ON ®-VARIATION FOR 1-D SCALAR CONSERVATION LAWS
HELGE KRISTIAN JENSSEN AND JOHANNA RIDDER

ABSTRACT. Let @ : [0,00) — [0,00) be a convex function satisfying ®(0) = 0, ®(z) > 0
for x > 0, and lim, o @ = 0. Consider the unique entropy admissible (i.e., Kruzkov)
solution u(¢, x) of the scalar, 1-d Cauchy problem

Drult, @) + Oulf (u(t, )] = 0, u(0) = (0.1)
For compactly supported data @ with bounded ®-variation, we realize the solution u(t, z)
as a limit of front-tracking approximations and show that the ®-variation of (the right

continuous version of) w(t,x) is non-increasing in time. We also establish the following
natural time-continuity estimate:

/ D(|u(t,x) — u(s,z)])de < C - P-varu(s) - |t — s for s,t >0,
R

where C depends on f. Finally, according to a theorem of Goffman-Moran-Waterman, any
regulated function of compact support has bounded ®-variation for some ®. As a corollary
we thus have: if @ is a regulated function, so is u(¢) for all ¢ > 0.

Keywords. Scalar conservation laws, one dimensional, Phi-variation, time continuity,
regulated solutions.
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1. INTRODUCTION

The present work shows how the method of front tracking for scalar conservation laws
of the form (0.1), with a locally Lipschitz continuous flux f, can be extended from the
standard setting with u € BV to the more general case where « is of bounded ®-variation.
Here @ : [0,00) — [0,00) is any convex function satisfying conditions (p1)-(p4) listed below
in Section 2; the definition of ®-variation is given in Definition 2.2. Our main results are:

(i) the spatial ®-variation of the (right-continuous version of the) Kruzkov solution
u(t, x) is non-increasing in time;
(ii) the natural ¢-continuity property of solutions with bounded ®-variation (see (5.4));
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(iii) if @ is regulated, then so is u(t,-) at each time ¢ > 0.

Properties (i) and (ii) were established by [1] for the particular case of ®(u) = uP, p > 1.
However, the details of the argument for (ii) in this case were not given in [1]. The latter
work, as well as [9], focus on the nonlinear regularizing effect induced by the flux f. It turns
out this can be quantified in terms of ®-variation, with ® depending on f.

Concerning (iii), a function defined on an interval I C R is regulated provided it has
(finite) right and left limits at all points of I (see Section 2 for precise definitions). In a
recent work [8] the authors established (iii) by a different argument based on the notion
of e-variation due to Frankova [5], and her extension of Helly’s Selection Principle to the
space of regulated functions. (The e-variation of a function v is defined as the infimum of
variations of BV functions uniformly e-close to v.) In [8] it was shown that the e-variation
of the Kruzkov solution is non-increasing with time, and (iii) is a consequence of this fact.

It is known that the Kruzkov solution belongs to CO(RJ; L1, .(R)) whenever the initial
data @ belongs to L ([3], Chapter 6), while for BV data this is upgraded to Lipschitz con-
tinuity, with Lipschitz constant depending on var u. It is reasonable to expect more than
mere continuity of the solution operator (but not Lipschitz continuity) for regulated initial
data. However, the approach via e-variation in [8] does not provide such information. In
contrast, the present work shows that by basing the analysis on the notion of ®-variation,
and exploiting the characterization of regulated functions in terms of ®-variation (due to
Goffman-Moran-Waterman [6]), we obtain precise information about time-continuity of so-
lutions with regulated data. In particular, any such solution defines a uniformly continuous
map from R{ into L}, (R) (see Theorem 5.1).

In Section 2 we introduce the class of convex functions ® under consideration, define ®-
variation (for background see [4,10]), and state various auxiliary results for later use. These
are mostly either easy generalizations of corresponding results for functions of bounded
p-variation (e.g., as presented in [1]), or well-known. A notable exception is the aforemen-
tioned result by Goffman-Moran-Waterman [6] which is used later to treat the case with
regulated initial data. Section 3 contains detailed proofs of Helly’s Selection Principle for
functions with bounded ®-variation, together with its application to sequences of functions
of (t,x) that satisfy the natural time-continuity property in this setting. In Section 4 we
establish a quantitative estimate on time continuity, as well as non-increase of ®-variation,
for front-tracking approximations when the data have bounded ®-variation. With the re-
sults of Sections 2-4 in place, a standard argument yields (i) and (ii) above, see Theorem
5.1 in Section 5. Finally, we apply the result of Goffman-Moran-Waterman [6] to establish
(iii). While one could extend the analysis to more general cases, for ease of exposition we
formulate our main result for the case of compactly supported initial data.

2. PRELIMINARIES ON ®-VARIATION

We fix a function @ : [0,00) — [0, 00) with the following properties:
(b1) ®(0) = 0
(p2) @ is convex
(p3) ®(z) >0 for z >0
(p4) limgyo 22 =
Lemma 2.1. It follows from the properties (p1)-(p4) that
(a) for any x >0 and any t € [0,1], ®(tx) < tP(x),
(b) ®(x) + P(y) < B(x +y) for any z, y >0,



ON @®-VARIATION FOR 1-D SCALAR CONSERVATION LAWS 3

(¢) and more generally
O(z1)+ -+ P(xy) <P(x1 4+ +2,) foranyz,...,z, >0,
(d) @ is strictly increasing and everywhere continuous.
Proof. For x and t as in (a), (p2) and (pl) gives
O(tz) = C(tz + (1 —1)0) < t®(x) + (1 —t)P(0) = tP(z),
establishing (a). Next, by (pl), (b) is obvious if x = y = 0; if not, (a) gives

O(x) + (y) = (5 (@ +y) + (5 (z +v))

<50 +y) + 0@ +y) = S(z+y),

establishing (b). The argument for (c) follows by induction. Next, if 0 < x < y, then (a)
and (p3) give

O(z) = 2(Fy) < ;2(y) < 2(y).
Finally, (p4) implies continuity at 0, while a standard result (convex functions are continuous
on open intervals) yields continuity of ® on (0, 00). O

Next, for any interval I C R let II(/) denote the set of finite partitions of I: 7 € II(]) if
and only if 7 = {xg,...,zx}, for some k € N, with z¢,...,zp € [ and o < -+ < x. We
write II(a, b] for II((a,b]), and similarly for other types of intervals.

Definition 2.2. For any function u : I — RY we define the ®-variation of u relative to
m e Il(I) as
k

Ovary uln] =Y B(|u(x;) — ulxi1)]),
and we define its ®-variation by -
$-varyu := sup P-varyulrw]. (2.1)
rell(l)
We write ®-varu for ®-varg u, and set
®-BV(I) = &-BV(I;RY) :={u:1 - R : ®-varju < co}. (2.2)

Lemma 2.3. Assume —oo <a <b<c<oo, andu: (a,c] - R. Then
Q-var(gy u+ P-varggqu < P-varpu+ P-varpgu < P-varg, g u. (2.3)

Proof. The first inequality is trivial since ®-var;ju < ®-varyu whenever I C J. For the
second inequality let € > 0 be fixed. Choose 7 € II(a,b] and 7" € II[b, ¢] such that

D-var(qp u < P-var(, ) ulr] + ¢,
and
P-varp, g u < O-varp, g ulr'] + &
Then 7 U7’ € II(a, ], so that
P-var (g p) u + P-varg, g u < O-var gy ul[r] + S-varg, g ulr'] + 2
< @-var(q g u[r Un'] + 26 < B-var(, g u + 2.

As ¢ is arbitrary, the second inequality in (2.3) follows. O
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Lemma 2.4. Assumeu € ®-BV(R) and let U denote its corresponding ®-variation function
defined by

k

U(x) := ®-var(_ 5 u = sup { Zfb(\u(x,) —u(zi—1)]) t keN, zop<--<ap < x}
i=1

Then,
U(z) +vargu < U(y) and U(z)+ @(Ju(y) —u(x)]) <U(y) whenever x <y. (2.4)

Proof. The first inequality in (2.4) is the special case of the inequality between the extreme
terms in (2.3) with @ = —c0, b = x and ¢ = y. Since ®(|u(y) — u(z)|) < ®-var, ,ju, the
second inequality in (2.4) follows from the second inequality in (2.3) with the same values
of a, b, and c. ]

For later reference we record the following simple fact.
Lemma 2.5. Let u : [a,c] — R be such that supp(u) C (a,c|, and assume a < b <
inf supp(u). Then
P-var(, g u = P-var(, o u = P-var ) u. (2.5)

The following definition and proposition describe some useful properties of the ®-variation,
adapted from [1].

Definition 2.6. Let 7 = {xo,...,zx} be any partition of an interval I C R, and let
u: I — R. Then the extremal points of m with respect to v are xg, x, and the points x;,
1 <1¢<k—1, with the property that either

max(u(zi-1), u(@i+1)) < u(®i),
or

u(xz) < min(u(mi_l),u(xiﬂ)).
Given m, let w[u] denote the partition consisting of the extremal points of m with respect
to u, i.e., w[u] consists of the points of local extrema of u|r. The partition 7 is said to be
extremal with respect to u if wju] = 7. Finally, we let Ext(I,u) denote the collection of
partitions of I that are extremal with respect to w.
Proposition 2.7. Let I C R be an interval and let uw : I — R. Then:

(1) For any partition = € I1(I),
O-vary u[n] < ®-vary ulr|ul].

(2) We have

$-varyu= sup P-varjufn].
w€Bxt(1,u)

(3) If u: I — R is monotone, then

d-varyu = @(Sl}pu — ir}fu).

Proof. (1) Let m = {xo, ..., zx} be any partition of I and assume that 7[u] = {y1,...,ym}
(m < k) be the partition consisting of extremal points of 7 with respect to u. Let
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¢ :{0,...,m} — {0,...,k} be the strictly increasing function defined by setting
Te(j) = Yy, for j = 0,...,m. With u; = u(z;) we then have

k m #(5)
varpuln] = O(lui—wia)=> D @(u— i),
i=1 =1 i=(j—1)+1
For each j = 1,...,m we have that ¢ — u; is monotone for ¢(j — 1) < i < ¢(j),
such that, by part (c) of Lemma 2.1 and monotonicity, we get
o) o (j)
> o(u—uia]) < q’( > Jui- Ui—1|)
i=p(j—1)+1 i=¢(j—1)+1
= O (Jug(j) — tg(-1))

D(fuly;) — ulyj-1)))-
Thus,

m

O-vary u[m Z (lu(yj) — ulyj—1)|) = ®-vary ulr[ul].

(2) Immediate from the deﬁnltlon of ®-varu in (2.1) and part (1).

(3) If w : I — R is monotone then any partition 7 € Ext([,u) consists of only two
points, viz. min 7 and max 7. According to part (2), together with continuity and
monotonicity of ®, we therefore have

P-varyu = sup ®(Ju(y) — u(z)|) = @( sup |u(y) — u(z)|) = ®(supu — infu).
z,yel z,yel I I

We next introduce the class of regulated functions on an interval.

Definition 2.8. Let I be any interval in R (i.e., I may be open, closed, half open, finite,
or infinite). A function u : I — R is regulated on I provided its right and left limits exist
(as finite numbers) at all points in the interior of I, it has a finite right limit at the left
endpoint, and a finite left limit at the right endpoint (whether or not these endpoints are
finite or belong to I). The class of requlated functions on I is denoted R(I).

The following results are standard (see [4, 5]):
Lemma 2.9. Ifu € R(I), then u has at most a countable set of discontinuities in I.
Lemma 2.10. If u € ®-BV(I) for some function ® satisfying (pl)-(p4), then u € R(I).
The work [6] established the converse result (see also [4]).

Theorem 2.11 (Goffman-Moran-Waterman [6]). Assume I be a compact interval and u €
R(I). Then there exists a function ® : [0,00) — [0,00) satisfying (pl), (p2), (p3), and (p4)
above, with ®-varyu < oo.

The following result shows how passing to the right-continuous version of a function with
bounded ®-variation does not increase its ®-variation, and also how this version may be
obtained via so-called Steklov averages (see also [8]).



[§ HELGE KRISTIAN JENSSEN AND JOHANNA RIDDER

Lemma 2.12. Assume u € ®-BV(R) and let u, denote the function

ur(z) = u(z+) = lylgnl u(y).

According to Lemmas 2.10 and 2.9, u, is well-defined and agrees with u except on a countable
set. For e > 0, define

T+e€
ut(x) == / u(§) dé. (2.6)

Then the following holds:
(a) ®-varu, < P-varu,
(b) uy(x) = lim. o u®(z) at all points v € R, and
(c) uy is right-continuous at all points.

Proof. For (a) consider any selection z¢g < z1 < --- < x. As ® is continuous we have

k k
> O(Jup (i) — ur(wioa)]) = 161301 O(|u(z; + 0) — u(zi_1 + 0)|) < P-varu,
1=1 i=1
and the result follows. For (b), fix x € R and § > 0. As u is regulated there is an h > 0
with the property that

|u(§) —ur(z)| <6 whenever £ € (z,x + h). (2.7)
Thus,

1 rt+e
|u®(z) — ur(z)| < 5/ |u(§) — ur(z)|d€ <6 whenever 0 < & < h.
Finally, for (c), fix any € R and 6 > 0. Then there is an h > 0 such that (2.7) holds. We
will show that |u,(z + y) — ur(z)| < 26 whenever 0 < y < h. Indeed, for any such y there
is a k > 0 with the property that

lur(z +y) —u(n)| < o whenever n € (x +y,x +y + k).

Set p := min{h,y + k} such that y < pu < h. We then have (x + y,z + u) C (x,x + h) N
(r+y,x+y+ k). Thus, for any n € (v + y,x + p) we have (using (2.7) with n for £) that

ur (2 +y) = ur(2)] < |ur(z +y) —ul)] + |u(n) —ur(2)] < 26.

This shows that wu, is right continuous at x. ]
We end this section with the following approximation result:

Proposition 2.13. Assume u € ®-BV(R) is right-continuous and of compact support.
Then there is a sequence (uy) of right-continuous step functions of compact support with
Uy — u uniformly. In addition, the u, may be chosen to agree with u at the left endpoints
of their intervals of constancy.

Proof. We first recall the fact that a regulated function on a compact interval can be realized
as a uniform limit of step-functions (see [5]; in fact, this is a characterization of regulated
functions of compact support). It is immediate to verify that if the regulated function in
question is right-continuous, then the step functions may be chosen as right-continuous. If
now 4 € ®-BV(R), with supp @ C [a, b], we have @ is regulated according to Lemma 2.10, so
that there is a sequence of right continuous step functions (vy) that converge uniformly to
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u. We then define the sequence (u,) as follows (see also [8]). For each n, let k(n) be such
that

[0y — @l < 55 - (2.8)
Let {xkl}fg denote the jump set of vy, such that
vp(x) = vg(Tk,) for x € [z, xpi41), 1 =1,..., Ny — 1, (2.9)
and vy (z) vanishes for z < xj; and for >z, n,. We then define
Un () = UW(Th(n),0) for € [Tr(n)i> Th(n)it1)s 1= 1, .., Nigmy — 1,

and uy(z) := 0 everywhere else. As a consequence of (2.8) and (2.9), given any x € [a, b],
T € [Tp(n)ir Th(n),i+1), We have

|tn(2) = u(z)| = [a(Trm),) — u(@)|

< W(Jfk (n)yi ) = Vi) (Th(n),i) | + [Vk(n) (Tr(n),i) — Vi) (@)] + k@) (2) — u(z)]
As Uy (z) = u(z) = 0 for all = ¢ [a,b], this shows that u,, converges uniformly to . O

3. HELLY’S SELECTION PRINCIPLE FOR ®-BV(R)

Theorem 3.1 (Helly). Let (u,,) be a sequence of functions u, : R — RN which are uniformly
bounded in magnitude and ®-variation, i.e. there are finite numbers M and V' such that

(H1) |up(z)| < M for all x and all n, and
(H2) ®-varu, <V for all n.

Then there is a subsequence of (uy), denoted (up,), and a function u : R — RN such that

(C1) (um) converges pointwise to u at every point of R,
(C2) |u(z)] < M for all z, and
(C3) ®-varu < V.

Proof. The proof follows that of the standard case of BV [2,11]. For each n define the
variation function

Un () 1= ®-var(_qg ) Un- (3.1)
For later use we note that (2.4)2 and monotonicity of U,, give

D (|up(x) — un(y)|) < Un(q) — Un(p) whenever p <y <z <gq.

Since @ is strictly increasing, it is invertible, and its inverse function ®~! is also increasing.
It follows that

|t () — un(y)| < 7 H(Un(q) — Un(p)) whenever p <y <z <gq. (3.2)
Now, each U, is non-decreasing and satisfies, according to (H2),
0<Up(z) <V for all z € R. (3.3)

Applying a diagonal argument to the sequence (U, ) we extract a subsequence Uy, which
converges at all rational points, and we define

U(z) = li]f:n Un, () for each x € Q. (3.4)
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As each U, is non-negative, non-decreasing, and pointwise bounded by V/, it follows that
U : Q — R has the same properties. This implies that the jump set of U, i.e.,

J = eR: lim U(z)> lim U ,
ek gim, Ve > g, VW

is countable.

Next apply a diagonal argument to the sequence (u,,) to extract a subsequence, for
convenience denoted (u,,), which converges at each point in the countable set Q U J. Let
the limiting function be denoted u : QU J — R, i.e.,

u(x) := lim up, () for each x € QU J. (3.5)

The claim now is that the sequence (u,(x)) converges for every x € R. To verify the claim,
we fix any 2 ¢ QU J and show that the sequence (u,,(x)) is Cauchy. Choose any £ > 0. As
x ¢ J we have that

lim U(z) = lim U(y),

Q3zlz Qaytz
such that there exist y,z € Q with
y<ax<z and 0<U(z) —U(y) <6, (3.6)
where
§:=1®(e) > 0. (3.7)

Let (U,,) denote the sequence of variation functions corresponding to the subsequence we
have denoted (uy,). From here on, any Uy and wuy are understood to be from the subse-
quences denoted (Uy,) and (u,), respectively. According to (3.5) and (3.4) there is an index
N € N (depending on y and z, and thus on x) such that whenever k > N, then

lue(y) —uly)| <e, (3.8)
and
\U(y) = U(y)| <0, |Uk(z) = U(z)| <0. (3.9)
Hence, for k, [ > N, we have

() — k()| < fu(r) = uly)] + |uy) — ue(e

()]
u(

)
< (@) —w(y)] + [u(y) = w(y)] + [uly) — we(y)] + fur(y) — up(z)]
< IUZ( ) = w ()] + [ur(z) — wr(y)| + 2¢ (by (3.8))
“HUi(2) = Ui(y)) + @1 (Un(2) — U(y)) + 2¢ (by (3:2))

(!Uz( )= U@ +[U(z) —UW)|+U(y) — U(y)l)
HUR(2) = U@ +|U(2) = Uy)| + [U(y) = Ukly)]) + 22
< 2<1>—1(35) +2¢ = 4¢ (by (3.6), (3.9), and (3.7)).

This shows that (um,(z)) is Cauchy for every z € R, verifying the claim and establishing
(C1). (C2) is an immediate consequence of (C1) and (H1). Finally, to verify (C3), fix any
partition {xo, ..., z}, and use continuity of ® and (C1) to get

k
Z@(!u(mz) —u(xi—1)|) = hmZ@ [t () — um(zi—1)]) < V.
i=1
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3.1. Application to sequences (u,(t,z)). We first include an observation that will be
used in the proof of the theorem below.

Lemma 3.2. Assume u € L®([0,00) x R;RY) has the property that for each compact
K C R,, there a constant Ly such that

/K<I>(|u(t,:17) s, 2)|) dz < Liclt — s|. (3.10)
Then t — u(t,-) is a uniformly continuous map of [0,00) into L}, (Ry; RY), and specifically,
/K lult, 2) — (s, 2)] dz < Ur(|t — s|), (3.11)

where
Upe(€) = |K|D™ (ﬁ?' ) £>0. (3.12)

Proof. This is a direct consequence of Jensen’s inequality applied to the convex function W:
for a fixed compact K C R, (3.10) gives

Lk
‘K|/|ut:ﬁ u(s, )] dr) < ym/ (1t ) = s, ) o < e .

As ® is increasing, it follows that

/|ut:v u(s,x)| de < |K|®~ (|K‘|t—s|>

Since ® is one-to-one and continuous, so is ® 1. In particular, ®~! is continuous at 0, and
the uniform continuity of ¢ — u(t,-), as a map into L} (R,;RY), follows. O

Theorem 3.3. Assume (u,) is a sequence of functions u, : [0,00) x R — RN for which
the following holds. There are constants M and V', and for each compact K C R there is a
constant Ly, such that for all n:

(h1) |un(t,z)| < M for all t, x;

(h2) ®-varu,(t) <V for all t; and

(h3) for any t,s >0,

/ B(un(t,z) — un(s, )|) dz < Lilt — s|. (3.13)
K

Then there exists a subsequence of (uy), denoted (up,), and a function u : [0,00) x R — RN
such that

0) (un(t)) converges to u(t) in L (R:RV) for all times t > 0;
(um) converges to u in L}

(c

(c1) ([0,00) x R; RY);
(c2) |u(t,z)| < M for allt, x;

(c3) ®-varu(t) <V for all t;
(c4)
(c5)

loc

c4) for each fized t, x u(t x) is right-continuous at every point x; and
ch) forallt,s >0 cmd any compact K C R, we have

/KCIJ(\u(t,x) —u(s,z)|)dr < Lkt —s|. (3.14)
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Proof. First, for each time t € Qf = QN [0,00) the sequence (uy,(t,-)) satisfies the hy-
potheses (H1) and (H2) of Theorem 3.1. Therefore, for each t € Qf, there is a subsequence
(un, (t,-)) and a function u(t, -), satisfying

lu(t,x)| < M, O-varu(t) <V, (3.15)
and such that wuy, (t,z) — u(t,x) at all points z € R, as k — oo. Performing a diagonal
argument we extract a subsequence (u,,) with the property that

up(t,x) = u(t,z)  forallz € R, for all t € QF . (3.16)

This (uy,) is the subsequence in the statement of the theorem. The issue now is that the
resulting function @ is only defined for rational times. The remainder of the proof concerns
extending « to irrational times, and then modifying it, in such a way that (c0)-(c5) all hold.
We note that @ satisfies (c2) and (c3), with ¢ restricted to Q. Also, whenever K CC R,
then, according to (hl), dominated convergence, (h3), and continuity of ®, we obtain

/ O(|lu(t,x) — u(s,x)|) de = lim/ D (|um(t, ) — um(s, x)|) dx
K m JK
< Lg|t — s] for t,s € Qf. (3.17)

We want to exploit this time-continuity to define a suitable extension @ of @, with a(t,x)
defined on all of Rar x R. Of course, we set
u(t,x) == u(t,z) for all z € R, whenever ¢t € Qg . (3.18)

We also want @ to satisfy the bound in (¢3) for all times t € Rf. We therefore need to be
precise about the pointwise values of (¢, z) also at irrational times. To do so we proceed as
follows. For each t ¢ Qf we fix a sequence (t;) C Q" with t; — ¢, and then apply Theorem
3.1 to the sequence (u(t;,-));. This yields a subsequence (t;) of (¢;) with the property that
(u(tg,z)) converges for all z, and we define

a(t,z) = lilgn u(ty, x) for all z € R. (3.19)

According to Theorem 3.1, (3.18), and (3.15) we have that
d-vara(t) <V and |a(t,z)| < M for allt € RS and all z € R. (3.20)

Next, fix any two times t,s € RJ. If ¢ and s are both irrational, let (t) and (¢}) be the
rational sequences used in (3.19) to define u(t) and 4(s), respectively. If ¢ is rational, we
let (t;) be the constant sequence t; = t; similarly for s. Thanks to (3.19), (3.18), (3.17),
continuity of ®, and dominated convergence, we have

/ (ja(t, z) — (s, o)) do = hin/ B(|a(t, 7) — a(th, o)) dz < Liclt—s|  (3.21)
K K
for any K CC R, and any ¢, s > 0. In particular, applying Lemma 3.2 to 4, we have that
[a(t) = a(s)ll L1 aermy < Vi ([t — s]).- (3.22)
We finally modify @ by setting
u(t,x) = a(t, z+), (3.23)
which is well-defined according to (3.20); and Lemma 2.10. This is the function u in the

statement of the theorem. We proceed to check that it is (jointly) Borel measurable in (¢, x)
and satisfies properties (c0)-(c5).
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To verify joint Borel measurability of v we fix the point (¢, x) € Rg x R and observe that
u(t, x), according to (3.23) and part (b) of Lemma 2.12, is given by

1 [zte
u(t,x) = ima° (¢, x), where 4 (t,x) = 5/ a(t, &) dé.

el0
It follows from (3.22) that
x+e

~E ~E 1
i (ta) = (s, < 2 [ lal6) = i €] <

where W, . = U, ... Also, for any h € (0,¢), assumption (hl

x+e+h
05t 4+ ) — @5(t, )| < - {/ [ hate e de < 2.

The same estimate holds for h € (—¢,0). Thus, for a fixed € > 0, the function 4° is uniformly
continuous, separately in time and space, on a neighborhood of each point (¢, ). It follows
that 4° is jointly continuous in (¢,z). The function w is therefore a pointwise limit of jointly
continuous functions, and hence Borel measurable with respect to (¢, x).

Since, by (3.23) and Lemma 2.9, u(t,z) = u(t,z) for almost every x € R at each fixed
time ¢ > 0, (c5) follows directly from (3.21). Next, (c2) is immediate from (3.20)2, and the
definition (3.23) of u. Property (c3) follows from (3.20);, part (a) of Lemma 2.12, and the
definition of u. Property (c4) holds according to (3.20)1, part (c) of Lemma 2.12, and the
definition of u. To verify (c0) we need to argue that

U (t,+) = ul(t, ) in L},.(R;) at every time t € R]. (3.24)

ze(lt = s)),

gives that

\_/m‘}_‘

For this we fix ¢ > 0 and any compact K C R,, and use that u(t,z) agrees z-a.e. with
a(t, x), such that

/ \um(t,x)—u(t,wﬂdx:/ (£, 2) — (1, 2)| da. (3.25)
K K

If t € QF then, by (3.18), (t,x) = u(t,x) for all z, and the right-hand side of (3.25) tends
to zero as m — oo thanks to (3.16) and dominated convergence. For irrational times ¢t we
argue as follows. Let (¢;) be the sequence of rational times converging to ¢ which is used in
the definition (3.19) of @(¢, x), and estimate the right-hand side of (3.25):

/K\um(t,x)—a(t,x)]dxg/ \um(t,x)—um(tk,x)\d:c+/Kum(tk,x)—ﬂ(tk,x)]dx

/ |u(ty, x) — u(t,z)| dx

< \I’K(|t — tk’) +/ ‘Um(tk,l‘) — ﬂ(tk,x)]dx

/ |u(ty, z) —u(t,x)| dx, (3.26)

where we have used (h3) and Lemma 3.2 (applied to w,,). For e > 0, choose k large so that:
- by continuity of ¥x at 0, the first term on the right-hand side of (3.26) is less
than £/3,
- according to (3.19), boundedness of @ and 4, and dominated convergence, the last
term on the right-hand side of (3.26) is less than £/3.
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Then, for this k, apply the definition of u(tg,z) in (3.16), together with boundedness and
dominated convergence, to choose m so large that the second term on the right-hand side
of (3.26) is less than /3. Together with (3.25) this yields (3.24), i.e., (c0). Finally, by
boundedness of v and u,,, and dominated convergence, (cl) follows from (c0). O

4. TIME CONTINUITY AND P-VARIATION OF FRONT TRACKING APPROXIMATIONS

In this section we consider piecewise constant solutions generated by front tracking [2,7].
We fix a piecewise affine and continuous function f : R — R, and a right-continuous step
function u(x) with compact support and with range in the set of break points of f. We
denote by L the Lipschitz constant of f|.anee(a), and by u(t,x) the version of the Kruzkov
solution with the property that x — wu(¢,z) is right-continuous at each time ¢ > 0. Each
jump in % defines a so-called Riemann problem at time ¢t = 0, whose Kruzkov solution
yields a fan of fronts (i.e., straight line segments across which (¢, -) suffer discontinuities),
emanating from each point of discontinuity of w. Within each fan, x — u(¢, x) is monotone.
Whenever two or more fronts meet ( “interact”), a new Riemann problem is defined, resolved,
and its solution propagated forward in time. It is well-known that in the present setup (i.e., f
piecewise affine and range(u) C {breakpoints of f}), only finitely many Riemann problems
need to be solved in order to determine u(t, ) globally. For details see [2,7].

Proposition 4.1. With the setup described above we have
/ O(|u(t,z) —u(s,x)|) de < 2L - ®-varu(s) - |t — s| for any s,t > 0. (4.1)
R

Proof. Assume t > s and set A :=t— s and h := LA. Also, let M be such that

supp u(s,-) C (=M, M). (4.2)
Setting

I(z,h) =[x — h,x + h],
the maximum principle and finite speed of propagation (Section 6.2 in[3]), imply

‘ ) <ut,z) < ).
ye%r,lh)“(s y) < u(t, ) yé?&ﬁ)“(s Y)
It follows that

u(t,x) —u(s,x)| < max wu(s,y)— min u(s,y),
u(t,2) —u(s,2)| < max u(s,y)— min u(s,y)

so that
(p(‘u(tv .T) - U(S, ‘T)D < (p_varl(:p,h) U(S)
We thus have
M+h

/ O(|u(t,z) — u(s,z)|) de = / O(|u(t, z) — u(s, z)|) dx
R —M—h

M+h
< / -vary(, ) u(s) dz
~M—h

-M M+h
:/ -vary(, ) u(s) dr —l—/ -vary(, ) u(s) dr
—M—h -M

=T+ Ja. (4.3)
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For J1 we use (4.2) and Lemma 2.5 (applied to u|;( ;) and with a = x — h, b = —M,
c=x+h,and for —M — h <z < —M) to obtain

-M
Ji = / -var(_ps pyp) u(s) dr. (4.4)
~M—h

For J5 we use Lemma 2.3 and Lemma 2.5 to get
-vary(y py u(s) < P-var(_prpgin u(s) — L-varprpan u(s)
= Q-var(_prpyn u(s) — P-var(prpon uls),

so that
M+h

M+h
Jo < / -var_ps pyn) u(s) dr — / -var_pr_p p—p u(s) dr.
M —M

Combining this with the expression for [J; in (4.4), (4.3) gives
[ @lute.) — uts. o)) do < 73 + 72
R

M+h M+h
< / D-var(_pg ) u(s) dr — / O-var(_pr_po—p u(s) de =Ty — Is.
—M—h -M
For 7, Lemma 2.5 gives
0 r—h<-M
-var(_pr_pg—p u(s) = {

@-Var(fMth} Xr — h > —]\4'7
so that
M+h
Iy, = / -var(_pyp—p) u(s) dz.
—M+h

Finally, using the integration variables 2’ := x + h in Z; and 2’ := x — h in Z5, we obtain

/}R@(\u(t,m) —u(s,z)|)de <I; — Iy

M+2h M
= / P-var(_pp o u(s) da’ — / D-var(_pg g u(s) da’
—-M —-M

M+2h
= / P-var(_pp o u(s) dz’ < 2h - P-varu(s).
M

(|

Remark 4.2. Presumably, the factor 2 in (4.1) is superfluous; we have not pursued an
optimal estimate.

Proposition 4.3. With the setup described above we have
O-varu(t, ) < d-vara at each time t > 0. (4.5)

Proof. Let 0 < t; < --- < tps denote the times of front interactions in the solution u(¢,x).
Due to the structure of the solution, it suffices to argue for (4.5) for times t € (0, ¢1].

First consider a time ¢ € (0,¢;). Fix any extremal partition 7 = {zy, ..., 23} with respect
to u(t,-), and let u(t,-) is constant on the open interval Cp := (—00,a;), and the half-open
intervals C; := [bj,aj41), j = 1,..., N (with ay41 = +00). The C; are called “constancy
zones.” In the remaining “fan-zones” Fj := [a;,b;), j = 1,..., N, the function wu(t,-) is
monotone.
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Set u; = u(t,x;), i =1,..., k, and write “u; = max” (respectively, “u; = min”) to mean
that the value w; is strictly larger (respectively, smaller) than the neighboring values ;1.
As 7 is extremal with respect to u(t,-), we have either u; = max or u; = min for each i.
The goal is to build a new partition 7’ = {z, ..., z}. } with the following properties:

(I) each 2 lies in one of the constancy zones C;, and
(IT) ®-var u(t)[r] < P-varu(t)[r'].

Assuming these for now, it follows from (I) and the structure of front-tracking solutions,
that there there is a partition 7" = {z{], ..., 2}} such that u(t, z}) = u(z}) for each i. Thus,
O-var u(t)[r'] = ®-var u[r”] < ®-var @, so that property (II) and Proposition 2.7 give

O-varu(t) = sup D-varu(t)[r] < P-vara. (4.6)
meExt(R,u)

It remains to define 7’ and argue for (I) and (II). The 2, € ' are specified as follows. First,
for each i, 1 <4 <k, let j(i) be the unique index such that z; € Cj(;) U Fjj(;). Then:
(1) if 2; € Cj(y), we set x} 1= x;;
2) if z; € F;(;y we define 2/ to be a point in either C.;y_; or in C;;, according to the
3(@) i 3(4) 3(4)
following rules:
(a) if u; = max and u(t) is increasing on Fj(;, then x} € Cj;
(b) if u; = max and u(t) is decreasing on Fj;, then zj € Cj;)_y
(c) if u; = min and u(t) is increasing on Fj(;), then x} € Cj(;y-1
(d) if u; = min and u(t) is decreasing on Fj(;), then z} € Cj(;).

In other words, the 2 are obtained from the z; by, first, leaving unchanged any z; in a
constancy zone, and, second, moving any x; located in a fan zone to one of the constancy
zones adjacent to it, according to the rules (a)-(d). It is clear that it is possible to do this in
such a way that the z} satisfy 2, < --- < z}. (In fact, an additional argument shows that,
since 7 is extremal for u(t, ), there can be at most one 2} in any constancy zone Cj;.) Also,
(I) is satisfied by construction, while (II) is a direct consequence of the following inequality:

lwi = gl > fuipr — g foreachi=0,...,k— 1. (4.7)

To argue for (4.7), we observe that the rules (a)-(d) above are such that: if u; = max
then u; > wu;, and if w; = min then u, < w;. Thus, if u; = max, then w;4; = min
and we have w; > wu; > wjy1 > uj,, and if u; = min, then u;1; = max and we have
Wi > uiy1 > u; > wj. In either case (4.7) holds.

Finally, assume ¢t = ¢; is the first time when two or more front meet, let 7 = {xq,...,xx}
be any partition, and fix a time ¢’ € (0,¢1). It is clear from the structure of front-tracking
solutions that we can find a partition 7’ = {z,...,2}.} with the property that u(¢,z;) =
w(t',2z}) for i = 0,..., k. It follows that ®-var u(t)[r] = ®-varu(t')[r'] < ®-varu(t’). As 7
is arbitrary, we obtain ®-varu(t) < ®-varwu(t’). Combining this with the first part of the
proof, shows that (4.5) holds also in this case. O

5. SCALAR CONSERVATION LAWS WITH DATA IN $-BV(R)

Theorem 5.1. Assume f : R — R is locally Lipschitz continuous, and let u be a compactly
supported function with ®-varu < oo for some ® : [0,00) — R satisfying (p1)-(p4). Let L
be the Lipschitz constant of f]mnge(ﬂ). Then the right-continuous version u of the Kruzkov
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solution of the Cauchy problem

Oyu(t,x) + 0z [f(u(t,x))] =0 t>0,zeR (5.1)
u(0, ) = u(x),
satisfies
O-varu(t, ) < d-vara, (5.3)
and
/ O(|u(t,x) — u(s,x)|)de < 2L - O-vara - |t — s| for any times s,t > 0. (5.4)
R

Proof. With the results from the previous sections in place, the proof follows closely the
argument for the standard case of BV initial data (see [2]), and we therefore provide only
a brief sketch.

First, without loss of generality we may assume that « is right continuous. Applying
Proposition 2.13, we let (4, ) be a sequence of right-continuous step functions with compact
support, agreeing with u at the left endpoints of their intervals of constancy, and such that
Uy — @ uniformly. It follows that ®-varu, < ®-varu. Let f, denote the piecewise affine
and continuous function that coincides with the given flux f at the points %Z U range(ty,),
and let u, (¢, ) denote the corresponding right continuous version of the Kruzkov solution
of (5.1) with f replaced by f,, and with initial data @,. According to Propositions 4.1 and
4.3, and the maximum principle for scalar conservation laws, the sequence (u,(t,x)) satisfy
assumptions (h1)-(h3) in Theorem 3.3 (with Lg := 2L - ®-vara). It is now standard (see
[2,7]) to verify that the limit u(¢, x), the existence of which is guaranteed by Theorem 3.3,
is the right-continuous version of the unique Kruzkov solution of (5.1)-(5.2). According to
the same theorem, u satisfies (5.3) and (5.4). O

Finally, by combining this result with Theorem 2.11 we obtain the following.

Corollary 5.2. Assume u is a requlated function with compact support. Then the Kruzkov
solution u of (5.1)-(5.2) is such that the function x — u(t,x) is requlated at each timet > 0.

Proof. According to Theorem 2.11 there is a function ® with properties (pl)-(p4), and such
that ®-varu < co. Theorem 5 gives ®-var u(t,-) < oo for each ¢t > 0, and Lemma 2.10 gives
that u(t, ) is regulated. O
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