Session 2B: Applied Cryptography

CCS 20, November 9-13, 2020, Virtual Event, USA

Full Database Reconstruction in Two Dimensions

Francesca Falzon" Evangelia Anna Markatou” Akshima
University of Chicago Brown University University of Chicago
ffalzon@uchicago.edu markatou@brown.edu akshima@uchicago.edu
David Cash Adam Rivkin Jesse Stern
University of Chicago University of Chicago University of Chicago

davidcash@uchicago.edu

amrivkin@uchicago.edu

jesseastern@uchicago.edu

Roberto Tamassia
Brown University
rt@cs.brown.edu

ABSTRACT

In the past few years, we have seen multiple attacks on one-dimen-
sional databases that support range queries. These attacks achieve
full database reconstruction by exploiting access pattern leakage
along with known query distribution or search pattern leakage. We
are the first to go beyond one dimension, exploring this threat in
two dimensions. We unveil an intrinsic limitation of reconstruc-
tion attacks by showing that there can be an exponential number
of distinct databases that produce equivalent leakage. Next, we
present a full database reconstruction attack. Our algorithm runs in
polynomial time and returns a poly-size encoding of all databases
consistent with the given leakage profile. We implement our algo-
rithm and observe real-world databases that admit a large number
of equivalent databases, which aligns with our theoretical results.

CCS CONCEPTS

« Security and privacy — Cryptanalysis and other attacks;
Database and storage security.

KEYWORDS
Encrypted Database; Database Reconstruction; Attack

ACM Reference Format:

Francesca Falzon, Evangelia Anna Markatou, Akshima, David Cash, Adam
Rivkin, Jesse Stern, and Roberto Tamassia. 2020. Full Database Recon-
struction in Two Dimensions. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS °20), Novem-
ber 9-13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3372297.3417275

1 INTRODUCTION

Encryption can mitigate the risk of a data breach, whether stored
in local infrastructure or at a cloud service. However, standard
encryption limits the ability of the server holding the ciphertexts to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS °20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11...$15.00
https://doi.org/10.1145/3372297.3417275

443

from 08/31/2009. Original locations are drawn as blue points
and their reflections as yellow triangles. The points in each
highlighted box and stand-alone pair can independently flip
along the diagonal, producing 1024 equivalent databases.

search data unless the decryption key is available. Many solutions
have been suggested to enable server processing of encrypted data
on behalf of clients. In this work, we consider solutions that allow
the server to respond to range queries on an encrypted database
without decrypting the data. Order revealing encryption [1, 4, 5]
supports range queries, but various such schemes, including the
most-secure “ideal” constructions, have been shown vulnerable to
devastating leakage abuse attacks (e.g., [3, 13, 20, 31]) that recover
data in certain circumstances, a fact that underscores the need to
better understand the security of these schemes.

As an alternative to order revealing encryption, searchable en-
cryption involves building an encrypted index to look up range
queries (e.g., [10] and the survey by Fuller et al. [15]). These schemes
support a variety of query types, including subsets of SQL (e.g. [14,
21]). When a query is processed, the client learns the results of the
query and then learns some “leakage” about the data and the query.
This approach has been used both in data management research
(e.g., [33-35]) and industry (e.g., [9, 32]) and will likely continue
to be deployed despite leakage-based attacks because it still resists
other weaker attacks (e.g., a smash-and-grab data breach no longer
reveals an entire column of credit card information).

Several recent works [18, 19, 23-27] have presented attacks that
leverage a mild-looking form of leakage on range queries and k-NN
queries. The attacks assume knowledge of the access pattern of the
query, meaning the identifiers of the records in the response of the

“FF and EAM are co-first authors who contributed equally, listed alphabetically.
The remaining authors are listed alphabetically. The Brown and Chicago teams con-
tributed equally to this work.

https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3372297.3417275

Session 2B: Applied Cryptography

query. With enough queries and knowledge of their distribution,
these attacks can efficiently fully recover the plaintext data, up
to reflection (intuitively, the attack is not sure about the order of
the data, since increasing and decreasing sequences of points are
indistinguishable in their models). Attacks can also leverage another
type of mild-looking leakage, search pattern leakage. Using search
pattern leakage, the attacker can determine whether two identical
responses correspond to the same query. The combination of access
and search pattern leakage can achieve equivalent results without
knowledge of the query distributions.

1.1 Contributions

We perform the first exploration of reconstruction attacks on en-
crypted databases that support two-dimensional range queries. Con-
cretely, we consider settings that allow for conjunctive range queries
on two columns (e.g. a query q selects all records with weight be-
tween wo and w; and height between hg and h1). We consider this
problem because plausible efficient constructions can support such
queries while leaking strictly less information than systems that pre-
form one-dimensional range queries. Prior work in one-dimension
leaves the security of these systems open.

Our results assume a basic form of leakage where a persistent
passive adversary learns which (encrypted) records are returned
for each query. Our attack additionally requires either knowledge
of the query distribution or search pattern leakage. Our leakage
choice is conservative, and as we argue below, will apply to many
potential approaches towards supporting two-dimensional range
queries. It is also strong, in that (following prior work) we require
all possible queries to be issued in order to get a clean theoretical
understanding of possible attacks. In our setting we completely
characterize what is information-theoretically possible to recover
by the adversary, showing that in the two-dimensional setting it
can be complicated even to describe. We then develop an efficient
algorithm that succeeds in finding all databases consistent with the
observed leakage.

There are many possible ways to support encrypted two-dimen-
sional range queries. We selected a leakage profile that reflects a
common-denominator leakage that appears difficult to efficiently
avoid and is also technically interesting to attack. To begin un-
derstanding our setting, consider an index-based approach that
independently supports range queries on individual columns, and
simply translates a two-dimensional query into the intersection of
one-dimensional queries. Such a system, on the query ¢ from the
previous paragraph, will leak which columns have the requested
weight and which columns have the requested height. Prior one-
dimensional attacks (e.g. [18, 23]) can thus be applied to each di-
mension, recovering the full database.

A few approaches can leak strictly less than this one and render
the one-dimensional attacks inapplicable. A conceptually simple
system could, roughly speaking, precompute a joint index for all
possible two-dimensional g. Once this index is encrypted (using
an encrypted multimap [6, 8, 10], say), only the records matching
both dimensions will be retrieved when processing a given ¢ (in
contrast to the naive solution, where records matching the weight
range but not the height range would be accessed unnecessarily).
Since the dimensions interfere with each other to produce leakage,
prior attacks do not apply.

444

CCS 20, November 9-13, 2020, Virtual Event, USA

Another approach which could produce similar leakage is to
use an oblivious primitive like ORAM to obtain the identifiers of
records matching the query, and then access the actual records in
a standard data store. Such an approach, which has been used for
encrypted keyword searches (e.g., [16]), and dynamic constructions
like [7, 11], is desirable when the actual records are large compared
to the indexing information, as it would reduce the size of the
ORAM. This approach hides the search pattern and the leakage on
individual columns, but still reveals the access pattern of records
matching the query. Thus, this method is vulnerable to our attack
when the query distribution is known.

Maple is a system for multi-dimensional range search over en-
crypted cloud data [37]. Their approach focuses on not leaking
single-dimension information. To achieve this, the system leaks, in
addition to access and search pattern leakage, the path pattern of the
search tree (which nodes were accessed on the multi-dimensional
range search tree) and the values of each query (which ranges are
being queried). More recently, Kamara et al. [21, 22] show how to
perform conjunctive SQL queries with a reduced leakage profile,
but only for a single value and not ranges.

In contrast to the one-dimensional case where complete recovery
up to reflection is possible, we present an information-theoretic
limit to the power of reconstruction attacks in two dimensions.
Namely, we show that there exist exponentially-large families of
different databases that have indistinguishable access and search
pattern leakage. Also, for a database D, we fully characterize the set
of databases with leakage identical to that of D in terms of combi-
natorial and geometric properties of D as well as number-theoretic
considerations involving the domain of points of D, including the
number of integral solutions to a certain Diophantine equation. We
tame this complexity by providing a characterization and succinct
encoding of this set of indistinguishable databases.

Based on this characterization, we exhibit a poly-time attack
that recovers the set of indistinguishable databases returning a
poly-space encoding of it. For a database with R records over a rect-
angular domain with Ny X N points, where N = Ny - Ny, our attack
takes time O((Np + N1)(RN? + Rlog R)). Our attack works for an
arbitrary database, with no assumptions on the configuration of the
points. In particular, we support both dense and sparse databases,
allowing zero, one, or multiple records per domain point.

We have implemented our attack and evaluated it on several
datasets of real-world health and location data. We illustrate in
Figure 1 our reconstruction of a real-world location dataset by our
attack, which recovers a family of equivalent databases obtained
by independently flipping along the diagonal certain highlighted
subsets of points. Finally, we developed another attack that, assum-
ing some prior auxiliary knowledge, picks the “real” database out
from amongst the indistinguishable set, and showed that it typically
succeeds on real-world data.

We summarize our main contributions as follows:

(1) We characterize the families of 2D databases with the same
leakage profile and show they may contain an exponential
number of databases (Section 4, Theorems 4.3 and 4.4).

(2) We develop an efficient poly-time full database reconstruc-
tion attack that encodes the potentially exponential databases
in poly-space (Section 5, Algorithm 3 and Theorem 5.5).

Session 2B: Applied Cryptography

Table 1: Comparison of our work with related FDR attacks.

Queries Assumptions Leakage
1D 1D 2D Query Data Access Search
range k-NN range distrib. distrib. pattern pattern
Kellaris+ [23] v Uniform Any v v
Lacharité+ [26] Vv Agnostic Dense v
Kornaropoulos+ [24] N Uniform Any v
Grubbs+ [18] v Uniform Any v
Grubbs+ [18] v Uniform Minor info v/
Markatou+ [27] V Agnostic Any v v
Kornaropoulos+ [25] v/ v Agnostic Any v v
This Work v Agnostic Any v v
This Work v Known Any v

(3) We implement the attack and evaluate it on real-world
location and health data (Section 6).
(4) Given access to training data, we show how to reduce the
size of the solution set (Section 7).
This paper is the product of merging two independent lines of
work, [2] and [29].

1.2 Prior and related work

Kellaris et al. [23] show that for a one-dimensional database over
domain [1, N, one can determine the exact record values up to
reflection with O(N* log N)) uniformly random queries. Also, recon-
struction can be done with only O(N? log N) queries if the database
is dense. Informally, a dense database is one in which each domain
value is associated with at least one record. In [26], Lacharite et
al. improve on the dense database attack and present an algorithm
that succeeds in reconstructing dense databases with O(N log N)
queries. For large N, these query complexities can quickly become
impractical, so they additionally presented an e-approximate data-
base reconstruction (e-ADR) attack that recovers all plaintext values
up to some additive eN error with O(N log e~!) queries.

The sacrificial e-ADR approximation attack by Grubbs et al. [18]
is scale free, i.e., its success depends only on the value of € (as
opposed to both € and N). The first attack issues O(e *loge™!)
queries and the second attack succeeds with O(e=2 log e~!) queries
under the assumption that there exists some record in the database
whose value is in the range [0.2N, 0.3N] (or its reflection). Both
attacks rely on uniform query distribution. The authors also prove
that database reconstruction from known queries can be reduced
to PAC learning.

Reconstruction attacks from k-NN queries are presented by Ko-
rnaropoulos et al. [24]. For cases when exact reconstruction is
impossible, they characterize the space of valid reconstructions
and give approximation reconstruction methods. In other work,
Kornaropoulos et al. [25] combine access pattern leakage with
search-pattern leakage and apply statistical learning methods to re-
construct databases with unknown query distributions from range
and k-NN queries. Table 1 compares our attacks with selected re-
lated work.

There has also been some work on mitigation techniques for
leakage-abuse attacks [12, 17, 28, 30].

2 PRELIMINARIES

DOMAINS AND DATABASES. For an integer N let [N] = {1,2,...,N}.
For the rest of the paper, we fix positive integers Ny, N1 and let

445

CCS 20, November 9-13, 2020, Virtual Event, USA

D = [No] X [N1]. When Ny = Nj we say that D is square. We
call main diagonal of D the set of points that lie on line segment
from (0,0) to (Np + 1, N1 + 1). For a point w € D, we write wy for
its first coordinate (horizontal) and w; for its second coordinate
(vertical), so w = (wo, w1). We also recall the geometric concept of
dominance between points: point w € D dominates point x € D
if xo < wp and x; < wq. We denote this as x < w. Similarly, point
w € D anti-dominates point x € D if wy < xp and x; < wq, and
we denote this as x <, w.

We define a 2-dimensional database D over domain D as an
element of DX for some integer R > 1, i.e., an R-tuple of points
in D. We refer to the entries of D as records. We call the identifier
(or ID) of a record its index in the tuple (an integer j € [R]). Also,
the domain value associated with ID j is denoted D[j]. Note that
the same value in D may be associated with multiple database
records. In the rest of this paper, for simplicity, whenever it is clear
from the context, we may refer to records of a database as points.

RANGE QUERIES AND RESPONSES. A range query returns the iden-
tifiers of the records whose points are in a given range. Formally,
a range query is a pair q = (c,d) € D? such that ¢ < d. We define
the response of g = (c, d) to be the set of identifiers of records in D
whose points lie in the rectangle “between” ¢ and d. Formally,

Resp(D,q) = {j € [R] : ¢ < D[j] < d}. (1)

We define the response multiset of a database D, denoted RM(D),
to be the multiset of all access patterns of D. Formally,

RM(D) = {{Resp(D,q) : q=(c.,d) e DXc<d}}). (2

This is a multiset because distinct queries g, ¢’ may have Resp(D, q) =
Resp(D, q’), i.e., return the same records. We also define the cor-
responding set RS(D) = set(RM(D)), by removing any duplicate
entries from RM(D).

COMPUTING THE RESPONSE MULTISET. Our algorithms assume the
response multiset RM(D) as input. This allows us to isolate the
combinatorial and geometric structure of the problem. We now
show how an adversary can calculate RM(D) with access pattern
leakage plus (i) known query distribution, (ii) search pattern leakage
and known query distribution, or (iii) search pattern leakage and
known database size. These are all standard in previous work.

In case (i), the adversary computes each unique response s of
RM(D) and its multiplicity, which is given by the probability of s
being returned by a query. For example, given a uniform distribution
of queries, the multiplicities can be computed with high probability
using a standard Chernoff bound argument after roughly O(N*)
queries. Similar techniques can be used for other distributions.

In cases (ii) and (iii), the adversary can derive RM(D) after ob-
serving a response to every query at least once. To know when
this has occurred, the adversary waits for a sufficient number of
queries that depends on the query distribution (case (ii)) or until
all distinct queries have been seen, their count based on the size of
the database (case (iii)). Notably, in cases (ii) and (iii), if the queries
are uniform, O(N? log N) queries are sufficient to compute RM(D)
with high probability, by the coupon collector argument.

LEAKAGE EQUIVALENT DATABASES. We say that databases D, D’ €
DR with the same record identifiers are equivalent if RM(D) =
RM(D’), meaning that the response multisets of the databases are

Session 2B: Applied Cryptography

exactly the same. (This implies that they have the same number of
records.) We denote the set of databases equivalent to D as

E(D)={D’ € DR . Dand D’ are equivalent}. (3)

FULL DATABASE RECONSTRUCTION. We define the problem of Full
Database Reconstruction (FDR) as follows: Given RM (D) for some
database D, compute E(D).

Computing E(D) is the best an adversary can do without prior
information on D or the queries. We revisit the setting later and
show that, with training data, an adversary can often recover D
after computing E(D) by looking for the most typical member.

3 TECHNICAL TOOLS AND OVERVIEW

We introduce the main technical ingredients in our algorithm, and
then provide an overview of how they are combined. At the end of
this section we apply these tools to classify the structure of E(D)
for any database D. We will then apply our classification in the
analysis of our main algorithm.

REFLECTION. Symmetries will play a central role in understanding
E(D), the most important of which for us is reflection. We define
the reflection of a point w = (wp, w1) of domain D = [Np] x [Nq]
to be the point w” = (w(, w;) such that (see Figure 2)
. ll:]]O_H; . M (4)
1+1 No+1
We refer to the reflection of a point using function w’ = o(w). The
reflection of w, o(w), can be obtained geometrically by considering
the rectangle with horizontal and vertical sides that has one corner
at point w and two other corners on the main diagonal of D. The
reflection, w’ of w is the remaining corner of this rectangle. Note
that the reflection w” of w may or may not be in D. The following
lemma characterizes the points of) whose reflection is also in D.

’ ’
W0=W1 W1=W0

10‘

Figure 2: Points Ou, v and »Sv of dorllgain D 15: [14] x [9] (thick
black rectangle) and their reflections u’, v’ and w’. We have
thatu’ € Dbuto’ ¢ D andw’ ¢ D. By Lemma 3.1, the points
of D whose reflection is in D have coordinates of the type
(3, 2j), i.e., are at the intersections of the dotted grid-lines.

LEmMA 3.1. Let w = (wo, w1) be a point of domain D = [Np] x
[N1] and let Z—‘l’ be the reduction of fraction %‘:}
We have that the reflection of w is in domain D if and only if wg is a

multiple of ay and w1 is a multiple of a1.

to its lowest terms.

Our definition of reflection refers to the main diagonal of the
domain. We can define a similar concept referring to the other
diagonal, i.e., the line segment from (Np + 1,0) to (0, N7 + 1).

3.1 OQuery Densities

We will repeatedly use a strategy that generalizes the main observa-
tion of [23]. There, in trying to determine a point x, they observed

446

CCS 20, November 9-13, 2020, Virtual Event, USA

*w 7 %
0 5 10 150 5 10 Bt

(@) (b)
Figure 3: Illustration of Equations 5 and 6 for points of
domain D = [14] X [9]. (a) The query density of point
w = (6,2) is the product of the areas of the two rectangles,
ie, pyw =6-2-(15-6)-(10—2) = 12 - 72 = 864. Since the
reflection w’ = (3,4) of w is a point of D, by Lemma 3.2, we
have p,s = p,, = 864. (b) The query density of pair v = (6, 2)
and w = (12,4) is the product of the areas of the two purple
filled rectangles, i.e., py . = 12 - 18 = 216. Since the reflec-
tions v/ = (3,4) of v and w’ = (6,8) of w are points of D, by
Lemma 3.3, we have py . = py,w = pow = po,w = 216.

that one can compute the proportion of RM(D) in which x appears.
Then they could proceed algebraically to limit the number of pos-
sible values for x. In particular, in one dimension, this narrowed
x down to two values. The final step of their algorithm reduced
this to one possibility by fixing another point y and recording how
often x and y appeared together, adding another constraint.

We now generalize the notion of query density to two dimen-
sions. For a domain D = [Ny] X [N1], and x € D, define

px = {(c.d) € D* : c < x < d}
and for a pair of points x,y € D define
Pxy = |{(c,d) eD?ic<xy=< d}|.

Thus, these are the number of queries that contain x or x and y
(respectively). The formula for the query density px of a point
x = (x0,x1) € D = [Ny] X [N1] is as follows (see Figures 3 and 5).

©)

‘Px =x0x1(No +1—x0) (N1 +1 —x1) ‘

LEMMA 3.2. Let w be a point of domain D and suppose the reflec-
tion w' of D is also in D. We have that w and w’ have the same
query density, i.e, pyy = Pay.

Similarly, the formula for the query density p, . of a pair of
points, v and w, of D such that v < w is as follows.

Pow = 0001 (No + 1 —wp)(Ny +1—wy)

(6)

Again, we obtain the same query density by replacing one or both
points of a pair with their reflections, as shown in Lemma 3.3. We
note that this equation only holds when v < w. If not, there are
similar formulas depending on their (anti-) dominance relationship.

LEMMA 3.3. Letv < w be points of domain D and let v’ and w’
be their reflections. We have

Pow = Pofw ifo’ € Dandv’ <w
Pow = Pow ifw € Dandv <w'
Pow = praw ifv' €D, w €D ando’ <w

Session 2B: Applied Cryptography

Our attack exploits the fact that given response multiset RM (D),
one can compute the query densities of all the points and pairs of
points of the database without knowing their coordinates.

Two TECHNICAL LEMMAS. The following lemmas will be used in
both our classification of the structure of E(D) and in the analysis
of our algorithm. They will be applied to infer where a point (or
points) must be located based on query density constraints. The
first bounds the number of points w that satisfy p,, = « below the
trivial upper bound of NoNj. The second lemma identifies when
points can be solved for, possibly up to a reflection symmetry.

LEMMA 3.4. Let o € Z. Then, equation py = a has at most 2(Np +

Nu1) integral solutions for x.

Proor. We have that py = xox1(No + 1 — x9) (N1 + 1 — x1). For
each f € [Np], when we set xo = f we get: « = fx1(N1 +1 —
)No+1-f) =

x% — (N1 +D)x + 0 7)

a —_
B(No+1-p)
Solving the above quadratic equation (with real coefficients) for
X1, we get at most two integer solutions. For each y € [N;], when
wesetx; =ywegeta=xy(N1+1-y)(No+1-x9) =

o

2
—(No+1Dxo+ ————— =0
%o~ (No+ Dxy yY(N1+1-y)

®)

We obtain 2N solutions by setting x; to each value in [N;] and
solving for xo. Thus, we obtain at most 2(Np + Nj) solutions for x.
O

We illustrate Lemma 3.5 in Figure 4.

10

o(x)

0 5 10

Figure 4: In Lemma 3.5, we know points v and w, and want
to determine point x. The grey (solid), green (dashed-dotted)
and purple (dashed) lines denote curves py, py x and p,, x, re-
spectively. The intersection of these three curves returns a
unique location for x. To demonstrate that we need points
in dominance (v) and anti-dominance (w) relationships with
x, we also show that if we know some point p such thatx < p,
ppx in red (dotted) just gives us the same solutions as py .

LEMMA 3.5. Letv,w € [Ny] X [N1] and let a, B,y € Z. Then the
system of equations

Px =
Pv,x:ﬁ 9)
v =<x

447

CCS 20, November 9-13, 2020, Virtual Event, USA

has at most two integral solutions for x. If x is a solution, then o(X)
is the other solution if and only ifv < o(%). Additionally, if we have
Pwx =Y
w=<gXx

then the system has at most one integral solution. Similarly, the system
has at most one solution if the last equation of Systems (9) and (10)
are replaced by x <, v and x < w, respectively.

ProoOF. Since v < x, we know which coordinates of {v, x} are
minimal and maximal. Applying the formula for p, we write the
first two equations of System 9 as

o= px = xoxl(N() +1- xo)(N1 +1- xl)
B = pox =00v1(No +1—x0) (N1 +1—2x1)

We then rewrite the above equations as

i=(N0+1—xo)(N1+1—xl)

0001
0001
H=0—= = XoX1
B (11)
w:—£+N0N1+No+N1+1+y
0001

= (N7 + Dxo + (Np + 1)x1.

Using substitution and the quadratic formula we can obtain the
following two solutions for System 11:

) w—sqrt o +sqrt
X' = ,
2(N1+1)" 2(No+1)
®+sqrt @ —sqrt)

(12)
= (2(N1 +1)" 2(Ng+1)

where sqrt = \Jw? — 4u(N; + 1)(Np + 1). Note that " and £’ are
reflections across the main diagonal. Moreover, note that by Lem-
mas 3.2 and 3.3 we know that px = pg(x) and pox = Py o (x)- Thus,
both x” and x’’ solve System (9) when they satisfy the third equa-
tion. For the backward direction, suppose that % is a solution and
that v £ o(%). Then the third equation of System (9) would not be
satisfied and the lemma follows.

Let us now consider the additional equations in System (10).
Applying the formula for p given that w <, x yields

Y = Pwx =xow1(No +1—wo)(Ny +1—x7).

We can then rearrange to obtain the system of equations

Y

(No + 1 —wo)wq

(13)

—i + NoN1+ No + N1+ 1= Nix9 — Nox1 + x0x1
0001

and then solve simultaneously to get unique values for xo and x;.
Lastly, we consider the case when the last equation in Systems
(9) and (10) are replaced with x <, v and x < w, respectively. By
applying the rho equations we see that
B = pox =vox1(No +1—x9)(No +1—10)
Y = pwx = Xox1(No + 1 — wo) (N1 +1 = wy)

Session 2B: Applied Cryptography

which we can rearrange to get the system of equations

14 _
(No+1—wo)(N1 +1—wq) = xox
8 (14)
—————— = Npx1 + x1 — X0X1.
UO(N1+1—UI) 0X1 1 0X1

and then solve for unique values of xy and x;. O

We make the standard assumption that arithmetic on numbers
of size (number of bits) O(log NyNy) can be done in constant time.
We also employ full-precision arithmetic and use symbolic repre-
sentations for non-integer values (e.g., square root of a number that
is not square).

3.2 Technical Overview

In the remainder of this section, we work with a square domain
D = [N] x [N] in order to provide an overview of our work
without the complications of a general domain. To understand
the implications of solving the FDR problem, we are interested
in the structure of E(D). A first observation is that applying the
8 “rigid motions of the square” (rotations and horizontal/vertical
reflections) to D will result in equivalent databases. It is natural to
conjecture that E(D) is generated this way, and that |[E(D)| < 8
(some databases will be invariant under these symmetries, resulting
in an upper bound). Interestingly, the correct bound is exponential.

AN INITIAL ATTEMPT. Let us examine what happens if we naively
generalize the prior attack of [23] attack to two dimensions. The
first step is to use RM(D) to compute the query density py for
every point x. Next, we can attempt to solve for x, up to the rigid
motions of the square. This is depicted in Figure 5. As a function
of two unknown coordinates over the reals, py is a degree-4 curve.
Solving this involves intersecting the curve with the plane defined
by a, which results in the curve on right side of the figure. It is al-
ready apparent that the situation in two dimensions is dramatically
different form one dimension: Instead of getting two real points in
this intersection, we get an infinite number of real solutions.

We partially resolve this situation by noting that the points we
want on the curve must be integral since the record values in D
take on integer values. One could potentially apply techniques
from number theory to compute integral solutions directly, but
this is beyond the scope of this paper. By inspection, we can see
that if x € D is an integral solution, then we have up to eight
integral solutions obtained by reflecting and rotating, as shown

x
L

(a) (b) »
Figure 5: Solving px = a (Equation 5): (a) intersecting plane
z = o with surface z = xox1 (N +1—-x0) (N + 1 —x1) defining py;
(b) curve of the solutions, where the 8 integral points (in red)
are symmetric with respect to rigid motions of the square. In
general, there are additional integral points on this curve.

448

CCS 20, November 9-13, 2020, Virtual Event, USA

in Figure 5(b). These points are essentially unique, as the entire
database can be permuted this way and be equivalent. But there is no
reason that these should be the only integral solutions. Experiments
indicate that the curve of Figure 5 can have an unbounded number
of integral solutions (i.e. the number of solutions grows with N),
partitioned into groups of at most 8 by the rigid motions.
Unfortunately for the attacker, another symmetry may occur
that is not covered by the rigid motions of the square. For example,
consider the database of Figure 6, which comprises 8 red points.
Reflecting any subset of the points results in an equivalent database.
Moreover, these reflections are not rigid motions of the square.

\ \
(]

Figure 6: Reflecting any subset of the 8 database points
yields an equivalent database. Further applying rigid mo-
tions, we get a total of 8 x 28 = 1,024 equivalent databases.

FDR IN TWO DIMENSIONS: OUR APPROACH. We obtain an FDR al-
gorithm by giving a new approach that teases apart the subtle
structure of E(D), even when it is exponentially large. The first
step is to identify 2, 3, or 4 extreme points that “contain” the rest of
the database; in particular these points will collectively achieve the
maximum and minimum values in each dimension. We find these
by looking for a minimal set of points such that their co-occurrence
in a query implies the entire database is in that query.

We then algebraically solve for the possible assignments of these
points in D by carefully applying Lemmas 3.4 and 3.5, obtaining
a polynomial list of solutions. Then for each possible solution, we
recover a family of equivalent databases, organized by their freely-
moving “components”. Taking a union over all of the families for
the possible solutions for the extreme points gives E(D).

4 CLASSIFYING EQUIVALENT DATABASES

Before delving into the algorithm, we need to know what the
best we can do is. Given RM(D) for some database D, an algo-
rithm can at best find E(D), the set of all databases D’ such that
RM(D’) = RM(D). Unlike the one-dimensional case, E(D) has
more structure than a simple reflection. As shown in Figure 6, we
can obtain databases equivalent to D by repeatedly performing a
transformation that replaces a subset of points with their reflec-
tions without affecting the dominance relation of these points with
respect to all the other points.

ComPONENTS. To begin understanding how these equivalent databases
are formed, define a component of D to be a minimal non-empty
subset C of points of D such that for every point p € C and point
q € D such that q ¢ C, one of the following holds (see Figure 7):

e p and o(p) both dominate g; or

e pand o(p) are both dominated by g.
It is immediate that any two components of a database are disjoint,
because if their intersection was non-empty, it would form a smaller

Session 2B: Applied Cryptography

component. The components of a database are uniquely determined,
as formally stated below.

LEMMA 4.1. Any database can be uniquely partitioned into com-
ponents.

The proof to Lemma 4.1 can be found in the Appendix.

A point p of a domain D is said to be reflectable if the reflection
o(p) of p is a point of D. We extend this definition to components
by saying that a component C of a database D is reflectable if all the
points of C are reflectable. For technical reasons, if a component
consists of a single point on the main diagonal, then we define it
to not be reflectable. The following lemma, illustrated in Figure 7,
states that replacing the points of a reflectable component with
their reflections leaves the search pattern unchanged.

OO I
O T _
D‘ . —
,.D oy L‘ B
u'
5 J—
q’o S‘. o JE—
! . o J—
lgn q ! o
Y _
0 5 10 15

Figure 7: A database D over domain [14] X [9]. Solid circles
represent database points and hollow circles represent their
reflections. D has components C; = {p}, C; = {q,r,s}, and
Cs = {t,u,0}. C; and C3 are nonreflectable while C, is re-
flectable. Replacing the points of C; with their reflections
yields a database equivalent to D.

LEMMA 4.2. Let C be a reflectable component of a database, D, and
let D’ be database obtained from D by replacing C with component
C’ comprising o(p) for every point p € C. We have that D and D’
are equivalent.

The proof of Lemma 4.2 can be found in the Appendix and its
main argument is schematically illustrated in Figure 8.

Before going further, we show that the set of a equivalent databases
may be arbitrarily large (in contrast to the one-dimensional case).
We can exploit Lemma 4.2 to build a database that admits an expo-
nential number of equivalent databases (see Figure 6).

THEOREM 4.3. For every integer R, there exists a family of 28
databases with R points that are equivalent to each other.

(D O (o O
- A o A
]
({’ ()o d’o—— q, f. 00
L] C C
[;L [;L *d
/B /B

Figure 8: Case 3 of the proof of Lemma 4.2: database D’ is
obtained from D by reflecting component C to yield C’; the
blue range query (c, ¢) on D and the red range query (c,e’) on
D’ return the same response, as seen from the intersection
(¢, f) and differences, (d, e) and (d’,e’), of the two ranges.

449

CCS 20, November 9-13, 2020, Virtual Event, USA

ProOF. Let D be the database over domain [R+ 1] X [R+ 1] with
points (i + 1,i) for i = 1,--- ,R. We have that D has R reflectable
components, each comprising a single point. Applying Lemma 4.2,
we obtain 2R equivalent databases by replacing subsets of the points
of D with their reflections. O

CLASSIFICATION THEOREM. We now prove that for any database
D, the set of equivalent databases can be systematically described.
At a high level, we show that any database equivalent to D can be
formed by starting from a small number of “seed” databases and
reflecting their components.

THEOREM 4.4. Given a database D with points from domain [Ny]x
[N1], there exists a set S of O(Np + Ni) databases such that any
database equivalent to D can be obtained from a database D’ € S
by reflecting a subset of the reflectable components of D’, and then
reflecting the resulting database vertically and/or horizontally.

The proof of Theorem 4.4 can be found in the Appendix. This
proof includes much of the reasoning used to prove our later algo-
rithm correct, but we present a self-contained version for clarity.
The seed databases correspond to sets of integral solutions to cer-
tain equations, which are theoretically possible up to the stated
bound. In experiments with real data, we only ever needed one seed
database. We did observe real databases with several reflectable
components.

5 FULL DATABASE RECONSTRUCTION

In this section, we present our full database reconstruction (FDR)
attack in two dimensions.

5.1 Overview of the attack

Our FDR attack relies on the contents of both RS(D) and RM(D)
and comprises the following steps:

(1) We identify the extreme points of the database, including
any corner points. (Algorithm 1)

(2) We extract the left-most, left, and right-most, right, points
and segment the remaining points in three sets: one with
all points above left and right, one with all points between
them, and one with all points below them. (Algorithm 2)

(3) We find all possible locations for points left and right, and
use them to identify one or two locations for every point in
the database. (Algorithm 4)

(4) Using the recovered locations, we partition the database into
components. (Algorithm 5)

(5) We prune the locations for the points in each partition down
to one location per point. (Algorithm 3)

5.2 Preprocessing

Before we delve into the algorithm, we will preprocess the in-
put. Given multiset RM(D), we generate the corresponding set
RS(D). At this point, we would like to note that RM(D) has size
O((NoN1)?) = O(N?) and RS(D) has size O(min(R* N?)). A sin-
gle response can contain up to R identifiers. Thus, it takes time
O(min(R’, RN?)) to read RS(D) and time O(RN?) to read RM(D).

We also preprocess RM(D) and RS(D) making sure that each
value in the domain corresponds to at most one identifier. We do

Session 2B: Applied Cryptography

that by finding the smallest set S in RS(D) that contains a given ID.
Then, we go through RM(D) and RS(D) replacing set S from each
response with a new identifier.

5.3 Get extremes

The first step of the reconstruction algorithm finds a minimal set
of extreme points of database D, i.e., a set E C D of smallest size
such that for any point p € D there exist points left, right, bot, and
top in E such that left, < po < right, and bot; < p; < top;. Note
that the same point of E may be the minimum or maximum in both
dimensions, i.e., we may have left = bot or right = top. We call such
a point a corner of the database.

Suppose database D has at least two distinct points. We consider
the following three cases for a minimal set of extreme points, E, of
D (see Figure 9):

Case 1: E has two points, both corners: p = left = bot and q =
right = top.

Case 2: E has three points, one of which is a corner: p = left, g =
right = top, and r = bot.

Case 3: E has four points, none of which is a corner: p = left, q = top,
r = right, and s = bot.

Algorithm 1 takes as input RS(D) and returns a constant size
list of hashmaps. Each hashmap contains four entries, each corre-
sponding to an extreme point (minimum or maximum coordinate)
in a dimension.

We first identify the points on two, three or four edges of the
database, depending on if we have case (1), (2) or (3) respectively.
We do so by finding the second largest response in RS(D), Si. The
difference of S; with the set containing all database points is an
edge of the database. We similarly find the rest of the edges.

Then, we identify the extreme points of each edge. The key idea
is that each extreme point only has one point right next to it on
the edge. The non-extreme points have a point on either side. Thus,
if we look at sets of size two in RS(D) that contain only points in
one edge, the extreme points will each be in exactly one such set.
Every other point will be in two.

Once we have identified the extreme points of each edge, we
need to find any corners, and decide on which point from each
edge we’ll return as extreme. We simply iterate through all subsets
of size 2,3, and 4 of extreme points and pick the first subset, such
that the smallest response in RS(D) that contains all points in this
subset is the largest one. The algorithm then returns all possible
configurations of this subset of points.

LEMMA 5.1. Let D be a database with R records and let RS(D)
be its response set. Algorithm 1 returns all possible configurations of
extreme points of D (up to symmetries) in time O(min(R®, RN?)).

The proof of Lemma 5.1 can be found in the Appendix.

Wy Vo779 6 774

Pe / p / »/r

R]
@

p
Figure 9: Three mutually exclusive cases for a minimal set

of extreme points of a database: (1) two corners, p and g;
(2) one corner, g; (3) no corners.

CCS 20, November 9-13, 2020, Virtual Event, USA

Algorithm 1: FindExtremes(RS(D))

1: Let L be the largest set in RS(D) and Edges, PosExtremes empty lists

2: Let Sy be the 2"*? largest set in RS(D). Add L — S to Edges.

3: Let Sy be the 279 largest set that contains L — S;. Add L — S to Edges.

4: Let S3 be the 274 largest set that contains L — S; and L — S, (if it
exists). Add L — S3 to Edges.

5: Let Sy be the 29 largest set that contains L — Sy, L — Sy and L — Ss (if
it exists). Add L — Sy to Edges.

6: Let PosExtremes be an empty list.
7: for all E € Edges do
8. if |[E| =1 then
9: Add the one ID in E to PosExtremes
10: else
11: Consider the responses of size 2 in RS(D) containing only IDs

of E. Count in how many such responses each ID of E appears and
add any IDs that appear exactly once to PosExtremes

12: fori=2to4do

13: for all subsets of IDs E C PosExtremes such that |E| = i do

14: if L is the only set in RS(D) containing E then

15: { The i IDs of E refer to a minimal set of extreme points }

16: Let PosConfigs be an empty list

17: for all possible configurations of extreme point IDs in E do

18: Add a hashmap to PosConfigs with entries mapping keys left,
right, bot, and top, to their respective IDs of E.

19: return PosConfigs

5.4 Segment the database

Given a set of extreme points left, right, bot, and top computed by
Algorithm 1, our goal is to segment the points of the database D
into three sets, S1, S2, and S3 according to their vertical (second co-
ordinate) arrangement with respect to the extreme points. Namely,
these sets are defined as follows:
e S comprises the points of D that are vertically above both
left and right;
e S, comprises the points of D that are vertically in between
left and right (included);
e S3 comprises the points of D that are vertically below both
left and right.
Note that in Case 1 (as defined in Section 5.3), we have a trivial
segmentation where S; = S3 = 0 and S = D. Two subcases for the
segmentation in Case 3 are illustrated in Figure 10.
Algorithm 2 (Segmentation) takes as input RS(D) and PosConfigs
(output by Algorithm 1) and returns a list of tuples, where each
tuple comprises of two IDs, for left and right, and three sets of IDs.

Algorithm 2: Segmentation(PosConfigs, RS(D))

1: Let Segmentations be an empty list.

2: for all hashmaps H € PosConfigs do

3: Let S; be the smallest set in RS(D) containing H [left] and H[right]
4: Let T be the smallest set in RS(D) containing H [top], H [left] and

Hright]
$1=T-5,
S3=D-T

Add ((H[left], H[right]), (S1,S2,S3)) to Segmentations.
return Segmentations

Session 2B: Applied Cryptography

LEMMA 5.2. Let D € DR be a database with R records and let
RS(D) be the response set of D. Let PosConfigs be the output of Algo-
rithm 1 on RS(D). Then Algorithm 2 returns a list that includes each
possible set of extreme points, denoted (left, right), and their corre-
sponding database segments (S1, S, S3) in O(min(R>, RN?)) time.

The proof of Lemma 5.2 can be found in Appendix B.5.

D S1 tgp right D | S1 fgp
7 Y,

Figure 10: Segmenting the database into three sets of points.

5.5 Find candidate locations

Algorithm 4 finds candidate locations for all the database records.
Each hashmap in list Segmentations has two keys, denoted left,
and right, which provide the IDs of the leftmost and rightmost
points, as defined in Section 5.3. First, we use pjp to compute left
such that left, € [No] and left; € [N;]. We can obtain at most
2(Np + N1) solutions as shown in Lemma 3.4. We then use a second
parameter, pjefs right, to obtain the set of equations in System 9, and
then solve for all valid solutions of left,, left;, right,, and right,.
Once we have located left and right, we can use these points to
compute at most two potential solutions for the remaining records
using Lemma 3.5. The pseudocode for computing the possible values
of each database can be found in Algorithm 4 in Apendix B.

LEMMA 5.3. Let D € DX be a database with R records and let
RM(D) be its response multiset. Algorithm 4 computes in O(RN?)
time a list of hashmaps, denoted Solutions, such that for each database
D equivalent to D, i.e., De E(D), there exists H € Solutions with the
property that for allID € [R], we have D[ID] € H[ID].

The proof of Lemma 5.3 can be found in Appendix B.6.

5.6 Partition a database into components

Algorithm 5 (Partition) takes as input a database D and returns the
list of its components, each labeled with a flag indicating whether
it is reflectable. Le., the output of the algorithm is list of pairs
(C, refl), where C is a component of D and refl is a Boolean indicat-
ing whether C is reflectable or not. We represent this database D
using a hashmap, that maps identifiers to their one or two possi-
ble values. The algorithm also returns a list of projections on the
diagonal to aid Algorithm 3.

For a record ID of database D, let low(ID) and high(ID) be the
lower and higher orthogonal projections of point v = D[ID] on
the main diagonal, respectively (see Figure 11), i.e., low(ID) and
high(ID) are the intersections of the main diagonal with horizon-
tal and vertical lines through point v, where low(ID) < high(ID).
Clearly, a point and its reflection have the same orthogonal projec-
tions on the main diagonal.

Algorithm 5 is based on the observation that if we project all the
points of D onto the main diagonal, the projections of the points
of a component are consecutive along the diagonal (see Figure 11).
The algorithm finds the reflectable components by "walking up”

451

CCS 20, November 9-13, 2020, Virtual Event, USA

10‘ .
. -
o
x o
x
@ E x
ﬁi x
x o e
»
X o
/ _
0 5 10 15 20

Figure 11: Partitioning a database with 5 points (filled cir-
cles) over domain [19]X[9] into a reflectable component (bot-
tom left) and a nonreflectable component (top right) using
Algorithm 5. Reflections of points are depicted as empty cir-
cles, and projections on the main diagonal as cross marks.

the diagonal and keeping track of the IDs of the points whose
projections have been encountered so far. A component is formed
once both projections of its points have been seen.

Extra care must be taken in case multiple records are associated
with points that have the same projection, say p. In that case, we
process first IDs such that p is the higher projection, next IDs such
that p is both the upper and lower projection (i.e., p = D[ID]), and
finally IDs such that p is the lower projection. The pseudocode for
this algorithm, Algorithm 5 can be found in the Appendix.

LEMMA 5.4. Given a database D with R identifiers, each with one
or two possible locations, p, o(p), from domain [Ny] x [N1], Algo-
rithm 5 (Partition) partitions D into its reflectable and nonreflectable
components in time O(min(Rlog R, R + Ny, R + Ny)).

The proof of Lemma 5.4 can be found in the Appendix.

5.7 Prune the candidate reconstructions

Algorithm 3 utilizes the algorithms discussed so far to get families
of possible databases and their (reflectable and non-reflectable)
components. To achieve FDR, we must prune the solution set and
determine the 1 or 2 possible configurations for each component.
We shall iterate through each component in each family. For
each component C, we create a graph G, whose nodes are the iden-
tifiers of C. Similarly to Algorithm 5, we find the low and high
projections of each identifier on the diagonal. We again “walk-up"
the diagonal, adding an edge between ID; and IDy, if the boxes
generated by (low(ID1), high(ID1)) and (low(ID3), high(ID2)) in-
tersect in more that one points. More formally, when high(ID;) >
low(ID3) and high(ID2) > low(ID;). Any identifiers for which
high(ID) = low(ID) are ignored for the purposes of G. The con-
struction of graph G is illustrated in Figure 12.
Then, if all identifiers on this component have two possible
locations, we pick one identifier and discard one of its locations.
Now, we do a depth-first search on graph G starting on an iden-
tifier which has only one possible location. On each step of the
search we traverse some edge (ID1,ID3), where at least one of the
identifiers, say ID; has only one location, say r. If the other identi-
fier has two u, u’, we calculate p, , and py r, and determine which
one is consistent with RM(D). It cannot be that both are consistent,
because in that case there wouldn’t be an edge between (ID1,ID3).
In case none are consistent, then this database family is invalid.
Algorithm 3 takes as input D’s response multiset, RM(D), and
returns a list of families of databases. Each family consists of a

Session 2B: Applied Cryptography

20
% ce —oJ
d x
15 x ‘e
x o N
u,
10 uh x
J
. x
lt, % o be— eu
5
x
4
a
o
Vel re —ea
0 5 10 15 20

Figure 12: (left) Database with 7 records and 3 components
over domain [19] X[19]. The true points are shown with filled
circles, their reflections with empty circles, and their projec-
tions on the main diagonal with cross marks. (right) Graphs
for the components constructed by Algorithm 3, where an
edge between two records indicates that fixing the point of
one record fixes the point of the other record.

database D and its partition into components. The attacker produces
E(D) using the output of Algorithm 3. Theorem 5.5 shows that
that all possible reconstructions of D can be obtained by taking a
database D returned by the algorithm, applying a rigid motion, and
reflecting a subset of its components.

THEOREM 5.5. Given the response multiset (RM(D)) of some data-
base D with R records over domain [Ny] X [N1], Algorithm 3 (FDR)
returns an encoding of E(D), the set of databases equivalent to D,
of size O(Ny + Ny) in time O((Ny + N1)(RN? + RlogR)), where
N = NoNj.

The proof of Theorem 5.5 can be found in the Appendix. We
recall from Section 5.2 that reading the input to the algorithm takes
time O(RN?).

6 EXPERIMENTAL EVALUATION

Our algorithm leaves a few issues open for empirical exploration:
How large a set of seed databases S would an adversary typically re-
construct and how many components would each of those databases
contain? For a rectangular domain, how many components are re-
flectable? We explore these questions through data representative
of what might realistically be stored in an encrypted database with
two-dimensional range queries.

OUR DATASETs. We use hospital records from the years 2004, 2008,
and 2009 of the Healthcare Cost and Utilization Project’s Nation-
wide Inpatient Sample (HCUP, NIS), seven years, 2012-2018, of
Chicago crime locations from the City of Chicago’s data portal,
and the mobile phone records of Malte Spitz, a German Green party
politicianﬁt
Prior work also used HCUP data for experimental analysis. The
2009 HCUP data was previously used for the KKNO and LMP at-
tacks, and all three years were used in GLMP19’s volume leakage
“https://www.hcup-us.ahrq.gov/nisoverview.jsp. We did not deanonymize any of
the data, our attacks are not designed to deanonymize medical data, and the authors
who performed the experiments underwent the HCUP Data Use Agreement training
and submitted signed Data Use Agreements.

Thttps://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
*https://crawdad.org/spitz/cellular/20110504/

CCS 20, November 9-13, 2020, Virtual Event, USA

Algorithm 3: FDR(RM(D))

: Databases = [], RS(D) is the set of RM(D)
: PosConfigs = FindExtremes(RS(D))(Algorithm 1)
: Segmentations = Segmentation(PosConfigs, RS(D)) (Algorithm 2)
: Solutions = Solve(PosConfigs, Segmentations, RM (D)) (Algorithm 4)
: for D in Solutions do
Partition = Partition(D) (Algorithm 5)
for each (Component, refl) in Partition do

Let Resolved be the set of ID € Component s.t. |D[ID]| =1

Let Unresolved be the set of ID € Component s.t. [D[ID]] = 2
10: if Unresolved # @ AND (Resolved = 0 OR Resolved only contains
points on the diagonal) then

V0 N Y W e

11: Pick random ID € Unresolved and remove one entry of D[ID]
12: Remove ID from Unresolved and add it to Resolved

13:

14: Construct graph G with nodes all ID € Component, ignoring

points on the diagonal. There is an edge between ID;,ID; in G, if
the boxes defined by (low(ID;), high(ID1)) and (low(ID3),
high(ID;)) intersect in more than one point.

15:

16: Let Edges(G) be an iterator of the edges of G given by a
depth-first search starting at some ID; € Resolved.

17: for each (IDy,ID;) € Edges(G) do

18: // At each iteration, one ID is added to Resolved or the current
solution D is discarded

19: if ID, € Unresolved then

20: Let D[ID;] =r

21: m = the number of responses in RM (D) containing ID; & ID;

22: if r € D[ID,] then

23: Remove r from D[ID;]

24: for u in D[ID;] do

25: Compute p,, » using Equation 6

26: if p,,, # m then

27: Remove u from D[ID;]

28:

29: if |D[ID;]| = 1 then

30: Add ID; to Resolved and remove it from Unresolved

31: else

32: // Here, D[ID;] = 0

33: Go to line 5 (discard the current solution D)

34: Compute the response multiset RM (D)
35: if RM(D) = RM(D) then

36: Add D, Partition to Databases

37: Return Databases

paper [19, 23]. These years were chosen due to their prior use and
changes in HCUP’s sampling methodology, but other years should
give similar results. Also, we explore a new setting for access pat-
tern attacks, geographic datasets indexed by longitude and latitude.
We use both Chicago crime data and the phone record locations
of Malte Spitz. Each Chicago dataset represents the locations of
crimes within a district during a year. The Spitz data were stored
by the Deutsche Telekom and contributed by Malte Spitz to Craw-
dad. More details on how we chose our attributes can be found in
Appendix C.

For the HCUP data, we consider databases comprising records
from a single hospital and a given a year indexed by two attributes.
For the Chicago data, since longitude and latitude are given with up
to 12 decimal points, we map a location (lat, long) to point (wq, w1)

of domain D = [Ny] X [N;] by setting wo = —(la;a_tlat’”i"l)a't(%_l) +1

Session 2B: Applied Cryptography

Table 2: Results of our experiments on real-world datasets.
In the third column, ng/ni/ny/... means that n; databases
have i reflectable components, i =0,1,2,.. ..

Dataset and attributes Domain #DBs by # of |#DBs
reflectable
components

. AGE&LOS 91x366 1004/0. . . 1004
S AGEDAY & ZIPINC 365x4 677/0. .. 677
& AGE<18 & NPR 18x16 972/0. .. 972
Z. AMONTH & ZIPINC | 12x4 948/0. . . 948
NDX & NPR 16x16 0/997/7/0. . . 1004

, AGE>18 &NPR 73x18 1055/0. ... 1055
S AMONTH & NCH 12x16 1005/0. . . 1005
& NCH & NDX 16x16 0/1054/1/0/1/0... | 1056
Z. NCH & NPR 16x16 0/1053/3/0... | 1056
NDX & NPR 16x16 0/1052/4/0... | 1056

.. AGE<I8&LOS 18x366 968/0. ... 968
S AMONTH & AGEDAY | 12x365 644/0. . . 644
& NCH & NDX 26x26 0/1043/7/0... | 1050
Z NCH & NPR 26x26 0/1049/1/0... | 1050
NDX & NPR 26x26 0/1017/3/0... | 1050
Chicago LAT & LONG 9,19,39,59, | 1072/6/0. .. 1078

99, 199, 1999

Spitz LAT & LONG < 677 x 677 | 0/117/35/9/3/0 | 166

/0/0/2/0. . .

and wy = {78 Longmin) (N -1
the nearest integer. We set Ny = 9, 19, 39,59, 99, 199, and 1999, and
set Nj so that the domain preserves the ratio of longitude range to
latitude range of the district. The resulting domains are square for
only 6 districts. For Spitz data we choose to use square geographic
domains. We use the actual longitudes and latitudes multiplied by
100 as integers and center the smaller range in the square domain.
The maximum Ny = N; we observe is 677.

To generate the leakage for our attack, for each database, we build
the response multiset by querying each possible range (c,d) € D?
such that ¢ < d.

+ 1, where division is rounded to

OUR FINDINGS. Our results are shown in Table 2. Recall that the
reconstruction returns a set S of seed databases that generates a
family of 3 pcg 4-2"(P) equivalent databases, where r(D) denotes
the number of reflectable components of D. For all databases, our
reconstruction found a single seed database (i.e., |S| = 1). Thus, we
report the number of reflectable components for this database. The
number of reflectable components for the Chicago data is consis-
tent for all chosen domains, so we compress our seven longitude
domains into a single row in the table. The majority of our datasets
leaked an equivalent family of minimal size (15713 out of 15792 in-
stances). Across all our experimental attributes, a total of 61 datasets
leaked a family of databases of size 16, 9 leaked a family of size 32,
7 leaked a family of size 64, and 2 leaked a family of size 1024.
Whether a database has a rectangular or square domain is a
major determining factor in the number of equivalent databases.
In our experiments, all components in rectangular databases could
be fixed to not be reflected, suggesting that few real rectangular
databases with similar attributes would have a large number of
equivalent databases. This accounts for 8345 of our datasets. In the
square case, the number of reflectable components varies with the
distribution of the data. Among 7322 square HCUP datasets, there

453

CCS 20, November 9-13, 2020, Virtual Event, USA

were 26 datasets with two reflectable components and only one with
4 components. However, the square Spitz datasets were frequently
distributed along the main diagonal, leading to larger families of
equivalent databases. Of the 166 Spitz datasets, around one fourth
of the instances had > 2 reflectable components, with a maximum
of eight components. To illustrate the structure of the Spitz data,
we show in Figure 1 the phone record locations for 08/31/2009
and our reconstruction of them$. Our algorithm finds 8 reflectable
components, (4 single points and 4 multi-point components shown
as shaded squares), resulting in 4 - 28 = 1024 equivalent databases.

Concrusions. The data show that one may rarely see symmetries
arising from multiple seed databases or from reflectable components
in rectangular domains. These were expected, as those symmetries
correspond to number-theoretic coincidences in the data. We also
conclude that multiple components will plausibly appear in real
data. Some data types tend to have a single component, while other
types have some larger number, and sporadic examples with sev-
eral components can occur. For example, when the Spitz data was
divided into days, multiple components could arise when the travel
was roughly diagonal. Over a longer period, however, the diagonal
structure was lost. We ran an additional test using a database of
Spitz records from every day and found only a single reflectable
component. In the Chicago crime data, the distribution of events
was also rarely so well-structured. In the HCUP datasets, we ob-
served that occasional datasets with correlated attributes could
have multiple components, but most instances lacked this type of
diagonal distribution.

7 AUTOMATICALLY FINDING D IN E(D)

Our attack in Section 5, and those of prior work [19, 23] only re-
cover E(D) and not D. Indeed, this is the best one can hope for
when giving a worse-case algorithm. However in practice it is intu-
itive that an attacker could sometimes do better by observing the
distribution of the data recovered and applying one of the allowed
symmetries to best match the expected distribution. This section
formalizes such an attack for one and two-dimensional cases.

ATTACK SETTING. We assume that an attacker has recovered E(Diest)
and aims to determine which member of that set is the correct
database Diest. With no context this is impossible, so we assume
that the adversary has auxiliary knowledge of the data through a
similar dataset Dyy,in. In our experiments below, we give the attack
auxiliary data in the form of a histogram of Dyy,in, the mean of
Diyain, or a single point from Dyegt.

This attack setting is not totally realistic because if an attack
had such auxiliary knowledge then it would probably also apply it
during the initial phase that recovered E(Diegt), but doing so is an
open problem that requires different ideas. For now we interpret our
experiments here as determining if sometimes recovering E(Diest)
essentially allows recovering Diest itself.

OUuR ATTACK. We will first consider the case where the attack can
view a histogram Hyyain of Dirain. In one dimension, Hiyain is on the
domain D and in two dimensions, Hiyain is a joint histogram over
D. Our attack recovers the family of equivalent databases (either
through the KKNO attack in one dimension or the attack from

SFigure 1 map source: Google Maps

Session 2B: Applied Cryptography

Section 5 in two dimensions) and tries to identity which database
in the family is the true Diest. Given E(Diest) = {Do, . .., D}, the
attacker will compute k histograms H, ..., Hy and select the D;
with the H; that minimizes the mean squared error with respect to
Htrain. More formally, define

1
MSE (Hirain, Hi) =

D] 2 (Hirain() = Hi()*.

xeD
The attack selects D; corresponding to H; with the minimum
MSE(Htrain: Hi)~

Next, we also consider the case of a weaker adversary, who
knows only the mean from the similar database, piy,i,. In that case,
the attack selects the database with the closest mean to the training
data, minimizing |girain — pil-

Because the means and histograms of geographic data in terms
of latitude and longitude seem less realistic to be available publicly
than the means and histograms of medical attributes, we consider
another weak adversary who only knows a single location, p, in
the test database. The attack outputs a guess uniformly at random
from the equivalent databases which contain p to identify Diegt in
E(Dtest)-

To experimentally test the MSE approach, we take the overall
data distribution across all hospitals for a single attribute in one
dimension or a pair of attributes in two dimensions of 2008 HCUP
data as our training distribution Dy, and use each hospital from
the 2009 HCUP data for those attributes as a Diest. We use HCUP
2008 domain sizes and exclude HCUP 2009 data which exceed those
domains. For an adversary with only the mean, we take the publicly
available mean from 2008 for each attribute, or we calculate the
mean across all hospitals in 2008 for attributes where the mean is
not reported online. We evaluate an adversary who knows only
a single point in the database with Chicago Crime and Spitz data,
and we choose the known location uniformly from the locations in
each database.

We run experiments on both 1D and 2D databases. We present
our results in one dimension on just HCUP data in Table 3. We
can see that for both the MSE and mean attacks, the reflection is
typically easy to remove. While the attack with a full histogram

outperforms the attack with only the mean, they are both effective.

For smaller domains these approaches do not work as well and
for other domains like admission month (AMONTH), where the
data are fairly uniform, it is harder to accurately determine the
symmetry.

Table 3: Symmetry breaking for 1D range queries.

Attribute D | Acc. MSE | Acc. u | #DBs
LOS 366 1.00 1.00 1049
AGEDAY 365 0.91 0.92 645

AGE 125 0.99 0.73 1049
AGE_18_OR_GREATER | 107 0.96 0.90 | 1049
AGE_BELOW_18 18 0.75 0.74 1049
NCH 16 1.00 1.00 1050
NDX 16 0.83 0.68 1050
NPR 16 1.00 1.00 1050
AMONTH 12 0.66 0.66 1000
ZIPINC_QRTL 4 0.72 0.74 1049

We present our two-dimensional results in Table 4. We note that
the joint accuracy has a baseline of 1/8 = 0.125 when there is one

454

CCS 20, November 9-13, 2020, Virtual Event, USA

reflectable component. For our HCUP databases the attacks did
much better than the baseline, but were not completely accurate.
For the location data with a single known point, it was possible
to find D in E(D) with high probability for Chicago data with
large domains. Denser databases, like the Chicago data with small
domains, and databases with many reflectable components, like the
Spitz dataset, still were significantly better than the baseline but
had worse performance.

Table 4: Symmetry breaking for 2D range queries.

Attributes D Acc. MSE | Acc. pu | Acc.p | #DBs
NCH & NDX 16 X 16 0.743 0.683 N/A 1050
NCH & NPR 16 X 16 0.935 0.927 N/A 1050
NDX & NPR 16 X 16 0.668 0.580 N/A 1050
Chi LAT & LONG 9 N/A N/A 0.364 154
Chi LAT & LONG 19 N/A N/A 0.467 154
Chi LAT & LONG 39 N/A N/A 0.506 154
Chi LAT & LONG 59 N/A N/A 0.571 154
Chi LAT & LONG 99 N/A N/A 0.721 154
Chi LAT & LONG 199 N/A N/A 0.890 154
Chi LAT & LONG 1999 N/A N/A 1.0 154
Spitz LAT & LONG | < 677 N/A N/A 0.524 166

8 CONCLUSION AND FUTURE WORK

We have shown that full database reconstruction from responses to
range queries is much more complex in two dimensions than one.
Indeed, going from 1D to 2D, the worst-case number of databases
that produce equivalent leakage jumps from constant to exponen-
tial (in the database size). Despite this limitation, we develop a
poly-time reconstruction algorithm that computes and encodes all
databases with equivalent leakage in poly-space. We implement our
attack and demonstrate that the configurations that lead to a large
number of equivalent databases are present in real data. As new
approaches to search on encrypted databases are being proposed,
our work identifies specific technical challenges to address in the
development of schemes for range search resilient to attacks.

A first direction of followup research is to tighten the bound on
the number of seed databases of the reconstruction. Theorem 4.4
gives a linear bound (in the perimeter of the domain) and we suspect
one could instead prove a logarithmic bound. Another direction
is to relax the assumptions on the amount of leakage available
to the adversary. Our attack requires complete information and
produces an exact reconstruction. It would be interesting to develop
approximate reconstruction attacks from partial information (e.g., a
subset of all the query responses or just their sizes). Finally, devising
attacks for databases of arbitrary dimension is an important open
problem. It is easy to see that our exponential lower bound on the
size of a family of equivalent databases (Theorem 4.3) extends to
higher dimensions. However, additional techniques may be needed
to extend our reconstruction approach to higher dimensions.

9 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable comments
and Evgenios Kornaropoulos for providing insights in early stages
of this work. This work was supported in part by NSF grants CNS
1928767 and CNS 1925288, and by the Kanellakis Fellowship at
Brown University.

Session 2B: Applied Cryptography

REFERENCES

(1]

(2]

3

=

(7]

[12

[13]

[14]

[15]

[16]

[17

(18]

[19

[20]

[21]

[22]

[23

[24]

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.
Order Preserving Encryption for Numeric Data. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2004).
Akshima, David Cash, Francesca Falzon, Adam Rivkin, and Jesse Stern. 2020.
Multidimensional Database Reconstruction from Range Query Access Patterns.
Cryptology ePrint Archive, Report 2020/296. (2020). https://eprint.iacr.org/2020/
296.

Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly
Shmatikov. 2018. The Tao of Inference in Privacy-Protected Databases. Proc.
VLDB Endow. 11, 11 (July 2018), 1715-1728.

Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.
Order-Preserving Symmetric Encryption. In Advances in Cryptology - EURO-
CRYPT 2009.

Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-
Preserving Encryption Revisited: Improved Security Analysis and Alternative
Solutions. In Advances in Cryptology — CRYPTO 2011.

David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic searchable encryption
in very-large databases: data structures and implementation. In 21st Annual
Network and Distributed System Security Symposium 2014 (NDSS 2014).

Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. 2018. New Constructions for Forward and Backward Private
Symmetric Searchable Encryption. In Proc. of ACM Conf. on Computer and Com-
munications Security 2018 (CCS 2018).

Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In Advances in Cryptology — ASIACRYPT 2010.

Ciphercloud. 2020. CipherCloud: Cloud Data Security Company. (2020). http:
/Iwww.ciphercloud.com Accessed on May 3, 2020.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable
Symmetric Encryption: Improved Definitions and Efficient Constructions. Journal
of Computer Security 19, 5 (2011), 895-934.

Toannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. 2020. Dynamic Searchable Encryption with Small Client
Storage. In 27th Annual Network and Distributed System Security Symposium 2020
(NDSS 2020).

Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases via
Adjustable Leakage. In 29th USENIX Security Symposium (USENIX Security 20).
F. Betiil Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is
Revealed by Order-Revealing Encryption?. In Proc. ACM Conf. on Computer and
Communications Security 2016 (CCS 2016).

Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin
Rosu, and Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact
Matches. In 20th European Symposium on Research in Computer Security 2015
(ESORICS 2015).

B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay,
J. D. Mitchell, and R. K. Cunningham. 2017. SoK: Cryptographically Protected
Database Search. In Proc. IEEE Symposium on Security and Privacy 2017 (S&P
2017).

Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.
TWORAM: Efficient Oblivious RAM in Two Rounds with Applications to Search-
able Encryption. In Advances in Cryptology - CRYPTO 2016.

Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,
Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency Smoothing
for Encrypted Data Stores. In 29th USENIX Security Symposium (USENIX Security
20).

P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. 2019. Learning to
Reconstruct: Statistical Learning Theory and Encrypted Database Attacks. In
Proc. IEEE Symp. on Security and Privacy 2019 (S&P 2019).

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
2018. Pump Up the Volume: Practical Database Reconstruction from Volume
Leakage on Range Queries. In Proc. ACM Conf. on Computer and Communications
Security 2018 (CCS 2018).

P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. 2017.
Leakage-Abuse Attacks against Order-Revealing Encryption. In Proc. IEEE Symp.
on Security and Privacy 2017 (S&P 2017).

Seny Kamara and Tarik Moataz. 2018. SQL on Structurally-Encrypted Databases.
In Advances in Cryptology — ASTACRYPT 2018.

Seny Kamara, Tarik Moataz, Stan Zdonik, and Zheguang Zhao. 2020. An Optimal
Relational Database Encryption Scheme. Cryptology ePrint Archive, Report
2020/274. (2020). https://eprint.iacr.org/2020/274.

Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic
Attacks on Secure Outsourced Databases. In Proc. ACM Conf. on Computer and
Communications Security 2016 (CCS 2016).

Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2019. Data Recovery on Encrypted Databases With k-Nearest Neighbor Query

455

[25

[26

[27

™~
&,

[29

[30

[34

[35

CCS 20, November 9-13, 2020, Virtual Event, USA

Leakage. In Proc. IEEE Symp. on Security and Privacy 2019 (S&P 2019).

Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the
Uniform Query Distribution. In Proc. IEEE Symp.on Security and Privacy 2020
(S&P 2020).

Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved
reconstruction attacks on encrypted data using range query leakage. In Proc.
IEEE Symp. on Security and Privacy 2018 (S&P 2018).

Evangelia Anna Markatou and Roberto Tamassia. 2019. Full Database Reconstruc-
tion with Access and Search Pattern Leakage. In Proc. Int. Conf on Information
Security 2019 (ISC 2019).

Evangelia Anna Markatou and Roberto Tamassia. 2019. Mitigation Techniques
for Attacks on 1-Dimensional Databases that Support Range Queries. In Proc. Int.
Conf on Information Security 2019 (ISC 2019).

Evangelia Anna Markatou and Roberto Tamassia. 2020. Database Reconstruction
Attacks in Two Dimensions. Cryptology ePrint Archive, Report 2020/284. (2020).
https://eprint.iacr.org/2020/284.

Charalampos Mavroforakis, Nathan Chenette, Adam O’Neill, George Kollios,
and Ran Canetti. 2015. Modular Order-Preserving Encryption, Revisited. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2015).

Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference
Attacks on Property-Preserving Encrypted Databases. In Proc. ACM Conf. on
Computer and Communications Security 2015 (CCS 2015).
Skyhigh Networks. 2020. Skyhigh Networks. (2020).
skyhighnetworks.com accessed on May 3, 2020.

Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran
Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna
Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.
In 12th USENIX Symposium on Operating Systems Design and Implementation 2016
(OSDI 2016).

Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted
Database using Semantically Secure Encryption. Proc. VLDB Endow. 12, 11 (August
2019), 1664-1678.

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. CryptDB: Protecting Confidentiality with Encrypted Query Processing.
In Proc. of the Twenty-Third ACM Symposium on Operating Systems Principles
2011 (SOSP °11).

Malte Spitz. 2011. CRAWDAD dataset spitz/cellular (v. 2011-05-04). Downloaded
from https://crawdad.org/spitz/cellular/20110504. (May 2011).

Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. 2014. Maple:
Scalable Multi-Dimensional Range Search over Encrypted Cloud Data with Tree-
Based Index. In Proc. of the 9th ACM Symposium on Information, Computer and
Communications Security (ASIA CCS ’14).

https://www.

https://eprint.iacr.org/2020/296
https://eprint.iacr.org/2020/296
http://www.ciphercloud.com
http://www.ciphercloud.com
https://eprint.iacr.org/2020/274
https://eprint.iacr.org/2020/284
https://www.skyhighnetworks.com
https://www.skyhighnetworks.com

Session 2B: Applied Cryptography

A PSEUDOCODE
A.1 Pseudocode of Algorithm 4

Algorithm 4: Solve(Segmentations, RM(D))

1: Initialize lists Extremes, and Solutions
2: Initialize hashmap Rho
3: for H € PosConfigs do
4: LetID; = H[left] and ID; = H|[right]
5. for all record ID € D do
6 Let m be the number of responses in RM (D) containing ID
7: Let m; be the number of responses in RM (D) containing ID;, ID
8 Let m; be the number of responses in RM (D) containing ID,, ID
9 Let Rho[ID] = m, Rho[(ID4,ID)] = my, Rho[(ID3,ID)] = ms.
10:
11: // First, find all possible solutions for extreme points.
12: for all ((ID1,IDy), (S1,S2,S3)) € Segmentations do
13: Initialize list L.
14: for left, =1,..., Ny do
15: Compute solutions left], left] of Eq. 7, B = left;, & = Rho[ID;].
16: if left] € O then add (left,, left]) to L.
17: if left] € D then add (left, left]) to L.
18: for left; =1,...,N; do
19: Compute solutions lefty, lefty of Eq. 8, y = left;, @ = Rho[ID;].
20: if left; € O then add (lefty, left;) to L.
21: if left] € D then add (left;, left;) to L.
22: for all left € L do
23: Compute solutions right’ and right” using System (11) with
a = Rho[ID;], f = Rho[(ID;,ID2)], and v = left.
24: if right’ € D then add ((ID1,1Dy), (left, right’), (S1, S2, S3)) to
Extremes.
25: if right” € D then add ((ID1,IDy), (left, right”), (51, S2, S3)) to
Extremes.
26:
27: // Now find at most two solutions for all other points.
28: for all ((ID1,IDy), (left, right), (S1, S2, S3)) € Extremes do
29: Initialize hashmap H.
30: foralllD € S; do
31: Compute solution ans to System (13) with f = Rho[(ID4,ID)],
vy = Rho[(ID2,ID)], v = left, w = right.
32: if ans ¢ D then go to line 28.
33: else Let H[ID;] = {ans}.
34: forallID € S, do
35: Compute solutions ans, ans’ using System (11) with & = Rho[ID],
f = Rho[(IDy,ID)], and v = left.
36: if ans € D then Let H[ID] = {ans}.
37: if ans’ € D then Let H[ID] = H[ID] U {ans’}.
38: if (ans, ans’) ¢ D? then go to line 28.
39: forallID € S; do
40: Compute solution ans to System (14) with § = Rho[(ID4,1D)],
vy = Rho[(IDg,ID)], v = left, w = right.
41: if ans ¢ O then go to line 28.
42: Let H[ID] = {ans}.
43: Add H to Solutions.
44: return Solutions.

456

CCS 20, November 9-13, 2020, Virtual Event, USA

A.2 Pseudocode of Algorithm 5

Algorithm 5: Partition(D)

. Partition = [] { list of components of database D }

: Projections = [] { list of projections of points on main diagonal }

: Let M be an empty hashmap { maps projections to IDs }

: forall ID € D do

p=DI[ID]

Add low(p) and high(p) to Projections

Add ID to M[low(p)]; Add ID to M[high(p)]

: Component = () { set of IDs of points of current component }

: SeenOnce = 0 { set of IDs of points of current component for which
only one projection has been seen }

10: Sort list Projections by ascending order.

11: for all p € Projections do

12: Order the items ID € M[p] as follows:

13: first, all ID such that high(ID) = p # low(ID),;

14: next, all ID such that high(ID) = p = low(ID);

15: finally, all ID such that high(ID) # p = low(ID);

16: within each group, order by ID value.

17: for all ID € M[p] do

18: if ID € SeenOnce then

T B AR SL I N oI SR

19: Remove ID from SeenOnce

20: if SeenOnce = 0 then

21: if Component contains a nonreflectable point or a single
diagonal point then

22: refl = false

23: else

24: refl = true

25: Add (Component, refl) to Partition

26: Set Component = 0

27: else

28: Add ID to SeenOnce and to Component

29: return Partition

B PROOFS
B.1 Proof of Lemma 4.1

Proor. Suppose P; and P, are two distinct partitions of a data-
base into components. Then, their components can be ordered by
domination, going from bottom to top along the diagonal. Let C;
and C be the first components of P; and P, that differ. Thus for
every p € Cy and g not in C; or an earlier component, p and o(p)
are dominated by g. The same holds for C,.

Assume without loss of generality that there is point p € C;
such that p ¢ C,. If C3 is not a subset of Cy, then there is some point
q € Cy and q ¢ C;. Partition P; indicates that p, o(p) < g (since ¢
is not in an earlier component or in C1), and partition P, similarly
indicates that ¢, 0(gq) < p. These imply p = g, a contradiction. If C;
is a strict subset of Cy, then it contradicts the minimality of Cy, as
it is a smaller component contained in C;. Thus C; = Cy, and the
partitions must be the same. O

B.2 Proof of Lemma 4.2

Proor. We give here the proof for the case when D is over a
square domain, i.e., a domain D = [Np] X [N;] such that Ny = Nj.
This case is easier to deal with since the reflection of every point
of D is also in D. The proof for a general domain has a similar
structure but involves additional details.

Session 2B: Applied Cryptography

We show that D and D’ are equivalent by defining a one-to-one
mapping between queries on D and queries on D’ such that queries
mapped to each other have the same response. Namely, given a
query q for D with access response Resp(D, q), we generate a query
q’ for D’ such that Resp(D, q) = Resp(D’, q’).

Let B the union of the components of D preceding C on the
diagonal. Also, let A be the union of the components of D following
C on the diagonal. We have that D’ consists of B followed by C’,
followed by A (see Figure 8). We consider five cases:

(1) Resp(D, q) contains no points in C: We map query q to itself

as D and D’ are identical but for the points in C.

(2) Resp(D, q) contains only points in C: We map query q =
(c,d) to ¢' = (0(c),o(d)). We have that if ¢ < p < d, then
a(c) 2 o(p) < a(d). Thus, Resp(D, q) = Resp(D’, q’).
Resp(D, q) has points in B and C but not in A. We map query
q=(ce) toq = (c,e’), where e’ = o(e) (see Figure 8). Let
range (c, f) be the intersection of ranges (¢, e) and (c,e’).
Also, let ranges (d, e) and (d’, e’) be the remaining parts of
(c,e) and (c, e’), respectively. Since the reflections of the
points of C in (c, f) are also in (¢, f), we have that (c, f)
contains the same points of C and C’. Consider now the
points of C in (d, e). This is the scenario of Case 2 above and
thus we have that these points are the same as the points of
C’ in (d, e”). We conclude that Resp(D, q) = Resp(D’, ¢’).

(4) Resp(D, q) has points in A and C but not in B. This case is

symmetric to Case 3 and can be proved similarly.

(5) Resp(D, q) contains points in A and B. Here, all points of C

and C’ are contained in Resp(D, q). Thus, we map q to itself.
We can similarly show that given a query ¢’ for D’, we can gen-
erate query q for D, such that Resp(D’,q’) = Resp(D,q). Also,
this mapping is the inverse of the previous one. It follows that
RM(D) = RM(D’) and thus D and D’ are equivalent. O

®)

B.3 Proof of Theorem 4.4

Proor. Fix a database D € DR. We start by observing that D
contains a set {left, right, bot, top} of 2 to 4 extreme points that
achieve the minimum and maximum each dimension (see Figure 9).
By reflecting D vertically and/or horizontally (operations which
preserve equivalence), we may assume that right dominates left.

In any database that is equivalent to D, the extreme points must
have the same query densities as in D. One of these four extreme
points must achieve minimal value in the first coordinate. For each
of those choices, by Lemma 3.4, there are 2(Ny + Nj) solutions
for left that appear in an equivalent database. For each of these
solutions, by the first part of Lemma 3.5, there are at most two
solutions for right (using the assumption that left < right). Thus
there are at most O(Np + Np) possible values for left and right in
any equivalent database with left < right.

For each of these possible solutions for left, right, there may or
may not exist a database D’ that has extreme points set to those
solutions and is equivalent to D. If there is none, we discard those
solutions. Otherwise, we take D’ to be any such database and add
it to S. As above, we have assumed that left is dominated by right
inD’.

We now argue that any database D that is (1) equivalent to D
(and hence D’) and (2) has the same left, right as D’, can be obtained

457

CCS 20, November 9-13, 2020, Virtual Event, USA

from D’ by diagonally reflecting components of D’. By Lemma 4.2,
all of the databases obtained in this way will be equivalent to D’,
so this will prove the theorem.

Every point in D lies in the regions Sy, Ss, or S3 depicted in
Figure 10, and moreover must lie in the same region as it does
in D’ (otherwise D is not equivalent). Any point of D in S; or S3
uniquely determined by query densities in D’, by the second part
of Lemma 3.5 (taking v = left, w = right and x as the unknown
point in Sy or S3, and applying the two versions of the second part
to S1 and S3 respectively). Moreover, by the first part of Lemma 3.5,
every point in Sy is determined up to reflection by ¢, and one of
those solutions must be the corresponding point in D’ (this takes
v = left in the lemma).

We next observe that in D, how the points are divided into the
components is the same as in D’, even though the points in Sy
may not be uniquely determined. This is because reflecting any
point of a database by o does not change which points are in which
components.

Finally, we show that D can be obtained by reflecting components
of D’ contained in S;. Fix a component C of D, and order its non-
diagonal points #1, 4y, ..., #; by their low projections onto the
diagonal (the diagonal points automatically match because they
only have one solution). Let uj,. .., ul’C be the corresponding points
of D’. The point u] is reflectable since C is reflectable. We also know
that u{ does not lie on the diagonal, because otherwise u; could
be removed from C to form a smaller component, contradicting
the minimality in the definition of C (further points may however
lie on the diagonal). Since %; was determined up to reflection, it
is either u] or o(u;), which are distinct. If 4 = u{, we claim the
entire component of D matches the component in D’ (i; =
all). Otherwise, we claim that i; = o(u]) for all i.

Now suppose @1 = uj; the case #i; = (u;) is similar. We claim
that 42 = u). The key observation is that, by our ordering of the
points, u; and u; must fall into one of the following relationships:

e u; <ujandu; < o(uj)
< uyand u] <4 o(uy)
<q uy and u] < o(u})
o u; <guyand u; <4 o(uy).
The first case cannot happen, because then u; could be removed
from the component, contradicting minimality. (If 4] dominates
both of these points, then it also dominates ”; a(ul{) for all i).

We next address the second case, and claim that @, must equal
uy in order for D tobe equivalent to D’. (The third case is similar.)
If i were equal to o(uy) instead of, then there would exist a query

ul’ for

o U

1
’
’
° u

over D containing left and iy and not #;. But in D’ all queries
containing left and u; also contain u], so the databases would not
be equivalent.

Finally, in the fourth case, we have u{ <a ué, so by Lemma 3.5
(with w = left,x = u]), u; is uniquely determined, and we must
have @iy = u;, in order for the databases to be equivalent.

This shows that i, = uj. We can continue the argument for the
rest of the ;. In place of u], we find some u} (j < i) that is related
in one of the latter three above ways to u; that u] was related to
ué Such an j must exist, because otherwise we would have that
uj’ < ulf, u; < ul’ for all j < i, and we could remove ul’ and the
subsequent points to form a smaller component. (Note that j might

Session 2B: Applied Cryptography

not be i — 1.) This completes the claim that the component either
matches or is entirely reflected. This argument also shows that non-
reflectable components of D’ must be equal in D. This completes
the proof. O

B.4 Proof of Lemma 5.1

Proor. First we argue that after line 5 the set Edges must con-
tain the extreme points. The second largest query in RM(D) must
exclude at least one extreme point p. Suppose for a contradiction
that p is not extreme, then we could extend the query to include p
which would thus result in a strictly larger query that still doesn’t
contain all records. Now consider the second largest query that
contains p. Once again, the remaining point(s) must be extreme in
another direction. If not, then we could extend that query to include
the non-extreme point, which would result in a strictly larger query
that is not the whole database. Since we repeat this four times, each
time ensuring that the previously recovered extreme points are
included in the second largest query, then we are able to recover
all extreme points (not necessarily a minimal set).

The loop on line 7 then checks if there are any potential corner
points. Note that any set of IDsin L — S; (for i = 1,...,4) added
to Edges must correspond to points with the same value in the
extreme dimension and different values in the other. If there is only
one point in this set, then we must add it to PosExtremes.

Else, we need to locate any possible corners on this edge. For
example, in case (2), we only ever see three edges of the database,
but we still need a point on each of the four edges. In order to do
so with only three edges, we need to locate the corners.

To find potential corners, if there are multiple IDs in this edge
we select the points that only appear in one set in RM(D) that is
of size 2 and restricted to points in that edge. Note that any point
that is a corner must satisfy this condition. At the end of this for
loop, PosExtremes will therefore contain any corner points.

Lastly, we will show that a subset S C [R] is a valid set of ex-
treme point identifiers iff the minimal query that contains those
points must also contain the whole database. Let left, right, bot, top €
D be the set of extreme points (not necessarily unique) that achieve
minimum and maximum values in the first and second coordinates,
respectively. Then for all p € D, we have left, < po < right, and
bot; < p1 < top;. Let ¢ = ((left,, bot1), (right, top;)). Then, by
definition, the query g returns all p € D such that

(lefty, bot1) < p < (right, top;)

i.e. all of D. For the backward direction, suppose that the minimal
query containing left, right, bot, top € D also contains the whole
database. Suppose for a contradiction that one of these points is
not extreme and so there exists, WLOG, p € D be such that

po < min(left,, right, boty, top,).

But that means that (left,, bot1) £ p and hence p cannot be in the
minimal query containing those four points, which is a contradic-
tion. Hence an element of {left,, right,, boto, top,} must achieve
the minimal value along the first coordinate. A similar argument
can be made for the other extremes.

Searching through RS(D) to find the second largest queries in
lines 1 to 5 will take time O(RS(D)). In the worst case, |Edges| = R
and then finding a set satisfying the else statement takes time

458

CCS 20, November 9-13, 2020, Virtual Event, USA

O(|RS(D)|). Thus, the for loop on line 7, takes O(R|RS(D)|) time.
Since PosExtremes only contains points that are singular in an edge
or potential corners, then |PosExtremes| < 8, which implies that the
for loops on lines 12 and 13 exhibit a constant number of iterations.
Checking that L is the only set in RS(D) containing E can be done
with a number of element membership searches linear in |[RS(D)].
Also, checking all possible configurations contributes a constant
factor. Hence, overall Algorithm 1 runs in time O(R|RS(D)|) =
O(min(R?, RN?)) . o

B.5 Proof of Lemma 5.2

Proor. Note that for all p € D, lefty < po < right, and bot; <
p1 < top;. By definition, a query q = (c, d) returns all points p such
that ¢ < p < d. Moreover, the smallest query containing two points
is the query defined by those two points.

Sy is computed to be the smallest set in RM(D) containing left
and right. Query q = (left, right) must return all points p € D such
that left < p < right, which precisely corresponds to all points of
D vertically in between left and right, as desired.

S1 is defined as T — Sy, where T is the smallest set in RS(D)
containing top, left and right. In particular, T contains all points
corresponds to the query g = (left, (right, top;)) i.e. all p € D
such that left < p < (right,, top,). In particular, T = S; U S; and so
S1 = T—S,. Moreover, D = S{US,US3, thus S3 = D-T = D—(Sl USz).
The correctness of the segments follows.

The for loop on line 2 runs through a constant number of itera-
tions, as there is a constant number of possible configurations for
the extreme points. Finding the smallest sets in lines 3 and 4 is linear
in R|RS(D)|. Steps 5 and 6 are linear in the sizes of the sets, which
is O(R). The total runtime is O(R|RS(D)| + R) = O(min(R>, RN?)).

[m}

B.6 Proof of Lemma 5.3

Proor. By Lemma 5.1 we know that Algorithm 1 correctly out-
puts the configurations of the extreme points, PosConfigs. The for
loop on line 3 iterates through each hashmap in PosConfigs, comput-
ing the necessary query densities and storing them in a hashmap
Rho which maps IDs to their corresponding query densities. The
correctness of these values follows from the definition of the query
density equations. For each configuration in PosConfigs, the seg-
ments are then computed and output as Segmentations. In lines 12
to 25, Algorithm 4 iterates through Segmentations and computes
the at most 4(Np + N1) possible values of left and right. The cor-
rectness of this step follows from Lemma 3.4. By Lemma 3.5 we
can then solve each remaining point up to two values. Let D be an
equivalent database to D. Any p € D in Segment Sy, S; or S3, must
be consistent with either Systems (11), (13), or (14), respectively.
Since Algorithm 4 evaluates the possible values for each point in
the database given each pair of extreme points in Segmentations,
then for any equivalent D there exists some H € Solutions such
that for all identifiers ID € [R], we have that D[ID] € H[ID].

Computing the necessary query density functions takes time
O(RN?). The loop on line 12 iterates a constant number of times
and the three nested for loops iterate O(Np + Nj) times. Checking
that some element is in the domain and then adding it to a list takes
time O(1).

Session 2B: Applied Cryptography

The loop starting at line 28 iterates through a list of size O(Ny +
N1). The three inner for loops run through all points in Sy, Sz, and
S3 which is at most R iterations. Initializing a hash map, evaluating
all possible values, checking and then adding an element all take
constant time. Thus, the total runtime of this part of the algorithm
is O(R(Ny + N1)), which yields an overall runtime of O(RN?). O

B.7 Proof of Lemma 5.4

Proor. By Lemma 4.1 we know that database D has a unique
partition. We shall show that Algorithm 5 returns the valid partition
P of the database. A partition P is invalid if any of these statements
holds: (1) P does not contain all points in the database, (2) P con-
tains a component which violates the dominance ordering of the
definition or (3) P contains a non-minimal component.

(1) P must contain all identifiers of D. Each identifier of D will
end up in some component of the partition, when the al-
gorithm eventually processes its projections and adds it to
some component.

Suppose Cp,q is a component which contains some point p,
such that p dominates some point g ¢ Cpaq, but o(p) does
not dominate g. Since q¢ ¢ Cpyy, that means that high(q),
low(q) < high(p), low(p), as the algorithm traverses the
projections in order of dominance and from low to high.
However, that implies that g < o(p), which leads to a con-
tradiction. (The proof is similar for any of the four possible
violations of the dominance order.)
Suppose Cp,g is a non-minimal component. This means that
there exists some subset of points S C Cp,y4, such that all
points p, o(p), where p € S dominate all points g, o(q) such
that ¢ € Cpaq — S. If that is the case then, for all pairs p, q,
where p € S,q € Cpaq — S we have low(q) < high(q) <
low(p) < high(p). In this case, Algorithm 5 would have
traversed through all the projections (low and high) of points
in Cpug — S and created a component for them. Thus, Cp g4
would not have been created.
We conclude that Algorithm 5 returns a valid partition of the data-
base identifiers. Regarding the running time, generating projec-
tions takes O(R) time and sorting them takes either O(RlogR) or
O(min(R + Ny, R + Nj)) time depending on whether merge sort or
bucket sort is used, respectively. The components are then gener-
ated traversing up the diagonal and doing O(1) work per projection.
Thus, Algorithm 5 takes O(min(RlogR, R + Ny, R + Np)) time.

]

@

®)

B.8 Proof of Theorem 5.5

Proor. Line 35 of Algorithm 3 makes sure that we only return
databases that are equivalent to D. It remains to show that we
return all equivalent databases.

We know from Theorem 4.4 that there are at most O(Ny + Ny)
database families in E(D), each originating from the possible con-
figurations/locations of the extreme points of the database. Each
family of databases can be produced using any of its members by
reflecting all subsets of reflectable components and then applying
the rigid motions of the square.

459

CCS 20, November 9-13, 2020, Virtual Event, USA

Thus, we need to show that (1) we find all possible families, (2)
we identify all reflectable components of that family, and (3) we
produce a database that belongs in each family.

(1) By Lemma 5.1 we can identify the extreme points and all
their possible configurations. Lemmas 3.4 and 3.5 imply that
we can identify at most 4(Np + N7) solutions for the relevant
extreme points of each configuration. Since there are 2, 3,
or 4 extreme points, there is a constant number of possible
configurations for them. Thus, we can identify O(Np + Np)
database families.

Given the solutions for two extreme points, by Lemma 5.3
and Lemma 3.5 we can identify one or two solutions per
identifier. Then, by Lemma 5.4 we can identify all reflectable
(and non-reflectable) components. Note that the components
remain the same even after applying the rigid motions of
the square on a database.
It remains to show that we can produce a database that
belongs to the above family. We know one to two solutions
per point and its partition. Each component of the partition
has one to two configurations. We shall show that if we fix
one (non-diagonal) point in the component, it reduces all
other points’ possible locations to one.
Each point uniquely belongs some component C. For each
point p € C, there exists some point p’ such that the boxes
created by (low(p), high(p)) and (low(p’), high(p’)) inter-
sect. Thus, we can walk up the diagonal on the points’ pro-
jections, and create a graph G, with nodes the (non-diagonal)
points and an edge between two points whose projection
boxes intersect.
We show that if a point r has one possible location, it reduces
each of its neighbors u in G to one possible location consis-
tent with the leakage. Let m be the number of different sets
in RM(D) that contain both u and r. We have two cases:
(a) The boxes intersect : As an example from Figure 12, see u
and r. WLOG, say that u dominates r, and r anti-dominates

o(u). (The proof follows similarly when swapping r and

u.) So, low(r) < low(u) < high(r) < high(u).

We have that m = ro(Np +1—ug)r; (N1 +1—uq1). We write

down the relevant p equations, and show that at least one

of them is not equal to m, allowing us to trim down the
invalid solution.

pur =710(No +1—ug)ri (N1 +1—uy)
Po(u),r = ro(No+1— u(’))u{ (N1+1-r1)

No+1

Suppose pur = Po(u),r thenug = ry N Thus, u] =
uo %(1):} = ry. This means that both u and o(u) dominate

r. Thus, the boxes could not intersect, and pyr # pg(u),r-
(b) Point r’s box contains the other: As an example from Fig-
ure 12, u could be the green point, while r is the blue.
WLOG, say that r anti-dominates both u and o(u). (The
proof follows similarly in case u dominates r and o(r).)
So, (low(r) < low(u) < high(u) < high(r). Again, m =
ro(No—uo)u1 (N1—r1). We can write down the p equations

pur =ro(No+1—ug)ur (N1 +1-r1)
Po(u),r =To(No+1— ug)u; (N1 +1—rp)

Session 2B: Applied Cryptography

. Ni+1
Setting pur = pPg(u),r» We get that up = uo g7

That
means that u is on the diagonal. This is a contradiction as
graph G contains no points on the diagonal.

Thus, given one fixed point, we can traverse G and determine
the location of every other point. Doing so for all components
gives us the family of databases.

First, Algorithm 3 needs to preprocess the leakage, which takes

O(RN?) time. Algorithm 3 runs Algorithms 1, 2 and 4. This takes

O(RN? +min(R>, RN?)) = O(RN?). Then, for each database family,

we run Algorithm 5 which takes O(min(RlogR, R + Ny, R + N1))

time. We then generate and traverse G, which takes O(R log R) time.

Note that on each step of the traversal, we need to calculate a query
density function. But we could preprocess those in O(RN?). Note
that it suffices to calculate only two query density functions per
record. Finally, for each candidate family of databases, we generate
a member D’ and check if its response set matches RM(D). It takes
O(RN?) for each family to calculate and check the response set and
there are at most O(Ny + Njp) such families.

Thus, by Lemmas 5.1, 5.2, 5.3, and 5.4, we have that Algorithm 3
achieves FDR and runs in time O(RN? + (Ny + N7) (min(Rlog R, R+

No, R+Np) +Rlog R+RN?)), which is O((No+N;) (RN?+Rlog R)).

]

C SUPPLEMENTARY CONTENT FOR
EXPERIMENTS

Each year of HCUP data contains a sample of inpatient medical
records in the United States. 2004, 2008, and 2009 include data from
1004, 1056, and 1050 hospitals and 8004571, 8158381, and 7810762
records respectively. The NIS is the largest longitudinal hospital
care collection in the United States and contains many attributes
for each record. We only use a small subset of attributes which
were used by prior works and come from the Core data file for our
analysis. Like KKNO, we divide the age domain into two attributes
for minors and adults.

460

CCS 20, November 9-13, 2020, Virtual Event, USA

While the Agency for Healthcare Research and Quality (AHRQ)
provides hospitals with a format and domain for each attribute,
many hospitals do not follow the AHRQ guidelines in practice. We
use the AHRQ formats for our domain sizes and omit data which
do not lie within the domain. We attempt to choose attributes
with a variety of data distributions. Also, we avoid pairs of at-
tributes which do not logically make sense to compare (e.g. AGE
by AGE_BELOW_18). HCUP attributes are described in Table 5.

Attributes Description D 2004 | D 2008 | D 2009
AGE Age in years 91 91 91
AGEDAY Age in days 365 365 365
AGE<18 Age < 18 18 18 18
AGE>18 Age > 18 73 73 73
LOS Length of stay 366 365 365
AMONTH Admission month 12 12 12
NCH # chronic conditions N/A 16 26
NDX # diagnoses 16 16 26
NPR # procedures 16 16 26
ZIPINC Zip code income quartile 4 4 4

Table 5: HCUP attributes

Chicago was re-districted in 2012, so we only use the 22 districts
from years after 2012. The minimum number of crimes in a district
across all years was 4162 and the maximum was 22434. The Spitz
data contain locations with beginning dates from 166 different
days between 8/31/2009 and 2/21/2010. Therefore, we use seven
years of Chicago crime data with 22 districts and 7 domains and
166 days of Spitz, leading to a total of 1244 location datasets. The
minimum number of phone record locations for a day was 18 and
the maximum was 502.

We scale Chicago longitudes to be proportional to the ratio of
longitude to latitude in that district to better represent the geomet-
ric shapes of the districts. For a chosen latitude domain Nj, the
minimum longitude domain for a district was typically around %
and the maximum around 3.6Nj.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Prior and related work

	2 Preliminaries
	3 Technical Tools and Overview
	3.1 Query Densities
	3.2 Technical Overview

	4 Classifying Equivalent Databases
	5 Full Database Reconstruction
	5.1 Overview of the attack
	5.2 Preprocessing
	5.3 Get extremes
	5.4 Segment the database
	5.5 Find candidate locations
	5.6 Partition a database into components
	5.7 Prune the candidate reconstructions

	6 Experimental Evaluation
	7 Automatically Finding D in E(D)
	8 Conclusion and Future Work
	9 Acknowledgements
	References
	A Pseudocode
	A.1 Pseudocode of Algorithm 4
	A.2 Pseudocode of Algorithm 5

	B Proofs
	B.1 Proof of Lemma 4.1
	B.2 Proof of Lemma 4.2
	B.3 Proof of Theorem 4.4
	B.4 Proof of Lemma 5.1
	B.5 Proof of Lemma 5.2
	B.6 Proof of Lemma 5.3
	B.7 Proof of Lemma 5.4
	B.8 Proof of Theorem 5.5

	C Supplementary Content for Experiments

