
Ghost Thread: Effective User-Space Cache Side Channel
Protection

Robert Brotzman Danfeng Zhang Mahmut Kandemir Gang Tan
Pennsylvania State University

ABSTRACT
Cache-based side channel attacks pose a serious threat to com-
puter security. Numerous cache attacks have been demonstrated,
highlighting the need for effective and efficient defense mecha-
nisms to shield systems from this threat. In this paper, we propose a
novel application-level protection mechanism, called Ghost Thread.
Ghost Thread is a flexible library that allows a user to protect cache
accesses to a requested sensitive region to mitigate cache-based
side channel attacks. This is accomplished by injecting random
cache accesses to the sensitive cache region by separate threads.
Compared with prior work that injects noise in a modified OS and
hardware, our novel approach is applicable to commodity OS and
hardware. Compared with other user-space mitigation mechanisms,
our novel approach does not require any special hardware support,
and it only requires slight code changes in the protected applica-
tion making it readily deployable. Evaluation results on an Apache
server show that Ghost Thread provides both strong protection
and negligible overhead on real-world applications where only a
fragment requires protection. In the worst-case scenario where the
entire application requires protection, Ghost Thread still incurs
negligible overhead when a system is under utilized, and moderate
overhead when a system is fully utilized.

KEYWORDS
side-channel; cache; mitigation

ACM Reference Format:
Robert Brotzman Danfeng Zhang Mahmut Kandemir Gang
Tan. 2021. Ghost Thread: Effective User-Space Cache Side Channel Protec-
tion. In Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy (CODASPY ’21), April 26–28, 2021, Virtual Event, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3422337.3447846

1 INTRODUCTION
Side channel attacks observe physical characteristics of a machine
such as cache usage [3, 35], power consumption [24], and even elec-
tromagnetic field fluctuations [1] to uncover sensitive data. These
attacks have plagued both hardware and software developers for
years, particularly developers working with sensitive information.

Cache-based side channel attacks (cache attacks) [3, 35] have
been well known for over a decade. They are particularly dangerous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00
https://doi.org/10.1145/3422337.3447846

due to their capability of leaking hundreds of kilobytes of informa-
tion in seconds [14]. Recently, cache attacks have made a splash
in the computing world: Spectre [23] and Meltdown [27] exploits
show that when combined with other attack vectors, cache attacks
can be a serious threat to computer systems. Most alarmingly, cache
attacks have been shown to be possible across virtual machines in a
cloud environment [38] and secure enclaves [40]. The root cause of
cache side channels is that some programs modify the cache state
in ways that depend on confidential data used by the programs.
Hence, an adversary can observe the cache usage during program
execution and infer what data could have been used to cause the
state changes of the cache.

Many defenses have been proposed to mitigate those attacks,
with the goal of eliminating or reducing the effects of sensitive data
on cache. However, a big challenge is compatibility: it is difficult to
protect vulnerable applications on commodity hardware/OSes. Many
mechanisms [7, 10, 22, 25, 29–31, 42, 45, 48, 51] require substantial
changes to operating systems and/or hardware. Such mechanisms
are appealing in the long term since vulnerable applications can
be protected with few or no changes, but they are unlikely to be
adopted in the near future. On the other hand, cryptographic li-
braries, common targets of cache attacks, typically use tricks (e.g.,
the scatter-gather technique) to thwart those attacks. However,
those tricks require code-rewriting, and sometimes, a constant-
time version requires significant changes compared to the most
efficient ones. For example, bit-sliced AES implementations [21]
rely on a circuit implementing the AES S-box, which diverges from
table-based implementations significantly. These tricks are subtle
to implement, and they are highly tailored for cryptographic algo-
rithms; it is still challenging to protect other applications, or even
a different implementation of a cryptographic algorithm.

Recent work by Gruss et al. [13] offers a promising application-
level solution requiring few code changes. The mechanism utilizes
hardware transactional memory (HTM) to ensure that all sensitive
cache lines are “locked” into the cache when sensitive code blocks
are executed. However, the approach relies on HTM, which is still
absent in many processors (i.e. AMD processors). To avoid frequent
transaction failures, the protected memory is limited to the size
of CPU’s caches; for example, the write set of HTM is limited to
the size of the L1 cache (typically several KB) [13]. Moreover, the
overhead on memory-intensive applications can go as high as 3.5X,
due to more frequent transaction abortions.

In this paper, we propose a novel application-level defense mech-
anism called Ghost Thread to mitigate cache side channels. Com-
pared with existing defense mechanisms, Ghost Thread works on
any commodity OS and hardware that supports concurrency. More-
over, it protects vulnerable applications without any code change
except for a few library calls. Ghost Thread serves as a flexible library
that protects accesses to the sensitive memory region by injecting
random accesses to the same region. By doing this, an adversary

https://doi.org/10.1145/3422337.3447846
https://doi.org/10.1145/3422337.3447846

now has to distinguish random behavior added by Ghost Thread
from actual program behavior to launch a successful attack. While
the overall idea seems simple, the insight behind Ghost Thread is
that the overhead of using a concurrent thread to randomly pollute
the cache will have limited impact on the total execution time of the
protected application, particularly when the machine is not under
heavy load. Meanwhile, Ghost Thread offers strong security: we
prove that the number of samples needed to launch a successful attack
grows exponentially with the number of injected accesses. Moreover,
Ghost Thread defends against various kinds of existing attacks,
including attacks on both symmetric and asymmetric ciphers.

The main contributions of this work are as follows:

• We propose a novel, versatile, and easily deployable mecha-
nism for mitigating cache attacks. It offers low overhead and
strong security assurances in practice without any changes
to existing hardware and OS. These goals are accomplished
by randomly injecting phony cache accesses to a sensitive
memory region, making it difficult for an adversary to distin-
guish real memory accesses from noise memory accesses.

• We present a security analysis that quantifies the security
Ghost Thread can provide. This is performed by estimating
the number of samples needed to launch a successful attack.
We also present empirical security experiments showing
that Ghost Thread can thwart known cache attacks against
common crypto algorithms.

• We implement Ghost Thread as an application-level library
and evaluate the runtime overhead of Ghost Thread under
different system loads, different Ghost Thread configurations,
and different tradeoffs between security and performance.
We show that Ghost Thread has negligible overhead when a
system is under utilized, or in real-world situations where
not all code requires protection. In the worst-case scenario
where a system is fully utilized and the entire application
is protected, the overhead is still acceptable. Compared to
state-of-the-art application-level mitigation, Ghost Thread
improves performance by up to one order of magnitude in
the worst case with respect to overhead.

2 BACKGROUND AND ATTACK MODEL
2.1 Cache Side Channels
Although different cache attacks work in different ways, they all
try to reveal confidential information by probing the existence or
absence of data in data/instruction cache. Prior work has shown
that cache side channels reveal private keys in the implementation
of commonly used cryptographic algorithms such as AES, RSA and
ElGamal [3, 14, 15, 26, 35, 46, 47]. Attacks on themmanifest because
their cache access patterns depend on their secret keys. Next, we
discuss two categories of cache attacks as well as techniques to
reveal information from the cache.

2.1.1 Synchronous/Asynchronous Cache Attacks. In a synchronous
cache attack, the attacker controls the beginning and end of the
victim instruction being monitored [35]. Hence, the attacker obtains
cache behavior that is associated with a particular piece of code
in the victim process. Synchronous cache attacks were used in
[14, 20, 35, 49] to demonstrate the feasibility of attack techniques
such as Prime+Probe, Flush+Reload and Flush+Flush. However,

Synchronous Window (cycles)
Flush + Flush 200+(victim access time) [14]1
Flush + Reload 520 [15]
Prime + Probe 500+(victim access time) [50]
Asynchronous Window (cycles)
Flush + Reload 2500 [46]
Prime + Probe 5000 [32]

Table 1: Window sizes used in various cache side-channel at-
tacks. Note that the window size for successfully launching
the synchronous attacks depends on the execution time of
the victim code. When the data is unavailable in the paper,
we simply write “victim access time” in the table.

due to the strong assumption that the attacker has a fine-grained
control over the victim process, they are considered less practical.
This is particularly true for attacks monitoring a few instructions
of interest by inlining monitoring code into the victim program.

In contrast, an asynchronous attack [17, 32, 35, 46] does not con-
trol the beginning and end of the victim process. Instead, they wait
for the application to begin and make observations at fixed inter-
vals of time, which we will call a window in this paper, throughout
the execution of victim. Since asynchronous attacks assume less
control over the victim programs, they are considered to be more
realistic.
2.1.2 Attack techniques. The Flush+Reload technique, first described
in [17] and its name popularized in [46], consists of three phases.
First, the attacker identifies and flushes cache lines shared with the
victim using the clflush instruction. Next, the attacker waits some
amount of time to allow the victim to access the shared cache lines.
Lastly, the attacker times how long it takes to reload the cache lines
he previously flushed. A cache line being accessed by the victim
will introduce a shorter latency in the reload step.

The Flush+Flush [14] technique is similar to Flush+Reload, except
that the last phrase flushes the shared cache line again. Since the
clflush instruction’s execution time depends on whether the target
data is cached, Flush+Flush constructs a cache side channel.

A key limitation of Flush+Reload and Flush+Flush is that they
require a physical page in memory to be shared between the victim
and adversary [29, 46]. Although this has plenty of use cases, the
attack fails when no memory page is being shared.

The Prime+Probe technique [32, 35] works under broader circum-
stances: it does not assume shared physical page, making it the most
practical technique among others. Prime+Probe is also performed
in three steps. First, the attacker primes cache sets being monitored,
typically by making sufficient accesses to fill a cache set with his
data. The attacker then waits for the victim to run. Afterwards, the
attacker accesses data filling the cache lines being monitored: a
cache line being accessed by the victim evicts attacker’s data in the
cache, introducing a longer latency in the probe step.
2.1.3 Attack window. All popular attack techniques sketched above
require getting the cache into a known state, wait for the victim to
execute for some time, and then reveal victim’s cache accesses. We
call the time interval of performing one round of all those steps an
attack window.
1This work does not report a specific window size. However, the attack requires two
clflush instructions to be executed. We note that the execution time of a single clflush
instruction varies on different CPUs. We use 200 since [14] reported that a single
clflush instruction takes a minimum of 100 CPU cycles on various CPUs to complete.

Since the length of an attack window affects the number of noise
cache accesses being injected, we summarize the window sizes re-
ported in various cache attacks in Table 1. Typically, a synchronous
attack has a smaller window size because the adversary is assumed
to control the beginning and end of a few instructions of interest.
For example, victim access times as low as 100 cycles has been
reported [50]. But for more realistic settings where the attacker
only controls the beginning and end of one encryption, one AES
encryption itself takes around 320 cycles [15], making a window
size of 500+ cycles, and asymmetric cipher such as RSA requires a
much longer victim access time.

For the less restrictive asynchronous attacks, the window size
is typically thousands of cycles. Especially, the most realistic at-
tack technique Prime+Probe requires priming an entire cache set
(typically, in LLC) instead of individual cache lines; this takes con-
siderable time since modern LLCs are often 12-way to 24-way asso-
ciative. Moreover, while the victim access time can be very small in
theory, Liu et al. [32] observe that smaller window sizes result in
higher error rates when recovering data, highlighting that having
a minimal window size is not optimal for asynchronous attacks.
Hence, for an asynchronous attack, we estimate the minimum at-
tack window to be 2000+ cycles for attacking both symmetric and
asymmetric ciphers.

In sum, while the design and implementation of Ghost Thread
is independent of the window size, we use 2,000 cycles as a con-
servative estimation of the window size of a realistic cache attack
(i.e., asynchronous attack) in this paper. Although synchronous
attacks, which are more difficult to launch in practice, have smaller
window size (around 500 cycles), Ghost Thread still offers sufficient
security (we treat the window size as an unknown parameter when
estimating the attack difficulty in Section 5).

2.2 Attack Model
We consider the scenario where an adversary and victim share
the same physical hardware, a common scenario today due to the
prevalence of cloud computing. Furthermore, the adversary is able
to be co-scheduled on the shared hardware with the victim. The
adversary is capable of setting the CPU cache into a known state
(e.g., flushing the L3 cache) before the victim process runs and query
the cache state after. Hence, the attacks sketched in Section 2.1 are
feasible. We assume that the shared cache between adversary and
victim process (e.g., LLC cache) is also shared by Ghost Thread, but
Ghost Thread works on any level of cache. By default, we refer to
LLC when a concrete context is needed.

3 RELATED WORK
Protecting data from cache attacks is a well-studied problem. We
compare with the most relevant techniques in this section.

Application-level mitigation. The most related work to Ghost
Thread is Cloak [13], an application-level defense mechanism that
requires few code changes. To protect an application, Cloak first
preloads sensitive memory locations (marked by a user) into the
CPU cache and uses HTM to ensure that all accesses to the sensitive
locations are cached; otherwise, a failure in HTM happens and
the accesses are rolled back. Cloak is shown to have negligible
performance overhead on some applications but saw overheads of
up to 248% on applications that incur more frequent transaction

abortions. Compared with Ghost Thread, Cloak is not applicable to
processors without the HTM feature. Moreover, it can only protect
a limited memory region since all memory used by a transaction
must be cached. Furthermore, as discussed in [13], it may introduce
new side channels revealed by transaction aborts.

To remove cache side channels, another approach is to rewrite
the source code so that memory accesses are independent of con-
fidential data. A common approach in crypto implementation is
to use constant time implementations of specific algorithms [9].
However, these techniques are complicated to get right and intro-
duce overheads; it is very challenging for a non-expert to rewrite
the source code in a secure way. Compiler-aided transformation
exists [5, 34], but those techniques only remove sensitive branches
in the source code; they do not prevent sensitive cache-line accesses,
in general, as we do in Ghost Thread.

Noise injection. Ghost Thread draws inspiration from approaches
that use randomized memory accesses to thwart cache attacks.
There are a few techniques that randomize the cache accesses, but
to the best of our knowledge, Ghost Thread is the first approach that
works on existing OSes and hardware, and offers strong security.

At the OS/VM level, one related work is Düppel [51], which
injects random delays into the memory access time to obfuscate
the cache state (i.e., a cache hit may incur a long latency by the
injected delay from OS). In contrast, Ghost Thread injects random
cache accesses at the application level, making it possible to protect
an arbitrary program without modifying OS/VM. Moreover, Ghost
Thread introduces almost no overhead for under-utilized systems
and moderate overhead for system with heavy loads; Düppel [51]
incurs overhead regardless of system load. KeyDrown [39] is a
kernel mechanism that prevents timing attacks on key strokes by
injecting fake key strokes. However, KeyDrown does not generally
mitigate cache side channels, and requires OS modification.

At the application level, diversification [6] and obfuscation [37]
also introduce randomness to confuse attackers. Diversification
generates a replica that preserves the original program semantics
but differ at the level of machine instructions; hence, by selecting a
replica to execute at random, it alleviates side channels. Obfuscation
confuses the attacker by pretending that additional program paths
are executed than what really was. However, these techniques only
add low entropy to side channels and they offer no formal security
guarantee against cache attacks. Moreover, they incur considerable
overheads: 1.75X for protecting AES in libgcrypt [6] and an average
overhead of 21.8X the unprotected execution time [37].

At the hardware level, randomizing cache accesses has been
explored in prior work. Some system randomizes the cache map-
ping [31] and others change the cache replacement policy to evict
and fill in a randomly picked cache line [7, 30]. Efficient imple-
mentation of Oblivious RAM (ORAM) [12, 28], a technique that
cryptographically obfuscates the memory access patterns, also typ-
ically requires modifying existing architectures. In comparison,
Ghost Thread works with commodity hardware.

Isolating shared resources. Another approach of thwarting cache-
based side channels is to isolate the victim from the attacker. Pre-
vious work has achieved this by soft isolation that reduces re-
source sharing by better scheduling [42], or hard isolation that
partitions resources to disallow sharing between an attacker and a

Ghost
Thread

Add_Thread(memory_region,
priority,

frequency) Create
Thread

Thread
ID

Add_Thread(memory_region,
priority,

frequency) Create
Thread

Thread
ID

Pause_Thread(Thread ID)
Pause

Unpause_Thread(Thread
ID)

Unpause

Stop_Thread(Thread ID)

Stop_Thread(Thread ID)

Stop

Stop

Sensitive Code

Program w/
Ghost Thread

SleepMemory Accesses

Figure 1: An overview of how Ghost Thread can be used to
provide protection to an application.

victim [10, 22, 25, 29, 45, 48]. However, resource isolation is typi-
cally very challenging at the application level. Moreover, they all
incur overhead even in a system with low resource utilization.

4 SYSTEM DESIGN
Ghost Thread works by inserting phony cache accesses to interfere
with an adversary’s ability to learn the actual cache accesses from
the victim. With Ghost Thread, an adversary now has to determine
if the status of the targeting cache line was caused by the legitimate
behavior of the victim process or a noise access made by Ghost
Thread. Randomly adding data to the CPU cache can significantly
limit an adversary’s ability to learn useful information. In this
section, we discuss the design of Ghost Thread; we provide a formal
analysis highlighting the added protection in Section 5.

4.1 Why User-Level Library
While injecting random memory accesses should be effective at
thwarting cache attacks, where it is implemented impacts the amount
of incurred performance overhead, as well as the compatibility of
the approach. One way is to rewrite the victim code to inline those
random memory accesses. However, this would incur a significant
performance overhead. For instance, we observed over 60% over-
head on execution time when we inlined 16 memory accesses in
each round of encryption (160 total accesses) to protect accesses
to the S-Box used by AES. One key insight of Ghost Thread is that
we can take advantage of multiple cores in modern systems to in-
ject phony cache accesses in a more efficient way. This results in
virtually no overhead on systems that are not being fully utilized.

Another potential software-level solution we considered was to
add noise using an operating system, in a similar manner as [51].
While this option may have resulted in more consistent results
in some cases thanks to more control over process scheduling, it
requires substantial modification of an OS. Ghost Thread is instead
designed as a user-space library, allowing it to be easily integrated
into an existing application on an unmodified OS and hardware.

tid=GT_add (&sbox ,256, sizeof(int));
plaintext = AES_decrypt(ciphertext ,key);

GT_pause(tid);

process(plaintext);

GT_unpause(tid);

ciphertext = AES_encrypt(plaintext ,key);

GT_stop(tid)

Figure 2: An example showing how a user can modify an
application to provide protection. The highlighted lines of
code would be added by the user. Green indicates necessary
code modification, yellow indicates code added to reduce
overhead.

4.2 System Overview
Figure 1 illustrates how a user interacts with Ghost Thread to pro-
tect a vulnerable application. In the first step, the user identifies
what memory regions in the application need protection against
cache attacks. These are called sensitive memory regions; if an at-
tacker can directly observe what locations in these regions are
accessed by the application, secret information can be inferred. In
the second step, the user modifies the application’s source code
with calls to the Ghost Thread library. Typically, she would insert
calls to create protection threads before code regions that access
sensitive data; these code regions are shown in orange in Figure 11.
Depending on the security requirements of the application, there
can be as many protection threads as needed; they can protect the
same memory region or each can protect a separate memory region.
For each protection thread, the user can decide to keep it running
(shown in green), pause it (shown in yellow), unpause it, or stop it.

To provide a more concrete example of how Ghost Thread can
be used, Figure 2 shows a typical use case using AES encryption as
an example. In the example, the lines in green indicate necessary
code changes to get protection from Ghost Thread. The lines in
yellow indicate optional features that reduce Ghost Thread impact
on the application’s performance. This program starts a protection
thread to protect an encryption routine’s S-Box (Substitution box).
This is performed by providing the base address of the S-Box and
the size.

To facilitate better performance, the thread is paused after the
calling of AES_descrypt. This frees the system’s processor that
was running the protection thread. After performing some work on
the plaintext and prior to performing the next AES encryption, the
protection is unpaused. After the application is finished using AES
routines, the protection thread can be stopped to free all resources
associated with that thread.

4.3 Library Interface
We first introduce the interface of Ghost Thread and its basic func-
tionality. We then describe advanced features in Section 4.4.

Creating a Ghost Thread. In order to create a protection thread, a
user should call the following function provided by Ghost Thread:
u32 GT_add(void *base_addr,u32 num_elmts,

u32 element_size,
bool priority, u32 freq)

1We show in Section 4.5 how program locations and memory regions can be automati-
cally identified to help users accurately use Ghost Thread’s interface.

This function takes five parameters and returns a thread ID used
internally to manage threads by Ghost Thread. The first three de-
termine the sensitive memory region to be protected. Ghost Thread
uses the base address of the memory region, the number of ele-
ments, and the elements’ size to determine the sensitive memory
region. The other two parameters (priority and freq) will be dis-
cussed shortly. An example use of GT_add is shown in Figure 2. By
default, the frequency will be set to max ensuring optimal security.
The priority of the thread is set to the maximum available to the
application; for example if run as the root user on Linux the thread
would have real-time priority by default.

Each protection thread in Ghost Thread is given a contiguous
range of memory locations to protect. This design decision facil-
itates fast injection of noise memory accesses as it benefits from
hardware prefetchers, which bring in more than one protected
cache lines for each injected noise access.

Pausing and Unpausing Protection. It is often the case that the
majority of an application does not need protection against side-
channel attacks. As shown in Figure 2, there is likely going to be
time when protection is unnecessary. To accommodate this, Ghost
Thread can be paused and unpaused throughout an application’s
execution. Ghost Thread offers the following two functions to pause
and unpause ghost threads:
GT_pause(u32 tid)
GT_unpause(u32 tid)

Each function takes the thread ID of the protection thread to be
paused/unpaused. Semantically, pausing a protection thread puts it
to sleep. This allows the OS to schedule other tasks without having
to schedule the protection thread. With the function call, Ghost
Thread looks up the thread internally and puts the desired thread
to sleep, as illustrated in Figure 2 on line 3. Similarly, the unpausing
function wakes up the thread with thread ID tid and resumes
injecting noise.

In order to ensure that noise is currently being injected by a
protection thread, the unpausing function also checks if the pro-
tection thread has completed all of its initialization and is actively
adding noise to the cache. Doing so ensures that sensitive memory
accesses after the unpausing function are properly protected by
Ghost Thread.

Stopping Protection. When there is no longer a need to protect a
specific memory region, a user should call the following function
provided by Ghost Thread:
GT_stop(u32 tid)

This function allows the thread to terminate and return its re-
sources to the OS. An example can be found on line 7 of Figure 2
after the program has completed all of its accesses to the S-Box.

To summarize, Ghost Thread’s main functionality is composed
of 4 methods: GT_add, GT_pause, GT_unpause, and GT_stop. To
reap the protection benefits of Ghost Thread, a user only needs to
add one line of code to their existing application for each region
that needs protection. The remaining features are optional, but can
significantly enhance application performance by freeing system
resources.
4.4 Tuning Ghost Thread
For advanced developers, Ghost Thread provides many features
that allow them to tune the protection for desired levels of security

and performance. The remainder of this section will highlight these
features and explain how and why they should be used.

4.4.1 Multiple Protection Threads. For some applications, a sin-
gle protection thread may not sufficiently address their security
requirements. For instance, when an application has a large sen-
sitive memory region, a single thread may not be able to inject
sufficient noise memory accesses. As a second example, an applica-
tion may have multiple non-contiguous sensitive memory regions.
In both situations, Ghost Thread allows users to create multiple
protection threads, which inject noise accesses independently and
concurrently.

Multiple protection threads are simply created by multiple calls
to the GT_add function. To protect multiple non-contiguous mem-
ory regions, multiple protection threads should be created with non-
overlapping memory regions. Additional threads with the same
memory regions can also be created to increase the injection rate
of noise; this provides additional security if required, as shown in
Section 6.
4.4.2 Ensuring Thread Scheduling. Ghost Thread is implemented
as a user-space library without anymodification to the OS including
its scheduler. Modern OSes use schedulers that attempt to fairly
allocate CPU time to all processes waiting to run. This means the
threads that Ghost Thread uses to protect an application may not be
scheduled when the protected application is running. The situation
becomes more likely when a system is more utilized since the
scheduler becomes more relied upon to allocate CPU time.

To overcome this issue, Ghost Thread provides an option to set
the priority of ghost threads. This is the fourth parameter, priority,
of the GT_add function. By default, Ghost Thread sets the priority
of a protection thread to be real time. In this case, the priority
parameter to GT_add is set to true. Line 1 of Figure 2 shows how
the priority of a protection thread is set to the default value of
true. When a real-time protection thread is created, Ghost Thread
requests the OS to create a thread with corresponding scheduling
priority.

Most modern OSes support some notion of real-time schedul-
ing. On Linux, real-time tasks can be preempted only when a task
with higher priority is ready to run. By giving a ghost thread the
maximum priority (99 in Linux), no other tasks can preempt it.
By further setting the CPU core affinity of the thread to a specific
core, Ghost Thread prevents the Linux scheduler from migrating
the real-time thread to another core. After these steps, protection
threads using real-time priority are scheduled on specific cores
until they voluntarily give up their CPU time. This guarantees that
ghost threads are running at the same time as the application they
need to protect.

We empirically verified that real-time protection threads are
always scheduled. We used the Linux Performance (Perf) Tools to
monitor what tasks were scheduled on each core. Perf Tools sample
what is running on every processor at fixed units of time. In our
experiments, we set the priority of a thread to be real time and
checked the result of the Perf Tools. We found that once a real-time
thread is scheduled, it was never descheduled until it terminated.

Optionally, a ghost thread can be set to regular priority by setting
the priority parameter of GT_add to false. Although changing the
priority of a thread to be regular priority weakens the protection,
it could still be desirable in the scenarios where the root privilege

Figure 3: The number of threads required to obtain 99.9%,
99%, 95%, or 90% overlap with a protected thread, when var-
ious background tasks are running at the same time on a
6 core machine. These values assume that the scheduler as-
signs every task with the same probability of being sched-
uled.

is unavailable, or when the user is willing to sacrifice security for
better performance. Moreover, adding multiple protection threads
with regular priority can potentially offer similar level of protection
as one real-time ghost thread.

Assuming a fair scheduler that schedules every thread equally,
we can compute how likely at least one of the protection threads
runs concurrently with an application that has just one thread. Fig-
ure 3 shows how many threads are required to obtain either 99.9%,
99%, 95%, or 90% overlap with the application thread, when the
system is under various amounts of strain on a machine with 6
cores. The results show that on a system with a light load, just one
protection thread is typically sufficient, even if the ghost thread
is not real-time. As more background tasks are competing for the
processors, the number of protection threads needed for a target
overlap increases. The higher the percentage of overlap, the faster
the number of threads required increases. But still, to offer 90%
overlap, only a few regular priority threads are needed with heavy
system load. We show in Section 6 how we can use these percent-
ages to compute more accurately the protection added by Ghost
Thread.

In sum, ensuring at least one protection thread is actively run-
ning when the protected application is running is a critical aspect
of Ghost Thread. Ghost Thread offers two possible solutions to this
problem. The ideal (and default) solution is to assign the real-time
priority to the protection threads to ensure they are always running.
Since this may not always be possible due to requiring root privi-
leges, we also provide some guidance for users to obtain a target
percentage of overlap by introducing multiple protection threads
to ensure at least one of them is running when the application is
running.
4.4.3 Varying Noise Injection Rate. By default, a protection thread
injects memory accesses as quickly as possible in a tight loop. To
better balance security and performance, Ghost Thread allows a
user to configure the rate at which noise is injected.

Ghost Thread provides an option of setting the noise injection
rate: the fifth parameter freq of the GT_add function. An example
is shown at line 1 of Figure 2, where freq is set to the default value
0, specifying that the Ghost Thread injects noise memory accesses
at the maximum rate; the maximum frequency we observed on our

Precomputed rand PCG RDRAND
Noise/Window 467 32 124 5

Table 2: The average number of memory accesses that a
ghost thread can inject in a window of 2,000 clock cycles.

machine is about 470 million noise accesses per second. For other
target frequency numbers, Ghost Thread calculates appropriate 𝑛
(the length of a sequence of noise memory accesses in an iteration)
and 𝑡 (the length of sleep). In order to ensure consistent noise, our
implementation always sets 𝑛 to be a constant (usually 1,000,000).
Based on that gap, Ghost Thread computes the amount of sleep
(𝑡) per iteration needed in order to achieve the desired frequency.
With computed 𝑛 and 𝑡 , a ghost thread (1) injects a sequence of 𝑛
noise memory accesses, and (2) puts the thread to sleep for time 𝑡 .
4.4.4 Memory Access Randomization. An important goal of Ghost
Thread is that its protection threads inject noise accesses randomly
to sensitive memory regions. Currently, Ghost Thread supports
four different methods for obtaining randomness. Each of these
methods can be selected by passing compiler options when building
the Ghost Thread library.

The first method is to precompute the random numbers before
the Ghost Thread’s protection threads begin injecting noise. This
can either be performed at run time during thread initialization,
using one of our supported random number generators, or added by
the user using their preferred random number generator. We also
allow these numbers to be added at compile time. Adding the num-
bers at compile time can be significantly faster since there would
be no overhead incurred during the execution of the application.

The three other supported methods generate random numbers
as needed using different random number generators. Generating
random numbers along with noise injection can be more versatile
since it can be done on demand and takes up significantly less
memory compared to precomputing. This versatility comes at a
cost to security, since it takes longer to generate random numbers
compared to looking up from a precomputed random-number table.
Table 2 shows the security impact of random number generation
techniques; for each method, it shows the maximum number of
memory accesses per window, where a window is 2,000 CPU cycles.

In sum, we suggest using a secure random number generator to
create a table prior to using Ghost Thread (the default setting of
Ghost Thread). This provides the best security and performance.
With a strong attacker model where the adversary may observe
the cache status in every 2,000 clock cycles (i.e., when the window
size is about 2,000 cycles), the security of other random number
generators could be insufficient due to the few number of noise
memory accesses being injected.

4.5 Usability of Ghost Thread
While the default configurations offer the best security of Ghost
Thread, the advanced configurations such as priority, noise fre-
quency and randomness mechanism are designed for more capable
users to tailor Ghost Thread to their needs.

To better facilitate a non-expert user to adopt Ghost Thread,
Ghost Thread uses a static taint analysis to mark the sensitive mem-
ory regions as well as insert pausing and unpausing statements.2

2In the future, we might also leverage existing static analysis tools [4, 8, 9, 43, 44] to
do so in a more precise way.

The taint analysis only requires users mark the sensitive data in
their application; it then automatically identifies two vulnerable
code patterns: tainted branches and tainted memory accesses, fol-
lowing the constant-time programming principle [2].

When those patterns are detected, the taint analysis reports the
corresponding source code line numbers, which directly lead to the
insertion of pausing and unpausing statements. Tainted memory
accesses also directly lead to memory regions to be protected. The
only subtle case is tainted branches, which to be sound, require any
memory region being accessed under the branches to be protected.
Ghost Thread currently requires manual inspection to identify
memory regions under tainted branches to be protected; in our
experience, such manually work is typically straightforward.

We use an implementation of AES from libgcrypt 1.8.3 as a
concrete example. With private key marked as tainted, the taint
analysis marks all taintedmemory accesses to the S-box; themarked
code corresponds to the following pseudo code:

𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 = 𝑠_𝑏𝑜𝑥 [𝑘𝑒𝑦 ⊕ 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡];
Thus, the taint analysis automatically identifies both the code region
(the encryption routine that performs the sensitive accesses) and
memory regions (the S-box table) to be protected.

5 SECURITY ANALYSIS
Injecting noise typically does not eliminate a cache side channel.
In this section, we show both in theory and practice that Ghost
Thread effectively makes realistic side channel attacks impractical.
We break our analysis up into two components: (1) How much
harder does Ghost Thread make the adversary’s task? (2) Does
Ghost Thread thwart existing side-channel attacks?

5.1 Normalized Samples
We measure the attack difficulty with Ghost Thread by how many
more samples are needed to successfully launch a cache attack on
a vulnerable program protected by Ghost Thread. To accomplish
this, we measure normalized samples, the ratio of samples needed
to achieve the same level of confidence of retrieving the secret
correctly.

Existing attacks typically observe the existence of accesses to
sensitive memory regions to reveal private keys. This is done via
exploiting the access time of a cache line being probed: a cache
line being accessed in a window likely introduces a smaller latency
compared with the case where it is absent. Intuitively, Ghost Thread
works by shifting the access time when an access is absent to the
case where it is accessed in a window. In this section, we follow
an analytical model used in prior work [30, 33, 41] to quantify the
number of samples needed to launch a successful attack.

We first abstract the execution time under the condition of at
least one access and no access in a window as 𝜇1 and 𝜇2 respectively:

𝜇1 = 𝑃1 𝑡ℎ𝑖𝑡 + (1 − 𝑃1) 𝑡𝑚𝑖𝑠𝑠

𝜇2 = 𝑃2 𝑡ℎ𝑖𝑡 + (1 − 𝑃2) 𝑡𝑚𝑖𝑠𝑠

where 𝑡ℎ𝑖𝑡 (resp. 𝑡𝑚𝑖𝑠𝑠) is the (expected) probing timeswhen the data
of interest is present (resp. absent) in the cache; 𝑃1 (resp. 𝑃2) is the
probability that data remains in the cache at the probing time when
the cache line is accessed (resp. absent) in a window. Following prior
analytical models [33, 41], the number of measurements required
for a successful attack (i.e., one that distinguishes samples from

M
𝛿

100 200 300 400 467
AES (M=16) 4.03E5 1.63E11 6.56E16 2.64E22 1.51E26
RSA (M=64) 2.33E1 5.44E2 1.27E4 2.96E5 2.44E6

Table 3: Normalized samples with various amounts of noise
accesses for AES and RSA.

either 𝜇1 or 𝜇2 with high confidence) can be estimated as

𝑁 ≈
2𝑍 2

𝛼 𝜎2

(𝑃1 − 𝑃2)2 (𝑡𝑚𝑖𝑠𝑠 − 𝑡ℎ𝑖𝑡)2

where 𝑍𝛼 is the quantile of the standard normal distribution for 𝛼 ,
the desired success rate, and 𝜎 is the variance of probing time.

Samples needed without Ghost Thread. Due to background noise
in a window, there is a small chance that an accessed cache line is
evicted or an unaccessed one is cached. To simplify the model, we
ignore such noise and estimate 𝑃1 as 1 and 𝑃2 as 0. Note that this is
justified since it makes our estimation more conservative (i.e., it is
in favor of the attack). Hence, we have 𝑁𝑤/𝑜 =

2𝑍 2
𝛼 𝜎2

(𝑡𝑚𝑖𝑠𝑠−𝑡ℎ𝑖𝑡)2 .

Samples needed with Ghost Thread. With Ghost Thread that in-
jects 𝛿 random accesses in one window, 𝑃1 remains 1, but 𝑃2 sig-
nificantly changes compared with the previous case: there is a
1 − (𝑀−1

𝑀
)𝛿 chance that the cache line is brought into the cache

even though it is absent from the original program. Hence, we have:
𝑁𝑤/ =

2𝑍 2
𝛼 𝜎2

(𝑀−1
𝑀

)2𝛿 (𝑡𝑚𝑖𝑠𝑠−𝑡ℎ𝑖𝑡)2
.

Normalized Samples neededwith Ghost Thread. WithGhost Thread,
it is more meaningful to measure 𝑁𝑤/

𝑁𝑤/𝑜
for the added security to

the protected program. We call this ratio Normalized Samples:
𝑁𝑤/
𝑁𝑤/𝑜

≈ (𝑀

𝑀 − 1
)2𝛿

Figure 3 shows the normalized samples needed for table-based
implementation of AES (with 16 sensitive cache lines) and RSA
(with 64 sensitive cache lines). We emphasize that the noise added
by Ghost Thread significantly improves the security of the vulnera-
ble programs: the number of samples needed for a successful attack
grows exponentially. In a conservative setting of windows with a
size of 2,000 cycles for asynchronous attacks, Ghost Thread injects
467 noise cache accesses (Table 2). Hence, both attacks quickly be-
come infeasible: over 100,000X more samples are needed to launch
a successful attack. Even for a synchronous attack on AES with
a small window size of 520 cycles [15], Ghost Thread can inject
over 100 noise cache accesses, requiring over 100,000X more sam-
ples to launch the attack on AES. This is for just a single Ghost
Thread active, multiple threads can be used to increase security
even further.

Security against cross-processor attacks. Wenote that Ghost Thread
requires that the cache being observed by the adversary be shared
by the protected application and the protection threads spawned
by Ghost Thread for this analysis to be applicable. In the common
scenario when the LLC is being observed, the protection thread
and protected application simply need to be running on the same
processor since the LLC is usually shared among all cores. For

count = [0 for x in range (256)]

for i in range(numPlaintexts):

plainTexts[i] = genRandPlaintext ()

usedCachelines[i] =

observeEncrypt(key ,plainTexts[i])

for keyByteGuess in range (256):

for i in range(numPlaintexts):

if guessCacheLine(keyByteGuess ,plainTexts[i])

in usedCachelines[i]:

count[keyByteGuess]++

return maxIdx(count)

def guessCacheLine(guess ,plaintext):

return (guess ^ plaintext) / 16

Figure 4: Pseudo code of the AES attack.

cross-processor attacks, such as those shown in [19], we can ap-
ply the same analysis described in this section when either the
processor interconnects all have the same memory access latency,
or that Ghost Thread’s protection thread is always scheduled on
the same processor as the protected application. This is the case
because cross-processor attacks apply the same principles of an
intra-processor attack, but also leverage the high-speed processor
interconnects between processors to detect the memory access time
differences between cache hits and misses.
5.2 Empirical Study
Previously, we have shown the theoretical attack difficulty with
Ghost Thread. Next, we use Ghost Thread to protect a vulnerable
cryptographic library against real cache attacks. We show that
Ghost Thread completely prevents those attacks even in the face of
strong attack models. The attack, following [35], is a synchronous
attack targeting the first round of AES in two commonly used
implementations (mbedTLS and libgcrypt).

5.2.1 AES Attack. We follow the attack that targets the first round
of AES in [35]. The pseudo code of the attack for revealing one key
byte is shown in Figure 4. Note that this is a synchronous attack
where the attacker is able to collect the cache state right after the
first round of encryption; doing so makes the attack feasible even
if only a very small number of samples are collected. Nevertheless,
we show that Ghost Thread successfully thwarts such attacks.

In this attack, the attacker first encrypts a number of known
plaintexts (numPlaintexts) and collects the resulting cache states
right after the first round (usedCacheLines). After that, the at-
tacker enumerates over 256 possible values of a certain key byte,
and sees which values best “matches” the resulting cache states.

To do that, recall that the index into the S-Box used by AES in
the first round is 𝑝𝑖 ⊕ 𝑘𝑖 where 𝑝𝑖 is the 𝑖𝑡ℎ byte of plaintext and
𝑘𝑖 is the 𝑖𝑡ℎ byte of the key. Hence, for each sample 𝑖 , the attacker
can successfully compute the index by using the known plaintext
plainTexts[i] and the guessed key value. Hence, the key value
that resulted in the most correct cache line guesses (stored in array
count) is the key byte used in the encryption.

We performed this attack on three different machines running
different Intel chips (i3, i5, and i7). For brevity, we present the results
on the Intel i7 chip since all 3 experiments are very similar. The
result for the unprotected program is shown at the top of Figure 5.
Here, each blue dot corresponds to the percentage of correct cache
line guesses for the corresponding guessed key byte (the x-axis);

0 32 64 96 128 160 192 224 256
0

0.5

1 real key

Ca
ch
e
H
it%

AES libgcrypt Unprotected

0 32 64 96 128 160 192 224 256
0

0.5

1

real key

Key Guess

Ca
ch
e
H
it%

AES libgcrypt Protected

Figure 5: AESAttackwithout andwithGhost Thread.We see
that without Ghost Thread, there is a strong correlation be-
tween key values and percentages of cache hits, while with
Ghost Thread, virtually every key guess results in a cache
hit, disrupting the correlation.

the red triangle identifies the actual value of the key byte used in
these experiments (which is set to be 46). Without Ghost Thread,
we observe that the cache line containing the real key value is easily
distinguishable from other cache lines.3

In order to see how effective Ghost Thread is, we ran the attack
again with the AES program protected. The results are shown at
the bottom of Figure 5. With Ghost Thread, the real value of the
key byte can no longer be identified. This is due to the fact that
Ghost Thread injects hundreds of extra memory accesses, making
all cache lines being cached in the experiments.
6 EVALUATION
In this section, we answer the following questions: (1) How much
overhead does Ghost Thread have on a protected application?
(2) What is the maximum overhead an application can incur when
being protected by Ghost Thread? (3) What are the normalized
samples needed for a successful attack after applying Ghost Thread
(with various settings) to an application? (4) What is the impact of
using Ghost Thread on other applications running on the machine?

To evaluate Ghost Thread, we use a machine with 32 GB of RAM
on an Intel Core i7-5820K CPU at 3.3 GHZ using Ubuntu 14.04. For
consistent results, we disabled hyper-threading and turbo boost.
6.1 Application Overhead
Akey aspect of our evaluation is understanding howmuch overhead
Ghost Thread adds to applications. To explore this, we applied Ghost
Thread to an Apache web server.

Setup. In our experiments, we analyze the throughput (i.e. the
number of requests per second) of an Apache web server with
various numbers of concurrent users. We use an HTTP server
benchmarking tool called Siege [11] to load a 2KB static web page
using HTTPS for differing numbers of concurrent users; each con-
figuration is repeated 100 times to reduce noise. We follow the

3The attack targeting the first round of AES cannot distinguish the exact key value
since 16 key values are stored on the same cache line. However, this attack is much
easier to launch compared to the complete attack in [35]; thwarting this version also
prevents real attacks with more system noise and more bits to learn.

−5

0

5

10

0 50 100 150
Concurrent Users

Pe
rc

en
t O

ve
rh

ea
d

Ghost Thread

RT Ghost Thread

Figure 6: The throughput overheads of concurrent users ac-
cessing a webpage hosted on an Apache server with both the
AES and RSA routines protected by Ghost Thread.

Best Case Worst Case
Cloak [13] -0.8% 248%
Ghost Thread -1.25% 20.1%

Table 4: Overheads of Cloak [13] and one single Ghost
Thread.

experimental setup in [16]. There are two security-sensitive com-
ponents of the Apache web server: an RSA routine is invoked to
establish connections, and an AES routine is used to encrypt the
transmitted data.

We apply Ghost Thread to protect the T-table implementation of
the AES routine, requiring about 4KB of memory to be protected.
Ghost Thread is also applied to the precomputed table (1KB) used
by the RSA routine, which was shown to be vulnerable to cache
attacks [47]. We use the taint analysis described in Section 4.5 to
determine appropriate points to add the instrumentation.

Results. We measured the throughput overheads with various
concurrent users ranging from 1 to 150 where each user requests a
webpage of size 3KB. The results are shown in Figure 6 with two
possible configurations: using real-time ghost threads, or normal-
priority threads. The results demonstrate that in either case, Ghost
Thread adds little to no overhead to the Apache web server regard-
less of the priority Ghost Thread used. This is because Ghost Thread
only needs to be active during critical sections of the application
where secrete data is being processed.

When Apache serves webpages, it spends 0.19% of the execution
time on AES encryption, 0.23% on RSA encryption, for a combi-
nation of 0.42% of execution time that requires protection. This
is consistent with our belief that programs used in practice likely
require Ghost Thread to be active for small portions of their ex-
ecution. In Section 6.2, we zoom in on the overhead incurred by
applying Ghost Thread to the encryption routines, which provides
insight regarding how Ghost Thread would perform on a smaller
micro benchmark where it is active most of the time .

Comparison with Cloak [13]. A comparison between state-of-
the-art user-space mitigation mechanism Cloak [13] and a single
non-real-time Ghost Thread is shown in Table 4. Since our sys-
tem does not support TSX, we use the results reported in [13] for
comparison. Although the experimental environments are not com-
pletely identical, we note that both best cases reflect light system
workloads. Compared to Cloak [13], Ghost Thread preforms com-
parably. Cloak reports a 0.8% speed up when protecting AES from

1E261E261E261E26 1E26

1E26

1E26 1E26

1E26
1E26

1E26 1E26

1E26

1E26

1E26

1E26

1E26 1E26

1E26

1E26

1E14

1E12 1E12

1E11
1E10

1E9
1E8

1E7

1E8

1E7

1E50 1E52

1E51

1E52

1E32

1E26

1E23

1E21

1E20 1E17

1E17
1E16 1E17

1E14

1E12

0%

10%

20%

30%

0 5 10
Background Processes

Ex
ec

ut
io

n
O

ve
rh

ea
d

RT Ghost Thread

Ghost Thread

Two Ghost Threads

Figure 7: The latency overheads of Ghost Thread on an AES
implementation from libgcrypt 1.8.3 with various configu-
rations. The boxes show the additional normalized samples
needed.

side channel attacks due to a higher cache hit rate and few mem-
ory accesses. We observe the same in Figure 6: Ghost Thread also
has near zero overhead due to a higher cache hit rate and limited
required resources of Ghost Thread since the region that requires
protection in Apache is not large.

6.2 Worst Case Analysis
To protect a vulnerable application, Ghost Thread typically does not
need to be active throughout the entire execution of an application.
However, it is also useful to measure the maximum overhead an
application can incur: both to understand the limit of Ghost Thread
as well as how parameters such as thread priority and noise rate
affect performance and security. Next, we conducted experiments
on AES and RSA where Ghost Thread is active 100% of the time.

Setup. We ran AES using an implementation in libgcrypt 1.8.3
with 128-bit keys protecting the S-boxes (1 KB). We also applied
Ghost Thread to the precomputed tables (4 KB) in the modular
exponentiation routine of GnuPG 1.4.23 used by the RSA algorithm.
We again used the taint analysis presented in Section 4.5 to identify
where to insert Ghost Thread instrumentation. We used the cor-
responding AES and RSA implementations without Ghost Thread
protection as the baseline. To get consistent results, we recorded
the execution time of encrypting 5 million messages.

To fairly evaluate Ghost Thread under various system loads,
we considered the percent increase in execution time of an AES
application with and without Ghost Thread while other background
processes are competing for resources. For the latter, we used two
programs from SPEC CPU 2006: bzip2 and gobmk. We selected
these two programs since bzip2 represents a memory-intensive
program and gobmk represents a CPU-intensive program. Another
scenario we used in our evaluation is when there is a mix of different
kinds of programs on the system. To do this, we ran all of the integer
benchmarks from SPEC CPU 2006 written in C.

The various background applications resulted in similar results,
within measurement error. Thus we show only the results using
bzip2 as background programs hereafter. We presume this is the
case since Ghost Thread only protects a small region of memory: the
background application is unlikely to change the victim program’s
cache hit rate significantly.

6.2.1 Performance Results. The latency overheads added by Ghost
Thread to AES with various system loads and Ghost Thread config-
urations are shown in Figure 7. We also performed this experiment
on RSA and obtained similar overhead to what is found for AES,
but omitted the details of these performance results due to space
constraints. The results indicate that adding memory accesses to
protect against cache side channels does not add noticeable over-
heads when a system is being under utilized (i.e., having fewer tasks
than cores.).

We note that when Ghost Thread is active 100% of the time and
all cores are occupied, the performance overhead is non-negligible
both for AES and RSA. This is expected given that Ghost Thread
competes for computation resources. However, we note that the
worst-case overhead ranges between 13% to 35%, depending on the
configuration of Ghost Thread. Moreover, as we show in Section 6.1,
the overhead could be much smaller in more common scenarios
where only part of an application requires protection.

Figure 7 further shows the impact of different configurations of
Ghost Thread: a normal-priority protection thread, a real-time pri-
ority protection thread, and two normal-priority protection threads.
All protection threads inject noise to the memory region that holds
the S-Box for AES or the precomputed tables used in modular ex-
ponentiation for RSA.

When the priority of the thread is set to real time, the execution
time is similar to a thread with normal priority until the system
becomes fully utilized. This is due to the fact that the OS is unable
to schedule anything on the core the real time thread gets assigned
to. This causes a larger amount of overhead (about 20%) compared
to the case of using a normal-priority thread (about 10%). We also
observe that creating two normal-priority threads incurs the largest
latency overhead in both cases.

Comparison with Cloak [13]. While the overhead of Ghost Thread
is non-negligible in the worst-case scenario, we note that it is still
reasonable compared with the state-of-the-art of user-level defence
mechanism: Cloak was shown to have a worst case overhead of
248% on average in a heavily loaded system [13]. As shown in
Table 4, the worst-case overhead of Ghost Thread (20.1%) is still
reasonable and in fact, an order of magnitude better.

6.2.2 Security Results. While Ghost Thread is able to obtain neg-
ligible (when the system is under loaded) to modest (when the
system is fully loaded) runtime overheads, it provides strong secu-
rity for all system loads. We find that Ghost Thread is able to make
side-channel attacks infeasible to launch.

We use normalized samples presented in Section 5 as a metric
for measuring security. During experiments, we recorded the num-
ber of injected cache accesses per window and the percentage of
the time when the protected program and Ghost Thread execute
simultaneously. To handle non-real-time protection, we extend the
analysis in Section 5 in the following way. For protection threads
that are not real time, 𝑃2 in the analysis is multiplied by the per-
centage of time Ghost Thread and the program co-execute. The
order of magnitude of the normalized samples (e.g., 1E26 represents
1026) is shown in the boxes near data points in Figure 7.

The results indicate that while Ghost Thread cannot completely
eliminate cache side channels, it is infeasible to attack protected

Algorithm Time w/o GT Time w/ RT GT
AES [36] 0.064s 1E17 years
AES (Cross-VM) [18] 4.5s 1E19 years
RSA [47] 30 min 3170 years

Table 5: A summary of how long it takes to collect sufficient
number of samples on our test machine to launch the corre-
sponding cache attacks without and with Ghost Thread.

applications when we use real-time ghost threads, the default con-
figuration of Ghost Thread. This is true regardless of the system
load: it will require 1026× samples to perform the same attack on
AES. For RSA, 106× samples are needed to perform the same attack.
To better connect normalized samples to attack difficulty (in terms
of computation time), we collected the time to generate sufficient
number of samples to successfully launch state-of-the-art attacks,
as summarized in Table 5, under column “Time w/o GT”. In order
to compute the time needed to launch the same attacks with Ghost
Thread, we use normalized samples to compute the corresponding
time (assuming the same computation resource), shown in Table 5,
under column “Time w/ RT GT”. We see that for AES attacks, it will
take over 1E17 years to complete, that is longer than the current
age of the universe. For a more realistic attack scenario spanning
across VM boundaries, we see the expected computational time is
even worse, requiring at least 1E19 years of time to compile enough
samples. Although the normalized samples is much smaller in the
RSA case, due to the longer attack time on RSA, it still requires over
3,000 years to obtain enough samples.

When one normal-priority ghost thread is used, the overall se-
curity is also affected by system load: when the system is under
utilized, we observe the same level of protection as real-time ghost
threads. But the normalized samples drop when the system is fully
utilized. This is due to the fact that a normal-priority thread in-
jects less noise due to scheduling, but still requires over 1 million
times more samples (resp. 100 times more samples) to have the
same success rate in the AES case (resp. RSA case). For AES, it
takes approximately 3,000 years to collect a sufficient number of
samples. While normal-priority ghost threads offer weaker security
compared with real-time threads, they may be preferable when the
reduced security is acceptable considering the gained performance.

Ghost Thread also provides the capability to add multiple threads
to improve security. By using multiple protection threads more
noise can be added per window and also increases the likelihood
at least one protection thread is concurrently executing with the
protected application. Our data indicates that adding one additional
protection thread requires 1050× (1012× for RSA) more samples
compared to not having protection. This is an enormous amount of
samples. Even when the system is loaded the additional protection
thread performs between a single default priority thread Ghost
Thread and a real-time thread requiring 1014× (104× for RSA) more
samples. This many more samples will take over 200,000 (0.6 for
RSA) years to collect using the same method used to compute the
data in Table 5.
6.2.3 Adjusting Noise Frequency. Next, we evaluate the impact of
noise injection rate on performance and security. The motivation
is that for users who can tolerate weaker security, Ghost Thread
can inject fewer noise accesses to reduce the performance cost.
Users can also strengthen security by adding additional protection
threads.

Figure 8: Percent overhead on bzip2 when a program pro-
tected by Ghost Thread is running concurrently.

Setup. The configuration is the same as in Section 6.2 with the
addition of samples showing the performance and security of AES
protected with Ghost Thread configured for various noise injection
frequencies. Each of the Ghost Threads used have normal priority.

Results. To summarize our results, we find that lowering the
number of memory accesses tends to lower the overhead of Ghost
Thread. For instance, with 50 million accesses per second by Ghost
Thread, the overhead with 6 background processes is 11% better
than when the frequency is set to max (around 471 million accesses
per second).

However, lowering the frequency also can significantly reduce
the security improvement. When the protection thread is set to
its maximum frequency, we observe normalized samples needed
increase by 26 orders of magnitude on an under-utilized system. The
required normalized samples decrease to 1E5 when the frequency
is lowered to 150 million accesses per second and the system is
being under utilized. Additionally, we find normalized samples
drop from 1E10 at maximum frequency to 1E3 at 150 accesses
per second when the system is fully utilized. Although tested on
other configurations, we find that the rate of 150 Million offers a
reasonable balance between security and performance and omit
other results due to space limitations.

6.3 System Impact
Another concern to users is the impact of Ghost Thread on other
programs running at the same time. There are two main reasons
Ghost Thread could cause an increase in execution time for other
applications. The first is increased contention for the cache, and
the second is contention for CPU cores.

To evaluate the impact on other applications, we ran bzip2 and
gobmk from SPEC2006 while running AES encryption in a loop
with and without Ghost Thread. Ghost Thread is active for 100% of
the duration of the execution of bzip2 and gobmk to demonstrate the
worst-case overhead to the system.We selected those two programs
since bzip2 represents a memory-intensive program and gobmk
represents a CPU-intensive program. Due to the similarity between
the two results, for space we present our findings for bzip2.

The results with bzip2 is shown in Figure 8. Figure 8 indicates
that the overhead on other applications is again not significant
until all of the CPU cores are being used. After all of the cores are
being utilized, the overhead increases to its peak of about 16%, and
then slowly declines as more processes are added. This experiment
also shows that there is not a significant impact caused by Ghost
Thread’s added memory accesses since on an under-loaded system,
there is no noticeable increase to the overhead. This is likely due

to the fact Ghost Thread only accesses a small region of memory
addresses to provide protection.

Note that since Ghost Thread is protecting the encryption the
entire time, this experiment shows the worst-case overhead of
Ghost Thread. As shown at the beginning of this section, applying
Ghost Thread to applications in practice only requires protection
for a fraction of the program’s total lifetime. This will significantly
reduce its impact on other applications running concurrently.

7 DISCUSSION
The experiments in Section 6 are conducted on a machine with
a processor containing 6 cores. We note that since Ghost Thread
utilizes additional CPU resources, the overhead added is propor-
tional to the number of CPU cores available on a system. Thus, less
powerful machines with less cores will see a higher overhead; a
more powerful machine with more cores (e.g., cloud servers, a very
important target of cache attacks) will see less overhead.

We note that although Ghost Thread is implemented as a shared
library, the only data flowing to Ghost Thread from the application
is the memory region to be protected along with the frequency
and priority of the thread. Since the memory accesses made to the
memory region by Ghost Thread are random, an adversary cannot
gain any additional information by virtue of Ghost Thread being
a shared library that is not already assumed to be public (e.g., the
memory location of the S-Boxes for AES).

8 CONCLUSION
In this paper, we present a novel cache side channel defense Ghost
Thread. We demonstrate its effectiveness at thwarting cache based
side channel attacks by computing the increased difficulty in launch-
ing side-channel attacks. The overhead of applying Ghost Thread
is negligible when a system is being under utilized and reason-
able even when a system is being fully utilized. Ghost Thread is a
readily deployable, software only, cache side channel protection
system which delivers strong security guarantees with low over-
head cost making it ideal for developers to get general cache-based
side channel protection without costly specialized hardware.

9 ACKNOWLEDGEMENT
We thank the reviewers for their helpful feedback which we used
improve our work. This research was supported by NSF grants
CNS-1956032, CNS-1816282, CCF-1723571, and a gift from Intel.

REFERENCES
[1] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. 2003.

The EM Side—Channel(s). In Cryptographic Hardware and Embedded Systems -
CHES 2002, Burton S. Kaliski, çetin K. Koç, and Christof Paar (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 29–45.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. 2016. Verifying constant-time implementations. In 25th USENIX
Security Symposium (USENIX Security 16). 53–70.

[3] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. cr.yp.to/papers.html#
cachetiming.

[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir. 2019. CaSym: Cache
Aware Symbolic Execution for Side Channel Detection and Mitigation. In 2019
IEEE Symposium on Security and Privacy (SP). 364–380.

[5] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
2009. Practical Mitigations for Timing-Based Side-Channel Attacks on Modern
x86 Processors. In Proc. 30th IEEE Symp. on Security and Privacy (S&P). 45–60.

[6] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. 2015. Thwarting Cache Side-Channel Attacks Through Dynamic Software
Diversity.. In NDSS. 8–11.

cr.yp.to/papers.html#cachetiming
cr.yp.to/papers.html#cachetiming

[7] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012.
Side-channel Vulnerability Factor: A Metric for Measuring Information Leakage.
In Proceedings of the 39th Annual International Symposium on Computer Archi-
tecture (Portland, Oregon) (ISCA ’12). IEEE Computer Society, Washington, DC,
USA, 106–117.

[8] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke.
2013. CacheAudit: A Tool for the Static Analysis of Cache Side Channels. In Proc.
the 22nd USENIX Security Symposium (USENIX Security). 431–446.

[9] Goran Doychev and Boris Köpf. 2017. Rigorous analysis of software counter-
measures against cache attacks. In Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI). ACM, 406–421.

[10] Úlfar Erlingsson and Martín Abadi. 2007. Operating system protection against side-
channel attacks that exploit memory latency. Technical Report MSR-TR-2007-117.
Microsoft Research. 7 pages.

[11] Jeff Fulme. 2018. siege. https://github.com/JoeDog/siege.
[12] Oded Goldreich. 1987. Towards a theory of software protection and simulation

by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. ACM, 182–194.

[13] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and efficient cache side-channel protection using
hardware transactional memory. In 26th USENIX Security Symposium (USENIX
Security 17). 217–233.

[14] Daniel Gruss, Clémentine Maurice, and Klaus Wagner. 2016. Flush+Flush: A
Stealthier Last-Level Cache Attack. In DIMVA.

[15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-level Caches. In Proceedings of
the 24th USENIX Conference on Security Symposium (Washington, D.C.) (SEC’15).
USENIX Association, Berkeley, CA, USA, 897–912.

[16] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. 2015. Protecting Private Keys against
Memory Disclosure Attacks Using Hardware Transactional Memory. In 2015
IEEE Symposium on Security and Privacy. 3–19.

[17] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games—
Bringing Access-Based Cache Attacks on AES to Practice. In Proc. IEEE Symp. on
Security and Privacy (S&P). 490–505.

[18] G. Irazoqui, T. Eisenbarth, and B. Sunar. 2015. S$A: A Shared Cache Attack That
Works across Cores and Defies VM Sandboxing – and Its Application to AES. In
Proc. IEEE Symp. on Security and Privacy (S&P). 591–604.

[19] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cross Processor
Cache Attacks. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security (Xi’an, China) (ASIA CCS ’16). Association for
Computing Machinery, New York, NY, USA, 353–364.

[20] Gorka Irazoqui, MehmetSinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.
Wait a Minute! A fast, Cross-VM Attack on AES. In Research in Attacks, Intrusions
and Defenses, Angelos Stavrou, Herbert Bos, and Georgios Portokalidis (Eds.).
Lecture Notes in Computer Science, Vol. 8688. 299–319.

[21] Emilia Käsper and Peter Schwabe. 2009. Faster and timing-attack resistant AES-
GCM. In Cryptographic Hardware and Embedded Systems-CHES 2009. Springer,
1–17.

[22] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. STEALTHMEM:
System-level Protection Against Cache-based Side Channel Attacks in the Cloud.
In Proceedings of the 21st USENIX Conference on Security Symposium. 189–204.

[23] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

[24] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in Cryptology — CRYPTO’ 99, Michael Wiener (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 388–397.

[25] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Rajarathi-
nam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T. Chong.
2014. Sapper: A Language for Hardware-level Security Policy Enforcement. In
Proc. 19th Int’l Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 97–112.

[26] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In Proceedings
of the 25th USENIX Conference on Security Symposium (Austin, TX, USA) (SEC’16).
USENIX Association, Berkeley, CA, USA, 549–564.

[27] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, 973–990.

[28] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. 2015. GhostRider: A Hardware-Software System for Memory Trace Obliv-
ious Computation. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems. 87–101.

[29] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. 2016. Catalyst: Defeating last-level cache side channel attacks
in cloud computing. In High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on. IEEE, 406–418.

[30] Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In Proc. 47th

Annual IEEE/ACM Int’l Symp. on Microarchitecture (MICRO). 203–215.
[31] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. 2016. Newcache: Secure

Cache Architecture Thwarting Cache Side-Channel Attacks. IEEE Micro 36, 5
(Sept. 2016), 8–16.

[32] Fangfei Liu, Y. Yarom, Qian Ge, G. Heiser, and R.B. Lee. 2015. Last-Level Cache
Side-Channel Attacks are Practical. In Security and Privacy (SP), 2015 IEEE Sym-
posium on. 605–622.

[33] Stefan Mangard. 2004. Hardware countermeasures against DPA–a statistical
analysis of their effectiveness. In Cryptographers’ Track at the RSA Conference.
Springer, 222–235.

[34] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2006. The
program counter security model: automatic detection and removal of control-
flow side channel attacks. In Proc. 8th International Conference on Information
Security and Cryptology. 156–168.

[35] Dag A. Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. Topics in Cryptology–CT-RSA 2006 (Jan. 2006),
1–20.

[36] Dag A. Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. Topics in Cryptology–CT-RSA 2006 (Jan. 2006),
1–20.

[37] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital Side-
Channels through Obfuscated Execution. In 24th USENIX Security Symposium
(USENIX Security 15). USENIX Association, Washington, D.C., 431–446.

[38] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey,
You, Get off of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds. In 16th ACM Conference on Computer and Communications Security (CCS).
199–212.

[39] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,
Raphael Spreitzer, and Stefan Mangard. 2018. KeyDrown: Eliminating Software-
Based Keystroke Timing Side-Channel Attacks. In NDSS.

[40] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In DIMVA.

[41] Kris Tiri, Onur Acıiçmez, Michael Neve, and Flemming Andersen. 2007. An
analytical model for time-driven cache attacks. In International Workshop on Fast
Software Encryption. Springer, 399–413.

[42] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael M Swift. 2014.
Scheduler-based Defenses against Cross-VM Side-channels.. In USENIX Security
Symposium. 687–702.

[43] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao
Wu. 2019. Identifying Cache-Based Side Channels through Secret-Augmented
Abstract Interpretation. In 28th USENIX Security Symposium (USENIX Security
19). USENIX Association, Santa Clara, CA, 657–674.

[44] ShuaiWang, PeiWang, Xiao Liu, Danfeng Zhang, and DinghaoWu. 2017. CacheD:
Identifying Cache-Based Timing Channels in Production Software. In Proc. the
26th USENIX Security Symposium (USENIX Security). 235–252.

[45] Zhenghong Wang and Ruby B. Lee. 2007. New cache designs for thwarting
software cache-based side channel attacks. In Proc. Annual International Symp. on
Computer Architecture (ISCA). 494–505.

[46] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium. 719–732.

[47] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA.. In CHES (Lecture Notes in Computer
Science), Benedikt Gierlichs and Axel Y. Poschmann (Eds.), Vol. 9813. Springer,
346–367.

[48] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A
Hardware Design Language for Timing-Sensitive Information-Flow Security. In
Proc. 20th Int’l Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 503–516.

[49] Tianwei Zhang, Si Chen, Fangfei Liu, and Ruby Lee. 2013. Side Channel Vulnera-
bility Metrics: The Promise and the Pitfalls. In Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for Security and Privacy (Tel-
Aviv, Israel) (HASP ’13). ACM, New York, NY, USA, Article 2, 8 pages.

[50] Tianwei Zhang, Fangfei Liu, Si Chen, and Ruby B. Lee. 2013. Side Channel
Vulnerability Metrics: The Promise and the Pitfalls. In Proceedings of the 2Nd
International Workshop on Hardware and Architectural Support for Security and
Privacy (Tel-Aviv, Israel) (HASP ’13). ACM, New York, NY, USA, Article 2, 8 pages.

[51] Yinqian Zhang and Michael K. Reiter. 2013. DüPpel: Retrofitting Commodity
Operating Systems to Mitigate Cache Side Channels in the Cloud. In Proc. ACM
Conf. on Computer and Communications Security (CCS). 827–838.

https://github.com/JoeDog/siege

	Abstract
	1 Introduction
	2 Background and Attack Model
	2.1 Cache Side Channels
	2.2 Attack Model

	3 Related Work
	4 System Design
	4.1 Why User-Level Library
	4.2 System Overview
	4.3 Library Interface
	4.4 Tuning Ghost Thread
	4.5 Usability of Ghost Thread

	5 Security Analysis
	5.1 Normalized Samples
	5.2 Empirical Study

	6 Evaluation
	6.1 Application Overhead
	6.2 Worst Case Analysis
	6.3 System Impact

	7 Discussion
	8 Conclusion
	9 Acknowledgement
	References

