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Benefited from advances of neuron tracing techniques, the ever-increasing number of digitally recon-
structed 3D neuron images have greatly facilitated the research in neuromorphology. However, the sheer
volume and the complexity of these 3D neuron data pose significant challenges for computational ana-
lytics, e.g., effectively finding neurons sharing similar morphologies, identifying neuron types, correlating
neuron morphologies with properties, all of which require accurate measuring and fast indexing methods
especially designed for the massive 3D neuronal images. In this paper, we present an accurate and effi-
cient framework for the computational analytics of 3D neuronal structures based on advances of deep
learning and data mining techniques. Particularly, unlike previous methods quantitatively describe neu-
rons by measuring pre-defined metrics according to the tree-topological structures, we first develop a
new method for the morphological feature representation by a proposed 3D neuron mapping and a mod-
ified generative adversarial networks (GANs). Subsequently, considering the computational complexity
when retrieving large-scale neuron datasets, we integrate the neuron features with graph-based index-
ing, which can significantly improve the retrieval efficiency without losing accuracy. Experimental results
show that our framework can effectively measure the similarity among massive neurons (e.g., 100;000
neurons), outperforming state-of-the-arts with more than 10% in accuracy and hundreds of times in effi-
ciency improvements.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Investigating neuronal morphology is an important topic in
neuroscience and clinical diagnosis, since morphology plays a crit-
ical role in neuronal type identification, network connectivity, and
thus functional property. Recent frontiers in microscopy imaging
and neuron tracing have significantly improved the research of
neuronal morphology [16], e.g., BigNeuron [30] and NeuroMor-
pho.Org projects [2], resulting in an increasing number of neuron
images which are digitally reconstructed from soma to dendrite
with fine-grained 3D structures. These large-scale datasets provide
new opportunities for the analytics of neuronal morphology. For
example, indexing neurons sharing similar morphologies, grouping
neurons into biomedical meaningful clusters, exploring the rela-
tion between morphologies and functional properties with respect
to their cell types, etc, all of these require computational modeling
and mining of 3D neurons in currently large-scale datasets.
Accordingly, the key step and the major challenge is the feature
representation of 3D neuronal images, i.e., how to quantitatively
represent and discriminate structures for various types of neurons.

In recent years, multiple methods and tools have been proposed
for the neuronal feature representation. Especially, due to the tree-
like characteristics of neurons, most efforts focused on computing
neuroanatomical measurements of pre-defined metrics according
to the tree structures, such as neuron’s total length and width,
soma surface, the angel of two compartments, and the order of
the branch with respect to soma, etc. These pre-defined metrics
are treated as the most representative measures for neuron mor-
phology developed by domain experts. In addition to these specif-
ically designed measurements, several works employed theories
and methods in topology and geometry, to extract general features
from the tree-structure, e.g., moments invariant [25], persistent
homology [7], sholl analysis [21], etc. Moreover, for more accurate
comparison of two or more neuronal structures, several works
decomposed neurons into segments and then designed features
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using morphological statistics [3,13]. All these pre-defined mea-
surements (i.e., ‘‘hand-crafted” features) have been achieved many
successes in solving multiple challenges of neuron morphology
analysis for certain species, brain regions, or cell types.

However, with the continuously expanding of digitally recon-
structed neuron data, new challenges need to be considered when
tackling the feature representation and indexing for large-scale
neuron datasets. Firstly, massive 3D neurons can significantly
increase the varieties of neuronal structures and categories of neu-
ronal types, which makes neurons more difficult to differentiate,
e.g., the difference of neurons belonging to different categories
can be subtle (indicated small inter-class variances), while the dif-
ference of neurons belonging to same categories can be remarkable
(indicated large intra-class variances). Traditional ‘‘hand-crafted”
features cannot well consider and differentiate large-scale newly
reconstructed neurons by pre-defined measurements. Secondly,
the computational efficiency is another challenge when tackling
large-scale neuron datasets. Current neuron datasets can include
hundreds of thousands of neurons, e.g., the NeuroMorpho.Org
dataset [29] already includes more than 100;000 reconstructed
neurons which is still fast growing. For the neuronal retrieval
and clustering tasks, if every time we find similar neurons by
exhaustive computing and searching in the whole database with
hundreds to thousands dimensions of feature vectors, the whole
process would be very time-consuming. Therefore, accurate and
efficient methods should be developed for the representation and
indexing of currently large-scale 3D neuron data. Additionally, as
illustrated in Fig. 1, the specific structures of 3D neurons, i.e., com-
plex tree topologies in 3D space, makes them even harder for uni-
fied modeling, in comparison with regular 2D images and 3D point
sets.

In this paper, we develop a novel framework for effective fea-
ture representation and retrieval of 3D neuronal images by inves-
tigating recent advances in deep learning and computer vision,
especially for recently fast-growing large-scale neuron datasets.
Unlike previous methods that extract neuronal features based on
the pre-defined measurements, our framework learns deep fea-
tures through the proposed 3D neuronal mapping method with a
modified Generative Adversarial Networks (GANs) [17], which is
able to learn effective features for the representation of 3D neuron
images. Particularly, the 3D neuronal mapping can transform 3D
neurons into 2D images for convenient network training, as well
as preserving spatial structures and tree-topologies. For the first
time, the 3D neuron mapping utilizes all the information provided
in the original SWC formatted files, including point coordinates,
connections, radius, and structure identifiers, to preserve the spa-
tial tree-topologies. The mapped 2D images are subsequently set
as input for the training of GANs. Based on the newly designed fea-
tures of neuron morphology, we further apply the features for the
task of neuronal retrieval, to index and analyze neurons sharing
similar morphologies. Considering the computational efficiency
Fig. 1. Illustrating of some 3D neurons, showing complex spatial structures,
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when comparing the neuronal similarity with high-dimensional
features among large-scale datasets, we integrate the neuronal fea-
tures with a graph-based indexing strategy, i.e., Hierarchical Navi-
gable Small World graphs (HNSW) [26], for efficient retrieval with
massive neuron data without losing accuracy. The proposed frame-
work is evaluated in the tasks of feature representation and retrie-
val using NeuroMorpho with more than 99,000 neurons, which is
currently the largest neuron dataset worldwide. In comparison
with most recent advances in computational neuron morphology,
the proposed framework can significantly improve both accuracy
and efficiency for the feature representation and retrieval in
large-scale 3D neuron dataset.

The remaining of this paper is organized as follows: Section 2
briefly introduces the backgrounds and related works of computa-
tional neuromorphology and deep feature representation. Section 3
provides technical details of 3D neuron mapping, feature learning,
and efficient indexing. Followed experimental results and discus-
sions in Section 4. Finally, Section 5 concludes this paper and dis-
cuss future works.
2. Related work

In this paper, we develop a computational method for the ana-
lytics of 3D neurons based on advances of deep learning and com-
puter vision. Here, we first introduce technical backgrounds of
unsupervised feature learning, then review related methods and
tools for the analytics of neuronal morphology.
2.1. Unsupervised feature learning

Feature representation is one of the most fundamental tasks in
machine learning and pattern recognition, which focuses on the
learning of representations from the dataset that somehow makes
it easier to extract useful information for varieties of analytical
tasks, e.g., image classification, retrieval, recognition [4]. In most
practical problems, it is labor intensive, expensive, and even
impossible to access annotations for each image sample. To this
end, unsupervised feature learning methods have been widely
investigated which explore and learn representations from the
data itself without corresponding labels. Autoencoder is one of
the most popular deep models for unsupervised feature learning,
which can encode the input into feature representation so that
the input can be reconstructed from the representation [5]. Subse-
quently, many variants of autoencoder models have been proposed
for more accurate and robust feature learning, e.g., denoising
autoencoder [38], sparse autoencoder [40], and variational autoen-
coder [32]. In addition to these autoencoder based models, restrict
Boltzmann machines (RBM) [1] and its variants, e.g., deep belief
networks [18] and deep Boltzmann machines [35], are also popular
methods for unsupervised deep feature learning.
which are quite different with traditional 2D images and 3D point sets.
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More recently, Generative Adversarial Networks (GANs) [17]
and its variants demonstrate excellent performance for image gen-
eration as well as unsupervised feature representation. Generally,
GANs consist of two distinct networks, i.e., generator and discrim-
inator, which learns to capture the data distribution and discrimi-
nate images generated from the generator and those from the
training data respectively. Especially, among the variants of GANs,
DCGANs [34], InfoGAN [8], and BiGANs [14] are the most widely
used models for the feature learning of general image modalities.
However, due to the specific 3D structures and the tree-like topolo-
gies, fewmethods focus on the unsupervised feature learning of 3D
neuron morphological data so far.

2.2. Neuronal morphology

Due to the strong relevance between morphologies and func-
tional properties (e.g., cell classes, development stages), neuronal
morphology is a long-time and critical research topic in neuro-
science. Especially in recent years, with the rapidly developing
techniques of microscopy imaging and neuron tracing, neuronal
morphology can be quantitatively explored from dendrite to axon
in high precision. Currently, based on the well-reconstructed 3D
neuron images, the research of neuronal morphology mainly
focuses on two areas: (1) the quantitative representation of 3D
neuronal structures, and (2) group analytics and exploration (e.g.,
retrieval, clustering) with numerous of neuron data. We briefly
review related works in these two areas.

2.2.1. Quantitative representation: to quantitatively measure the
morphology of 3D neuron data, multiple works have been pro-
posed based on the computational modeling of tree-topological
structures in recent years. Scorcioni et al. [37] first developed a
freely available software tool for the quantitative characterization
of neuronal morphology, namely L-Measure, which can compute
tens of neuroanatomical parameters from 3D neuron data by pre-
defined metrics. Costa et al. [12] proposed the concept of neuro-
morphological space as the multidimensional space defined by a
set of morphological measurements for the representative set of
almost 6;000 biological neurons. Subsequently, Langhammer
et al. [21] employed sholl analysis to automatically explore the dig-
itized neuronal morphology in both whole cell and arbor subre-
gions. More recently, Li et al. [22] developed new computational
metrics for comparing neuronal tree shapes based on the concept
of topological persistence, which can vectorize each neuron struc-
ture into a simple yet informative summary. Kanari et al. [19]
invented the Topological Morphological Descriptor (TMD) to
encode the spatial structure of any tree as a ‘‘barcode”, which cou-
ples the topology of the branches with their spatial extents by
tracking their topological evolution in 3D space. Unlike these
hand-crafted designed features, Li et al. [23] first employed deep
learning method, i.e., stacked auto-encoder, to learn deep features
for the 3D neurons. However, since the number of neurons in
NeuroMorpho.Org dataset [29] has increased from 50;000 to
100;000 in recent two years, there are no related quantitative rep-
resentation methods developed for such a large-scale neuron
dataset.

2.2.2. Neuronal exploration: based on the quantitative represen-
tation of 3D neuron data, many computational methods and tools
have been developed for the exploration of neuronal morphology.
For example, Wan et al. [39] first developed BlastNeuron, which can
automatically compare, retrieve, and cluster for more than 10;000
3D neuron data, based on the features of L-Measure [37] and
moment invariants [25]. Costa et al. [13] developed an online tool
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for fast, sensitive neuron similarity search, i.e., NBLAST, which sup-
ports the pairwise comparison, and the search of databases of neu-
rons, as well as hierarchical clustering. Moreover, considering the
computational efficiency during the similarity search, Conjeti
et al. [10,28] first employed hashing methods for large-scale neu-
ron retrieval, and developed an Android App, i.e., Neuron-Miner,
for fast retrieval over 31;266 neurons. More recently, Fulmer
et al. [15] introduced augmented reality and mixed reality tech-
niques for the visualization of 3D neuron morphologies (i.e.,
ImWeb), by the immersive web browsing with the Microsoft Holo-
Lens headset. However, the above methods and tools can only sup-
port the retrieval and exploration of pre-stored neurons, i.e., the
input is neuron id rather than the original morphological data,
which cannot afford the requirements for the analytics of the
ever-increasing number of digitally reconstructed neurons.
3. Methodology

In this section, we present methodological details of our pro-
posed framework for the computational analytics of 3D neuron
images, including 3D neuronal mapping, unsupervised deep fea-
ture learning, and graph-based neuronal indexing.
3.1. 3D Neuron Mapping

The 3D neuron morphological data are reconstructed from mul-
tiple microscopy slices through the neuron tracing techniques.
Afterwards, the 3D neuron data are stored using the SWC format
files, which is the standard version used in currently large-scale
neuron datasets, such as NeuroMorpho.Org [29] and FlyCircuit
[9]. For each SWC file, it includes hundreds to thousands of 3D
points. Moreover, as illustrated in Table 1, each point includes 7
dimensional information to indicate the spatial structures of neu-
ron morphology. The first dimension ‘‘Point Number” denotes the
order of each point. The second dimension ‘‘Point Identifier”
denotes the type of each point according to the structure of neuron
cells, including soma, axon, dendrite, etc. The third, fourth, and
fifth dimensions denote the 3D coordinates (X, Y, Z) of each point
in micrometers. The sixth dimension denotes the radius of corre-
sponding points in micrometers. Finally, the seventh dimension
denotes the serial number of parent point, which can reveal the
tree-topological structures of neuron morphology.

The 3D neuron data are quite different with most widely inves-
tigated 2D images and 3D point sets. Accordingly, it is hard to
directly employ existed deep neural networks for the computa-
tional analytics of neuronal morphology. Especially, the 3D neuron
data demonstrates complex spatial structures with tree-topologies,
i.e., from soma to dendrite, which need to be considered in the fea-
ture learning. Besides the tree-topologies, the other biomedical
information recorded in the SWC file also plays critical roles in
the differentiation of neuron morphologies, e.g., ‘‘Point Identifier”
and ‘‘Radius”. For an accurate representation of 3D neurons, all
these items should be involved during the feature learning of deep
neural networks.

Here, we present 3D neuronal mapping, which can transform
3D neurons into 2D images for unsupervised deep feature learning,
as well as preserving spatial structures and properties. Fig. 2
demonstrates the pipeline of our proposed 3D neuron mapping.
Given an SWC format file, we first extract their 3D points coordi-
nates and employ principal component analysis (PCA) to move
neurons into a normalized axis, which is consistent with the previ-
ous method [23]. Afterwards, we map all the 3D points and their
radius into 2D with three angles of view, i.e., three circles in X-Y,
X-Z and Y-Z plane respectively for each point (Fig. 2(b)). Subse-
quently, each point is connected with its parent point, where the



Fig. 2. The pipeline of our proposed 3D neuron mapping, which can map 3D neuron data into 2D images for convenient unsupervised deep feature learning, as well as
preserving their spatial structures: (a) given an SWC formatted neuronal file, visualizing original 3D neuromorphological data using Vaa3D [31]; (b) plotting all points
recorded in the SWC file in 3D space, different color indicates different point identifier; (c) orthogonally mapping all the points with corresponding radius in three angles of
view, denoted as small solid circles; (d) connecting each circle with their parent circle using the index of parent point, then assigning each circle and their closest connection
with corresponding gray-level according to their point identifier; (f) considering the three gray images to compose an RGB color image, where each gray image indicates a
channel.

Table 1
For each neuronal cell, the 7 dimensional information recorded in SWC format files.

1 2 3 4 5 6 7

Point Number Point Identifier X Position Y Position Z Position Radius Parent Point
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thickness of each line is determined by the radius of the corre-
sponding point and their parent point, i.e., the tangents of two
mapped circles (Fig. 2(c)). Unlike previous methods which only
consider each point and its connections [23], we propose to fully
explore the information provided in the SWC file. As the ‘‘Point
Identifier” denotes the point type based on the structure of neuron
cells, each point has different biomedical meanings in the repre-
sentation of 3D neuronal structures. Therefore, the mapped circle
and their connections cannot be treated as equal without discrim-
ination. To this end, for the mapped circles and their connections,
we propose to assign different gray levels according to the type of
‘‘Point Identifier”. Especially, there are in total 8 point types, which
can be normalized to gray levels from 0 to 255. The connected lines
can be mapped to the gray level consistent with the point and its
parent point, i.e., half of the line follows the gray level of current
points, another half of the line follows the gray level of its parent
point. Finally, for a 3D neuron data, it can be mapped into three
gray images in 2D (Fig. 2(d)). For convenience, we store the three
gray images as a tensor, then converting the tensor into color
images with corresponding R, G, B channels (as illustrated in
Fig. 2(e)(f)). The 3D neuron mapping strategy has fully utilized
the information provided in the SWC files, preserving 3D structures
and tree-topologies of neuron morphologies.
3.2. Unsupervised feature learning for 3D Neuron Data

Based on the 3D neuron mapping, each 3D neuron data can be
transformed into 2D images for convenient training of deep neural
networks. Despite varieties of deep neural networks have been
designed in recent years, achieved many successes in the analytics
of nature images and biomedical images, two challenges still need
to be considered when applying deep learning techniques for cur-
rently neuron datasets. Firstly, existed neuron datasets lack suffi-
cient annotations for supervised feature learning. Actually, it is
still an open problem for the fine-grained classification of neuron
cells, where existed neuron datasets only provide coarse cell types,
brain regions, transmitters, without well-organized taxonomy.
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Secondly, the tree-topological structure in neuron morphology
should be also taken into account, which plays critical roles in
the determination of different neurons. More discriminative deep
neural networks need to be designed for effective feature learning
of neuron data.

We formulate the feature learning of 3D neuron data into an
image generation problem and propose to use deep convolutional
generative adversarial networks (DCGAN) in tackling the above
challenges [34]. As shown in Fig. 3, we build a generator-
discriminator network with convolutional stride and transposed
convolution for the downsampling and the upsampling. In the gen-
erator network (denoted as G), a 128� 128 sized image GðzÞ can be
generated from an uniformed noise distribution pzðzÞ, to mimic the
space of 2D neuron images. The generated images are labeled as
fake, where x obtained from the neuron datasets are labeled as
true. In the discriminator network (denoted as D), it tries to max-
imize the probability it correctly classifies real and fake images,
while the generator network G tries to minimize the probability
that the outputs of DðGðzÞÞ are fake. Accordingly, to train the net-
work, D and G play the following two-player minimax game with
value function VðD;GÞ:

min
G

max
D

VðD;GÞ ¼ Ex�pdataðxÞ½logDðxÞ� þ Ez�pzðzÞ½logð1� DðGðzÞÞÞ�
ð1Þ

where the generator G tries to minimize the objective function
while the discriminator D tries to maximize it.

For all layers in the generator network, we choose the ReLU as
the activation function and apply batch normalization except the
last layer, where we choose the tanh as the activation function.
The dimension of the input noise vector is set to 100. All weights
in the generator network are initialized from a zero-centered nor-
mal distribution with standard deviation 0.02. In the discriminator
network, the LeakyReLU is employed as the activation function for
each layer except the last layer, where we choose the sigmoid as the
active function. In the LeakyReLU, the slope of the leak was set to
0:2 in all layers. Additionally, when training the discriminator net-
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Fig. 3. The model architecture of our deep convolutional generative adversarial networks for the unsupervised feature learning of mapped neuronal images.
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work, we set the learning rate as 0:0001, while using 0.0002
instead to train the generator network, leaving the momentum
term b1 with the value of 0:5. After the training of both generator
and discriminator networks, each mapped neuron image can be
set as input to the discriminator network, i.e., a classification neu-
ral network, where we extract feature vectors from the last layer.
These feature vectors can be considered as the quantitative repre-
sentation of each 3D neuron data.

In addition to the above unsupervised deep feature learning,
previous works demonstrate that deep features are complemen-
tary with the traditional hand-crafted features, i.e.,
measurement-based features, in the representation of 3D neuron
data [23]. Therefore, for more accurate neuron analytics, we fur-
ther explore more types of measurement features and fuse them
with deep features. Especially, due to the ever-increasing number
of reconstructed 3D neurons in the public datasets, previously
low-dimensional measurement features (e.g., dozens of measure-
ments) cannot work well in the discrimination of large-scale neu-
rons. Here, we introduce more measurements for the
representation of 3D neuron data. Especially, the increased mea-
surements can be reflected in two aspects:

1. We introduce new types of measurements: in addition to the
most widely employed measurements in previous works, such
as the number of branches, soma surface, etc, we adopt new
types of measurements to make neuron features more discrim-
inative. For example, for each bifurcation point, we adopt a new
measurement, i.e., last parent diameter, which returns the
diameter of the last bifurcation before the terminal tips. Most
of these newly added measurements can help to represent 3D
neurons in branch and bifurcation level.

2. We extend existed measurements with more metrics: previous
low-dimensional measurements only employ one or two met-
rics for the representation of 3D neurons. For example, for the
measurement of volume, previous methods only return the
sum of the volume for all the compartments, which cannot well
differentiate massive neuron data. As for the neurons with dif-
ferent morphologies, the sum of their compartment volume can
be close. For these measurements, we further compute their
minimum, average, and maximum for the neuron feature
representation.

Based on the above two strategies for the extension of measure-
ments, the dimension of hand-crafted features has increased from
38 to 169, which can well enlarge the representational power for
massive 3D neurons.

After the computation of two kinds of improved neuron fea-
tures, i.e., unsupervised deep features and extended hand-crafted
features, we fuse these two kinds of features together as the repre-
sentation of 3D neuron data. Since the dimensions of two kinds of
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features are not consistent, we employ the principal component
analysis (PCA) algorithm to compact thousands dimensional deep
features into hundreds dimensions. Then these two kinds of fea-
tures can be combined together as the quantitative representation
for large-scale 3D neurons.

3.3. Efficient and robust retrieval for large-scale neuron datasets

On the basis of unsupervised feature learning, each neuron can
be quantitatively described through the fused features above.
Afterwards, we employ these features for further neuron analysis
and exploration. Among the analytical tasks for neuron morphol-
ogy, retrieval is one of the most important and widely investigated
tasks. Given a query neuron, neuromorphological retrieval can find
neurons with similar morphologies in large-scale datasets, which
are the basic step for further neuron comparison, type identifica-
tion, group analysis, structure and functional property correlation,
etc. However, the continuously expanded neuron datasets pose
significant challenges for efficient neuron retrieval. For each retrie-
val task, if every time we exhaustively compute the Euclidean dis-
tance between each query neuron and all neurons in large-scale
dataset, the whole process would be very time-consuming, which
cannot afford the requirements for online neuron retrieval system.
In recent years, multiple efforts have been made for efficient neu-
ron retrieval, through the learning to hashing techniques [24,10].
This kind of method aims to learn effective hashing functions
through the existed datasets, which can transform long neuronal
feature vectors into short binary codes, preserving original neu-
ronal similarities as much as possible in the meanwhile. Despite
the hashing based methods can efficiently find similar neurons in
large-scale dataset, they cannot achieve comparative performance
with the exhaustive computation of Euclidean distance through
feature vectors, due to the information loss when transforming fea-
ture vectors into binary codes, where these binary coding transfor-
mations are not one-to-one correspondences.

In order to remarkably improve the retrieval efficiency without
losing precision, we introduce a fully graph-based approximate K-
nearest neighbor search method through the navigable small
world graphs with controllable hierarchy, i.e., Hierarchical Naviga-
ble Small World graphs, denoted as HNSW [26]. This search strat-
egy is specially designed for the indexing of high-dimensional and
large-scale datasets, which incrementally builds multi-layer graph
structures for efficient and robust indexing. Fig. 4 presents the
pipeline of our solution for the efficient and robust retrieval in
large-scale neuron datasets using the HNSW indexing. In the phase
of retrieval model construction, we first extract quantitatively
morphological features for the representation of all 3D neuron data
in the database, using the above proposed method, i.e., 3D neuron
mapping, generative adversarial feature learning, and feature
fusion. Subsequently, for efficient similarity search in massive neu-
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rons, we consider each neuron feature as a node to construct the
graph according to their Euclidean distance. We employ the
method of HNSW for the construction of hierarchical graph, i.e.,
specially designed for the indexing of high-dimensional and
large-scale datasets, which incrementally builds multi-layer graph
structures for efficient and robust indexing.

The HNSW algorithm was originally from the Navigable Small
World graphs (NSW) [20,6], a typical graph-based similarity
searching strategy, which suffers from the polylogarithmic search
complexity of the routing process. By extending the NSW graph
into multiple layers, HNSW is similar to the well-known 1-D prob-
abilistic skip list structure [33], where the major difference is that
the HNSW can generalize the structure by replacing linked lists
with proximity graphs. As illustrated in Fig. 4, when constructing
the hierarchical graph, the HNSW algorithm separates the links
according to their length scale into different layers. Afterwards,
in the phase of online neuron query, given a query neuron, the
quantitative features can be first extracted through the above pro-
posed method. Then, the HNSW algorithm greedily traverses the
multi-layer graph through the node (i.e., neuronal features in the
database) from the top layer until a local minimum is reached.
Then the search can be moved to the lower layer which has shorter
links, restarting from the node which is the local minimum in the
previous layer. The above process can be repeated to find the near-
est neighbor. Since the maximum number of connections per node
in all layers can be made constant, the HNSW can reach a logarith-
mic complexity scaling of routing in a navigable small world net-
work. Accordingly, the query neuron can efficiently find its top
similar neurons in the database through the indexing in the hierar-
chical NSW graph with the embedding of all neuron features.

In comparison with previous neuron morphological retrieval
through learning to hashing, there are mainly two advantages
when using HNSW for neuron retrieval. Firstly, the retrieval preci-
sion can be guaranteed, since the information in neuron features
haven’t been lost during the construction of hierarchical graphs.
The graph-based strategy can generally achieve excellent perfor-
mance in the approximate nearest neighbor search. Secondly, the
efficiency of HNSW is comparable with hashing- based methods.
The search complexity of HNSW is OðlogðNÞÞ, which is efficient
...
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neuron query, the feature of query neuron can be also first computed, then the neuron ind
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enough in tackling the retrieval of the dataset with 100;000 neu-
rons. In addition, despite the hashing based methods can achieve
theoretically Oð1Þ search complexity, re-ranking of tens to hun-
dreds of top similar samples are generally required in practical
cases, since the top similar samples can share the same binary
codes, which need further ranking through the computation of
their Euclidean distance. In the experiment, we will demonstrate
the superiority of the HNSW for the retrieval of large-scale neuron
datasets.
4. Experiments

In the experiment, we demonstrate the effectiveness of the pro-
posed framework for the computational analytics of neuronal mor-
phology, as well as the discussion of potential use cases.
4.1. Experimental Setting

In the experiment, we employ the publicly available largest
neuron dataset, i.e., NeuroMorpho [29] for method evaluation
and comparison. Especially, the NeuroMorpho [29] currently
includes more than 100;000 reconstructed 3D neurons collected
from 545 labs worldwide, with the collection of neurons from 64
species, 317 brain regions, and 721 cell types. For the
measurement-based features, we employ the L-Measure toolbox
[37], extracting all the 43 types of quantitative morphological mea-
surements, with the metrics computation of minimum, average,
maximum, and sum. We finally employ the 169 dimensional
measurement-based features, after the ignoring of redundant mea-
surements. In our experiment, we consider all 99;453 effective
neurons in the NeuroMorpho dataset [29], which was accessed in
February, 2019 with the version of v7:6, excluding neurons that
cannot be processed by L-Measure toolbox [29].

For the 3D neuron mapping, we map all 3D neurons into 2D
images with a size of 128� 128. The whole network (including
generator and discriminator) is trained end-to-end in 70 epochs
with the learning rate of 0:0001 and 0:0002 for the generator and
discriminator respectively. The learned deep features are 4096
Graph 
Construc�ons

Hierarchical NSW Graph

Layer 0

Layer 1

Layer 2

Layer 0

Layer 1

Layer 2

HNSW Neuron Indexing
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ets, which includes two phases, i.e., retrieval model construction and online neuron
uron data from the database can be obtained through the above developed feature
erarchical navigable small world graphs for efficient indexing; In the phase of online
exing can be treated as the greedily traverses from the entry point in top layer to the
ling of routing, achieving large-scale neuron retrieval in real-time.
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dimensions. All experiments are processed on Python v3.6, and
Keras with GEFORCE GTX TITAN GPUs.

4.2. Evaluation of unsupervised feature learning

We first evaluate the effectiveness of the proposed unsuper-
vised feature learning method in the quantitative representation
of 3D neuron morphologies. Especially, we evaluate neuron fea-
tures through the neuron retrieval task, which is also the most
widely investigated task in the neuromorphological analytics. For
the fair comparison with related works, we also adopt the uPNs
as query neurons, with the brain regions of the olfactory antennal
lobe, glomerulus, and the cell classes of the principal cell,
uniglomerular projection [39,23,13]. As the current neuron data-
sets haven’t provided well-organized neuronal taxonomy, uPNs
are one of the most fine-grained recognized neurons in the
NeuroMorpho dataset [29]. Besides, for the evaluation metric, we
evaluate the retrieval performance by the computing of average
retrieval precision, which is defined as the ratio of retrieved uPNs
among all retrieved top-K neurons after the indexing of in total
99;453 neuron cells. We adopt the retrieval precision for evalua-
tion since neuroscientists usually need to compare the similarity
between the query neuron and its retrieved top similar neurons.

In Table 2, we present the average retrieval precision of the pro-
posed methods in comparison with other related methods, to eval-
uate the representational power especially for the 3D neuron
morphological data. As demonstrated in Table 2, there are three
groups of feature representation methods recorded: (1) features
learned from unsupervised deep neural networks (i.e., Deep-
DBM, Deep-VAE, Deep-SCAE, Deep-DCGAN); (2) features measured
by multiple quantitative metrics (i.e., L-Measure38, L-
Measure169); (3) features fused by both deep features and hand-
crafted features (i.e., DCGAN-Fuse, SCAE-Fuse). Among of these
methods, Deep-DCGAN, L-Measure169, and DCGAN-Fuse are the
methods we presented in this paper. Particularly, Deep-DCGAN
indicates the neuron features learned through the 3D neuronal
mapping and unsupervised deep convolutional generative adver-
sarial networks. L-Measure169 indicates the hand-crafted neuron
features we extracted through 169 types of L-Measure metrics.
DCGAN-Fuse indicates the feature fusion of Deep-DCGAN features
and L-Measure169 introduced in Section 3.2. Considering the deep
features generally have high-dimensional vectors in comparison
with hand-crafted features, we uniformly compress all deep fea-
tures into 130 dimensions for the feature fusion through principal
component analysis (PCA), which consists with hand-crafted fea-
tures. In addition to these proposed methods, we also introduce
the competitive methods respectively:

1. Deep-DBM: Deep Boltzmann Machines (DBM) [36] is one of the
most widely used deep neural networks for unsupervised fea-
ture learning. Here, we train the DBM networks from scratch,
using the neuron images obtained from the 3D neuron map-
Table 2
Comparing the average retrieval precision of eight methods under different numbers of re

Method top10 top20

Deep-DBM 0.5636 0.4510
Deep-VAE 0.6259 0.5185
Deep-SCAE 0.6305 0.5181
Deep-DCGAN 0.7031 0.6041
L-Measure38 0.7729 0.6802
L-Measure169 0.8627 0.7852
SCAE-Fuse 0.7928 0.6900
DCGAN-Fuse 0.9559 0.9311
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ping. We set the dimension in hidden layer as 512, which can
achieve the best performance comparing with other
parameters.

2. Deep-VAE: Variational Auto-Encoder (VAE) [32] has also been
widely employed for the feature representation of varieties of
image modalities. In the VAE model, we use the hidden vector
that generates vectors of means and standard deviations as
learnt features, which performs better than the latent vector.

3. Deep-SCAE: Stacked Convolutional Auto-Encoder (SCAE) [27] is
a very popular network for unsupervised feature learning. More
specifically, this is the first deep neural network that has been
employed for the representation of neuromorphological data
[23]. The parameter setting here is consistent with previous
works [23].

4. L-Measure38: L-Measure is the most widely used toolbox for
the measurement of neuron features [37]. Especially, multiple
neuronal analytical works employed the 38 dimensional mea-
surements for the representation of neuron morphologies
[24,11,10].

5. SCAE-Fusion: this method fuses the features of Deep-SCAE and
L-Measure38, which had achieved excellent performance for
the retrieval of 50,000 neurons in previous works [23]. These
feature fusion results are generally much better than both the
results of deep features and the measure-based features.

According to Table 2, our proposed method DCGAN-Fuse can always
achieve the best performance under different number of retrieved
neurons from top-10 to top-100, with around 9% to 21% precision
improvement compared with the second best method. These results
validate the effectiveness of our proposed new framework for the
quantitative description of large-scale 3D neuron data, demonstrat-
ing superior representational power in the discrimination of mas-
sive neurons. Besides, the corresponding two improved methods,
i.e., Deep-DCGAN with 3D neuronal mapping and L-Measure169
with more types of measurements, also perform better in compar-
ison with competitive deep features and hand-crafted features
respectively. The retrieval precision has a significant improvement
from L-Measure38 to L-Measure169, validating the fact that more
types of effective measurements can boost the quantitative repre-
sentation for large-scale datasets. Moreover, for the comparison of
4 deep learning based methods, Deep-DCGAN can achieve much
better performance in comparison with Deep-DBM, Deep-VAE and
Deep-SCAE. These superior results mainly benefited from the
well-designed 3D neuronal mapping and the introduction of
DCGAN. Specially, the 3D neuronal mapping preserved all dimen-
sional information provided in the original SWC format files, includ-
ing each point with its coordinates, connections, radius, and
identifiers. For comparison, the Deep-SCAE only considered the pro-
jection of points and their connection. The introduced DCGAN also
performs better in comparison with VAE and DBM for the feature
representation of mapped 2D neuron images. In addition to the
deep features and measurement features, i.e., Deep-DCGAN and L-
trieved neurons.

top30 top50 top100

0.3780 0.2890 0.1895
0.4522 0.3632 0.2367
0.4533 0.3715 0.2530
0.5366 0.4459 0.3103
0.6227 0.5391 0.3967
0.7231 0.6343 0.4746
0.6198 0.5168 0.3512
0.9090 0.8533 0.6861
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Measure169, we find that measurement features can generally per-
form better than the deep features, since deep features are more
likely to represent holistic structures of neuronal morphologies,
while measurement features are more likely to represent fine-
grained structures. Comprehensive feature representation from glo-
bal to local is able to differentiate the difference among massive
neurons. Accordingly, their combination can significantly improve
the representation power for the 3D neuron data.

Besides the quantitative comparison of retrieval precision, we
also randomly select five neurons in the NeuroMorpho [29] dataset
and set them as query neurons. As demonstrated in Fig. 5, the left 5
neurons are queries. The corresponding neurons on the right are
their top-5 most similar neurons by indexing all neurons in the
dataset, through our proposed feature representation framework.
According to Fig. 5, our proposed framework can indeed retrieve
similar neurons from large-scale datasets, showing strong rele-
vance between each query neuron and their retrieved neurons.
Moreover, we also present related information for the above all
neurons in Fig. 5, including neuron names, brain regions and cell
classes provided in NeuroMorpho dataset [29]. We find that most
retrieved neurons also share similar functional properties with
each query neuron. More importantly, for some neurons where
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Fig. 5. Five randomly selected query neurons and their top-5 most similar neurons using
classes provided in the NeuroMorpho dataset [29].
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their properties are not well explored in the dataset, the corre-
sponding retrieved similar neurons can help to infer the properties
of the unknown neuron.

4.3. Evaluation of efficient retrieval

We further evaluate the effectiveness of the introduced graph-
based nearest neighbor search for efficient and robust retrieval of
massive neurons with hundreds of dimensional features. Espe-
cially, for the HNSW method [26], we set the parameter M as 16
(defined as the maximum number of outgoing connections in the
graph), and the parameter efConstruction as 200 (controls speed/ac-
curacy trade-off during the index construction). We compare the
retrieval precision and efficiency with two typical methods:

1. Baseline: as described above, the DCGAN-Fuse includes 299
dimensional features fused by the measurement features and
deep features, which achieves the best retrieval precision with
state-of-the-arts. Here, we validate its retrieval efficiency
through the exhaustive computing and ranking of their Eucli-
dean distance, which can achieve the most reliable and accurate
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Fig. 6. Evaluation of the introduced HNSW method for the efficient neuron retrieval: (a) retrieval precision of three compared methods under the different number of
retrieved neurons, (b) retrieval time comparison of three methods under the ranking of the different number of retrieved neurons (in second), (c) retrieval time of HNSW
method under the ranking of the different number of retrieved neurons (in second).
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retrieval results. This exhaustive computing and ranking can be
treated as the baseline for the evaluation of neuron retrieval
efficiency.

2. MIPS [24]: as one of the well investigated hashing methods,
MIPS can effectively learn the hashing functions through the
maximum inner product search. Moreover, MIPS has been
applied for neuron morphological retrieval and achieved excel-
lent performance.Fog. 6 records the retrieval precision and effi-
ciency (in second) for the three compared methods, after the
indexing from top-1 to top-100 most similar neurons in the
NeuroMorpho dataset [29]. To overcome the randomness of
these three methods, all the methods are run randomly 100
times to record their average precision and running time. The
retrieval time is the accumulative running time by computing
the top-K similar results for the indexing of all uPNs. According
to the Fig. 6(a), the HNSW based retrieval can achieve almost
similar retrieval precision in comparison with the baseline
method, i.e., directly computing and ranking through the Eucli-
dean distance for each neuron feature. Therefore, such graph-
based indexing is reliable for the approximate nearest neighbor
searching of large-scale neuron dataset. The hashing-based
method, i.e., MIPS [24] cannot achieve comparable results, due
to the information loss when transforming neuron features into
binary codes. In the Fig. 6(b) and (c), HNSW based retrieval is
the most efficient method for the large-scale neuron retrieval
task, with hundreds of efficiency improvements in comparison
with the baseline method. Theoretically, hashing-based meth-
ods can achieve efficient retrieval. However, for the retrieved
top similar neurons, their hamming distance can be the same.
Re-ranking top similar neurons through the computation of
Euclidean distance is generally employed to guarantee the per-
formance of hashing-based methods. Therefore, our introduced
HNSW method [26] is efficient and robust for the retrieval of
massive neuron data.

5. Conclusion

In this paper, we present a novel framework for the computa-
tional analytics of 3D neuron images, through a deep adversarial
learning framework. Especially, to transform the specific 3D neu-
ron data into an available modality for deep model training, we
present a 3D neuron mapping method to transform 3D neurons
into 2D images, as well as preserving their spatial structures. The
deep neuron features can be then learnt through a well-designed
deep convolutional generative adversarial networks. In addition,
we explore more types of measurement features and fuse them
with deep features for accurate neuron representation. To boost
the computational efficiency without losing retrieval precision,
we further introduce a graph-based searching strategy for the
331
retrieval in large-scale neuron datasets. Experimental results vali-
date the superiority of our proposed framework in comparison
with state-of-the-arts. In the future, we will develop a comprehen-
sive tool for neuron retrieval and computational analytics, based
on the methods presented in this work.
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