite structure, respectively.  

2.1   AUSTENITE CRYSTAL STRUCTURE AND SYMMETRY 

Above the martensitic transformation temperature, stoichiometric 𝑁𝑖2𝑀𝑛𝐺𝑎 is a L21-ordered 

Heusler alloy exhibiting symmetry of space group 𝐹𝑚3̅𝑚 [40]. The atomic motif is 𝐺𝑎 at 0,0,0, 

𝑀𝑛 at 0,0.5,0, and 𝑁𝑖 at 0.25,0.25,0.25 and 0.25,0.25,0.75 at each lattice point, as illustrated 



in Figure 1 (a). The near-stoichiometry alloy with nominal composition 𝑁𝑖50𝑀𝑛25+𝑥𝐺𝑎25−𝑥 

(at.%), with 𝑥 often between 2 and 4, exhibits modulated martensite structure with highly 

mobile TBs [13,41]. In the present work, we refer specifically to the alloy 𝑁𝑖50.2𝑀𝑛28.3𝐺𝑎21.5, 

with the lattice parameter 𝑎𝑐 = 0.5832 nm and martensite transformation temperature  𝑀𝑠 =

323 K [13]. 

2.2   MODULATED MARTENSITE STRUCTURE AND SYMMETRY 

Following a martensitic transformation, the symmetry of the alloy reduces to monoclinic (space 

group 𝐼2/𝑚 [42]). A schematic illustration of the martensite viewed along its unique axis 

[010]10𝑀 is shown in Figure 1 (b), including an outline of the unit cell with lattice parameters 

𝑎10𝑀, 𝑏10𝑀, 𝑐10𝑀, and 𝛽10𝑀. In this diagram, we see the modulated structure of the crystal, 

designated 10𝑀, where these modulations have formed by a simple shear along {220}𝑐  planes 

of the parent FCC unit cell. The repeating sequence of shears between adjacent planes is three 

leftwards followed by two rightwards, and they are characterized as (3̅2)2 to emphasize the 

ten-layer sequence. An electron diffraction pattern obtained with the beam direction [010]10𝑀 

(i.e., parallel to the {220}𝑐  planes, Figure 1 (c)) exhibits fundamental and superlattice 

reflections. Atomic positions in the actual martensite structure may not correspond exactly to 

the configuration in Figure 1 (b), and alternative atomic displacements parallel to these {220}𝑐  

are discussed elsewhere [12,43,44]. 

2.3 APPROXIMATED MONOCLINIC STRUCTURE AND SYMMETRY 

To assist the crystallographic analysis of twinning in NMG, we adopt the suggestions of Sozinov 

et al. [13,15] whereby a non-conventional monoclinic unit cell is established by suppressing the 

modulation evident in Figure 1 (c) and considering only the fundamental reflections. This unit 

cell is derived from the cubic form in Figure 1 (a) by a monoclinic distortion with lattice 

parameters 𝑎𝑚, 𝑏𝑚, 𝑐𝑚 and 𝛾𝑚. The systematic offset of {220}𝑐 planes in the modulated 

martensite are averaged in this visualization:  the 10𝑀 sequence now is (1)10 rather than 

(3̅2)2.  

The point symmetry of this non-conventional face-centered monoclinic unit cell is 2/𝑚 as 

illustrated in projection along its unique axis, [001]𝑚, in Figure 1 (d). Using X-ray diffraction, 

Sozinov et al. [15] determined the lattice parameters for 𝑁𝑖50𝑀𝑛28.5𝐺𝑎21.5 (±0.2 at.%) as 𝑎𝑚 =

0.5974 nm, 𝑏𝑚 = 0.5947 nm, 𝑐𝑚 = 0.5581 nm and 𝛾𝑚 = 90.36°. Transformation matrices 

interrelating planes and directions in 10𝑀 and 𝑚 crystals are set out in Appendix A. 



 
Figure 1: (a) Austenite crystal structure of stoichiometric 𝑁𝑖2𝑀𝑛𝐺𝑎 viewed along one of its axes. Red is Gallium 
(circle), green is Manganese (square), and blue is Nickel (triangle). (b) The crystal structure of 10M Ni-Mn-Ga 
(NMG) viewed along its unique axis [010]10𝑀 shows the modulated assembly of the crystal; a periodic simple 
shear along {220}𝑐  planes achieves modulation during the martensitic transformation. The monoclinic angle, 𝛽10𝑀, 
is exaggerated in the current illustration. (c) Experimentally observed diffraction pattern of NMG that corresponds 
to the schematic illustration in (b): the superlattice reflections correspond to the periodic offset of the {220}𝑐  
planes. (d) Approximated NMG crystal lattice using only the fundamental reflections in (c) and derived from the 
parent cubic axes through a monoclinic distortion. 

3   THEORIES OF DEFORMATION TWINNING 

3.1   CLASSICAL MODEL 

A comprehensive review of the CM of deformation twinning has been presented by Christian 

and Mahajan [27] and is briefly summarized here. When a medium is deformed by a volume 

conserving homogeneous plane strain shear, two mutually conjugate planes 𝒌1 and 𝒌2, inclined 

by an angle 2𝜙, remain undistorted, as illustrated in Figure 2 (a). The plane of shear is 

designated 𝑷𝑠, and its normal is 𝒏𝑠. When the plane of shear is irrational, one of the 

undistorted planes is rational (defined as 𝒌1), and the other is irrational (defined as 𝒌2) [23,24]. 

If the deformed crystal is further rotated by an angle 𝛼 = ±(𝜋/2 − 2𝜙) about 𝒏𝑠, one of the 

conjugate planes comes into coincidence with its orientation before deformation, thereby 

becoming the invariant plane of twinning. If 𝒌1 is brought into coincidence by rotation, the 

invariant plane is rational, as illustrated in Figure 2 (b); conversely, if 𝒌2 is brought into 

coincidence, the invariant plane is irrational.  

In both cases, the overall deformation is a simple shear. The directions parallel to 𝒌1 and 𝒌2, 

which also lie in 𝑷𝑠, are designated 𝜸1and 𝜸2 respectively. The magnitude of shear is 𝑠 =

5 nm
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2𝑐𝑜𝑡2𝜙, parallel to either 𝜸1or 𝜸2. When the invariant plane is rational, the twins are 

designated type I, and the orientation relationship between the matrix and twin crystal is mirror 

reflection across 𝒌1, denoted by 𝒎′, where the prime indicates a “color-reversing” symmetry 

operation [45,46]. The conjugate of a type I twin, i.e., where the invariant plane is parallel to 

𝒌2, is called type II, and the operation interrelating the crystals is 𝟐′ about 𝜸2. In 

centrosymmetric crystals such as NMG, the interrelationship for type I twins can be 

equivalently described as 𝟐′ about the vector normal to 𝒌1, and for type II twins as 𝒎′ across 

the plane normal to 𝜸2. A third kind of twin called compound arises when all the twinning 

elements – 𝑷𝑠, 𝒏𝑠, 𝒌1, 𝒌2, 𝜸1 and 𝜸2 – are rational. There is a fourth kind of twin called non-

conventional where 𝑷𝑠 and 𝒏𝑠 are rational, but 𝒌1, 𝒌2, 𝜸1 and 𝜸2 are irrational. Such twins 

have been observed in composite arrangements of compound twins [47] but are not pertinent 

to the present study. Frank [24] suggested that an experimentally observed twinning mode be 

characterized by parameters 𝑲, 𝜼, as shown in Figure 2 (c). 

 
Figure 2: (a) A volume conserving plane-strain deformation shows two undistorted planes 𝒌𝟏 and 𝒌𝟐 that are 
simply rotated in the deformed medium (𝒌𝟏

′  and 𝒌𝟐
′ ). (b) The 𝒌𝟏 plane becomes the invariant plane of twinning 

when the deformed medium in (a) is further rotated by +𝛼 about 𝒏𝒔 (c) An illustration of experimentally observed 
twinning parameters 𝑲 and 𝜼: the inset table shows their relationship with twinning elements described in the 
text. The table also shows the conjugate relation between type I and type II twins. 

The geometrical parameters and shear magnitudes for conjugate twinning modes can be 

predicted theoretically [22,25–27,29]. In the present work, we use the approach developed by 

Bilby and Crocker [26] and Bevis and Crocker [22,29], where the parameters are deduced from 

the elements of correspondence matrices. In the present case, where the monoclinic unit cell is 



obtained by a small distortion of the cubic cell, correspondence matrices conform to cubic 

symmetry operations that are suppressed by this distortion. 

3.2 TOPOLOGICAL MODEL 

While the CM evaluates the geometrical parameters defining a twinning mode, it fails to 

provide insight into the mechanism of formation and growth of twins. The study of twinning 

dislocations has led to a better understanding of the twinning mechanism [27]. Pond, Hirth, and 

co-workers [35,36,45,46] extensively studied the character of interfacial defects and presented 

a TM, which rigorously characterizes the dislocation and step character of twinning defects. 

Because of this dual topological character, twinning defects are referred to as disconnections, 

exhibiting both Burgers vector, 𝒃, and step height, ℎ. In the literature, there are many accounts 

of disconnections in compound twins [35,48–52]. In compound and type I twins, the motion of a 

disconnection along the 𝑲1 = 𝒌1 plane produces an engineering shear, 𝛾𝑒 = 𝑏/ℎ, which has 

the same magnitude as the classical value, 𝑠, and is parallel to the classical shear direction, 

𝜼1 = 𝜸1. In addition, the nucleation and growth of type I and compound twins in terms of 

disconnection generation and motion have been modeled consistently with experimental 

observations [52–54]. Figure 3 is a schematic illustration of type I twins nucleated at a crystal 

surface source and growing into the bulk during compressive loading of NMG. The Burgers 

vector 𝒃 is shown for the line sense 𝝃 ∥ 𝒏𝒔 pointing out of the page. 

 
Figure 3: Schematic illustration of the formation and growth of (a) (011)𝑚 and (b) (01̅1)𝑚 type I twins in NMG 
under compressive load. The disconnections (𝒃, ℎ) nucleate near the corner of parallelepiped specimen and 
propagate into the bulk by gliding along 𝒌𝟏 planes. The disconnection line sense 𝝃 ∥ 𝒏𝒔 points out of the page.  

In contrast, our knowledge of the formation and growth of type II twins is less developed. 

Recently, Pond and Hirth [38] presented a model in the framework of the TM that provides 

insight into the formation of type II twins; we apply this model to the case of NMG. Figure 4 is a 

schematic depiction of the formation of the type II twin during compressive loading of NMG. 
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The (𝑞11̅1)𝑚 type II twin shown in Figure 4 is the conjugate of the (011)𝑚 type I twin shown in 

Figure 3 (a). Initially the disconnections (𝒃, ℎ) are generated at a surface source and propagate 

into the bulk by gliding along the 𝒌1 planes (Figure 4 (a)), tending to form a lenticular twin tip. 

However, if the leading disconnections begin to accumulate on the plane perpendicular to 𝒌1, 

Figure 4 (b), they would gradually form a planar boundary in which the step character of the 

component defects has been lost. Each defect in this array produces a displacement field 

comprising both strain and rotational distortions. As the configuration relaxes, the strain field 

parallel to the final interface, Figure 4 (c), vanishes at long range. At the same time, the rotation 

field, which sums to produce a rotation of 2𝛼 about 𝒏𝑠, partitions symmetrically between the 

adjacent crystals: the rotation of the twin crystal is unconstrained because of the free surfaces. 

At equilibrium, the interface plane rotates relative to the fixed matrix crystal by  about 𝒏𝒔 and 

hence becomes parallel to 𝒌2, i.e. the type II conjugate has formed with interface 𝑲1 = 𝒌2, as 

shown in Figure 4 (c). 

We propose that the tip blunting of the initial type I twin occurs because of the stress-state 

imposed to induce twinning in single crystal specimens: for example, one method involves 

bending the specimen [90]. This would produce an inhomogeneous stress field: compressive in 

the upper region of the specimen but tensile in the lower part, as indicated schematically by 

the stress figures in Figure 4 (e). Thus, the leading disconnections would experience a 

diminishing driving force as they approach the neutral plane, and an opposing force thereafter. 

Furthermore, it is known that in a homogeneous stress field, the force necessary for an 

additional dislocation to join a tilt wall diminishes as the wall lengthens [55,56]. We emphasize 

that specimen bending induces twin nucleation and formation of type II twin: once the type II 

twin has been introduced in this manner, its dynamic properties are studied by the application 

of a homogeneous compressive or tensile stress to the specimen. 

The defect structure of a sharp type II interface viewed along the direction 𝝃 ∥ 𝒏𝑠 is 

schematically illustrated in Figure 4 (d). The step character of individual defects is lost, and 

there is no residual component of 𝒃 along 𝒌2. Thus, the tilt array can be envisaged as a wall of 

grain boundary dislocations with Burgers vector 𝒃𝑔 = 𝒃 cos 𝛼 and spacing ℎ cos 𝛼⁄ . Hence from 

the geometry of Figure 4 (d) we see that 𝛼 = tan−1(𝑏 2ℎ⁄ ): using the magnitudes for |𝒃| and ℎ 

listed in Section 4.2, we find 𝛼 = 3.64°, which is the same as the value obtained from the CM. 

Thus, the total misorientation across the boundary is the combination of the type I 

misorientation, 𝒏𝒌1
𝜋⁄ , with the supplementary tilt, 𝒏𝑠 2𝛼⁄ . This combination brings the 

[011]𝑚 directions of the two crystals into coincidence, thereby forming the 𝜼1 = 𝜸2 direction. 

Thus, the final misorientation can be expressed as 𝜸2 𝜋⁄ , or as a 𝟐′ axis along this direction 

interrelating the two crystals. While the long-range strain field of the sharp interface vanishes, 

we presume that its core energy may be substantial because the component defects in Figure 4 



(c) lie on adjacent 𝒌1 planes. Atomic scale simulations are required to determine such energies, 

but this is beyond the scope of the present work. Some authors [27,30,57–60] have suggested 

the twin interface may reconfigure into rational facets lying in the 𝜼1 = 𝜸2 zone: this possibility 

is investigated further in Appendix C. Pond and Hirth [38] suggested another relaxation 

mechanism where the core energy of the defects diminishes by kinking into rational segments 

while retaining the average line direction, 𝝃̅ ∥ 𝒏𝑠. Since the kinked defects retain the overall 

average line direction, they do not produce a long-range strain field; nonetheless, a strain field 

arises near the interface extending to a distance on the order of the kink length. Such a kinked 

configuration might also affect the mechanism and kinetics of interface migration in response 

to an applied driving force, as is explored later. 

When twin nucleation occurs in the bulk, it has been suggested [38] that whether the type I or 

the type II conjugate forms is the outcome of a competitive process. The model is consistent 

with experimental findings where predominantly either a type I or a type II twin forms [38,39]. 

However, experimental observations of NMG [19,61,62] show that non-conjugate type I and 

type II pairs of twins are sometimes observed following surface nucleation, implying that the 

activation energy of both processes may be similar. In the present article, our focus is the 

difference in mobility between type I and type II twins. 

 
Figure 4: Schematic illustration of the formation of (𝑞11̅1)𝑚 type II twins in NMG. (a) Initially, nascent (011)𝑚 type 
I disconnections nucleate at the surface source in response to a local compressive stress. (b) The notional 
intermediate stage in an inhomogeneous stress field due to specimen bending: here the disconnections begin to 

accumulate and form a tilt wall perpendicular to the glide plane 𝒌𝟏. (c) Finally, a (𝑞11̅1)𝑚type II conjugate is 
formed after symmetrical partitioning of the rotational distortions across the tilt wall. (d) The exploded view of the 
sharp type II interface in (c), showing the character of the defects in the array: 𝒃𝒈 = 𝒃 ⋅ 𝑐𝑜𝑠𝛼 is the resultant 
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Burgers vector of each grain boundary dislocation. (e) The stress distribution in a bent parallelepiped specimen 
showing the stress reversal across the neutral plane, which promotes tip blunting. 

4   STRUCTURAL MODELS OF TYPE II TWINS IN NMG 

4.1   PREVIOUS INVESTIGATIONS 

Researchers have investigated the structure of type II twins in NMG using a variety of 

experimental techniques. While observations using optical microscopy [13,63], X-ray diffraction 

[13,15,64,65], and electron diffraction [14,16,66] are consistent with the twinning parameters 

predicted by the CM, the atomic structure of type II twins is not yet established. Based on high-

resolution transmission electron microscopy (HRTEM) observations, there are two opposing 

conjectures:  

a) The TB is inherently irrational, and thus we find randomly curved strain contrast along the 

boundary in HRTEM images [31,37,66,67]. 

b) The TB consists of terraces of a nearest low-index rational plane with periodic step-like 

features. The overall boundary is close to the predicted irrational plane [27,30,57–60]. 

Matsuda et al. [66] employed HRTEM to study various twins including the type II twinning mode 

in NMG with 𝜼1 = 〈5̅5̅1〉10𝑀 = 〈1̅01̅〉𝑚. Although the authors were able to simultaneously 

resolve lattice fringes of the adjacent crystals, the boundary was not oriented edge-on to the 

beam, and thus image interpretation was difficult. Moreover, no step-like line-defects were 

discerned.  

Müllner [68] adopted the TM of type II boundaries and showed that disconnection loops can be 

formally defined on the irrational boundary based on the elastic properties of crystals. 

Moreover, using this formalism, Müllner described the difference in twinning stress and the 

impact of temperature on the twinning stress of type I and type II boundaries. 

Knowles and Smith [69] investigated [011] type II TBs in a monoclinic NiTi using TEM, and noted 

that the common (111̅) planes are inclined at 10 ± 2° to 𝑲1 = 𝒌2. Later, using HRTEM, 

Knowles [30] proposed that these TBs may be composed of a combination of (111̅) and (011̅) 

facets. Further investigation by Liu and Xie [57,58] using HRTEM combined with image 

simulation reached similar conclusions. 

4.2   CRYSTALLOGRAPHY OF TWINS IN NMG 

The crystallographic parameters predicted by the CM of twinning in NMG are set out in 

Appendix B. The point symmetry of monoclinic NMG martensite and of the cubic parent phase 

are 2/𝑚 (order 4) and 𝑚3̅𝑚 (order 48). Therefore, we obtain twelve monoclinic variants 

interrelated by the symmetry operations of the parent group, which are suppressed by the 



monoclinic deformation. These operations define correspondence matrices, 𝐶𝑖, from which the 

twinning parameters are deduced. The predicted twinning modes are presented in Table 1. 

Table 1: Crystallographic parameters of twinning modes in NMG expressed in the approximated martensite 
framework. The shear values, 𝑠, and non-integer coefficients 𝑞 and 𝑟 are obtained using the lattice parameters 
determined by Sozinov et al. [15]. 

Twin Type 𝒌𝟏 𝒌𝟐 𝜸𝟏 𝜸𝟐 𝒔 

Compound 
(110)𝑚 (1̅10)𝑚 [1̅10]𝑚 [110]𝑚 0.0091 

(010)𝑚 (100)𝑚 [100]𝑚 [010]𝑚 0.0126 

type I   
& 
type II 

(011)𝑚 (𝑞11̅1)𝑚 [𝑟11̅1]𝑚 [011]𝑚 0.1274 

(01̅1)𝑚 (𝑞1̅̅̅11)𝑚 [𝑟1̅11]𝑚 [01̅1]𝑚 0.1274 

(101)𝑚 (1̅𝑞21)𝑚 [1̅𝑟21]𝑚 [101]𝑚 0.1365 

(1̅01)𝑚 (1𝑞2̅̅ ̅1)𝑚 [1𝑟2̅1]𝑚 [1̅01]𝑚 0.1365 

𝑞1 =
2 𝑎𝑚  𝑏𝑚  𝑐𝑜𝑠 𝛾𝑚

𝑐𝑚
2 − 𝑏𝑚

2
          𝑟1 =

2 𝑏𝑚 𝑐𝑚
2  𝑐𝑜𝑠 𝛾𝑚

𝑎𝑚(𝑐𝑚
2 − 𝑏𝑚

2  𝑠𝑖𝑛2 𝛾𝑚)
 

𝑞2 =
2 𝑎𝑚  𝑏𝑚  𝑐𝑜𝑠 𝛾𝑚

𝑐𝑚
2 − 𝑎𝑚

2
          𝑟2 =

2 𝑎𝑚 𝑐𝑚
2  𝑐𝑜𝑠 𝛾𝑚

𝑏𝑚(𝑐𝑚
2 − 𝑎𝑚

2  𝑠𝑖𝑛2 𝛾𝑚)
 

Using the lattice parameters of Sozinov et al. [15], as listed in Section 2, the values of the 

irrational indices are 𝑞1 = 0.1058, 𝑞2 = 0.0983, 𝑟1 = 0.0924 and 𝑟2 = 0.0866. 

The Burgers vector and step height, (𝒃, ℎ), of defects separating energetically degenerate 

regions of an interface (designated admissible defects) are obtained using the topological 

theory of interfacial defects [45,46], which is based on the fundamental principles of symmetry 

breaking. It is found that the Burgers vector of admissible disconnections correspond to 

differences between translation vectors in the adjacent crystals: thus, Burgers vectors, 

expressed in the parent coordinate frame, are given by: 

 𝒃 = 𝑷−1𝒕(𝜆) − 𝒕(𝜇) (1) 

where 𝒕(𝜆) and 𝒕(𝜇)  are translation vectors of the upper (twin) and the lower (matrix) crystal, 

as in Figure 5, and 𝑷 represents the coordinate transformation from the 𝜇 to 𝜆 frame. In the 

present case, we take 𝑷 to correspond to an operation of the form 𝟐′, as defined in Section 3: 

thus, for type I boundaries, 𝑷(𝐼) corresponds to 𝒏𝒌1
𝜋⁄ , and for type II, 𝑷(𝐼𝐼) corresponds to 

𝜸2 𝜋⁄ . The Burgers vector of perfect interfacial defects are independent of the relative position 

of the adjacent crystals, designated 𝒑 in the formal theory [45,46]. However, the magnitudes of 

atomic shuffles accompanying disconnection motion do depend on 𝒑, as described elsewhere 

[52,54]. The step height of a glissile twinning disconnection, ℎ, is given by, 

 ℎ = 𝒏 ⋅ 𝑷−1𝒕(𝜆) = 𝒏 ⋅ 𝒕(𝜇) (2) 



where 𝒏 represents the unit vector normal to the twin interface. For disconnections in type I 

boundaries, ℎ also corresponds to an integral number of lattice plane spacings parallel to the 

interface, i.e., ℎ = 𝑛 ∙ 𝑑𝒌1
, where 𝑛 is an integer, and 𝑑𝒌1

 is the interplanar spacing of the 𝒌1 

lattice planes, as illustrated schematically in Figure 5 (a). 

Equations (1) and (2) are derived from fundamental principles of symmetry breaking [45,46], so 

are also valid for disconnections in irrational type II boundaries. Admissible defects now 

separate energetically degenerate regions which are locally isomorphic. Table 2 lists the 

smallest magnitude values of (𝒃, ℎ) for disconnections in selected examples of all three types of 

TBs specified in Table 1. The corresponding engineering shear values, 𝛾𝑒, are the same as the 

values from the CM, and we note that the magnitudes of 𝛾𝑒 for disconnections in conjugate 

interfaces are equal. Moreover, the Burgers vectors are parallel to the relevant 𝜼𝟏. The 

disconnection depicted in Figure 5 (b) exhibits the topological properties, (𝒃, ℎ), listed in Table 

2, where ℎ is understood as the offset in a type II boundary. Motion of this glissile 

disconnection along a 𝒌2 boundary would produce coupled shear and migration, manifested 

macroscopically as the engineering shear, 𝛾𝑒. If in reality a defect is less localized, its topological 

properties remain unchanged overall. More complex perturbations of a type II boundary can be 

envisioned, and can be modeled for example in terms of disconnection dipoles [70,71]. 

Table 2: Topological parameters used to characterize the disconnections in compound, type I and type II interfaces. 
In the formulation of Burgers vectors, the twin (𝜆) is assumed to be above the matrix (𝜇), and the result is 
expressed in the matrix coordinate frame. 

Twin Type 𝑲𝟏 𝜼𝟏 𝒕(𝝁) 𝒕(𝝀) 𝒃 |𝒃| (nm) 𝒉 (nm) 𝜸𝒆 

Compound 

(110)𝑚 [1̅10]𝑚 1
2⁄ [101]𝑚 1

2⁄ [011̅]𝑚 [
0.0023̅̅ ̅̅ ̅̅ ̅̅ ̅

0.0023
0

]

𝑚

 0.0019 0.2101 0.0091 

(010)𝑚 [100]𝑚 1
2⁄ [011]𝑚 1

2⁄ [011̅]𝑚 [
0.0063

0
0

]

𝑚

 0.0037 0.2973 0.0126 

Type I 

(011)𝑚 [𝑟11̅1]𝑚 1
2⁄ [110]𝑚 1

2⁄ [1̅01]𝑚 [
0.0029
0.0317̅̅ ̅̅ ̅̅ ̅̅ ̅

0.0317
]

𝑚

 0.0259 0.2035 0.1274 

(101)𝑚 [1̅𝑟21]𝑚 1
2⁄ [110]𝑚 1

2⁄ [01̅1]𝑚 [
0.0340̅̅ ̅̅ ̅̅ ̅̅ ̅

0.0029
0.0340

]

𝑚

 0.0278 0.2039 0.1365 

Type II 

(𝑞11̅1)𝑚 [011]𝑚 1
2⁄ [1̅01]𝑚 1

2⁄ [110]𝑚 [
0

0.0284
0.0284

]

𝑚

 0.0231 0.1815 0.1274 

(1̅𝑞21)𝑚 [101]𝑚 1
2⁄ [01̅1]𝑚 1

2⁄ [110]𝑚 [
0.0306

0
0.0306

]

𝑚

 0.0250 0.1835 0.1365 



 
Figure 5: Schematic illustration of a disconnection in (a) (011)𝑚 type I twin interface, and (b) (𝑞11̅1)𝑚 type II twin 
interface. 

4.3   INTERFACE MODELS 

The sharp interface model of type II boundaries is illustrated in Figure 4 (d). Here, the defects 

have irrational line direction, 𝝃 ∥ 𝒏𝑠, and are spaced ℎ cos 𝛼⁄  apart. In a possible relaxed 

structure, the disconnections in the glide plane 𝒌1 are kinked into rational segments to 

minimize their line energy [38] (Figure 6). In the present case, where 𝒌1 = (011)𝑚 and 𝒌2 =

(𝑞11̅1)𝑚,  the average line sense, 𝝃 ∥ [1 𝑞1 2⁄  𝑞1 2⁄̅̅ ̅̅ ̅̅ ]
𝑚

 can be approximated as ≈ 10[100]𝑚 +

1 2⁄ [011̅]𝑚. These two line segments lie in the (01̅1)𝑚 and (1̅00)𝑚 planes respectively, which 

are common to both the twin and matrix as they belong to the 𝜼1 = [011]𝑚 zone. Since the 𝒌1 

planes are misaligned by 2𝛼 about 𝒏𝑠, the [100]𝑚
𝜇

 and [1̅00]𝑚
𝜆  directions are not parallel, and 

neither are [011̅]𝑚
𝜇

 and [01̅1]𝑚
𝜆 , as illustrated in Figure 6 (a).  In the case of ordered line 

segments, as illustrated in Figure 6 (b), where one segment is aligned with those above and 

below it in the array, the boundary is wider than the sharp 𝒌2 = (𝑞11̅1)𝑚 form because [100]𝑚
𝜇

 

is inclined by 4.13∘ to 𝒏𝑠. The kinked configuration does not exhibit a long-range displacement 

field, although short-range stresses arise. One can imagine less ordered defect configurations 

where the component line segments are of different lengths and not completely aligned in the 

array, as shown in Figure 6 (c). Also, in this situation, no long-range displacement field arises, 

but short-range stresses appear depending on the degree of disorder. We refer to such relaxed 

structures as ragged type II boundaries (Figure 6) in contrast to the sharp interface depicted in 

Figure 4 (c) and (d). 
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Figure 6: (a) Schematic illustration of defect kinking along low energy Peierls valleys in a (𝑞11̅1)𝑚 type II twin. 

Here, 𝝃 ∥ 𝒏𝒔 = [1 𝑞1 2⁄  𝑞1 2⁄̅̅ ̅̅ ̅̅ ]
𝑚

≈ 10[100]𝑚 + 1 2⁄ [011̅]𝑚. (b) An orderly array of aligned kinked defects. (c) A 

disorderly array of non-aligned kinked defects. 

All planes in the 𝜼1 zone are common to the parent and twin crystals: thus, a diffraction pattern 

taken with the beam along 𝜼1 resembles one of a single crystal [31,37,66,69]. However, these 

common planes are rationally commensurate only in the 𝜼1 direction [27]: an example is 

illustrated in Figure 7 (a) for the common (01̅1)𝑚 planes. An engineering coherency shear 

strain of magnitude 0.0092 parallel to 𝜼1 would bring [100]𝑚
𝜇

 and [1̅00]𝑚
𝜆  into parallelism, 

thereby creating fully coherent (01̅1)𝑚 planes, as seen in Figure 7 (b). These planes are inclined 

by only 4.12∘ to the 𝒌2 planes and may exhibit relatively modest interfacial energy. The 

coherency strain produces a long-range displacement field unless an interfacial defect array 

compensates this field. We refer to such an interface structure as being a (misfit-relieved) 

coherent (low-index) approximant. The immediate vicinity of such a faceted boundary 

resembles a compound twin with a coherent rational interface and a rational twinning 

direction. In the published HRTEM images of type II boundaries in NMG [66], step-like defects 

were not discernible due to the local strain field, so direct experimental of the approximant 

structure is not available. In Appendix C, we show that in NMG the coherency strain can be 

accommodated by an array of admissible screw disconnections with 𝒃 ∥ [01̅1̅]𝑚. However, the 

sign of the steps associated with these disconnections causes the average orientation of the 

faceted configuration to rotate away from 𝒌2 rather than towards it. 
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Figure 7: Schematic illustration of the common (01̅1)𝑚 planes (a) before and (b) after they are sheared into 2-D 

coherency. In (a), the angle between [100]𝑚
𝜇

 and [1̅00]𝑚
𝜆   (in reality only 0.52°) is exaggerated. The partitioning of 

coherency strain between the μ and λ crystals results in [100]𝑚and [011]𝑚 becoming orthogonal.  

5   DISCUSSION 

5.1 PROPERTIES OF TYPE I AND TYPE II TWINS 

Experimental observations indicate that the physical properties of type I and type II twins differ, 

notably in NMG [3,61,65,72]. Earlier works have developed phenomenological descriptions of 

the observed kinetic behavior of twins: for example, Faran and Shilo [73] found experimentally 

that the behavior is bimodal, and formulated an expression relating the velocity of a 

propagating boundary to the thermodynamic driving force. At driving forces below a threshold 

value, 𝑔𝑜, they propose that motion is governed by thermally activated motion of 

disconnections, and invoke a mobility coefficient. Above 𝑔𝑜, disconnection motion is modeled 

as athermal. In later experiments by Saren and colleagues [74,75], bimodal kinetic behavior was 

not observed, and the authors pointed out the importance of avoiding any mechanical 

constraints in the experimental apparatus, and also taking the inertia of the growing twin into 

account when modeling. On this basis, they derived a differential equation relating velocity to 

magnetic driving force, while incorporating the material’s density and specimen geometry. 

Here, building on these empirical studies, we outline aspects of disconnection motion in type I 

and type II twins which are relevant to the development of a mechanistic understanding of 

boundary kinetics. In particular, we consider the twinning stress for type I and type II twins and 

their dependence on temperature, 𝜎𝐼
𝑡(𝑇) and 𝜎𝐼𝐼

𝑡 (𝑇), respectively. Twinning stress is the stress 

required to sustain TB motion [76]. In the case of type I TBs, the basic mechanism of twinning is 

the motion of glissile disconnections along low-energy, sharp interfaces [52–54]. Here, we 

explore the possibility that a similar mechanism operates for type II twins, considering that a 

011

1
2 011

100

011

1
2 011

100

100

90.26°

(a) (b)

100



twin interface may be (a) a relatively high-energy, sharp interface, (b) a disordered 

arrangement of kinked disconnections, or (c) a coherently faceted interface. Extrinsic 

microstructural features such as magnetic domain interactions [77] and junctions between 

compatible twins influence disconnection motion [34,78]. For simplicity, we neglect such 

extrinsic effects here, and consider only effects on the disconnection mobility intrinsic to the 

interface structure. 

The two primary features governing TB mobility are the nucleation rate, 𝑁̇,  of glissile 

disconnections at a given applied stress and the twin growth rate, 𝐺̇, perpendicular to the 

boundary. For homogenous nucleation of disconnection loops, the activation energy at a fixed 

stress is to first order proportional to the magnitude of |𝒃|2. As such, thermal activation 

contributes significantly to 𝑁̇ at modest stresses because of the small magnitude of Burgers 

vectors of twinning disconnections [79]. 𝐺̇ is expected to be dominated by the disconnection 

mobility. The Peierls stress necessary to move a straight edge dislocation has the form 𝜏𝑝 =
2𝐺𝑚

(1−𝜈)
exp (

−2𝜋𝑤

𝑏
), where 𝐺𝑚 is the shear modulus, 𝜈 is the Poisson’s ratio, and 𝑤 is the defect 

core width. Thus, wide core width and small magnitude of Burgers vector lead to mobile 

defects.  Attendant shuffling reduces the disconnection mobility [27]: shuffling is defined here 

as any additional atomic displacements necessary to restore perfect twin crystal structure 

beyond the displacement of each atom by 𝒃 when a disconnection moves along the boundary 

[54]. Since small step height, ℎ, is thought to promote both wide cores and simple shuffles 

[27,80], it is used here as a guide to mobility. 

To illustrate the comparison of type I and type II twins in NMG, we choose a non-conjugate pair 

of incompatible twins which has been observed in several experimental investigations 

[19,61,62]. The 𝑲𝟏 planes of these two twins, (01̅1)𝑚 and (𝑞11̅1)𝑚, have very similar 

orientations, as depicted schematically in Figure 8: thus their traces on a (100)𝑚 surface differ 

by only about 6° [19,61,62]. Inspection of Table 1 and Figure 3 shows that a (01̅1)𝑚 twin is 

related to the conjugate of the (𝑞11̅1)𝑚 twin, i.e. the (011)𝑚 twin, by the (001)𝑚 crystal 

mirror plane. The early stage of growth of the (01̅1)𝑚 twin is depicted schematically in Figure 3 

(b), and formation of the (𝑞11̅1)𝑚 twin from its (011)𝑚 precursor is shown in Figure 4. As the 

twin grows, the area of the TB increases until the twin transects the entire specimen: we refer 

to this position, where the area of TB has reached maximum, as the reference location, as 

shown in Figure 8 for type I (a) and type II (b) twins. 



 
Figure 8: Schematic illustration of (a) (01̅1)𝑚  type I twin boundary (TB) and (b) (𝑞11̅1)𝑚 type II TB in the reference 
location. The 𝒌𝟏, 𝜸𝟏 in (a) and 𝒌𝟐, 𝜸𝟐 in (b) are not a conjugate pair. 

5.2 MOBILITY OF TYPE I TWINS 

In a (01̅1)𝑚 type I twin, glissile disconnections with smallest magnitude Burgers vector have 

|𝒃| = 0.0259 nm with a corresponding high 𝑁̇ at ambient temperature. At equilibrium, the 

type I TB at the reference location is flat with no disconnections present: it is anticipated that 

the interface structure is sharp and of relatively low energy. In response to a driving force, 

nucleation and propagation of disconnections along the rational TB produce the engineering 

shear 𝛾𝑒 = |𝒃| ℎ⁄ = 0.1274, where ℎ = 𝑑(02̅2)𝑚
= 0.2035 nm. Since 𝒃 is parallel to 𝜼𝟏 =

[𝑟1̅11]𝑚, these defects have pure edge character if their line direction, 𝝃, is parallel to 𝒏𝒔 =

[1 𝑞1 2⁄  𝑞1 2⁄ ]𝑚. Since the line direction is irrational, these defects may lie predominantly 

along [100]𝑚 Peierls valleys for minimum energy, with kinks spaced approximately every 

10 𝑎𝑚, as discussed in Section 4.3. The core width, 𝑤, is best investigated using computer 

simulations, but limited results have been published for defects in NMG. Nonetheless, 

simulations of disconnections for compound twins in hcp metals indicate that the cores of 

disconnections with small ℎ can be relatively wide [81–83].  

The disconnection motion described above is conservative, i.e. no climb is involved, because 𝒃 

is parallel to the (01̅1)𝑚 twin plane. Moreover, shuffling accompanying the defect motion is 

expected to be small: in austenitic NMG, all four atoms in the basis lie in the (01̅1)𝑐 plane, and 

since the martensite is a slight monoclinic distortion of the cubic phase, all four atoms in the 

basis are expected to remain close to the (01̅1)𝑚 plane. Thus, all atoms are displaced by 𝒃 as a 

disconnection sweeps along the boundary, and minimal additional shuffles are anticipated. 
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Taking all the factors mentioned above into account, we anticipate relatively easy motion of 

disconnections in type I twins because 𝑁̇ and 𝐺̇ are significant. For modest driving forces, kink 

motion along the disconnections, rather than rigid disconnection motion, may be the elemental 

mechanism of twin growth: quantitative assessment of the energy barrier opposing the motion 

is beyond the scope of the paper. Furthermore, we surmise that TB mobility is temperature 

dependent because the activation energy for disconnection motion in a periodic rational 

interface, either by rigid disconnection motion or kink motion, is assisted by thermal energy. 

It has also been reported that the twinning stress is a function of imposed strain rate 

[72,84,85], and this has been ascribed to increased viscous drag at higher velocities. This 

behavior may arise in part from increased damping at higher disconnection velocities, 

analogous to that of dislocation velocity as a function of applied stress in single crystals [79], 

but additional dissipative mechanisms, such as magnetization rotation and domain wall motion, 

are also likely to be active in NMG, and are not considered further here. 

5.3 MOBILITY OF TYPE II TWINS 

The formation of a (𝑞11̅1)𝑚 type II TB according to the TM, is depicted schematically in Figure 

4. Disconnection half-loops with 𝒃 parallel to [𝑟11̅1]𝑚 are initially nucleated at the surface 

source and glide on the (011)𝑚 plane forming a nascent type I twin. However, their progress is 

impeded, as described in Section 3.2, so they accumulate into a wall of edge defects 

approximately perpendicular to (011)𝑚. The displacement field of these defects, with line 

direction 𝝃 parallel to 𝒏𝒔 = [1 𝑞1 2⁄  𝑞1 2⁄̅̅ ̅̅ ̅̅ ]
𝑚

, exhibits both strain and rotational distortion. The 

latter sums to a rigid body rotation equal to 2α = 7.29° between the matrix and twin. This 

rotational relaxation is unconstrained in the present case since the twin crystal has free 

surfaces.  

5.3.1 Sharp (𝒒𝟏𝟏̅𝟏)𝒎 type II twins 

Figure 8 (b) schematically illustrates the structure of this sharp (𝑞11̅1)𝑚 type II twin in the 

reference location when viewed along 𝒏𝒔. Disconnections can be introduced into this boundary, 

as outlined in Section 4.2 and illustrated schematically in Figure 5 (b): those with the smallest 

Burgers vector and step height are formed using 𝒕(λ) = ½[110]𝑚 and 𝒕(μ) = ½[1̅01]𝑚 in 

Equations (1) and (2), and 𝑷 corresponds to the 𝟐’ axis parallel to 𝜼𝟏 = [011]𝑚. The resulting 𝒃 

is parallel to 𝜼𝟏 with magnitude 0.0231 nm, and ℎ = 0.1815 nm. The result is consistent with 

previous modeling in terms of an offset tilt wall [70], as illustrated schematically in Figure 5 (b), 

and γ𝑒 = 0.1274, identical to that of the type I conjugate twin. Thus, glissile disconnections 

could either be nucleated as half-loops at the surface or homogeneously on the boundary as 

complete loops. In either case, 𝑁̇, is expected to be similar to that of type I twins at ambient 

temperature. 



As depicted in Figure 4, the defects in the type II TB can be regarded either as disconnections 

with characteristic topological parameters (𝒃, ℎ), or as offsets in the tilt wall [70]. In the latter 

visualization, type I disconnections initially glide on the (011)𝑚 planes, and form tilt walls in the 

manner described by Read and Shockley [86]. In this configuration, the disconnections lose 

their step character, becoming grain boundary dislocations with residual Burgers vector, 𝒃𝑔, 

perpendicular to the interface. Thus, lateral motion of type II disconnections, (𝒃, ℎ), can 

alternatively be regarded as motion of the grain boundary dislocations in the direction normal 

to the interface. Dynamic simulations are needed to elucidate the extent of shuffling in the 

present case. Nonetheless, as has been described in Section 5.2, shuffling is thought to be 

minimal for such motion. 

Unlike type I boundaries considered previously, these type II disconnections are superimposed 

on a high energy TB, with only one rational direction, 𝜼𝟏, in the twin plane. Therefore, deep 

Peierls valleys can only be envisaged lying along this direction. Thus, disconnections with line 

direction other than 𝜼𝟏 are likely to have delocalized cores. Consequently, we expect 𝜎𝐼𝐼
𝑡 (𝑇) to 

be lower than 𝜎𝐼
𝑡(𝑇). Moreover, if the activation energy for disconnection motion is 

comparable to thermal energy, 𝜎𝐼𝐼
𝑡 (𝑇) would be effectively temperature independent, as is 

observed experimentally [61,87]. 

5.3.2 Ragged (𝒒𝟏𝟏̅𝟏)𝒎 type II twins 

In this model, the type I disconnections that accumulate in the tilt wall are kinked on their 

rational (011)𝑚 glide planes. The line direction, 𝝃 ∥ [1 0.0529 0.0529̅̅ ̅̅ ̅̅ ̅̅ ̅]
𝑚

 in the sharp interface 

can be approximated as ≈ 10[100]𝑚 + 1/2[011̅]𝑚. In other words, a disconnection lies along 

a [100]𝑚 Peierls valley with kinks spaced about every 10𝑎𝑚, as depicted schematically in Figure 

6. In the most orderly arrangement, the kinks on the successive (011)𝑚 planes are vertically 

aligned (Figure 6 (b)), and increasingly disordered configurations can be imagined (Figure 6 (c)). 

As discussed in Section 5.3.1, the migration of ragged type II TBs can be regarded either in 

terms of type II disconnections (𝒃, ℎ), or forward motion of the now kinked grain boundary 

dislocations in offset tilt walls. One consequence of the boundary becoming less sharp is that 

the effective width, 𝑤, of type II disconnections increases, thereby tending to lower 𝜎𝐼𝐼
𝑡 (𝑇) and 

reducing the activation barrier for defect motion. 

5.3.3 Coherently faceted type II twin approximants 

In Section 4.2 the concept of a (misfit-relieved) coherent (low-index) approximant to a type II 

twin was introduced. In this relaxation mechanism, the sharp type II TB maximizes the extent of 

coherent (01̅1)𝑚 interface. In the reference location, this interface structure would differ from 

that of the (01̅1)𝑚 type I twin discussed in Section 5.2. While the latter is flat with no 

disconnections present, the former is reticulated by an array of screw disconnections to 



accommodate the shear coherency strain. We assume that the coherency strain appears 

spontaneously, and that the screw disconnections with 𝒃𝑚 ∥ [01̅1̅]𝑚 are nucleated at the 

surface sources. As shown in Appendix C, the final interface orientation of the coherent 

approximant TB rotates away from (𝑞11̅1)𝑚. Under the influence of a driving force, the 

disconnections in the array move synchronously perpendicular to their line direction thereby 

producing an engineering shear. Since the overall orientation relationship between the crystals 

has not changed, the smallest magnitude Burgers vector, given in Table 2 for the (𝑞11̅1)𝑚 twin, 

is enhanced by the coherency strain, giving |𝒃𝑚| = 0.0233 nm. Similarly, ℎ = 𝑑(02̅2)𝑚
=

0.2035 nm, resulting in 𝛾𝑒 = 0.1147. If the coherency strain is assumed to be partitioned 

equally between the crystals, the rational vectors [100]𝑚 and [011̅]𝑚 in the (01̅1)𝑚 interface 

become orthogonal, thus resembling a compound twin structure near the interface. Defect 

motion would therefore need to be activated thermally to surmount the Peierls barriers. 

Consequently, we expect 𝜎𝐼𝐼
𝑡 (𝑇) to be higher than for the ragged structure. Further, 𝜎𝐼𝐼

𝑡 (𝑇) of 

the coherent approximant would be temperature dependent.  

6   CONCLUSIONS 

The objective of the present work is to elucidate the exceptional mobility of type II twins in 

NMG. Their structure has been investigated through the TM [38], with particular emphasis on 

the role of disconnections in determining the twinning stress and its temperature dependence, 

𝜎𝐼𝐼
𝑡 (𝑇). Our principal conclusions are as follows. 

A type II twin can form by surface nucleation of a precursor twin, which is its type I conjugate, 

as in the model of Pond and Hirth [38]. An applied stress leads to nucleation of disconnections 

in the precursor 𝒌𝟏 plane, which due to lack of mobility, accumulate and form a tilt wall; after 

symmetric partitioning of the rotational distortions, the boundary exhibits the crystallography 

of the 𝒌𝟐 twin predicted by the CM [22,27]. The defects forming this wall may form (i) a “sharp” 

array of aligned edge dislocations, or (ii) a more “ragged” configuration by virtue of individual 

defects becoming kinked in their 𝒌1 plane, and/or progressive misalignment of defects within 

the array, or (iii) a misfit-relieved coherently faceted interface. 

Sharp type II twins can host glissile disconnections with high mobility, leading to fast interface 

migration. It is suggested that this arises because such disconnections have wider cores than 

their counterparts in type I twins, combined with simple shuffles accompanying their motion. 

Ancillary consequences are that the magnitude and temperature dependence of 𝜎𝐼𝐼
𝑡 (𝑇) for type 

II twins are expected to be lower than those quantities for type I twins, 𝜎𝐼
𝑡(𝑇). For ragged type 

II twins, we anticipate this trend to be more pronounced because of the increase in effective 

core width. 



Previous authors have suggested that a type II twin may lower its interfacial energy by 

reconfiguring into a misfit-relieved assembly of coherent low-index facets [30,57–60]. Here, we 

considered such a mechanism for (𝑞11̅1)𝑚 type II twins by formation of (01̅1)𝑚 facets. We 

assume the (01̅1)𝑚 facets spontaneously adopt a 2-D periodic structure through a coherency 

strain of less than 1%, and this displacement field is accommodated by an array of 

superimposed screw disconnections. However, according to the TM, the step sense of 

disconnections with the appropriate sense of Burgers vector leads to the misfit-relieved 

interface that rotates away from (𝑞11̅1)𝑚 rather than towards it, contrary to experimental 

observations. Thus, we find that surface nucleated (𝑞11̅1)𝑚 type II twins in NMG are unlikely to 

adopt a facetted configuration. This conclusion is consistent with the expectation that such 

structures would exhibit higher magnitudes of 𝜎𝐼𝐼
𝑡 (𝑇) and lower mobilities because the 

admissible disconnections would have relatively narrower cores. 

APPENDICES 

APPENDIX A: TRANSFORMATION MATRICES 

Let α and β designate alternative unit cell representations of the same crystal. Then reciprocal 

space vectors transform co-variantly and real space vectors transform contra-variantly [88]: 

(ℎ 𝑘 𝑙)𝛼 = (ℎ′ 𝑘′ 𝑙′)𝛽  𝛽𝑷𝛼 (A1) 

(
𝑢
𝑣
𝑤

)

𝛼

=  𝛼𝑷𝛽 (
𝑢′
𝑣′
𝑤′

)

𝛽

 (A2) 

where,  𝛼𝑷𝛽 =  𝛽𝑷𝛼
−1. 

From the electron diffraction pattern shown in Figure 1 (c), we observe, (0 0 10)10𝑀 →

(2̅2̅0)𝑚, (2̅00)10𝑀 → (2̅20)𝑚 and (020)10𝑀 → (002)𝑚. Thus, we calculate the transformation 

matrices as follows: 

 10𝑀𝑷𝑚 =
1

5
(

5 −5 0
0 0 5

−1 −1 0
) (A3) 

 𝑚𝑷10𝑀 =
1

2
(

1 0 −5
−1 0 −5
0 2 0

) (A4) 

 

APPENDIX B: BEVIS & CROCKER THEORY 

A homogeneous simple shear is represented by an affine transformation as:  



𝒗 = 𝑺 ⋅ 𝒖 (B1) 

where 𝒖 and 𝒗 are lattice vectors of the parent and twin respectively, and 𝑺 is a second rank 

tensor defining the shear transformation. In some general coordinate system 𝐴, the equation 

B1 can be written using the Einstein summation convention as: 

 𝐴𝑣𝑖 =  𝐴𝑆𝑗
𝑖 ⋅  𝐴𝑢𝑗 (B2) 

In the general coordinate system 𝐴, 𝐴𝑆𝑗
𝑖, has the form: 

 𝐴𝑆𝑗
𝑖 = 𝛿𝑗

𝑖 + 𝑠 ⋅  𝐴𝑙𝑖 ⋅  𝐴𝑚𝑗 (B3) 

where 𝛿𝑗
𝑖 is the Kronecker delta, 𝒍 is the unit vector parallel to the shear direction, 𝒎 is the unit 

vector normal to the invariant plane and 𝑠 is the twinning shear. In general, equation B2 yields 

irrational components for  𝐴𝒗. However, 𝒗 is a lattice vector of the twin in a new coordinate 

system 𝐵, where 𝐵 is related to 𝐴 by some rotation or reflection, 𝑳. So, 

 𝐵𝒗 = 𝑳 ⋅  𝐴𝑺 ⋅  𝐴𝒖 = 𝑪 ⋅  𝐴𝒖 (B4) 

where 𝑪 is the unimodular correspondence matrix.  

Once the correspondence matrix, 𝑪,  is specified, Bevis and Crocker [22] showed that we can 

utilize its properties to calculate 𝑠, 𝒍 and 𝒎. Using matrix notation, the solutions for 𝑠, 𝒍 and 𝒎 

are found as follows: 

𝑠 = trace(𝑪′ ⋅ 𝑮 ⋅ 𝑪 ⋅ 𝑮−1) − 3 (B5) 

where, 

𝑮 = (
𝒂 ⋅ 𝒂 𝒂 ⋅ 𝒃 𝒂 ⋅ 𝒄
𝒃 ⋅ 𝒂 𝒃 ⋅ 𝒃 𝒃 ⋅ 𝒄
𝒄 ⋅ 𝒂 𝒄 ⋅ 𝒃 𝒄 ⋅ 𝒄

) = (

𝑎𝑚
2 𝑎𝑚𝑏𝑚 cos 𝛾 0

𝑎𝑚𝑏𝑚 cos 𝛾 𝑏𝑚
2 0

0 0 𝑐𝑚
2

) (B6) 

is the metric tensor for the present case. Using 𝒀 = 𝑮 − 𝑪’ ⋅ 𝑮 ⋅ 𝑪, we obtain three quadratic 

equations, defined by the equation: 

𝑌𝑖𝑖 ⋅ 𝑚𝑗
2 − 2𝑌𝑖𝑗 ⋅ 𝑚𝑖 ⋅ 𝑚𝑗 + 𝑌𝑗𝑗 ⋅ 𝑚𝑖

2 = 0 (B7) 

where 𝑖 ≠ 𝑗, and 𝑖, 𝑗 = 1,2,3. Equation B7 yields two possible solutions for 𝒎, which are the 

conjugate undistorted planes 𝒌𝟏 and 𝒌𝟐. 𝒍 can then be obtained directly from equation B3, or 

derived from 𝒀−1 using three quadratic equations like B7. Yet again, we obtain two solutions 

for 𝒍, which are the conjugate shear directions 𝛄𝟏 and 𝛄𝟐. 

In the case of twinning, equation B4 shows that a correspondence matrix for a conventional 

twin can be formulated as a 𝟐′ operation. Thus, the complete set of correspondence matrices 



for conventional twins is isomorphous with the 2-fold symmetry operations which were present 

in the austenite, but which are suppressed by the monoclinic distortion. There are 12 such 

operations in the present case, but, in the light of equation B7 which shows that there are two 

solutions, 𝒌𝟏 and 𝒌𝟐, for each choice of 𝑪, we may select just 6 of these. Furthermore, it is 

helpful to subdivide these 6 into the operations which leave the (001)𝑚 crystal mirror plane 

invariant, i.e. 𝟐[100]𝑐

′  and 𝟐[110]𝑐

′ , because these lead to compound twins, and the others, 

𝟐[101]𝑐

′ , 𝟐[1̅01]𝑐

′ , 𝟐[011]𝑐

′  and 𝟐[01̅1]𝑐

′ , which lead to type I – type II pairs. The 𝑪 matrix for each of 

these operations is listed in Table B1. 

Table B1: Correspondence matrices formulated as 𝟐’ symmetry operations that are suppressed in the martensite 
phase compared to its austenite parent phase. 

 Compound twins Type I and type II twins 

 𝟐[100]𝑐

′  𝟐[110]𝑐

′  𝟐[011]𝑐

′  𝟐[01̅1]𝑐

′  𝟐[101]𝑐

′  𝟐[1̅01]𝑐

′  

𝑪 [
1 0 0
0 −1 0
0 0 −1

] [
0 1 0
1 0 0
0 0 −1

] [
−1 0 0
0 0 1
0 1 0

] [
−1 0 0
0 0 −1
0 −1 0

] [
0 0 1
0 −1 0
1 0 0

] [
0 0 −1
0 −1 0

−1 0 0
] 

APPENDIX C: COHERENTLY FACETED APPROXIMANT TO TYPE II INTERFACE 

It is possible that the energy of a type II TB can be reduced by the formation of coherent facets: 

for example, recent work by Mohammed and Sehitoglu [60] used atomic-scale simulation to 

investigate a faceted approximant structure in NiTi. Since the boundary plane of a type II twin is 

an invariant plane, there is no long-range elastic strain field. If the boundary reconfigures to 

become faceted, any coherency strain at these facets (or terraces) would have to be 

accommodated by the introduction of an array of appropriate interfacial defects. If these 

defects are disconnections, their step character would cause the overall interface orientation to 

rotate away from the facet orientation. In an ideal approximant structure, the array of misfit-

removing defects would not only fully accommodate any coherency strain but also rotate the 

interface orientation to that of the type II twin. Here, we consider the (𝑞11̅1)𝑚 type II twin in 

NMG. 

The axis/angle pair defining the orientation relationship between the two crystals in the 

approximant configuration is taken to be the same as that for the type II twin, i.e. 𝑷(𝐼𝐼) =

[011]𝑚/𝜋, so all planes in the [011]𝑚 zone are common to both crystals. However, these 

planes are not coherent in 2-D, i.e. [011]𝑚 is the only coincident rational direction in these 

planes. We focus on the (01̅1)𝑚 plane, which is inclined by only 4.12° to (𝑞11̅1)𝑚. As 

illustrated in Figure 7, this plane becomes coherent in 2-D by the imposition of a small 

coherency shear strain parallel to [011]𝑚. Such a coherency strain can be accommodated by a 

superimposed array of screw disconnections, and, since these defects have step character, the 



average interface plane consequently rotates away from the (01̅1)𝑚 “terrace” orientation. We 

investigate whether the misfit can be fully relieved in this manner, and whether the interface 

structure rotates to an orientation close to the (𝑞11̅1)𝑚 plane. Since (01̅1)𝑚 type I TBs are 

observed experimentally in NMG [19,61,62], implying that they have low interfacial energy, this 

stepped configuration with (01̅1)𝑚 terraces might be energetically feasible. In the coherently 

strained (01̅1)𝑚 terrace illustrated in Figure 7 (b), the [100]𝑚 and [011]𝑚 directions become 

orthogonal, whereas they are not so in a (01̅1)𝑚 type I interface. 

We imagine the creation of a bicrystal with a 2-D coherent (01̅1)𝑚 planar interface by the 

application of shear tractions to the external (top and bottom) surfaces: these tractions 

produce homogenous strains which are equally partitioned between the two crystals. Thus, the 

directions [100]𝑚
𝜇

 and [1̅00]𝑚
𝜆 , which were originally inclined by 0.53°, are brought into 

parallelism, and become perpendicular to the common [011]𝑚 axis. The defect content of the 

2-D coherent interface can be established by applying the Frank-Bilby [89] equation. We 

introduce a coordinate frame where the coherent (01̅1)𝑚 terrace plane has embedded 

interface coordinates 𝑥, 𝑦, 𝑧 with 𝑥 ∥ [011]𝑚 and 𝑧 parallel to the interface normal. Following 

Hirth et al. [89], we define the matrix, 𝐷𝑖𝑗, which quantifies the elastic distortions required to 

transform the “natural” bicrystal  into the “sheared-coherent” form: the only non-zero element 

is 𝐷12 = −2 ⋅ tan(0.53° 2⁄ ) = −0.0092. When this matrix operates on a probe vector, 𝒗, we 

obtain the coherency dislocation content, 𝒃𝑐, necessary to sustain coherency. Using 𝒗 =

[0, −𝑣𝑦, 0] (for consistency with the RH/FS convention [79]), we obtain 𝒃𝑐 = [−𝐷12𝑣𝑦, 0,0]. 

Thus, 𝒃𝑐 is parallel to 𝑥, so these dislocations have RH screw character. 

To compensate for the resulting displacement field, we introduce an array of equally spaced LH 

screw disconnections (𝒃𝑚, ℎ𝑚) in the interface, where 𝒃𝑚 = 𝑷(𝐼𝐼)−1𝒕𝑐(λ)– 𝒕𝑐(𝜇), and ℎ𝑚 =

𝒏 ⋅ 𝒕𝑐(𝜇) = 𝒏 ⋅ 𝑷(𝐼𝐼)−1𝒕𝑐(λ): here, 𝒕𝑐(μ) and 𝒕𝑐(λ) are translation vectors in the coherent 

dichromatic pattern (CDP), and 𝒏 is the unit normal to the (01̅1)𝑚 plane (i.e. the same as 𝒎 in 

equation B7). For the smallest magnitude |𝒃𝑚|, we use 𝒕𝑐(𝜇) = 1/2[101̅]𝑚 and 𝒕𝑐(λ) =

1/2[1̅1̅0]𝑚, i.e. rational vectors with opposite sense of those shown in Table 2 for 

disconnections in the (𝑞11̅1)𝑚 twin. These translation vectors give us 𝒃𝑚 ∥ [01̅1̅]𝑚. The 

coherency strain enhances the magnitude of the Burgers vector by (1 + |𝐷12|) compared with 

the value given in Table 2 for the type II twin, giving |𝒃𝑚| = 0.0233 nm, and the defects’ step 

height is ℎ𝑚 = 𝑑(02̅2)𝑚
= 0.2035 nm. 

This disconnection array is shown schematically in Figure C1. We define a second interfacial 

coordinate frame 𝑥’, 𝑦’, 𝑧’, inclined to the terrace by angle θ. In the terrace frame, the Burgers 

vector can be written as 𝒃𝑚 = [−𝑏𝑥
𝑚 0 0], and remains the same when resolved into the 

inclined interface frame. The distortion matrix transformed into the inclined frame has non-



zero components 𝐷12
′ = 𝐷12 cos 𝜃, and 𝐷13

′ = −𝐷12 sin 𝜃. Thus, for misfit relief on that plane, 

i.e. 𝑩 = −𝒃𝑐, and putting 𝑣𝑦 = 𝐿, where 𝐿 is the disconnection spacing on this plane, we have 

𝐿 ⋅ 𝐷12 cos 𝜃 = 𝑏𝑥
𝑚. Since sin 𝜃 = ℎ𝑚 𝐿⁄ , we have tan 𝜃 = ℎ𝑚 ⋅ 𝐷12 𝑏𝑥

𝑚⁄ , and hence 𝜃 = 4.59° 

in the present case. The residual strain, 𝐷13
′ < 0.1%, cannot be compensated by any regular 

defect array in the 𝑥’𝑦’ plane. Thus, for NMG, the partially misfit-relieved faceted coherent 

plane would be inclined at 4.12° + 4.59° = 8.71°, i.e. it rotates away from the invariant 

(𝑞11̅1)𝑚 plane, as shown in Figure C1. 

Referring to Figure C1, we can determine whether the stress indicated in Figure 4 would grow 

or diminish the twin crystal. In the present case, the applied shear causes the disconnections in 

the array to move leftwards thereby promoting twin growth. The resulting engineering strain 

would have magnitude 0.1147. 

 
Figure C1: Schematic illustration of misfit accommodation at a coherently faceted approximant structure.  The line 
direction of RH coherency dislocations, 𝝃𝑐, pointing out of the page, is parallel to [011]𝑚. The angle between 
(01̅1)𝑚 and (𝑞11̅1)𝑚 is 4.12°. The LH screw misfit disconnections have 𝒃𝑚  anti-parallel to 𝝃𝑐  and a negative sense 

of steps. The direction 𝒏𝑠 is the average line direction of the twinning disconnections in the (𝑞11̅1)𝑚 twin plane. 
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