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ABSTRACT
Double differencing of body-wave arrival times has proved to be a useful technique for
increasing the resolution of earthquake locations and elastic wavespeed images, primarily
because (1) differences in arrival times often can be determined with much greater pre-
cision than absolute onset times and (2) differencing reduces the effects of unknown,
unmodeled, or otherwise unconstrained variables on the arrival times, at least to the
extent that those effects are common to the observations in question. A disadvantage
of double differencing is that the system of linearized equations that must be iteratively
solved generally is much larger than the undifferenced set of equations, in terms of both
the number of rows and the number of nonzero elements. In this article, a procedure based
on demeaning subsets of the system of equations for hypocenters and wavespeeds
that preserves the advantages of double differencing is described; it is significantly
more efficient for both wavespeed-only tomography and joint hypocenter location-wave-
speed tomography. Tests suggest that such demeaning is more efficient than double
differencing for hypocenter location as well, despite double-differencing kernels having
fewer nonzeros. When these subsets of the demeaned system are appropriately scaled
and simplified estimates of observational uncertainty are used, the least-squares estimate
of the perturbations to hypocenters and wavespeeds from demeaning are identical
to those obtained by double differencing. This equivalence breaks down in the case of
general, observation-specific weighting, but tests suggest that the resulting differences
in least-squares estimates are likely to be inconsequential. Hence, demeaning offers clear
advantages in efficiency and tractability over double differencing, particularly for wave-

speed tomography.

KEY POINTS

® Double differencing of body-wave arrival times is a useful
technique, but it can be computationally challenging.

® An approach based on demeaning retains the advan-
tages of double differencing while making it more
tractable.

® The demeaning approach extends the range of the appli-
cation of differential travel-time analysis significantly.

BACKGROUND

Body-wave arrival times are a nonlinear function of hypocen-
ter coordinates and wavespeeds. A standard iterative approach
to determining these variables from observations of arrival
times involves creating a set of linearized equations by expand-
ing the arrival-time function in a Taylor series and retaining
only the first-order terms. Given a set of N events recorded by J
stations (and, where convenient, we define a “station” as a
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particular station-phase combination) we have for a single
observation of event i recorded by station j:

tyi =t +24:at“jAh +2K:atc
oij — tcij — ahil il — s

in which t,; is the observed arrival time, t; is the arrival time

T Asp, (1)
k

calculated in the current model (hypocenter location and dis-
cretized wavespeeds), h;; is the [th parameter (x, y, z, t) of
hypocenter i, and s; is the wavespeed (or slowness) of element
k in a discretized model containing K elements.
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The residual rij is defined as

4

ot
ij = toij - tcij = Cl] hij Z 35, ‘e Asy. (2)
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We accumulate these equations as rows (one per observation)
in matrix form as follows:

GAx =R, (3)

in which G holds the partial derivatives, Ax is the perturba-
tions to the current model, and R is the residuals. Typically,
the perturbations are recovered through some type of regular-
ized least squares estimate, for example:

Ax = (GTC3}G + Cph) 'GTCR, (4)

in which Cg} is the inverse data covariance matrix and Cp}, is
the inverse of the prior model covariance matrix (e.g.,
Tarantola and Vallette, 1982). If the uncertainty in an obser-
vation i is §; and the uncertainties for different observations are
not correlated, then Cz} = w71, in which the weight w; = 6;'.
Then, we write equation (3) as follows:

GAx = WGAx = WR =R, (5)

in which W is a diagonal matrix with elements W, = w;.
Equation (4) then becomes

Ax = (G"G + G;))'G™R. (6)

There are several variations on this theme, but nearly all of
them involve the products GTG and GTR. There are also iter-
ative ways to achieve this result without actually having to gen-
erate G'G and G'R explicitly (e.g., the least-squares conjugate
gradient method [LSQR] of Paige and Saunders, 1982), but
clearly any approach that involves the same entries for GTG
and GTR will generate the same estimate Ax.

Instead of simply inverting the set of equations as they
appear earlier (as is often done in standard local earthquake
tomography), one may consider modifying G by performing
some kind of differencing of its rows and the associated
elements of R. Approaches based on differencing residuals
have been used extensively in both hypocenter location (e.g.,
Douglas, 1967; Evernden, 1969; Frohlich, 1979; Pavlis and
Booker, 1983) and wavespeed tomography (e.g., Fitch, 1975;
Aki et al., 1977; Roecker, 1985). There are two primary advan-
tages to differencing: first, the difference in time between arriv-
als from two different events recorded by the same station
often can be determined more precisely (e.g., by cross corre-
lation of the waveform data) than absolute onset times, and
differencing the rows of G can take direct advantage of these
more precise observations. Second, differencing reduces the
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effects of unknown, unmodeled, or otherwise unconstrained
variables on the arrival times, at least to the extent that those
effects are common to the observations in question. Because
cross correlation of waveform data is most effective when
nearby events are recorded at the same station, these two
advantages often are realized simultaneously.

Double differencing

Double differencing (Waldhauser and Ellsworth, 2000; Zhang
and Thurber, 2003, 2006) combines the linearized equations
of equation (5) in a strategic way. Starting with the residual r;;
of equation (2), referred to in differencing parlance as a “single
difference,” we consider a second observation from event n
recorded by the same station:

ot
cn] cnj
rnj - on] ahn[ Ahnl Zl aSk Ask' (7)

The difference between r;; and r,; is called the “double differ-
ence’:

rinj = rij - rnj = toij - tcij - (tonj - tcnj)

4 ot 4 ot K ot LT
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(8)

Typically, all combinations of observations from a group of
events p recorded by station j are differenced in this way.
This operation is repeated for all stations in a network and
then, as desired, for different (and usually overlapping) groups
of events. An equivalent way of describing this procedure is
differencing rows of G and the corresponding elements of R
in equation (5) to form expanded versions of G and R. This
expansion can increase the size of the original G substantially.
Generally, one would not include redundant differences (i.e.,
both the differences r;; —r,,;
recorded by station j, the number of equations created by dou-
ble differencing for this subset of observations increases from
N to N(N - 1)/2, and the number of nonzero elements for the
hypocenter partition of G increases from 4N to 4N(N - 1).
The wavespeed partition of G increases proportionally to
the number of model parameters as well: for an average num-
ber of wavespeed variables K accumulated by each observation,
the number of nonzeros increases from approximately KN to
KN(N —1)/2.Because K can be a large number in a 3D model,
double differencing can make wavespeed tomography compu-
tationally challenging.

and r,; —r;), so if N events are

Demeaning

We define demeaning as collecting the same set of observations
as earlier for a group of N events recorded by the same station j
and in some way determining a mean residual, for example:
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and subtracting this quantity from each row:
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Demeaning of residuals by means of station corrections
has been shown to be effective in locating hypocenters (e.g.,
Frohlich, 1979; Richards-Dinger and Shearer, 2000; Lin and
Shearer, 2005). Demeaning is also often employed in teleseismic
tomography, following the seminal work of Aki et al. (1977)
who used it as a way to reduce the effects of unresolvable wave-
speed and hypocenter variations. Similar to double differencing,
demeaning can be envisioned as manipulating rows of G,
but unlike double differencing, demeaning does not add any
additional rows to G. This can make a significant difference
for wavespeed tomography because that partition of G will have
not many more than the original KN nonzeros in G. Demeaning
increases the number of nonzero elements in the hypocenter
partition from 4N to 4N?, essentially adding a row of nonzeros
to the double-difference version for each station-group.
Although one might therefore infer a slight advantage of double
differencing over demeaning for hypocenter-only applications,
tests of these algorithms (discussed subsequently) suggest oth-
erwise. In any event, the significant advantage in wavespeed
tomography means that joint hypocenter-tomography applica-
tions can be more efficiently done by demeaning.

Although more efficient, it is not immediately clear what
negative effects demeaning might have on the quality of the
solution obtained. For example, one may suspect that the aver-
aging step in demeaning somehow reduces the amount of
information in the original observations and, moreover, that
the ability to exploit precise relative times has vanished. In
what follows, we show that demeaning can be done in a way
that preserves the advantages of double differencing.

COMPARISON OF DEMEANING AND DOUBLE-
DIFFERENCING LEAST-SQUARES ESTIMATES

Let D and M be the double differenced and demeaned expan-
sions, respectively, of G, and Rp, and Ry be the double differ-
enced and demeaned expansions of R. We also define a matrix
Hthat augments D by appending the N(N — 1) additional rows
of —D (these would be the redundant rows ignored in con-
structing D) and an additional N rows of zeros that represent
rows of G differenced with themselves:
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H=|-D|. (11)

The corresponding residual vector Q would be

Rp
Q=| -Rp |. (12)
0
Note that
D
HTH — [DT _DT 0] -D = ZDTD, (13)
0
and
Rp
H'Q=[D" -D' 0]| -Rp | =2D"Rp.  (14)
0

Hence the least-squares solution Ax to DAx = Rp is the same
as that to HAx = Q.

We order the rows of H and Q in a way that facilitates com-
parison between double differencing and demeaning. A general
dataset will consist of arrival times, or differences in arrival
times, from P groups of events recorded by a network of J sta-
tions. Observations from any event may appear in more than
one group, the purpose usually being to couple them together.
We order the observations first by these individual groups p
and then by each station j that reports the arrivals from a given
group. This way of ordering, and the designation of a group,
follows naturally from how one would normally choose which
arrivals to difference. Generally, arrivals are differenced if the
events are close enough together so that either (1) their wave-
forms may be unambiguously correlated or (2) their ray paths
are sufficiently similar that differencing will mitigate the effects
of structure outside a region of interest near the events. Events
associated with arrivals at a given station that satisfy one or
both of these criteria would in practice be assigned to the same
group. Let Hy; contain the N, rows of H that correspond to the
observations from group p recorded by station j. We then write

H=| : | (15)
Hp,

| Hpj |

The elements of Q are similarly ordered. Each Hy; will contain
those parts of —D and the row of zeros that pertain to that
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particular station-group. The products H'H and H'Q are the
sums of the products of these subdivisions, that is:

P ]
Ty — T
H'H = Z ZHPJ'HPJ" (16)
p=1 j=1
P ]
T — T
HIQ=) ) H,Qy (17)

p=1j=1

Organizing H and Q in this way simplifies our analysis by
reducing it to the case of a single station-group.

Our objective is to construct a “demeaning matrix” M that
will provide the same least-squares estimate as H and D. As
discussed in detail in the Appendix, we can do so by estimating
the means of the N; rows of the Hy; submatrices and the cor-
responding elements of the Qy; vector and subtracting their
respective elements from them. The resulting Mj,; submatrices
and Ryy,;vector are assembled into a general M matrix by
scaling the ith row of My; and ith element of Ry, by
fojl Wingi/ /Npj» in which wy,,; is a weight based on the
uncertainties in the observations of events i and n of group
p observed at station j. Making use of Einstein notation as dis-
cussed in the Appendix, the general form for the (i, k) element
of the demeaning matrix M in the wavespeed-only case is

(ij)ik =

By
[Winpj] (atap] _ [WinPj Tkw )) (].8)

Vv ij aSk [Winpj]

and the corresponding ith element of the demeaned residual is

N [Wing] ( o [Winpjrﬂpj])
(Rypy)i = N, Tipj Wingll )’ (19)

in which square brackets indicate a summation over index n
from 1 to Ny;. In the case in which weights are identical for a
given station-group, that is, w;,,; = y,;, the appropriate scaling
factor is /N,;y,; and the correspondence of least-squares sol-
utions is exact, that is

Ax = (DTD)'DTRp = (M™) 'MTR,. (20)

The only structural difference between the wavespeed-only and
hypocenter-only systems of equations is that the latter is sig-
nificantly sparser (a maximum of eight nonzeros per row of
H). Moreover, from equations (A17) and (A44), we see that
the rows of M and the data vector Ry, are scaled the same
way for both of these cases, so all that is required to generate
the joint hypocenter-wavespeed matrix is to append the hypo-
center columns to the wavespeed columns of M. Hence, the
same equivalences between double differencing and demean-
ing can be obtained for the hypocenter-only and joint
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hypocenter-wavespeed matrices by applying the same sta-
tion-group scaling.

USING DIFFERENTIAL ARRIVAL TIMES AS
DEMEANED OBSERVATIONS

As noted earlier, an advantage of double differencing is that it can
directly exploit the precision of correlated relative times rather
than having to rely on less precise absolute times. This is also
the case for the demeaning approach. From equation (8), if
we sum a set of (N — 1) differenced times from a set of N obser-
vations (in this case with respect to the first observation r,):

wip(r —12) wi(tor = to2) wip(ta — ta)
wis(ry —13) _ wis(tor — to3) wis(t — ts)
win(ry —1y) win(tor = fon) win(fa = ten)

21

we obtain for any r;:

N,n#i N,n#i N,n=i N,n=i
T E Win — E Winty = | toi E Win — E Winton
n=1 n=1 n=1 n=1
N,n# N,n#i

i
- tci Win = Z Wintcn . (22)

n=1 n=1

Factoring out the sum of the weights, and generalizing
equation (A40), the left side is written as

N,n#i N,n#i
. W [Wint,]
Z Win (Ti - W) = (Wil (Ti - ﬂ) (23)

n=1 n=1 in [Wn]

Hence, we can construct a dataset for the demeaning application
that makes direct use of cross-correlated differential times by cal-
culating deviations from the mean value of the differenced resid-
uals. Note that from equations (22) and (23) we have the
expression for observed arrival times:

[Win] (toi - [T::to]n]) > (24)

in which the term in the parentheses is essentially a deviation
from a weighted stack. This is a common way to derive obser-
vations for demeaning applications, for example, when cross-cor-
related waveforms are used in teleseismic tomography (e.g., Van
Decar and Crosson, 1990).

LEAST-SQUARES FORMS

Many tomography or joint location problems of seismological
interest involve large numbers of variables, and for reasons of
tractability we often resort to iterative techniques such as LSQR
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operating on equation (5) without actually calculating the nor-
mal-equation products in equation (6). Nevertheless, for inver-
sions with small numbers of variables, it can be advantageous
to form and solve equation (6) directly. In this case, it can be
more efficient computationally to form HTH and HTQ as
observations are accumulated as opposed to storing all of
H, D, or M and their data vectors and then multiplying them
together. For convenience, these forms are summarized in the

Appendix.

TESTS OF EFFICIENCY AND THE EFFECTS OF
WEIGHTING

Although the equivalence of double differencing and demean-
ing can be demonstrated in cases in which weighting exhibits
certain regularities for groups of observations, the effects of
observation-specific weighting are not obvious. As a test of
these effects, we constructed examples that incorporate uncer-
tainties from an actual arrival-time dataset and compare the
results using the two approaches.

To mimic the density of activity often employed in differ-
encing studies, we model our example on a dataset consisting
of 274 events from a sequence of aftershocks to the 20 January
2019 M,, 6.7 Coquimbo-La Serena earthquake (e.g., Comte,
Farfas, Navarro-Aranguiz, et al, 2019; Ruiz et al., 2019)
recorded by a temporary network of 33 stations in Chile
(Fig. 1). Both P and S arrivals are used and are coupled by
solving for both Vp and the V,/V ratio (ie., S arrivals will
have sensitivities to both Vg and Vp; see Roecker et al
(2006) for a discussion of how these sensitives are calculated).
The synthetic dataset is generated by calculating times in a
checkerboard-like medium using the spherically based eikonal
equation solver of Li et al. (2009) with the hypocenters located
in one of the perturbed blocks (Fig. 1). These times are con-
taminated with random (Gaussian) noise and given the same
uncertainties that were assigned in the original dataset using
the regressive estimation autopicking package of Comte,
Farias, Roecker, et al. (2019) after manual calibration (Fig. 2).
The hypocenters are then associated with groups based on
their distances from any centroid on a regularly spaced
(5 km) grid (Fig. 1). Any hypocenter less than 4.5 km from
a centroid is associated with that group, meaning that the
maximum distance between events in any particular group
is 9 km. This resulted in 30 groups of between 3 and 103 events.
Hypocenters can be in multiple groups to couple them together;
in this case, the maximum number of groups for any single hypo-
center was six. The systems of equations for M, Ry, D, and Rp
were then created by algorithms that use the forms described
earlier for the “grouped” dataset, and solved using the parallel
least squares algorithm (PLSQR3) of Lee et al. (2013).

To assess the dependence of a hypocenter-only inversion on
observation-specific weights, we first relocated the events in
the 1D background model (preliminary reference Earth model;
Dziewonski and Anderson, 1981) to displace starting locations
Volume XX Number XX
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from their true values by a few kilometers. Subsequent reloca-
tions of these events by demeaning differ only slightly from
those derived from double differencing (Fig. 3); all but two
locations were different by less than 100 m (one event was dif-
ferent by 150 m), and 86% were within 40 m of each other.
Formal estimates of hypocenter uncertainty are on the order
of 100 m; hence, the differences are within the error bars.
Remarkably, despite the demeaning matrix being about 50%
larger than that for double differencing, PLSQR3 required
about the same amount of time to execute the same number
of iterative solves when less than four processors were used,
with demeaning becoming slightly more efficient as the num-
ber of processors increased. Because this was an unexpected
result, we repeated this test with a synthetic dataset with about
three times as many hypocenters (821 events in 51 groups) in
the same region. These results (Table 1) showed that PLSQR3
was significantly, and increasingly, faster with demeaning than
double differencing as more processors were used. The prob-
able cause of this difference is the number of vector products
performed, which is most likely a result of the double-differenced
residual vector containing about 50 times as many elements.
For the wavespeed tomography test, because the objective is
to evaluate the effects of weighting on an image as opposed to
demonstrating anything about the quality of the image itself,
we simplify the analysis by allowing only wavespeeds to vary.
Because the uncertainties for S arrival times are significantly
larger and more variable than those for P (Fig. 2), we focus
on the results for Vg (the comparisons for Vp are nearly iden-
tical). The same regularizations (damping and smoothing)
were applied to both cases, and both were iterated four times.
As expected for this type of analysis, the sensitivities to wave-
speeds are minor in most parts of the model outside the vicin-
ity of the earthquakes. Comparative contours of results in this
region (Fig. 4) show them to be very similar, with a maximum
difference between models at any grid point of 0.01 km/s in
V. Other potential sources of solution discrepancy, such as the
criteria used by PLSQR3 to terminate the iterative solution to
the system of linear equations and the number of calculations
done with single precision real numbers, are, by extension,
also inconsequential. This is despite the double-differencing
kernel having an order of magnitude more nonzeros than
the demeaning kernel (317 x 10° vs. 27 x 10°), a difference
which is largely responsible for the double-differencing solu-
tion requiring about 10 times more wall time than demeaning.
This similarity of results is perhaps not surprising; because
double differencing and demeaning both involve linear manip-
ulations of the same set of weighted linear equations, one might
suspect that the solutions one obtains from these approaches
is, if not exactly the same, at least close enough so that they
give essentially the same result when used to iteratively solve
a nonlinear inverse problem. Although a single test is not a
“proof” of this notion, it does provide useful corroboration.
Given the savings in memory and processing time achieved
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Figure 1. Parameters of tests used to conduct simple comparisons of the
double differencing and demeaning techniques. (a) Map view at 64 km
depth. Black triangles locate 33 seismic stations. White circles locate the
274 hypocenters of the wavespeed test; the 821 events of the larger
hypocenter test are within the same volume. Wavespeed variations are
indicated by shades from —5% (white) to +5% (black) relative to a 1D
background as shown in the palette at the upper left of the figure. The white
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rectangle locates the region shown in (b). (b) Enlargement of region shown
in the white rectangle in (a), showing epicenters as open circles and
locations of centroids used to group events. Centroids are spaced on a grid
5 km apart in each direction starting at 45 km depth. Events within 4.5 km
of a centroid are designated as a member of that group. Note that events
can be members of more than one group. (c) North—south cross section at
71.3° W of the region near the hypocenters. South is to the left.
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Figure 2. Scatter plot of uncertainties in P- (open circles) and S- (closed
circles) arrival times used to test the effects of observation-specific
uncertainties on the least-squares estimates. The X axis is a sequential
arrival number as it occurs in the dataset. The line of open circles near 0.1's
reflects the minimum uncertainty assigned to impulsive P arrivals.
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Figure 3. Plot of epicenters obtained by demeaning (crosses) and double dif-
ferencing (open circles). For scale, the radius of the circles is about 100 m.
Note that, with the exception of a few events in the north (near 30.06° S) and
southeast (near 30.20° S, 71.25° W), the epicenters are nearly identical.
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by demeaning, these slight differences in results would in most
cases be considered inconsequential.

CONCLUSIONS

The many successful applications of double differencing
over the past several years in both earthquake relocation
and wavespeed tomography testify to its advantages. The alter-
nate approach of demeaning offers the same advantages at sig-
nificantly less computational cost in terms of both memory
and time required to solve the system of linear equations at
any iteration of a nonlinear inversion. This is especially true
for tomographic applications. The main question addressed
in this article is the potential for some other hidden cost, such
as loss of information, in the demeaning approach that might
lead to an inferior least-squares estimate.

The results discussed earlier show that, in the case in which
the uncertainties in the observations from a group of events at
a given station are the same, the demeaning estimate and the
double-difference estimate are identical, provided that the rows
of the demeaning matrix corresponding to a given station-
group are properly weighted by ~/Ny, in which N is the num-
ber of observations in the station-group and y is the inverse of
the uncertainty. When these uncertainties are not the same,
these rows should be weighted by [w,]/+/N, in which w,, is the
reciprocal of the uncertainty of the nth observation in the sta-
tion-group. Although the breakdown in symmetry caused by
observation-specific uncertainty means that the two estimates
are no longer identical, this scaling brings them closer into
alignment. Spatially clustered events recorded by the same sta-
tion will have similar ray paths, so estimates of uncertainty for
arrivals from a given station-group may be expected to be sim-
ilar. But even if they are not, tests suggest that the resulting
differences in least-squares estimates are minor. Moreover,

TABLE 1

Comparison of Results of the Hypocenter-Only Inversions
Using the Larger Hypocenter Dataset (821 Events, 51
Groups)

Double Ratio
Processing Parameter Difference Demeaning (DM/DD)
Number of columns 3,276 3,276 100%
Number of rows 6,943,638 148,274 2%
Number of nonzeros 55,552,348 83,074,752 150%
One processor 8.872 5.150 58%
Four processors 5.438 2.765 51%
Eight processors 4.091 1.501 37%
12 processors 3.808 0.819 22%

First three rows summarize the sizes of the hypocenter-only kernel, and the last four
rows show the amount of time (in seconds) required to execute 10 iterations of
PLSQR3 as a function of the number of parallel processes used on a Mac Pro
desktop with a 24 Core 2.7 GHz Intel Xeon processor. The last column shows the
percent ratio of demeaning (DM) to double-differencing (DD) results. Note that,
despite having approximately 50% more nonzeros in the hypocenter kernel,
iterations on the demeaning solution required significantly less time.
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because we generally treat these estimates as a single step in an
iterative process, small deviations in a least-squares estimate at
any particular iteration generally will be inconsequential.

This definition of a weighted mean (e.g., as used in equa-
tion 19) differs from the standard form used in least squares in
that the weights correspond to the inverse of the uncertainties
rather than the variances for the corresponding observations.
As shown in equations (21-23), this choice allows for direct use
of higher precision cross correlated arrival times in a demean-
ing approach, and equation (24) suggests that a similar type of
weighted demeaning could be advantageously applied when
deriving observations from cross-correlated waveforms in tele-
seismic tomography.

DATA AND RESOURCES

The synthetic data generated for the tests discussed earlier are avail-
able from the corresponding author upon request.
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Contours are percent difference in wavespeed from the 1D background
model at an interval of 1%. Shading reflects percent change from the 1D
background as indicated in the palette at the upper left of the figure.
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APPENDIX

In this appendix, we provide a general and detailed derivation
of a “demeaning matrix” M that can provide the same least-
squares estimate as H and D for the cases of wavespeed-only,
hypocenter-only, and joint hypocenter-wavespeed. Because the
hypocenter-only matrix is a special case of the wavespeed-only
matrix, we begin by comparing the two approaches for the case
of wavespeeds-only. Because the scaling and data vectors are
the same for the hypocenter-only and wavespeed-only cases,
the joint hypocenter-wavespeed matrix can be constructed
from a straightforward combination of the two.

A note on notation

Because these derivations involve a significant number of sum-
mations, for ease of presentation we use Einstein notation
whenever possible. Because the equations also involve multiple
dummy indices, for clarity we enclose terms in which a sum-
mation over a certain index required (or at least contributes to
the clarity of presentation) in square brackets. Unless otherwise
stated, implicit sums are from 1 to N, in which N is the number
of arrivals in a specific station group. In addition, where more
than one dummy variable appears in square brackets, the one
over which the sum is taken appears in bold. For example,

N N
M, = Z CilZ Win = CifWin].
i=1 n=1

Wavespeed tomography

We begin by comparing demeaning and double differencing
for the case of wavespeed tomography. Because the location
of nonzero elements in the wavespeed partition is arbitrary,
hypocenters and joint hypocenter-wavespeed tomography
can be viewed as special cases. From equations (5) and (8),
a weighted row of D corresponding to a difference in obser-
vations between events i and #n from a given group p recorded
at station j is

K
Winpj (
k=1

in which the sum is over all K wavespeed variables in the
medium. When differencing absolute arrival times, the weight
Winp; Would typically be the inverse of the Euclidian norm of
the individual uncertainties &;,; and 9,,,;
uals r; and ;. When differencing relative times, w;,,; would be
the inverse of the intrinsic uncertainty §;,;, associated with the
realization of that relative residual. In either case, wj,,; = W,y

As discussed in the Comparison of Demeaning and Double-
Differencing Least-Squares Estimates section of the main text,
we can restrict our attention to a given station-group pair, so in
what follows we will drop the p and j subscripts. To further
simplify notation, we set

eipi —iat“”jm =w, (o —tio), (Al
05y k — 05y k inpj\"ijp — "'njp)>

associated with resid-
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Ot
- aSk ’

Cik (A2)

in which case equation (Al) is written as follows:

K K
Win (kZI: CixAsy — kX:; anASk)

K
= Win (Cit = Cop) Asg = wy, (r; — 1) (A3)
k=1

The submatrix Hy; will have N? = N;; rows and K columns,
with N rows for each event i. For clarity, the first two blocks of
equations of Hy;As = Qy; look like

M w1 (Ciy — Cpy)
wi(Ciy = Cy)

w1 (Cip — Cypp)
wi2(Cpp — Cy)

w11 (Cix — Cip) 7]
wi2(Cix = Cop)

win(Cin = Cnk)
w1 (Cony — Cik)
W (Con — Cok)

win(Ciz = Cy2)
w1(Cy = Cy2)

wp(Cyp — Cyp)

win(Cii — Cyi1)
w1 (Cy1 — Cyy)
Wy (Cy = Cyy)

L wan(Co1 = Cy1) - wan(Cyy = Cya) won (Con — Cyk)

M wi(r =) 7]
wip(r) —13)
AS;
AS, win(r —ry)
1 B wy(ra =) | (A
ASg W (ry —12)

L wan(ry —7y)

Note that the first row is one of the “zero” rows of H, whereas
row N + 1 is one of the “redundant” rows of —D. These blocks
are repeated for all N events. As the block number increases,
the number of redundant rows increases by one, and the posi-
tion of the zero row descends in order by one.

From equation (A4), we write a general expression for the
(I, m) element of HTH as

HTHlm = wzzn(cil - Cnl)(cim - Cnm)
= Wzgn(cilcim + Cnlcnm - Cilcnm - Cnlcim)’ (A5)

in which Einstein notation is used to represent implicit sum-
mations for indices i and n from 1 to N. Switching the indices
on the double sums gives

HTHlm = 2(Cilcim[wzzn - [szncnm]) (A6)

10 e Bulletin of the Seismological Society of America

For purposes of comparison between the demeaned and dou-
ble-difference forms, it will be useful to have an expression for
the case in which the uncertainties of observations from a given
group p and station j are identical, that is, w;, = y. In this case,
equation (A6) becomes

1
HTHlm = 2yzcil(l\]cim - [Cnm]) = ZNYZCil(Cim - N[Cnm])
(A7)

The diagonal term (I = m) is

RN 0% (A8)

HTHmm = ZNYZ([Ctzm] N

in which the square brackets imply a sum over index » prior to
squaring. The kth element of H'Q is

H'Q; = w;,(Cy — Cu) (ri = 1)
= thn (Cikri + anrn - Cikrn - anri)- (A9)

Switching the indices on the sums gives

w2
HTQk = ZW%n[Cikri - Cikrn] = Z[an]Cik (}’i —[ mrn]))

(Wi
(A10)

in which the square brackets imply a sum over the index ». In
the case in which w;, =y,

HTQk = 2Ny2cik (ri - M)

o (Al1)

To obtain an expression for the demeaning matrix M, we first
sum the N rows in H corresponding to the ith event of group p
recorded at station j. From equation (A3):

N K N
DY winlCik = CadAs = D wi(ri—r,).  (AI2)
n=1

n=1 k=1

Reordering the sums

K N N N N
Z[Cik Zwin _Zwin an]ASk =T1; Zwin - Zwinrn’ (A13)
k=1 n=1 n=1 n=1 n=1

and factoring out the sum of the weights:

K
S il (G - Gt [w,-,,](ri - [W""’"]). (A14)
k=1

[Win] [Win]

The term in the parentheses on the right side of
equation (A14) is a standard form for a demeaned residual
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and suggests a general form for the (i, k) element of the
demeaning matrix M:

[Wincnk]

M, = Cy - (Wil
m

(A15)
The corresponding ith element of the demeaned residual #

would be

_ [Winrn]
[Win] '

f‘i=1‘i

(A16)

For purposes of comparison between the demeaned and double-
difference forms, it will be convenient to scale row i of M by
[W;u]/v/N. Note that if the uncertainties are the same for all
arrivals in a station-group (p, j), that is, w;,, = y, then this scale
would be Ny/+/N = +/Ny. Because the demeaned observation
is the mean of N observations with uncertainty Jp, the appro-
priate uncertatinty for the demeaned residual would be
Oy = 6p/ /N, and the corresponding weight for M would
be wy = 83} = +/NO;' = +/Ny. Hence, this scaling can be
thought of as applying a weight that is appropriate for the uncer-
tainty in the mean. The weighted system of equations matrix M
for an arbitrary station-group would then be as follows:

Ci1[Win] = [W14Cpil
1 C21 [W2n] - [WZHCnl]

Cia[Win] = W1 Ci2]
Coa[Wan] = [W2nCa]

Z

CnilWinl = [WNnCi]  Crno[Win] = [WnnChol

From equation (Al17), the general expression for the (I, m)
element of MTM is

MM, = < 04,y = C)) Wi Con = ). (AL8)

Expanding, and being mindful of the order of summation (indi-
cated by square brackets),

1
MTMlm = N (Cilcim[win]2 - Cil[win][wincnm]

- [Wincim][wincnl] + [Wincnl][wincnm])'

Switch the order of summation on the middle two terms to get

1
MTMlm = N (Cilcim[win]2 - 2Cil[win][wincnm]

+ [Wincnl][wincnm])' (A19)

In the case in which w;, =y, [w;,,] = Ny, and
Volume XX Number XX
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2
M™M,, = 1 (V*CyCip = 2NCilCon] + NICullCan])- (A20)

And because [C;] = [C,,]:

MMy, = NPICCon ~ < [CallCunll (A21)
The diagonal of M™M is
M™,, = Ny*(C% - %). (A22)
The kth element of MTRy; is
(MTRy)y = (04 (i = G O =1, (A23)

Comparing equation (A23) with the form for M™M,, in
equation (A18), we see that the same result will be obtained if

we substitute r; for C;,, and r,, for C,,,, and change the subscript
[ to k:

(MTRM)k = %(Cz‘kri[win]2 - 2Cik[win][winrn] + [Wincnk][winrn])-

(A24)
CIK[Wln] - [WlnCnK] ASl r [Wln] - [Wlnrn]
Cox[Wan] = [W2n Cuk] AS, 1 2[Wan] = [Want 4l
. = ) . (A17)
: : VN :
Cnk[Win] = [WNnCak] ASk N[WNn) = [WhnTl
Hence, in the case that w;,, =y,
(MTRy), = NY*(C; r-—ic [r]) = Ny*C; r-—[r—"
M/ k Y ik"i N ikl'n Y Cik\ Ti N .
(A25)

Comparing equations (A7), (A8), and (A11) with equations (A21),
(A22), and (A25), we conclude that when w;, = y:

H'H = 2M™ = 2D'D, (A26)
HTQ = 2MTR,, = 2D"Ry,, (A27)
Ax = (D'D)'D'Rp = (M™) MRy, (A28)

Hence, when the uncertainties are the same for all observations
in each station-group pair, M can be scaled in such a way that

Bulletin of the Seismological Society of America o 11

Downloaded from http://pubs.geoscienceworld.org/ssa/bssalarticle-pdf/doi/10.1785/0120210007/5303921/bssa-2021007.1.pdf

bv 10929



double differencing and demeaning produce identical least-
squares estimates.

Demeaning hypocenters

Analogous to wavespeed tomography, a weighted row of D for
hypocenters corresponding to a difference in residuals between
events i and # in a group p recorded at station j is

4 0t iy 4 0t i
cipj cnpj —
Winpj(;l ohy Ahy— IZ oh,, Ahnl) _Winpj(ripj_rnpj)' (A29)

1

As with wavespeeds, we drop the p and j subscripts and define
the partial derivative of the arrival time from event i with
respect to the hypocenter variable / as

ot

Cil = ahil.

(A30)

The part of row of H corresponding to hypocenter parameter
can then be written as follows:
Win(cilAhil - CnlAhnl) = Win(ri - rn)' (A31)

The first two N blocks of rows and the first N columns of a sub-
group Hy,; of H, corresponding to a particular variable / of h, are

w1 (Cy — Cyp) 0 0 0
wi,Cyy -wiCy 0 0
wi3Cyy 0 —wi3Cy 0

0
winCu 0 0 -winCyi
-wy Cyy wy1Cyy 0 0

0 Wy (Cy — Cyp) 0 0
0 w3 Cy —-wyCsy ... 0
L 0 0 0 -wonCni |
[ wi(ry =11 ]
wi(ry —12)
wiz(ry —13)
M Ahy 7
Ahy,
o | Ahy | = win(r, —ry) ' (A32)
wa(ry —11)
wy(ry —12)
- Al Was(ry —13)
| wan(ry — 1)

12 o Bulletin of the Seismological Society of America

To complete the rows of Hy;, one would append an analogous N
columns three times (one for each additional value of [). From
equation (A32), the general expression for elements of H'H for
variables I and m for the same event i is

N,n#i
(H"H);, = 2 Z Wi CiCim + wii(Cy = Ci) (Cipy = Ci),
n=1
(A33)
or
N,n#i
(H"H) i = 2w},CiCiry = 2w3CiCiyy = 2C;1Ciyy Z Wi,
n=1
(A34)

For the remaining case of different events i and # and variables
and m,

(HTH) ilnm = _szzn CiCum- (A35)
We can write HTQ as N — 1 differenced rows of Q multiplied by

four sets of columns / in H, each with N — 1 rows. The row of
H'Q corresponding to event i and variable [ is

N,n#i
H'Q); = |:Z wi, Ca(r; = rn)i|

n=1
N,n#i Non#i 2
wi ¥
— 2 _ n=1 in'n
= 2Cy E wm(ri T ) (A36)
n=1 n=1 Win

In the case in which w;, = y, these equations become

(H'H);,, = 2y°C,C,,(N - 1), (A37)

(HTH)im = _2)’2 CiCp (A38)

and

N,n#i N,n#i r
T = 2 _&n=l n
H Q) = 2Cyy ; ("i N-1 )

nzk
= 2C(N - 1) (r,» - %) (A39)

Note that because

[rn] N,n#i
NIr; N T Nr;=[ry] = Nr; - Z Tn = 7i
n=1
N,n#i N,n#i r
= (N -1r; ;rn—(N 1)(r, N 1 )
(A40)
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We can write equation (A39) as
(HTQ)il = 2CilY2N|:ri - %] (A41)

The form for M results from summing each of the subsets of the
N rows of H in equation (A32):

4 N N
DO Wi Calhy = Cudhy) = wi(ri—1,),  (A42)
n=1

I=1 n=

—

or

[Win] [Z (CilAhil — W)} = [Win] (7’1‘ - [1'[1}1/11:11:31])

I=1

(A43)

As in the tomography case, we scale row i of M by [w;,]/+/N.
The weighted system of equations MAh = Ry, for an arbitrary
station-group would then be

-wp Gy

[(WialCy w11 Cy -winCy

1 -wu G [Wan]Co =2 C, ... —wonCy

Wi

-wni1Cy “Wn2 Gy - [WNulCn—wanCy

Ahl rl[Wln]_[Wlnrn]

AhZ 1 r [WZn] - [Wann]

= A44
N (A4

AhN TN[WNn] - [WNnrn]

Similar to equation (A32), only the columns for one of the hypo-

center variables are shown . To form the rows for the complete M

matrix, we would repeat this construction for each of the remain-

ing three variables. The general expression for elements of M'M

for variables | and m and the same event i is

1
(MTM)il,im = IT/' ([WinlCit = wiiC) ((WinlCiny = WiiCisn)

N,n#i
+ Y w2,CiCipn. (A45)
n=1
In the case in which w;, =y,
(M™);;, = %Cilcim((N -1’ +N-1)
= (N = 1)CyCyyp. (A46)

For the remaining case of different events i and #, and variables
and m,
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1
(MTM) iLkm = N[_Wik Ciom([Win]Cit = w;;Cip)

N,n#i,N,n#k
~wiiCa(Win)Ciom = WiaCiom) + Y WuiWykCitCicn]
n=1
Ci C m
= i W) = Wil = Wil
N,n#i,N,n#k C'l Ck
+ WyiWnk) = ——2 ([WpiWai] = 2Wi[Win]). A47
2 O == (Wil = 2wilwi]). - (A47)
In the case in which w;, =y,
2Ci C m
(MM, = E (N = 2N) = P CiCrre (AS8)

The row corresponding to event i and variable I of MTRy, is

(MTRM)il = %(Cil[wz’n] = wiCip) (T Win] = [WinT i)

& [Winrnl]
— [WinlCit Y wir (rkl - ) (A49)
k=1 [Win]

In the case in which w;, =y,

2 Nksi
(M"Ry); =1y ((N— DO -l -N ) (rK, _[;an]))

2
Jﬁcﬂ(sz—an+[rn,1—N[rn,1—N

N, k=i
x > rx+(N=D[ry])
k=1
)’2 N, k#i )/2
= CiN?rg=Nry=N 3 " r0) == Ca(N*r; = N[r)
k=1
g [rnl]
ZYNCH(T’,’I— N ) (A50)
Comparing equations (A7), (A8), and (All) with
equations (A46), (A48), and (A50), we again recover

equations (A26)-(A28), which demonstrates the equivalence
of double differencing and demeaning when accounting for
differences in the uncertainties in the observations per sta-
tion-group and scaling the rows of M accordingly.

Summary of least-squares forms

The following is a summary of how the products HTH and
H'Q (or, equivalently, DTD, DTRj, M™™, and M'R,,) can
be formed for cases in which it may be advantageous to solve
equation (6) directly and when w,,; = y,;. From the expres-
sions derived earlier, the general form of the square of the sub-
matrix Hy; for wavespeeds is

1
(HpHpy); = Ny, (CiCy — N[Cni][cnj])- (A51)
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And the kth component of the data vector Hy,Qy; is

(Hy;Qp)k = Ny}, Cir(ri = [r_]\,;]). (A52)

As shown in equations (16) and (17), H'H and H'Q would
then be constructed by summing equations (A51) and (A52)
over the entire range of stations J and event groups P.

The equivalent form for hypocenters is simple because
most elements are formed by a single product. In general,
the submatrix ngHpj has dimensions 4N x 4N, in which N
is the number of events in the station-group. If we arrange
the columns of ng H,; by variable (i.e., x, y, z, t), then Hy; will
be composed of 16 (i.e., 4 x 4) blocks By, of dimension N x N
that have the form

CiCim(N=-1)  -CyCyy, =CyCnm
: -CyCiy —CyCyy(N-1) -+ —=CyCyyy
B] = y i . . . . >
m = V) : : . :
—CniCim CniCom -+ CniCym(N-1)
(A53)

in which / and m are indices related to the four hypocenter
variables. Then
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HTH . =

vy = | B, B, B, B (A54)

Similarly, if we define the kth element of the vector T; as

(7]

(T = Ny Cu(re - W)’ (A55)
then
T,
HIQ, = | 12 A56
W = | T, (AS56)
T,

As with the wavespeed case, the complete H'H and H'Q are
formed by the sum of these submatrices over the entire range
of station-groups.
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