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ABSTRACT

The structure of type Il twins in 10M Ni-Mn-Ga is modeled using the topological method. This method predicts the
same twinning parameters as the kinematic model of Bevis and Crocker. Furthermore, topological modeling
provides mechanistic insight into boundary migration rates, the twinning stresses and their temperature
dependence. A type Il twin is envisaged to form from a precursor, which is its type | conjugate. Disconnections on
the precursor K4 plane align into a tilt wall, which, after the relaxation of the rotational distortions, forms the type
Il boundary parallel on average to the K, plane. The component defects may align into a sharp wall or relax by
kinking into a less orderly configuration. Both interfaces can host additional glissile disconnections whose motion
along a boundary produces combined migration and shear. The ease of motion of these defects increases with their
core width, and this, in turn, decreases with increasing sharpness of the boundary. Some experimental evidence in
other materials suggests that type Il twins can reduce their interfacial energy by adopting a configuration of low-
index facets, which reduces twin boundary mobility. Topological modeling suggests that such a coherently faceted
structure is unlikely in 10M Ni-Mn-Ga, in agreement with the high mobility of type Il twin boundaries.

1 INTRODUCTION

10M Ni-Mn-Ga (hereafter NMG) is a ferromagnetic shape memory alloy which produces force
and deformation in response to an applied magnetic field [1-3]. An applied field reorients
martensitic variants within the material through the motion of twin boundaries (TBs), causing
transformation strains of about 6% with sub-millisecond response times [4—6]. Potential
applications include actuation, energy harvesting, vibration damping, and sensing [6—11]. NMG
is monoclinic and exhibits compound, type I, and type Il twins [12—16]. Extensive experimental
work has established that type Il TBs have particularly high mobility and low twinning stress, so
these twins are especially suitable for the manufacture of high-performance devices [15,16].
Several phenomenological models have been proposed to discuss the difference in boundary
mobility of type | and type Il twins [17-21]. The objective of the present work is to elucidate the
structure of type Il TBs, and hence provide some understanding of their exceptional properties.

Twinning has been studied for many decades [22—29], and a theory for predicting their
crystallographic forms was developed by Bevis and Crocker [22]; we refer to this kinematic
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treatment as the Classical Model (CM). Further insight into the atomic structure of compound
and type | twins was accumulated over many years because they are amenable to experimental
investigations using techniques such as transmission electron microscopy (TEM) [30-33] and X-
ray diffraction [13,15,34]. Boundary planes are rational for compound and type I twins, while
the twinning direction is rational for the former but irrational for the latter. Of particular
relevance to the present discussion, the mechanism of boundary migration for these twins was
established to be through the motion of twinning dislocations along a boundary [35]. In a later
theory of interfacial defects, called the topological theory [36], these defects were re-named
“disconnections” to emphasize that they exhibit both dislocation and step character.

By comparison with compound and type | twins, much less is known about type Il twins
[27,30,37]: this is mainly because type Il TB planes are irrational, which makes TEM and atomic-
scale simulations problematic. However, a theoretical model for the formation of type I/ twins
was suggested recently [38,39] and shown to be consistent with experimental observations in a
— U and NiTi. Disconnection motion and assembly into arrays are central in this model, which
we refer to as the Topological Model (TM) [36]. Thus, the principal aims of the present work are
to analyze the structure of type Il twins in NMG using the TM and to investigate boundary
migration by disconnection motion. The relative ease with which disconnections move pertains
not only to boundary migration rates but also to the magnitude and temperature dependence
of twinning stress.

Section 2 is a review of the crystal structure of NMG. It is important to demonstrate that the
crystallographic twinning parameters for NMG predicted by the TM are the same as those
obtained by the CM. In Section 3, we apply the original CM formulation to find all possible
conventional twins in NMG. The type Il TB structure, according to the TM, is described in
Section 4. Three alternative boundary structures are proposed, and their differing migration
rates and twinning stresses are discussed in Section 5. Section 6 is a summary of our
conclusions.

2 CRYSTALLOGRAPHY OF NI-MN-GA

In our analysis, we refer to the axis systems with subscript ¢, 10M, and m, for the cubic
austenite structure, the modulated monoclinic martensite structure, and the approximated
monoclinic martensite structure, respectively.

2.1 AUSTENITE CRYSTAL STRUCTURE AND SYMMETRY

Above the martensitic transformation temperature, stoichiometric Ni,MnGa is a L2;-ordered
Heusler alloy exhibiting symmetry of space group Fm3m [40]. The atomic motif is Ga at 0,0,0,
Mn at 0,0.5,0, and Ni at 0.25,0.25,0.25 and 0.25,0.25,0.75 at each lattice point, as illustrated



in Figure 1 (a). The near-stoichiometry alloy with nominal composition NiggMn,s,,Gazs_y
(at.%), with x often between 2 and 4, exhibits modulated martensite structure with highly
mobile TBs [13,41]. In the present work, we refer specifically to the alloy Nisg,Mn,g36Gasq s,
with the lattice parameter a, = 0.5832 nm and martensite transformation temperature M =
323 K[13].

2.2 MODULATED MARTENSITE STRUCTURE AND SYMMETRY

Following a martensitic transformation, the symmetry of the alloy reduces to monoclinic (space
group 12 /m [42]). A schematic illustration of the martensite viewed along its unique axis
[010],0p is shown in Figure 1 (b), including an outline of the unit cell with lattice parameters
A1om» b1om, C1om, @nd Biop- In this diagram, we see the modulated structure of the crystal,
designated 10M, where these modulations have formed by a simple shear along {220} planes
of the parent FCC unit cell. The repeating sequence of shears between adjacent planes is three
leftwards followed by two rightwards, and they are characterized as (32), to emphasize the
ten-layer sequence. An electron diffraction pattern obtained with the beam direction [010],0,,
(i.e., parallel to the {220} planes, Figure 1 (c)) exhibits fundamental and superlattice
reflections. Atomic positions in the actual martensite structure may not correspond exactly to
the configuration in Figure 1 (b), and alternative atomic displacements parallel to these {220},
are discussed elsewhere [12,43,44].

2.3 APPROXIMATED MONOCLINIC STRUCTURE AND SYMMETRY

To assist the crystallographic analysis of twinning in NMG, we adopt the suggestions of Sozinov
et al. [13,15] whereby a non-conventional monoclinic unit cell is established by suppressing the
modulation evident in Figure 1 (c) and considering only the fundamental reflections. This unit
cell is derived from the cubic form in Figure 1 (a) by a monoclinic distortion with lattice
parameters a,,, b,,, ¢, and y,,. The systematic offset of {220}, planes in the modulated
martensite are averaged in this visualization: the 10M sequence now is (1), rather than
(32)2.

The point symmetry of this non-conventional face-centered monoclinic unit cell is 2/m as
illustrated in projection along its unique axis, [001],,,, in Figure 1 (d). Using X-ray diffraction,
Sozinov et al. [15] determined the lattice parameters for NigoMn,gsGa,q 5 (£0.2 at.%) as a,,, =
0.5974 nm, b,, = 0.5947 nm, ¢,;, = 0.5581 nm and y,,, = 90.36°. Transformation matrices
interrelating planes and directions in 10M and m crystals are set out in
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Figure 1: (a) Austenite crystal structure of stoichiometric Ni, MnGa viewed along one of its axes. Red is Gallium
(circle), green is Manganese (square), and blue is Nickel (triangle). (b) The crystal structure of 10M Ni-Mn-Ga
(NMG) viewed along its unique axis [010],,,, shows the modulated assembly of the crystal; a periodic simple
shear along {220}, planes achieves modulation during the martensitic transformation. The monoclinic angle, B1ou,
is exaggerated in the current illustration. (c) Experimentally observed diffraction pattern of NMG that corresponds
to the schematic illustration in (b): the superlattice reflections correspond to the periodic offset of the {220},
planes. (d) Approximated NMG crystal lattice using only the fundamental reflections in (c) and derived from the
parent cubic axes through a monoclinic distortion.

3 THEORIES OF DEFORMATION TWINNING

3.1 CLASSICAL MODEL

A comprehensive review of the CM of deformation twinning has been presented by Christian
and Mahajan [27] and is briefly summarized here. When a medium is deformed by a volume
conserving homogeneous plane strain shear, two mutually conjugate planes k; and k,, inclined
by an angle 2¢, remain undistorted, as illustrated in Figure 2 (a). The plane of shear is
designated Py, and its normal is ng. When the plane of shear is irrational, one of the
undistorted planes is rational (defined as k,), and the other is irrational (defined as k,) [23,24].
If the deformed crystal is further rotated by an angle « = (/2 — 2¢) about n,, one of the
conjugate planes comes into coincidence with its orientation before deformation, thereby
becoming the invariant plane of twinning. If k; is brought into coincidence by rotation, the
invariant plane is rational, as illustrated in Figure 2 (b); conversely, if k, is brought into
coincidence, the invariant plane is irrational.

In both cases, the overall deformation is a simple shear. The directions parallel to k, and k,,
which also lie in Py, are designated y;and ¥, respectively. The magnitude of shearis s =



2cot2¢, parallel to either y,or ¥,. When the invariant plane is rational, the twins are
designated type I, and the orientation relationship between the matrix and twin crystal is mirror
reflection across k;, denoted by m/’, where the prime indicates a “color-reversing” symmetry
operation [45,46]. The conjugate of a type I twin, i.e., where the invariant plane is parallel to
k,, is called type Il, and the operation interrelating the crystals is 2’ about y,. In
centrosymmetric crystals such as NMG, the interrelationship for type I twins can be
equivalently described as 2’ about the vector normal to k,, and for type Il twins as m’ across
the plane normal to y,. A third kind of twin called compound arises when all the twinning
elements - P, ng, k4, k;, Y1 and y, — are rational. There is a fourth kind of twin called non-
conventional where P and ng are rational, but k,, k,, Y1 and y, are irrational. Such twins
have been observed in composite arrangements of compound twins [47] but are not pertinent
to the present study. Frank [24] suggested that an experimentally observed twinning mode be
characterized by parameters K, 1, as shown in Figure 2 (c).
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Figure 2: (a) A volume conserving plane-strain deformation shows two undistorted planes k; and k, that are
simply rotated in the deformed medium (k7 and k3). (b) The k4 plane becomes the invariant plane of twinning
when the deformed medium in (a) is further rotated by +a about n, (c) An illustration of experimentally observed
twinning parameters K and n: the inset table shows their relationship with twinning elements described in the
text. The table also shows the conjugate relation between type I and type Il twins.

The geometrical parameters and shear magnitudes for conjugate twinning modes can be
predicted theoretically [22,25-27,29]. In the present work, we use the approach developed by
Bilby and Crocker [26] and Bevis and Crocker [22,29], where the parameters are deduced from
the elements of correspondence matrices. In the present case, where the monoclinic unit cell is



obtained by a small distortion of the cubic cell, correspondence matrices conform to cubic
symmetry operations that are suppressed by this distortion.

3.2 ToPOLOGICAL MODEL

While the CM evaluates the geometrical parameters defining a twinning mode, it fails to
provide insight into the mechanism of formation and growth of twins. The study of twinning
dislocations has led to a better understanding of the twinning mechanism [27]. Pond, Hirth, and
co-workers [35,36,45,46] extensively studied the character of interfacial defects and presented
a TM, which rigorously characterizes the dislocation and step character of twinning defects.
Because of this dual topological character, twinning defects are referred to as disconnections,
exhibiting both Burgers vector, b, and step height, h. In the literature, there are many accounts
of disconnections in compound twins [35,48-52]. In compound and type I twins, the motion of a
disconnection along the K; = k; plane produces an engineering shear, y, = b/h, which has
the same magnitude as the classical value, s, and is parallel to the classical shear direction,

11 = Y1. In addition, the nucleation and growth of type | and compound twins in terms of
disconnection generation and motion have been modeled consistently with experimental
observations [52—-54]. Figure 3 is a schematic illustration of type I twins nucleated at a crystal
surface source and growing into the bulk during compressive loading of NMG. The Burgers
vector b is shown for the line sense & || ng pointing out of the page.
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Figure 3: Schematic illustration of the formation and growth of (a) (011),,, and (b) (011),,, type I twins in NMG
under compressive load. The disconnections (b, h) nucleate near the corner of parallelepiped specimen and
propagate into the bulk by gliding along k4 planes. The disconnection line sense & || ng points out of the page.

In contrast, our knowledge of the formation and growth of type Il twins is less developed.
Recently, Pond and Hirth [38] presented a model in the framework of the TM that provides
insight into the formation of type Il twins; we apply this model to the case of NMG. Figure 4 is a
schematic depiction of the formation of the type Il twin during compressive loading of NMG.



The (q,11),, type Il twin shown in Figure 4 is the conjugate of the (011),,, type I twin shown in
Figure 3 (a). Initially the disconnections (b, h) are generated at a surface source and propagate
into the bulk by gliding along the k, planes (Figure 4 (a)), tending to form a lenticular twin tip.
However, if the leading disconnections begin to accumulate on the plane perpendicular to k1,
Figure 4 (b), they would gradually form a planar boundary in which the step character of the
component defects has been lost. Each defect in this array produces a displacement field
comprising both strain and rotational distortions. As the configuration relaxes, the strain field
parallel to the final interface, Figure 4 (c), vanishes at long range. At the same time, the rotation
field, which sums to produce a rotation of 2a about ng, partitions symmetrically between the
adjacent crystals: the rotation of the twin crystal is unconstrained because of the free surfaces.
At equilibrium, the interface plane rotates relative to the fixed matrix crystal by & about ng and
hence becomes parallel to k,, i.e. the type Il conjugate has formed with interface K; = k,, as
shown in Figure 4 (c).

We propose that the tip blunting of the initial type I twin occurs because of the stress-state
imposed to induce twinning in single crystal specimens: for example, one method involves
bending the specimen [90]. This would produce an inhomogeneous stress field: compressive in
the upper region of the specimen but tensile in the lower part, as indicated schematically by
the stress figures in Figure 4 (e). Thus, the leading disconnections would experience a
diminishing driving force as they approach the neutral plane, and an opposing force thereafter.
Furthermore, it is known that in a homogeneous stress field, the force necessary for an
additional dislocation to join a tilt wall diminishes as the wall lengthens [55,56]. We emphasize
that specimen bending induces twin nucleation and formation of type Il twin: once the type Il
twin has been introduced in this manner, its dynamic properties are studied by the application

of a homogeneous compressive or tensile stress to the specimen.

The defect structure of a sharp type Il interface viewed along the direction § || ng is
schematically illustrated in Figure 4 (d). The step character of individual defects is lost, and
there is no residual component of b along k,. Thus, the tilt array can be envisaged as a wall of
grain boundary dislocations with Burgers vector b9 = b cos a and spacing h/cos a. Hence from
the geometry of Figure 4 (d) we see that @ = tan~1(b/2h): using the magnitudes for |b| and h
listed in Section 4.2, we find & = 3.64°, which is the same as the value obtained from the CM.
Thus, the total misorientation across the boundary is the combination of the type /
misorientation, nkl/n, with the supplementary tilt, ng/2a. This combination brings the
[011],, directions of the two crystals into coincidence, thereby forming the n; = y, direction.
Thus, the final misorientation can be expressed as y,/m, or as a 2’ axis along this direction
interrelating the two crystals. While the long-range strain field of the sharp interface vanishes,
we presume that its core energy may be substantial because the component defects in Figure 4



(c) lie on adjacent k; planes. Atomic scale simulations are required to determine such energies,
but this is beyond the scope of the present work. Some authors [27,30,57-60] have suggested
the twin interface may reconfigure into rational facets lying in the ; = y, zone: this possibility
is investigated further in Appendix C. Pond and Hirth [38] suggested another relaxation
mechanism where the core energy of the defects diminishes by kinking into rational segments
while retaining the average line direction, & || n,. Since the kinked defects retain the overall
average line direction, they do not produce a long-range strain field; nonetheless, a strain field
arises near the interface extending to a distance on the order of the kink length. Such a kinked
configuration might also affect the mechanism and kinetics of interface migration in response
to an applied driving force, as is explored later.

When twin nucleation occurs in the bulk, it has been suggested [38] that whether the type | or
the type Il conjugate forms is the outcome of a competitive process. The model is consistent
with experimental findings where predominantly either a type I or a type Il twin forms [38,39].
However, experimental observations of NMG [19,61,62] show that non-conjugate type | and
type Il pairs of twins are sometimes observed following surface nucleation, implying that the
activation energy of both processes may be similar. In the present article, our focus is the
difference in mobility between type | and type Il twins.
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Figure 4: Schematic illustration of the formation of (gq;11),,, type Il twins in NMG. (a) Initially, nascent (011),, type
I disconnections nucleate at the surface source in response to a local compressive stress. (b) The notional
intermediate stage in an inhomogeneous stress field due to specimen bending: here the disconnections begin to
accumulate and form a tilt wall perpendicular to the glide plane k. (c) Finally, a (q;11),,type Il conjugate is
formed after symmetrical partitioning of the rotational distortions across the tilt wall. (d) The exploded view of the
sharp type Il interface in (c), showing the character of the defects in the array: b9 = b - cosa is the resultant



Burgers vector of each grain boundary dislocation. (e) The stress distribution in a bent parallelepiped specimen
showing the stress reversal across the neutral plane, which promotes tip blunting.

4 STRUCTURAL MODELS OF TYPE Il TWINS IN NMG

4.1 PREVIOUS INVESTIGATIONS

Researchers have investigated the structure of type Il twins in NMG using a variety of
experimental techniques. While observations using optical microscopy [13,63], X-ray diffraction
[13,15,64,65], and electron diffraction [14,16,66] are consistent with the twinning parameters
predicted by the CM, the atomic structure of type Il twins is not yet established. Based on high-
resolution transmission electron microscopy (HRTEM) observations, there are two opposing

conjectures:

a) The TBis inherently irrational, and thus we find randomly curved strain contrast along the
boundary in HRTEM images [31,37,66,67].

b) The TB consists of terraces of a nearest low-index rational plane with periodic step-like
features. The overall boundary is close to the predicted irrational plane [27,30,57-60].

Matsuda et al. [66] employed HRTEM to study various twins including the type Il twinning mode
in NMG with 7; = (551);0s = (101),,,. Although the authors were able to simultaneously
resolve lattice fringes of the adjacent crystals, the boundary was not oriented edge-on to the
beam, and thus image interpretation was difficult. Moreover, no step-like line-defects were
discerned.

Miullner [68] adopted the TM of type Il boundaries and showed that disconnection loops can be
formally defined on the irrational boundary based on the elastic properties of crystals.
Moreover, using this formalism, Millner described the difference in twinning stress and the
impact of temperature on the twinning stress of type | and type Il boundaries.

Knowles and Smith [69] investigated [011] type I/ TBs in a monoclinic NiTi using TEM, and noted
that the common (111) planes are inclined at 10 + 2° to K; = k,. Later, using HRTEM,
Knowles [30] proposed that these TBs may be composed of a combination of (111) and (011)
facets. Further investigation by Liu and Xie [57,58] using HRTEM combined with image
simulation reached similar conclusions.

4.2 CRYSTALLOGRAPHY OF TWINS IN NMG

The crystallographic parameters predicted by the CM of twinning in NMG are set out in

. The point symmetry of monoclinic NMG martensite and of the cubic parent phase
are 2/m (order 4) and m3m (order 48). Therefore, we obtain twelve monoclinic variants
interrelated by the symmetry operations of the parent group, which are suppressed by the



monoclinic deformation. These operations define correspondence matrices, C;, from which the
twinning parameters are deduced. The predicted twinning modes are presented in Table 1.
Table 1: Crystallographic parameters of twinning modes in NMG expressed in the approximated martensite

framework. The shear values, s, and non-integer coefficients ¢ and r are obtained using the lattice parameters
determined by Sozinov et al. [15].

Twin Type k4 k, Y1 Y2 s
(110),, (110),, [110],, [110],, 0.0091
Compound
(010),, (100),, [100],, [010],, 0.0126
(011),, (g, 11),, [r,11],, [011],, 0.1274
Z’Pe ! (011),, (@11 m [F11],, [011],, 0.1274
type I (101),, (g, 1), [1r,1],, [101],, 0.1365
(101),, 1GD, [1751],, [101],, 0.1365
_ 2@y by cOS Y _ 2by chy cOSYy
=y " @ (ch — b, sin? v)
2 by, COS Y _ 2apch cosyy
g " T b (ch — @Gy SIn? 1)

Using the lattice parameters of Sozinov et al. [15], as listed in Section 2, the values of the
irrational indices are q; = 0.1058, g, = 0.0983, r; = 0.0924 and r, = 0.0866.

The Burgers vector and step height, (b, h), of defects separating energetically degenerate
regions of an interface (designated admissible defects) are obtained using the topological
theory of interfacial defects [45,46], which is based on the fundamental principles of symmetry
breaking. It is found that the Burgers vector of admissible disconnections correspond to
differences between translation vectors in the adjacent crystals: thus, Burgers vectors,
expressed in the parent coordinate frame, are given by:

b=Pt(2) —t(w) (1)

where t(1) and t(u) are translation vectors of the upper (twin) and the lower (matrix) crystal,
asin Figure 5, and P represents the coordinate transformation from the u to A frame. In the
present case, we take P to correspond to an operation of the form 2’, as defined in Section 3:
thus, for type I boundaries, P(I) corresponds to ny, /m, and for type Il, P(II) corresponds to
¥, /1. The Burgers vector of perfect interfacial defects are independent of the relative position
of the adjacent crystals, designated p in the formal theory [45,46]. However, the magnitudes of
atomic shuffles accompanying disconnection motion do depend on p, as described elsewhere
[52,54]. The step height of a glissile twinning disconnection, h, is given by,

h=n-Pt(d) =n-t(n (2)



where n represents the unit vector normal to the twin interface. For disconnections in type /
boundaries, h also corresponds to an integral number of lattice plane spacings parallel to the
interface, i.e., h = n - dy_ , where nis an integer, and dy, is the interplanar spacing of the k;

lattice planes, as illustrated schematically in Figure 5 (a).

Equations (1) and (2) are derived from fundamental principles of symmetry breaking [45,46], so
are also valid for disconnections in irrational type Il boundaries. Admissible defects now
separate energetically degenerate regions which are locally isomorphic. Table 2 lists the
smallest magnitude values of (b, h) for disconnections in selected examples of all three types of
TBs specified in Table 1. The corresponding engineering shear values, y,, are the same as the
values from the CM, and we note that the magnitudes of y, for disconnections in conjugate
interfaces are equal. Moreover, the Burgers vectors are parallel to the relevant 4. The
disconnection depicted in Figure 5 (b) exhibits the topological properties, (b, h), listed in Table
2, where h is understood as the offset in a type Il boundary. Motion of this glissile
disconnection along a k, boundary would produce coupled shear and migration, manifested
macroscopically as the engineering shear, y,. If in reality a defect is less localized, its topological
properties remain unchanged overall. More complex perturbations of a type I/ boundary can be
envisioned, and can be modeled for example in terms of disconnection dipoles [70,71].

Table 2: Topological parameters used to characterize the disconnections in compound, type I and type Il interfaces.
In the formulation of Burgers vectors, the twin (1) is assumed to be above the matrix (1), and the result is
expressed in the matrix coordinate frame.

Twin Type K, M1 t(pw) t(d) b |b| (hm)  h (nm) Ye

[0.0023]
(110),, | [110], | 1/,[101],, 1/,[011],, [0.0023 0.0019 | 0.2101 | 0.0091
0 Iy

10.0063]
(010), | [100],, | 1/5[011],, | 1/, [01T],, 0 0.0037 | 0.2973 | 0.0126
0 In

0.0029]
(011),, | [ry11], 1/,[110, 1/,[T01], [0.0317 0.0259 | 0.2035 | 0.1274
0.0317),,

0.0340]
(101, | [Iry11 | 1/5 (1101, | 1/, [0T1],, | |0.0029 0.0278 | 0.2039 | 0.1365
0.03401,,,

Compound

Type |

(q,11),, [011],, 1/2[i01]m 1/2[110]m 0.0284 0.0231 | 0.1815 | 0.1274
[0.02841,,

0.0306]
(1g21)n| [101], | 1/5[011],, | 1/5 (1100, 0 0.0250 | 0.1835 | 0.1365
0.03061.,,

Type Il
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Figure 5: Schematic illustration of a disconnection in (a) (011),, type I twin interface, and (b) (q;11),,, type Il twin
interface.

4.3 INTERFACE MODELS

The sharp interface model of type Il boundaries is illustrated in Figure 4 (d). Here, the defects
have irrational line direction, & |l ng, and are spaced h/cos a apart. In a possible relaxed
structure, the disconnections in the glide plane k; are kinked into rational segments to
minimize their line energy [38] (Figure 6). In the present case, where k; = (011),,, and k, =

(q111),,, the average line sense, & || [1 q:1/2 q1/2]m can be approximated as = 10[100],,, +

1/2[011],,. These two line segments lie in the (011),, and (100),, planes respectively, which
are common to both the twin and matrix as they belong to the n; = [011],,, zone. Since the k,
planes are misaligned by 2a about n, the [100]%, and [100]2, directions are not parallel, and
neither are [011]%, and [011]%,, as illustrated in Figure 6 (a). In the case of ordered line
segments, as illustrated in Figure 6 (b), where one segment is aligned with those above and
below it in the array, the boundary is wider than the sharp k, = (q;11),, form because [100]%
is inclined by 4.13° to n;. The kinked configuration does not exhibit a long-range displacement
field, although short-range stresses arise. One can imagine less ordered defect configurations
where the component line segments are of different lengths and not completely aligned in the
array, as shown in Figure 6 (c). Also, in this situation, no long-range displacement field arises,
but short-range stresses appear depending on the degree of disorder. We refer to such relaxed
structures as ragged type Il boundaries (Figure 6) in contrast to the sharp interface depicted in

Figure 4 (c) and (d).



(c)

Figure 6: (a) Schematic illustration of defect kinking along low energy Peierls valleys in a (q,11),, type Il twin.
Here, & | ng = [1 q./2 ql/Z]m ~ 10[100],, + 1/2[011],,,. (b) An orderly array of aligned kinked defects. (c) A

disorderly array of non-aligned kinked defects.

All planes in the 17; zone are common to the parent and twin crystals: thus, a diffraction pattern
taken with the beam along 17, resembles one of a single crystal [31,37,66,69]. However, these
common planes are rationally commensurate only in the 1, direction [27]: an example is
illustrated in Figure 7 (a) for the common (Oil)m planes. An engineering coherency shear
strain of magnitude 0.0092 parallel to 17; would bring [100]%, and [100]%, into parallelism,
thereby creating fully coherent (011),,, planes, as seen in Figure 7 (b). These planes are inclined
by only 4.12° to the k, planes and may exhibit relatively modest interfacial energy. The
coherency strain produces a long-range displacement field unless an interfacial defect array
compensates this field. We refer to such an interface structure as being a (misfit-relieved)
coherent (low-index) approximant. The immediate vicinity of such a faceted boundary
resembles a compound twin with a coherent rational interface and a rational twinning
direction. In the published HRTEM images of type Il boundaries in NMG [66], step-like defects
were not discernible due to the local strain field, so direct experimental of the approximant
structure is not available. In Appendix C, we show that in NMG the coherency strain can be
accommodated by an array of admissible screw disconnections with b || [011],,. However, the
sign of the steps associated with these disconnections causes the average orientation of the
faceted configuration to rotate away from k, rather than towards it.
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Figure 7: Schematic illustration of the common (011),,, planes (a) before and (b) after they are sheared into 2-D
coherency. In (a), the angle between [100]%, and [100]2, (in reality only 0.52°) is exaggerated. The partitioning of
coherency strain between the pand A crystals results in [100],,and [011],,, becoming orthogonal.

5 DISCUSSION

5.1 PROPERTIES OF TYPE | AND TYPE Il TWINS

Experimental observations indicate that the physical properties of type I and type Il twins differ,
notably in NMG [3,61,65,72]. Earlier works have developed phenomenological descriptions of
the observed kinetic behavior of twins: for example, Faran and Shilo [73] found experimentally
that the behavior is bimodal, and formulated an expression relating the velocity of a
propagating boundary to the thermodynamic driving force. At driving forces below a threshold
value, g,, they propose that motion is governed by thermally activated motion of
disconnections, and invoke a mobility coefficient. Above g,, disconnection motion is modeled
as athermal. In later experiments by Saren and colleagues [74,75], bimodal kinetic behavior was
not observed, and the authors pointed out the importance of avoiding any mechanical
constraints in the experimental apparatus, and also taking the inertia of the growing twin into
account when modeling. On this basis, they derived a differential equation relating velocity to
magnetic driving force, while incorporating the material’s density and specimen geometry.

Here, building on these empirical studies, we outline aspects of disconnection motion in type /
and type Il twins which are relevant to the development of a mechanistic understanding of
boundary kinetics. In particular, we consider the twinning stress for type / and type Il twins and
their dependence on temperature, 6} (T) and o};(T), respectively. Twinning stress is the stress
required to sustain TB motion [76]. In the case of type | TBs, the basic mechanism of twinning is
the motion of glissile disconnections along low-energy, sharp interfaces [52—-54]. Here, we
explore the possibility that a similar mechanism operates for type Il twins, considering that a



twin interface may be (a) a relatively high-energy, sharp interface, (b) a disordered
arrangement of kinked disconnections, or (c) a coherently faceted interface. Extrinsic
microstructural features such as magnetic domain interactions [77] and junctions between
compatible twins influence disconnection motion [34,78]. For simplicity, we neglect such
extrinsic effects here, and consider only effects on the disconnection mobility intrinsic to the
interface structure.

The two primary features governing TB mobility are the nucleation rate, N, of glissile
disconnections at a given applied stress and the twin growth rate, G, perpendicular to the
boundary. For homogenous nucleation of disconnection loops, the activation energy at a fixed
stress is to first order proportional to the magnitude of |b|2. As such, thermal activation
contributes significantly to N at modest stresses because of the small magnitude of Burgers
vectors of twinning disconnections [79]. G is expected to be dominated by the disconnection
mobility. The Peierls stress necessary to move a straight edge dislocation has the form 7, =

G - . . . , . .
(zl_—mv)exp (?), where G,, is the shear modulus, v is the Poisson’s ratio, and w is the defect

core width. Thus, wide core width and small magnitude of Burgers vector lead to mobile
defects. Attendant shuffling reduces the disconnection mobility [27]: shuffling is defined here
as any additional atomic displacements necessary to restore perfect twin crystal structure
beyond the displacement of each atom by b when a disconnection moves along the boundary
[54]. Since small step height, h, is thought to promote both wide cores and simple shuffles
[27,80], it is used here as a guide to mobility.

To illustrate the comparison of type | and type Il twins in NMG, we choose a non-conjugate pair
of incompatible twins which has been observed in several experimental investigations
[19,61,62]. The K, planes of these two twins, (011),,, and (g;11),,,, have very similar
orientations, as depicted schematically in Figure 8: thus their traces on a (100),,, surface differ
by only about 6° [19,61,62]. Inspection of Table 1 and Figure 3 shows that a (011),, twin is
related to the conjugate of the (q,11),, twin, i.e. the (011),,, twin, by the (001),, crystal
mirror plane. The early stage of growth of the (011),,, twin is depicted schematically in Figure 3
(b), and formation of the (q;11),,, twin from its (011),,, precursor is shown in Figure 4. As the
twin grows, the area of the TB increases until the twin transects the entire specimen: we refer
to this position, where the area of TB has reached maximum, as the reference location, as
shown in Figure 8 for type | (a) and type Il (b) twins.



(b)

Figure 8: Schematic illustration of (a) (011),,, type I twin boundary (TB) and (b) (g;11),,, type Il TB in the reference
location. The k4, ¥4 in (a) and k,, ¥, in (b) are not a conjugate pair.

5.2 MOBILITY OF TYPE | TWINS

Ina (011),, type I twin, glissile disconnections with smallest magnitude Burgers vector have
|b| = 0.0259 nm with a corresponding high N at ambient temperature. At equilibrium, the
type | TB at the reference location is flat with no disconnections present: it is anticipated that
the interface structure is sharp and of relatively low energy. In response to a driving force,
nucleation and propagation of disconnections along the rational TB produce the engineering
sheary, = |b|/h = 0.1274, where h = d 32y, = 0.2035 nm. Since b is parallel ton; =
[r111],,, these defects have pure edge character if their line direction, &, is parallel to ng =
[1 q1/2 q1/2],,. Since the line direction is irrational, these defects may lie predominantly
along [100],,, Peierls valleys for minimum energy, with kinks spaced approximately every

10 a,,, as discussed in Section 4.3. The core width, w, is best investigated using computer
simulations, but limited results have been published for defects in NMG. Nonetheless,
simulations of disconnections for compound twins in hcp metals indicate that the cores of
disconnections with small h can be relatively wide [81-83].

The disconnection motion described above is conservative, i.e. no climb is involved, because b
is parallel to the (011),,, twin plane. Moreover, shuffling accompanying the defect motion is
expected to be small: in austenitic NMG, all four atoms in the basis lie in the (011),. plane, and
since the martensite is a slight monoclinic distortion of the cubic phase, all four atoms in the
basis are expected to remain close to the (011),, plane. Thus, all atoms are displaced by b as a
disconnection sweeps along the boundary, and minimal additional shuffles are anticipated.



Taking all the factors mentioned above into account, we anticipate relatively easy motion of
disconnections in type I twins because N and G are significant. For modest driving forces, kink
motion along the disconnections, rather than rigid disconnection motion, may be the elemental
mechanism of twin growth: quantitative assessment of the energy barrier opposing the motion
is beyond the scope of the paper. Furthermore, we surmise that TB mobility is temperature
dependent because the activation energy for disconnection motion in a periodic rational
interface, either by rigid disconnection motion or kink motion, is assisted by thermal energy.

It has also been reported that the twinning stress is a function of imposed strain rate
[72,84,85], and this has been ascribed to increased viscous drag at higher velocities. This
behavior may arise in part from increased damping at higher disconnection velocities,
analogous to that of dislocation velocity as a function of applied stress in single crystals [79],
but additional dissipative mechanisms, such as magnetization rotation and domain wall motion,
are also likely to be active in NMG, and are not considered further here.

5.3 MoBILITY OF TYPE Il TWINS

The formation of a (q;11),, type Il TB according to the TM, is depicted schematically in Figure
4. Disconnection half-loops with b parallel to [r;11],, are initially nucleated at the surface
source and glide on the (011),, plane forming a nascent type I twin. However, their progress is
impeded, as described in Section 3.2, so they accumulate into a wall of edge defects
approximately perpendicular to (011),,. The displacement field of these defects, with line
direction & parallel to ng = [1 q1/2 M]m, exhibits both strain and rotational distortion. The

latter sums to a rigid body rotation equal to 2a = 7.29° between the matrix and twin. This
rotational relaxation is unconstrained in the present case since the twin crystal has free
surfaces.

5.3.1 Sharp (q,11),, type Il twins

Figure 8 (b) schematically illustrates the structure of this sharp (q;11),, type Il twin in the
reference location when viewed along ng. Disconnections can be introduced into this boundary,
as outlined in Section 4.2 and illustrated schematically in Figure 5 (b): those with the smallest
Burgers vector and step height are formed using t(A) = %[110],,, and t(p) = %[101],, in
Equations (1) and (2), and P corresponds to the 2’ axis parallel to n; = [011],,,. The resulting b
is parallel to 4 with magnitude 0.0231 nm, and h = 0.1815 nm. The result is consistent with
previous modeling in terms of an offset tilt wall [70], as illustrated schematically in Figure 5 (b),
andy, = 0.1274, identical to that of the type | conjugate twin. Thus, glissile disconnections
could either be nucleated as half-loops at the surface or homogeneously on the boundary as
complete loops. In either case, N, is expected to be similar to that of type I twins at ambient
temperature.



As depicted in Figure 4, the defects in the type Il TB can be regarded either as disconnections
with characteristic topological parameters (b, h), or as offsets in the tilt wall [70]. In the latter
visualization, type | disconnections initially glide on the (011),,, planes, and form tilt walls in the
manner described by Read and Shockley [86]. In this configuration, the disconnections lose
their step character, becoming grain boundary dislocations with residual Burgers vector, b9,
perpendicular to the interface. Thus, lateral motion of type Il disconnections, (b, h), can
alternatively be regarded as motion of the grain boundary dislocations in the direction normal
to the interface. Dynamic simulations are needed to elucidate the extent of shuffling in the
present case. Nonetheless, as has been described in Section 5.2, shuffling is thought to be
minimal for such motion.

Unlike type I boundaries considered previously, these type Il disconnections are superimposed
on a high energy TB, with only one rational direction, 174, in the twin plane. Therefore, deep
Peierls valleys can only be envisaged lying along this direction. Thus, disconnections with line
direction other than 1 are likely to have delocalized cores. Consequently, we expect o5 (T) to
be lower than o} (T). Moreover, if the activation energy for disconnection motion is
comparable to thermal energy, of;(T) would be effectively temperature independent, as is
observed experimentally [61,87].

5.3.2 Ragged (q,11),, type Il twins

In this model, the type I disconnections that accumulate in the tilt wall are kinked on their
rational (011),, glide planes. The line direction, & || [1 0.0529 0.0529]m in the sharp interface

can be approximated as ~ 10[100],,, + 1/2[011],,. In other words, a disconnection lies along
a [100],,, Peierls valley with kinks spaced about every 10a,,, as depicted schematically in Figure
6. In the most orderly arrangement, the kinks on the successive (011),, planes are vertically
aligned (Figure 6 (b)), and increasingly disordered configurations can be imagined (Figure 6 (c)).

As discussed in Section 5.3.1, the migration of ragged type Il TBs can be regarded eitherin
terms of type Il disconnections (b, h), or forward motion of the now kinked grain boundary
dislocations in offset tilt walls. One consequence of the boundary becoming less sharp is that
the effective width, w, of type Il disconnections increases, thereby tending to lower ¢ (T) and
reducing the activation barrier for defect motion.

5.3.3 Coherently faceted type Il twin approximants

In Section 4.2 the concept of a (misfit-relieved) coherent (low-index) approximant to a type I/
twin was introduced. In this relaxation mechanism, the sharp type Il TB maximizes the extent of
coherent (011),, interface. In the reference location, this interface structure would differ from
that of the (011),,, type I twin discussed in Section 5.2. While the latter is flat with no
disconnections present, the former is reticulated by an array of screw disconnections to



accommodate the shear coherency strain. We assume that the coherency strain appears
spontaneously, and that the screw disconnections with b™ || [011],,, are nucleated at the
surface sources. As shown in , the final interface orientation of the coherent
approximant TB rotates away from (qlil)m. Under the influence of a driving force, the
disconnections in the array move synchronously perpendicular to their line direction thereby
producing an engineering shear. Since the overall orientation relationship between the crystals
has not changed, the smallest magnitude Burgers vector, given in Table 2 for the (q;11),, twin,
is enhanced by the coherency strain, giving |b™| = 0.0233 nm. Similarly, h = d¢3y),, =
0.2035 nm, resulting in y, = 0.1147. If the coherency strain is assumed to be partitioned
equally between the crystals, the rational vectors [100],,, and [011],,, in the (011),, interface
become orthogonal, thus resembling a compound twin structure near the interface. Defect
motion would therefore need to be activated thermally to surmount the Peierls barriers.
Consequently, we expect a};(T) to be higher than for the ragged structure. Further, }(T) of
the coherent approximant would be temperature dependent.

6 CONCLUSIONS

The objective of the present work is to elucidate the exceptional mobility of type Il twins in
NMG. Their structure has been investigated through the TM [38], with particular emphasis on
the role of disconnections in determining the twinning stress and its temperature dependence,

a,(T). Our principal conclusions are as follows.

A type Il twin can form by surface nucleation of a precursor twin, which is its type I conjugate,
as in the model of Pond and Hirth [38]. An applied stress leads to nucleation of disconnections
in the precursor k4 plane, which due to lack of mobility, accumulate and form a tilt wall; after
symmetric partitioning of the rotational distortions, the boundary exhibits the crystallography
of the k, twin predicted by the CM [22,27]. The defects forming this wall may form (i) a “sharp”
array of aligned edge dislocations, or (ii) a more “ragged” configuration by virtue of individual
defects becoming kinked in their k; plane, and/or progressive misalignment of defects within
the array, or (iii) a misfit-relieved coherently faceted interface.

Sharp type Il twins can host glissile disconnections with high mobility, leading to fast interface
migration. It is suggested that this arises because such disconnections have wider cores than
their counterparts in type I twins, combined with simple shuffles accompanying their motion.
Ancillary consequences are that the magnitude and temperature dependence of of;(T) for type
Il twins are expected to be lower than those quantities for type I twins, o (T). For ragged type
Il twins, we anticipate this trend to be more pronounced because of the increase in effective
core width.



Previous authors have suggested that a type Il twin may lower its interfacial energy by
reconfiguring into a misfit-relieved assembly of coherent low-index facets [30,57—60]. Here, we
considered such a mechanism for (q,11),,, type Il twins by formation of (011),,, facets. We
assume the (011),,, facets spontaneously adopt a 2-D periodic structure through a coherency
strain of less than 1%, and this displacement field is accommodated by an array of
superimposed screw disconnections. However, according to the TM, the step sense of
disconnections with the appropriate sense of Burgers vector leads to the misfit-relieved
interface that rotates away from (g,11),,, rather than towards it, contrary to experimental
observations. Thus, we find that surface nucleated (q;11),,, type Il twins in NMG are unlikely to
adopt a facetted configuration. This conclusion is consistent with the expectation that such
structures would exhibit higher magnitudes of 6, (T) and lower mobilities because the
admissible disconnections would have relatively narrower cores.

APPENDICES

APPENDIX A: TRANSFORMATION MATRICES

Let a and 3 designate alternative unit cell representations of the same crystal. Then reciprocal
space vectors transform co-variantly and real space vectors transform contra-variantly [88]:

(hkDg =K 1)g gPg (A1)

!

u u
<V) = «Pp (v) (A2)
W7 o W’ B

From the electron diffraction pattern shown in Figure 1 (c), we observe, (0 0 10),oy —
(220),,,, (200) 105 = (220),,, and (020)0p — (002),,,. Thus, we calculate the transformation
matrices as follows:

where, ,Pg = Py

1/5 -5 0

10MPm = 3 0 0 5 (A3)
-1 -1 0
(/1 0 =5

mP1iom = > -1 0 =5 (A4)
0O 2 0

APPENDIX B: BEVIS & CROCKER THEORY

A homogeneous simple shear is represented by an affine transformation as:



v=S-u (B1)

where u and v are lattice vectors of the parent and twin respectively, and S is a second rank
tensor defining the shear transformation. In some general coordinate system A4, the equation
B1 can be written using the Einstein summation convention as:

Apt = ASji- Ayl (B2)
In the general coordinate system A4, ASji, has the form:
Aci _ i Aji . A

Si=6+s- - my (B3)

where 6]-" is the Kronecker delta, L is the unit vector parallel to the shear direction, m is the unit
vector normal to the invariant plane and s is the twinning shear. In general, equation B2 yields
irrational components for 4v. However, v is a lattice vector of the twin in a new coordinate
system B, where B is related to A by some rotation or reflection, L. So,

By=L- 18- 4u=C- 4u (B4)
where C is the unimodular correspondence matrix.

Once the correspondence matrix, C, is specified, Bevis and Crocker [22] showed that we can
utilize its properties to calculate s, [ and m. Using matrix notation, the solutions for s, l and m
are found as follows:

s=trace(C'-G-C-G1)-3 (B5)
where,
a-a a-b a-c am Amby cosy 0
G=|(b-a b-b b-c|=|auby,cosy b2, 0 (B6)
c-a ¢c-b c-c 0 0 c2

is the metric tensor for the present case. UsingY = G — C’ - G - C, we obtain three quadratic
equations, defined by the equation:

Yy -mf —2Y; m-my+ Y -mi =0 (B7)

wherei # j,andi,j = 1,2,3. Equation B7 yields two possible solutions for m, which are the
conjugate undistorted planes k4 and k5. L can then be obtained directly from equation B3, or
derived from Y~ using three quadratic equations like B7. Yet again, we obtain two solutions
for I, which are the conjugate shear directions y; and y5.

In the case of twinning, equation B4 shows that a correspondence matrix for a conventional
twin can be formulated as a 2’ operation. Thus, the complete set of correspondence matrices



for conventional twins is isomorphous with the 2-fold symmetry operations which were present
in the austenite, but which are suppressed by the monoclinic distortion. There are 12 such
operations in the present case, but, in the light of equation B7 which shows that there are two
solutions, k4 and k,, for each choice of C, we may select just 6 of these. Furthermore, it is
helpful to subdivide these 6 into the operations which leave the (001),,, crystal mirror plane
invariant, i.e. 2{1oo]c and 2{11o]c' because these lead to compound twins, and the others,

!

2[101]Cl 2701],» 2[011], and Zfoil]c, which lead to type I — type Il pairs. The € matrix for each of

these operations is listed in Table B1.

Table B1: Correspondence matrices formulated as 2’ symmetry operations that are suppressed in the martensite
phase compared to its austenite parent phase.

Compound twins Type | and type Il twins
2610010 2,[11010 2,[01110 ZEOTI]C 2610115 ZETOl]c
1 0 0 01 O -1 0 0 -1 0 0 0 0 1 0 0 -1
cC [0 -1 0 1 0 0 0 0 1 0 0 -1 0 -1 0 0 -1 0
0o 0 -1 0 0 -1 0 1 0 0 -1 0 1 0 0 -1 0 0

APPENDIX C: COHERENTLY FACETED APPROXIMANT TO TYPE Il INTERFACE

It is possible that the energy of a type Il TB can be reduced by the formation of coherent facets:
for example, recent work by Mohammed and Sehitoglu [60] used atomic-scale simulation to
investigate a faceted approximant structure in NiTi. Since the boundary plane of a type Il twin is
an invariant plane, there is no long-range elastic strain field. If the boundary reconfigures to
become faceted, any coherency strain at these facets (or terraces) would have to be
accommodated by the introduction of an array of appropriate interfacial defects. If these
defects are disconnections, their step character would cause the overall interface orientation to
rotate away from the facet orientation. In an ideal approximant structure, the array of misfit-
removing defects would not only fully accommodate any coherency strain but also rotate the
interface orientation to that of the type Il twin. Here, we consider the (q;11),,, type Il twin in
NMG.

The axis/angle pair defining the orientation relationship between the two crystals in the
approximant configuration is taken to be the same as that for the type Il twin, i.e. P(II) =
[011],,/m, so all planes in the [011],,, zone are common to both crystals. However, these
planes are not coherent in 2-D, i.e. [011],,, is the only coincident rational direction in these
planes. We focus on the (011),,, plane, which is inclined by only 4.12° to (q;11),,,. As
illustrated in Figure 7, this plane becomes coherent in 2-D by the imposition of a small
coherency shear strain parallel to [011],,,. Such a coherency strain can be accommodated by a
superimposed array of screw disconnections, and, since these defects have step character, the



average interface plane consequently rotates away from the (011),,, “terrace” orientation. We
investigate whether the misfit can be fully relieved in this manner, and whether the interface
structure rotates to an orientation close to the (q;11),, plane. Since (011),, type | TBs are
observed experimentally in NMG [19,61,62], implying that they have low interfacial energy, this
stepped configuration with (011),,, terraces might be energetically feasible. In the coherently
strained (011),, terrace illustrated in Figure 7 (b), the [100],,, and [011],, directions become
orthogonal, whereas they are not so in a (011),,, type / interface.

We imagine the creation of a bicrystal with a 2-D coherent (011),,, planar interface by the
application of shear tractions to the external (top and bottom) surfaces: these tractions
produce homogenous strains which are equally partitioned between the two crystals. Thus, the
directions [100]%, and [100],, which were originally inclined by 0.53°, are brought into
parallelism, and become perpendicular to the common [011],,, axis. The defect content of the
2-D coherent interface can be established by applying the Frank-Bilby [89] equation. We
introduce a coordinate frame where the coherent (011),,, terrace plane has embedded
interface coordinates x, y, z with x || [011],,, and z parallel to the interface normal. Following
Hirth et al. [89], we define the matrix, D;;,
transform the “natural” bicrystal into the “sheared-coherent” form: the only non-zero element

which quantifies the elastic distortions required to

is D;, = —2 - tan(0.53°/2) = —0.0092. When this matrix operates on a probe vector, v, we
obtain the coherency dislocation content, b€, necessary to sustain coherency. Using v =
[O, —vy, 0] (for consistency with the RH/FS convention [79]), we obtain b¢ = [—Dlzvy, 0,0].

Thus, b€ is parallel to x, so these dislocations have RH screw character.

To compensate for the resulting displacement field, we introduce an array of equally spaced LH
screw disconnections (b™, h™) in the interface, where b™ = P(I1)~1t*(A)-t°(u), and h™ =
n-t(u) =n-PUD™1t°(AN): here, t°(W) and t°(A) are translation vectors in the coherent
dichromatic pattern (CDP), and n is the unit normal to the (011),,, plane (i.e. the same as m in
equation B7). For the smallest magnitude |b™|, we use t°(u) = 1/2[101],,, and t°(A) =
1/2[110],,, i.e. rational vectors with opposite sense of those shown in Table 2 for
disconnections in the (q;11),, twin. These translation vectors give us b™ || [011],,. The
coherency strain enhances the magnitude of the Burgers vector by (1 + |D;,|) compared with
the value given in Table 2 for the type Il twin, giving |b™| = 0.0233 nm, and the defects’ step
height is h™ = d(¢33),, = 0.2035 nm.

This disconnection array is shown schematically in Figure C1. We define a second interfacial
coordinate frame x’, y’, Z’, inclined to the terrace by angle 6. In the terrace frame, the Burgers
vector can be written as b™ = [—b* 0 0], and remains the same when resolved into the
inclined interface frame. The distortion matrix transformed into the inclined frame has non-



zero components D;, = Dy, cos @, and D;; = —D;, sin 6. Thus, for misfit relief on that plane,
i.e. B = —b°, and putting v, = L, where L is the disconnection spacing on this plane, we have
L - Dy, cos@ = b}*. Since sinf = h™ /L, we have tan8 = h™ - D,, /b}*, and hence 6 = 4.59°
in the present case. The residual strain, D;; < 0.1%, cannot be compensated by any regular
defect array in the x’y’ plane. Thus, for NMG, the partially misfit-relieved faceted coherent
plane would be inclined at 4.12° + 4.59° = 8.71°, i.e. it rotates away from the invariant
(q111),, plane, as shown in Figure C1.

Referring to Figure C1, we can determine whether the stress indicated in Figure 4 would grow
or diminish the twin crystal. In the present case, the applied shear causes the disconnections in
the array to move leftwards thereby promoting twin growth. The resulting engineering strain
would have magnitude 0.1147.

Figure C1: Schematic illustration of misfit accommodation at a coherently faceted approximant structure. The line
direction of RH coherency dislocations, &€, pointing out of the page, is parallel to [011],,,. The angle between
(011),,, and (g;11),, is 4.12°. The LH screw misfit disconnections have b™ anti-parallel to & and a negative sense
of steps. The direction n is the average line direction of the twinning disconnections in the (q;11),,, twin plane.
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