
QChASM: Quantum Chemistry Automation and

Structure Manipulation

Victoria M. Ingman, Anthony J. Schaefer, Laura R. Andreola,
and Steven E. Wheeler ∗

Article Type:

Software Focus

Abstract

As the tools of computational quantum chemistry have continued to mature, larger and more
complex molecular systems have become amenable to computational study. However, studies
of these complex systems often require the execution of enormous numbers of computations,
which can be a tedious and error-prone process if done manually. We have developed a suite
of free, open-source tools to facilitate the automation of quantum chemistry workflows. These
tools are collected under the organization QChASM (Quantum Chemistry Automation and
Structure Manipulation) and include functionality for building and manipulating complex
molecular structures and performing routine tasks (AaronTools), a toolkit for automating TS
optimizations and predictions of the outcomes of selective homogeneous catalytic reactions,
and a plug-in for UCSF ChimeraX that provides a graphical interface for building complex
molecular structures and representing output from quantum chemistry computations. These
tools are described below, with a focus on the recent Python implementation of AaronTools.

∗Department of Chemistry, University of Georgia, Athens, GA 30602; swheele2@uga.edu

1

GRAPHICAL TABLE OF CONTENTS

Quantum
emistryCh

utomation andA

tructureS

anipulationM

Caption: QChASM is a collection of free, open-source tools for building and manipulating

complex molecular structures and automating quantum chemistry applications.

INTRODUCTION

A growing challenge in modern applications of computational quantum chemistry is man-

aging the sheer number of computations that must be performed when tackling complex

molecular systems. This problem is particularly severe in the realm of homogeneous catal-

ysis, in which the reliable prediction of catalyst activity and selectivity often requires the

optimization of hundreds of transition state (TS) structures.[1, 2, 3] Studies of potential new

catalysts are often limited to only a few examples of a given reaction because finding so

many TS structures for just one system requires a lot of time, and expanding the search to

more variations of a given reaction is not always feasible within time constraints.

To address this and other challenges, we are developing a set of free, open source tools for

structure manipulation and automation, collected under the organization QChASM (Quan-

tum Chemistry Automation and Structure Manipulation, see Figure 1). QChASM currently

comprises three main packages: AaronTools, AARON, and SEQCROW. AaronTools is a col-

lection of tools (available as Perl modules or as a Python package) for building, measuring,

manipulating, and comparing molecular structures; constructing input and parsing output

files; submitting and monitoring jobs in high-performance computing environments; and an-

alyzing data. AARON is a computational toolkit, written using AaronTools, to automate the

geometry optimization of the many TS structures and energy minima required to predict the

activity and selectivity of homogeneous catalytic reactions. Finally, SEQCROW is a plug-in

2

for UCSF ChimeraX[4] that adds tools to build and modify complex molecular structures,

map new catalysts and ligands onto previously-computed structures, manage AaronTools

libraries, construct input files for quantum chemistry packages, and run and manage jobs.

Quantum
emistryCh

utomation andA

tructureS

anipulationM

Toolkit for:
• Automated optimizations
of TS structures for
predicting selectivities
of homogeneous catalytic
reactions

AARON

Graphical interface for:
• building and manipulating
molecular structures
• Representing molecular
structures and output from
QM computations

SEQCROW

AaronTools

Perl and Python library for:
• building and manipulating
molecular structures;
• constructing input files
and parsing output files;
• submitting and monitoring
jobs

Figure 1: Main components of QChASM

These tools, described below, together facilitate the automation of quantum chemistry

applications to complex molecular systems. Because AARON has been described recently[5]

and a separate publication on SEQCROW is in preparation, we focus primarily on Aaron-

Tools, particularly the recent Python implementation. Our goal is to show that with these

tools, users will be able to tackle more challenging problems by spending their time thinking

about molecules instead of frittering away the hours building molecular structures, generat-

ing input files, submitting jobs, and parsing output files.

AARONTOOLS

In many quantum chemistry applications, a model system is used as a common framework

to construct coordinates of many new molecules. For instance, you might consider a series of

3

substituted analogs of a given molecule or need to optimize structures for different substrates

or catalysts along the same reaction pathway. Typically, coordinates for such structures are

generated using any of a number of available graphical molecular builders; however, this

requires the user to make changes file by file, which is time consuming and can lead to

mistakes, inconsistencies in atom numbering, etc. To avoid these mistakes, we have made

central to AaronTools utilities to streamline the generation of complex molecular structures

from either a simple script or the command line. These tools enable the generation of

structures quickly and methodically, and are concise and flexible enough to be incorporated in

workflows in many types of quantum chemistry applications, not limited to catalysis. There

are two primary ways to use AaronTools, through either a series of stand-alone command-line

scripts or the underlying Perl or Python objects.

Command Line Scripts

The AaronTools command line scripts provide basic functionality for structure measurement,

manipulation, and comparison, as well as tools for output parsing and analysis. Most of these

scripts provide a single specific function, such as modifying a distance, angle, or dihedral

angle, adding or changing a substituent, or extracting thermochemical information from an

output file. Internally, all structure manipulations are performed in Cartesian coordinates.

Each command provides basic usage documentation and command line conveniences (e.g.

file name globbing, pipes, and output redirection) are supported. In many cases, a simple

shell script can be used to string together individual command line scripts to build up an

automated workflow. A few examples are provided here (additional examples and usage help

can be found on the AaronTools GitHub Wiki; see Additional Reading, below). While the

Perl and Python AaronTools provide command line scripts with similar functionality, below

we demonstrate the Python-based scripts.

A simple example using an AaronTools command line script is measuring a particular

dihedral angle from a set of structures using the dihedral command with the --measure

argument. For instance, the following will determine the dihedral angle defined by atoms 1,

2, 3, and 4 for each XYZ file in the current directory and print the value of the corresponding

angle:

4

dihedral.py --measure 1 2 3 4 *.xyz

This and other command line scripts can also take output files from Gaussian,[6] Psi4,[7] or

ORCA,[8] from which they will automatically extract the last set of molecular coordinates

(e.g. from a geometry optimization).

A slightly more complex example uses dihedral to generate structures for a torsional

scan. The --set argument accepts the four atoms defining the dihedral angle followed by

the desired angle. Alternatively, the --change argument can be used to alter the selected

torsional angle by the specified amount. We note that currently, dihedral can not change a

dihedral angle involving four atoms within a ring and does not automatically resolve steric

clashes or close contants that occur as the result of a change in dihedral angle. Combined

with a simple for loop, the structures for each point along a torsional scan can be created

and saved using the --output argument. For example, the following bash loop uses the

coordinates from original.xyz to generate 35 new structures (each saved as a new XYZ

file) by rotating the dihedral angle defined by atoms 1, 2, 3 and 4, in 10◦ increments:

for d in $(seq 0 10 350); do

dihedral.py original.xyz --set 1 2 3 4 "$d" --output "rotated $d.xyz"

done

Structures or components of structures can be translated using the translate command

or rotated around any specified bond or axis using the rotate command. This includes sim-

ple rotations around the Cartesian axes as well as axes defined between centroids of groups

of atoms or perpendicular to sets of atoms. For instance, Figure 2a shows the rotation of

one component (atoms 20-34) of the stacked dimer in dimer.xyz by 60◦ around the axis

perpendicular to the plane defined by atoms 20-30:

rotate.py dimer.xyz --targets 20-34 --perpendicular 20-30 --angle 60

5

11

13
25

c)

substitute

Ir_TS.xyz

a)

rotate

b)

TRIP_TS.xyz

dimer.xyz

simple_TS.xyz

d)

mapLigand

23

24

Figure 2: a) Dimer of 3-methylindole and 3,9-dihydro-purine-2,6-dione from Ref [9] before
and after rotation of 3,9-dihydro-purine-2,6-dione by 60◦ around the vector normal to the ring
plane; b) TS for a stereoselective epoxide ring opening catalyzed by the chiral phosphoric acid
TRIP, from Ref [10], highlighting the six iPr and one OMe that will be rotated by makeConf

(selected hydrogen atoms removed for clarity); c) TS for an Ir-catalyzed CH activation
reaction before and after substitution of atoms 11 and 13 with Me groups and replacement
of the Me group at atom 25 with a Ph ring using substitute; d) Use of mapLigand to
replace a model ZDMP ligand with (S)-BINAP in a TS structure for a Noyori asymmetric
hydrogenation of acetaldehyde.

A common task encountered in quantum chemistry applications is the generation of ro-

tamers of substituents (e.g. iPr, OMe, etc). In systems with multiple rotatable groups, the

number of potential conformations can be astronomical. The makeConf command automat-

6

ically generates new conformers of a given structure by rotating all or selected substituents.

AaronTools contains a library of common substituents along with information about the

number of unique rotamers and the angles separating these rotamers. For example, in the

AaronTools library a Ph substituent can exist as two rotamers, separated by 90◦. Users

can easily augment this library with their own, custom library, or override the number of

rotamers considered for built-in substituents. makeConf uses this information to build ro-

tameric structures. For instance, provided the TS structure shown in Figure 2b, makeConf

will, by default, generate 2916 rotamers by considering three rotamers each of the six iPr

groups and two rotamers of the OMe and OH groups. In this case, we would not need to

consider rotations of the OH group, because we are confident that the OH—O hydrogen

bond will be maintained in all low-lying TS structures. As such, we could use makeConf

to automatically generate the 1458 rotamers by considering rotations of only the iPr and

OMe groups, requesting that the generated conformers be written as separate XYZ files in

a directory called Conformers:

makeConf.py TRIP TS.xyz --substituent OMe iPr --output Conformers

Alternatively, specific iPr substituents could be rotated as identified by atom numbers. The

structures generated by makeConf.py could then be optimized at a chosen level of theory

to identify accessible TS structures, for example. Often, conformers generated by makeConf

will exhibit steric clashes. Options allow for severe steric clashes to be automatically resolved

or for such structures to simply not be printed.

The substitute command provides a flexible means of replacing any monovalent atom

or substituent with a substituent from the built-in or user-defined libraries. To demonstrate

this, Figure 2c shows the replacement of hydrogens 11 and 13 with methyl groups and the

methyl group at atom 25 with a Ph ring in a TS structure for an Ir-catalyzed CH activation

reaction via:

substitute.py Ir TS.xyz -s 11,13=Me 25=Ph --minimize

7

With the --minimize argument, substitute will rotate the added substituents to minimize

the Lennard-Jones energy, ensuring that new substituents are added in relatively low-energy

orientations.

Additionally, rmsdAlign can be used to align two structures, minimizing the root mean

squared deviation (RMSD) between the atom positions. This includes an efficient canonical-

ization scheme (triggered by the option --sort) that will automatically sort atoms within

each structure to account for changes in numbering or degenerate rotations of substituents.

For example, the following will calculate the RMSD between all XYZ files in a directory and

a reference structure (ref.xyz), printing the results as comma-separated values:

rmsdAlign.py align/*.xyz --reference ref.xyz --sort -csv --output results.csv

AaronTools contains a library of nearly 100 achiral and chiral ligands as well as common

organocatalysts. As with the substituent library, users can easily add their own custom

ligand library. The mapLigand command provides an efficient means of replacing specified

ligand(s) or catalyst(s) with other ones from either the built-in or individual user library.

One could use mapLigand to take previously computed structures along a reaction pathway

and replace the catalyst with another across each structure. The resulting geometries can

then be optimized at the chosen level of theory to quickly explore reaction mechanisms for

variations of a given reaction. As an example, Figure 2d shows the use of mapLigand to

replace a simple bidentate ligand (ZDMP, bound to the metal through atoms 23 and 24)

with the chiral ligand (S)-BINAP in a TS structure for a Noyori asymmetric hydrogenation

of acetaldehyde:[11]

mapLigand.py simple TS.xyz --ligand 23,24=S-BINAP

AaronTools can also extract thermochemical information from Gaussian (G09 or G16),

ORCA, or Psi4 output files while also computing Grimme’s quasi-RRHO[12] free energies.

Options enable the user to automatically combine higher-level single point energies with

thermochemical corrections computed at lower levels of theory, recalculate thermochemical

8

corrections at a different temperature, and recursively search directories for output files. For

example, the following extracts the energy from a set of single point jobs and combines these

with enthalpy, RRHO free energy, and quasi-RRHO free energy corrections based on data

extracted from the corresponding frequency jobs. The resulting data is printed to a csv file,

along with warnings for any cases in which the single point and frequency jobs appear to

use different geometries.

grabThermo.py --recursive *freq.log -sp *sp.log -csv --output thermo.csv

Finally, the commands makeInput.py and submitJob.py allow for the creation of Gaus-

sian, Psi4, and Orca input files from the command line and submission to common queueing

systems, respectively. For the creation of input files, level of theory and options are spec-

ified on the command line. Command line options also allow for the specification of bond

constraints, DFT integration grids, etc., allowing the user to build sophisticated input files

for these three computational chemistry packages all from the command line. Another

command, fetchMolecule.py can generate initial molecular coordinates from SMILES or

IUPAC names. As with all AaronTools command line scripts, output from one script can

be read as STDIN for another, which makes it possible to fetch coordinates and place these

directly into an input file. For instance, the following will build an Orca input file for the

geometry optimization the structure of 1,3,5-trinitrotoluene at the B3LYP/def2TZVP level

of theory:

fetchMolecule.py --iupac "1,3,5-trinitrotoluene" | makeInput.py --method b3lyp

--basis def2tzvp --optimize --output-format orca

The resulting input file could subsequently be submitted using submitJob.py.

Command line scripts are also available to measure or change inter-atomic distances

and bond angles, change the element of a given atom (e.g. convert a C to an N, including

automatic adjustment of hydrogen atoms to satisfy valency), change the chirality of a chiral

center, calculate Sterimol parameters,[13] and follow imaginary vibrational modes, among

9

others. These scripts provide command line access to common tasks encountered in quantum

chemistry applications, allowing users to streamline and automate large portions of their

workflows.

Scripting with Perl and Python

While the combination of AaronTools command line scripts enable the construction of au-

tomated workflows, more complex tools can be developed by directly using the objects

implemented in the AaronTools modules (e.g. AARON and SEQCROW; see below). Some

features of the Perl-based AaronTools have been described previously;[5] here, we provide a

complementary description of the new Python AaronTools package.

The Atom class

Unlike the Perl version of AaronTools,[5] which uses indexed arrays within a Geometry

object to keep track of atom information, the Python package introduces a new Atom class.

Each Atom object contains all information associated with an individual atom, including

the element and its coordinates as well as connections to other atoms, associated Lennard-

Jones parameters, and tags useful for filtering and sorting. This data structure allows for

more graceful and powerful interactions with molecular structures. For example, a molecular

graph can be easily obtained by following the Atom.connections attributes throughout the

structure. Additionally, the Atom.tags attribute allows AaronTools processes, as well as the

programmer, to quickly identify structural components. Finally, extensibility is facilitated

since sub-classes can be built on top of the Atom class without needing to redefine large swaths

of code to use them. For instance, the Atom class was recently extended for use in parsing

output files and writing input files for ONIOM computations,[14] which requires additional

information to properly delineate regions of molecules that will be treated at different levels

of theory.

10

The Geometry class

The most general way of interacting with a molecular structure is by using a Geometry object.

Atoms and their coordinates are read from a number of common file formats, including XYZ

files, Gaussian input and output files, and output files from Psi4[7] and ORCA[8] or from the

AaronTools libraries. Atom connectivity is automatically determined. Utilities are available

to transform or analyze the molecular structure or to prepare it for a workflow. For instance,

one can perform substitutions, locate substituents by either name (e.g. Me, Ph, and iPr)

or the atoms to which they are connected, determine the shortest path between specified

atoms, identify molecular fragments, etc. After the desired changes are made, the Geometry

object can be written to either an XYZ file or a Gaussian, ORCA, or Psi4 input file (see

Managing Jobs, below).

The following illustrates the use of a Geometry object to add substituents by reading the

coordinates of benzene and replacing atom 7 with a methyl group and atoms 8, 9, and 12

with NO2 groups to generate TNT:

geom = Geometry(’benzene.xyz’)

geom.substitute(’Me’, ’7’)

o and p positions = geom.find(’8,9,12’)

for position in o and p positions:

geom.substitute(’NO2’, position)

geom.write(outfile=’tnt.xyz’)

The above example used find to locate atoms by atom number, which obviously requires

the programmer to know the atom numbering in the file benzene.xyz. However, find of-

fers far more flexibility, allowing the programmer to locate atoms based on combinations

of attributes including the element, the number and identity of bonded neighbors, and the

distance from a given atom either spatially or connectively. As an example, the following

will perform the same transformation of benzene to TNT, but without any prior knowledge

of the atom ordering by first finding any hydrogen atom (h1), then locating the hydrogens

11

that are three and five bonds away (the o- and p-hydrogens). The former is then substituted

with Me and the latter with nitro groups.

geom = Geometry(’benzene.xyz’)

h1 = geom.find(’H’)[0]

o and p positions = geom.find([BondsFrom(h1, 3), BondsFrom(h1, 5)], ’H’)

geom.substitute(’Me’, h1)

for position in o and p positions:

geom.substitute(’NO2’, position)

geom.write(outfile=’tnt.xyz’)

Additionally, substituents can be detected and identified by name. For example, the

following reads the geometry of TNT (tnt.xyz), detects all attached substituents, and then

removes the methyl group using remove fragment to leave 1,3,5-trinitrobenzene:

geom = Geometry(’tnt.xyz’)

geom.detect substituents()

for sub in geom.substituents:

if sub.name == ’Me’:

methyl carbon = geom.find(’Me’, ’C’)

geom.remove fragment(methyl carbon, sub.end)

geom.write(’trinitrobenzene.xyz’)

In this example, remove fragment requires the first and last atom of a fragment, so we

use sub.end to request the last atom within the substituent.

Another feature of Geometry is the ability to add fused rings to structures. For exam-

ple, one can convert benzene to naphthalene by first locating any hydrogen, then finding a

second hydrogen three bonds away, and finally using ring substitute to replace these two

hydrogens with a new benzene ring:

12

geom = Geometry(’benzene.xyz’)

h1 = geom.find(’H’)[0]

h2 = geom.find(BondsFrom(h1, 3), ’H’)[0]

geom.ring substitute([h1, h2], ’benzene’)

geom.write(outfile=’naphthalene.xyz’)

More complicated transformations can be achieved using combinations of find, substitute,

and ring substitute, all without knowledge of atom ordering.

Finally, the Geometry class provides the function map ligand that allows the program-

mer to replace any specified ligand(s) with another ligand with the same total denticity. For

instance, one can replace a bidentate ligand with another bidentate ligand, or a combination

of a bidentate and monodentate ligand with a tridentate ligand. As an example, the following

reads the coordinates of a TS structure for the enantioselective Markovnikov hydroboration

of an alkene from TS.xyz,[15] locates the two phosphorus atoms of the original ligand using

find, and then replaces this ligand with (S,S)-Me-DuPhos using map ligand (see Figure 3):

oldcat = Geometry(’TS.xyz’)

Ps = oldcat.find(’P’)

oldcat.map ligand(’SS-Me-DuPhos’, Ps)

In more complex cases (e.g. systems with additional P atoms or multiple ligands), one

could locate the correct ligand atoms through the use of more refined attributes, as dis-

cussed above.

TS.xyz

map_ligand

Figure 3: Use of the function map ligand to replace the ligand in a TS for an enantioselective
Markovnikov hydroboration (from Ref. [16]) of a terminal alkene with (S,S)-Me-DuPhos

13

The Geometry class provides many other functions, including computing Lennard-Jones

energies, aligning structures for evaluating RMSDs, measuring and changing bond distances,

angles, and dihedral angles, comparing connectivities between structures, canonicalizing

atom ordering, identifying the shortest path between atoms, and performing substitutions,

rotations, translations, etc. Information on these is readily available on the command line

through pydoc.

Managing Jobs

Finally, AaronTools provides functions to create input files for Gaussian, ORCA, and Psi4

and to submit and monitor jobs using popular queuing software (Slurm, Torque/MOAB,

LSF, and SGE). Combined with the structure manipulation capabilities described above,

these functions enable the development of complex toolkits and automated workflows. For

this purpose, a Theory class provides an intuitive means of setting the level of theory as well

as job type (optimization, vibrational frequencies, etc), charge and multiplicity, and other

job-specific options (number of processors, integration grids for DFT computations, etc).

A Theory object can contain a BasisSet object to facilitate specification of more complex

basis sets (e.g. ECPs, auxiliary basis sets, etc.). Once constructed, a Theory object can be

passed to a Geometry object in order to automatically construct the corresponding input

file for the chosen software package. The resulting input file can then be submitted using a

SubmitProcess object, with an option to await all running jobs in the current directory to

finish before proceeding.

As an example, the following will read the geometry from dimer.xyz (e.g. Figure 2a) and

optimize this structure using Gaussian at the ωB97X-D/def2-TZVP level of theory. Once

this job is complete, the script reads the optimized geometry and then uses ORCA to run a

DLPNO-CCSD(T)/cc-pVQZ single point.

#read initial coordinates

geom = Geometry("dimer.xyz")

#method for optimization

dft theory = Theory(method="wB97X-D", basis="def2-TZVP", processors=14, memory=24,

14

job type=OptimizationJob())

#write optimization input file and submit, waiting for job to finish

geom.write(outfile="opt.com", theory=dft theory)

opt job = SubmitProcess(fname="opt.com", walltime=24, processors=14, memory=28)

opt job.submit(wait=True)

#read the optimized structure

opt geom = Geometry("opt.log")

#basis set and method for DLPNO-CCSD(T) single point

dlpno basis = BasisSet([Basis("cc-pVQZ"), Basis("cc-pVQZ", aux type="C")])

dlpno theory = Theory(method="DLPNO-CCSD(T)", basis=dlpno basis, processors=4,

memory=28, job type=SinglePointJob())

#Write DLPNO-CCSD(T) input file and submit

opt geom.write(outfile="dlpno.inp", theory=dlpno theory, simple=["TightSCF"])

dlpno job = SubmitProcess(fname="dlpno.inp", walltime=24, processors=4, memory=32)

dlpno job.submit(wait=True)

SIDEBAR: Remote Job Submission with FireWorks

We are currently extending AaronTools to work with the FireWorks workflow software,[17]

which will allow more rapid deployment of AaronTools-based tools across different HPC

environments. FireWorks is a free, open-source toolkit for managing HPC workflows over

arbitrary computing resources, including those that have queueing systems. As such, the in-

tegration of AaronTools and AARON with FireWorks will also enable remote job submission

across multiple computer clusters and job monitoring and management via a web interface.

This added functionality will be part of the new Python-based AARON (AARON2), which

is currently in development.

15

AARON

One example of a complex tool developed using the Perl-based AaronTools is AARON,

which has been described in detail before.[5] Briefly, AARON interfaces with Gaussian09 or

Gaussian16 to automate the optimization of TS structures derived from templates through

substitutions or changes of ligand/organocatalyst. First, the user provides the TS configura-

tions to be considered in the form of a TS library (i.e. template structures leading to the R- or

S -product of an enantioselective reaction), or they are requested from the built-in template

library. Next, any requested changes to the template are handled, such as mapping a new

ligand or making substitutions. Additionally, conformers of rotatable groups are sampled

automatically. After structure generation, an initial refinement is performed, freezing the

unchanged parts of the structure and relaxing the new additions, generally at an inexpensive

level of theory (e.g. semi-empirical). Next, geometry optimizations at the density functional

theory (DFT) level are done, first with any forming or breaking bonds frozen, and then with

no constraints. After a full geometry optimization, harmonic frequencies and thermochem-

istry can be computed. If structures exhibit the wrong number of imaginary vibrational

modes, AARON will attempt to automatically resolve the problem through additional con-

strained and unconstrained optimizations. If desired, a final single-point computation can be

done at a higher level of theory, which is then combined with the thermochemical corrections

derived from the original level of theory. While all these computations are running, AARON

is continuously monitoring their status — handling common errors, resubmitting failed jobs,

and resolving unexpected structural changes (for example, by constraining a problematic

bond) — all without user intervention. Finally, after all computations are finished, AARON

parses the output files, analyzes the thermochemistry to generate a summary of the results

and predict product ratios based on a Boltzmann weighting of accessible pathways, and

generates the associated Supporting Information.

The primary use of AARON is to accelerate predictions of the activity and selectivity

of homogeneous catalysts by automating optimization of TS structures. This automation

allows computational predictions of selectivities for more examples of a given reaction than

could reasonably be done without it. This opens the door for a number of exciting possi-

16

bilities, including virtually screening catalysts with DFT methods and benchmarking DFT

methods on statistically significant numbers of catalysts. AARON has been applied to a

number of catalytic reactions,[18, 19, 20] several of which were recently summarized[5] and

is currently being used to benchmark DFT methods for an Ir-catalyzed CH activation reac-

tion (See Figure 2c). Overall, the automation provided by AARON brings us closer to true

computationally-driven rational catalyst design. The current version of AARON[5] is built

using the Perl-based AaronTools. A more powerful Python version of AARON (AARON2) is

currently in development that will exploit the added flexibility of the Python implementation

of AaronTools.

SIDEBAR: Automated Conformer Searches using XTB/Crest

Vital to successful applications of AARON is the generation of all reasonable configurations

and conformers in the construction of a TS template library. We have had recent success

doing this by combining Grimme’s XTB/Crest automated conformational search[21] with

AARON. For instance, starting from one conformation of each configuration, Crest can be

used to generate a collection of conformations for an initial TS template library (constraining

any forming or breaking bonds), which can then be further refined using AARON. This avoids

the often cumbersome task of enumerating conformations when constructing a TS template

library, particularly in cases of ring-flips and other more complex conformational changes

that are not handled automatically by AARON.

SEQCROW

While the main utility of AaronTools is the ability to build and manipulate complex molec-

ular structures from the command line or from within a Perl or Python script, use of a

graphical interface is often advantageous. While graphical molecular builders abound, few

are well suited for the rapid construction of the structures encountered in studies of homo-

geneous catalysis. We are developing a plug-in for UCSF ChimeraX[4] called SEQCROW

that provides the power of AaronTools within a graphical user interface. For example, SE-

QCROW can be used to generate and explore potential TS structures for transition metal

17

catalyzed reactions using different chiral ligands or perform substitutions and add fused rings

to structures. SEQCROW also contains graphics presets for the generation of publication-

quality images of small to medium sized molecular structures and extends the capabilities

of ChimeraX to be able to generate input files for popular quantum chemistry packages and

run these jobs, plot simulated spectra, calculate thermal energy corrections, etc. (see Figure

4). SEQCROW is still in development, but is available through the ChimeraX ’Toolshed.’

It will be described more fully in a forthcoming publication.

18

Figure 4: Screenshots of SEQCROW showing the QM Input Generator allowing users to
save ’Presets’ of common input file types for Gaussian, Orca, and Psi4, the calculation of
Sterimol parameters, and the Normal Mode Visualization and IR Spectra Plotting

CONCLUSIONS

As quantum chemists have gravitated to larger and more complex molecular systems, new

challenges have emerged regarding the execution of large numbers of computations, parsing

the corresponding output files, and verifying and managing the resulting data. In the context

19

of catalysis, reliable predictions of catalyst performance often require consideration of hun-

dreds of potential TS structures. The time required to generate input files, run the required

jobs, and check the resulting output files often prevents the assessment of large numbers of

potential catalysts, precluding effective computational catalyst design. We have developed

a suite of open-source tools (QChASM) to meet some of these challenges. The workhorse of

QChASM is AaronTools, which consists of Perl and Python tools for building, measuring,

and manipulating molecular structures. Using AaronTools, one can quickly and intuitively

perform substitutions or exchange chiral and achiral ligands, submit and monitor jobs, and

construct input and parse output files from popular electronic structure packages. AARON

is a more specialized toolkit for automated predictions of selectivities for catalytic reactions.

Finally, SEQCROW provides a graphical interface to exploit the power of AaronTools, build

input files for QM computations, and generate molecular images.

While these tools were initially developed for applications in computational catalysis,

they should be of general use by the quantum chemistry community, AaronTools being

particularly broad in its applicability. For example, we have relied extensively on AaronTools

in our studies of stacking interactions and supramolecular complexes.[22] Furthermore, as

free, open-source tools, contributions from others are welcomed in order to build even more

powerful and useful tools for the broader computational chemistry community.

ACKNOWLEDGEMENTS

We thank B. J. Rooks and Y. Guan for their efforts in the development of AARON and the

Perl-based AaronTools as well as M. R. Haas, A. C. Doney, and A. N. Bootsma for feedback

and testing. Molecular graphics were generated in UCSF ChimeraX, developed by the Re-

source for Biocomputing, Visualization, and Informatics at the University of California, San

Francisco. We have no conflicts of interest to declare.

20

FUNDING INFORMATION

This work was funded by National Science Foundation Grants CHE-1266022 and CHE-

1665407.

References

[1] Santoro S, Kalek M, Huang G, Himo F. Elucidation of Mechanisms and

Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodol-

ogy [Journal Article]. Acc Chem Res. 2016;49(5):1006–18. Available from:

https://www.ncbi.nlm.nih.gov/pubmed/27082700.

[2] Vitek AK, Jugovic TME, Zimmerman PM. Revealing the Strong Relationships between

Ligand Conformers and Activation Barriers: A Case Study of Bisphosphine Reductive

Elimination [Journal Article]. ACS Catalysis. 2020;10(13):7136–7145.

[3] Foscato M, Jensen VR. Automated in Silico Design of Homogeneous Catalysts [Journal

Article]. ACS Catalysis. 2020;10(3):2354–2377.

[4] Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH,

et al. UCSF ChimeraX: Meeting modern challenges in visualization and

analysis [Journal Article]. Protein Sci. 2018;27(1):14–25. Available from:

https://www.ncbi.nlm.nih.gov/pubmed/28710774.

[5] Guan Y, Ingman VM, Rooks BJ, Wheeler SE. AARON: An Automated Reaction Opti-

mizer for New Catalysts [Journal Article]. J Chem Theory Comput. 2018;14(10):5249–

5261. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30095903.

[6] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al..

Gaussian˜16 Revision C.01; 2016. Gaussian Inc. Wallingford CT.

[7] Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista FA, Fermann

JT, et al. PSI4: an open-source ab initio electronic structure program [Journal Article].

21

https://www.ncbi.nlm.nih.gov/pubmed/27082700
https://www.ncbi.nlm.nih.gov/pubmed/28710774
https://www.ncbi.nlm.nih.gov/pubmed/30095903

Wiley Interdisciplinary Reviews-Computational Molecular Science. 2012;2(4):556–565.

Available from: <GotoISI>://WOS:000305393700004.

[8] Neese F. Software update: the ORCA program system, version 4.0 [Journal Article].

Wiley Interdisciplinary Reviews-Computational Molecular Science. 2018;8(1). Available

from: <GotoISI>://WOS:000418158400001.

[9] Bootsma AN, Doney AC, Wheeler SE. Predicting the Strength of Stacking Interac-

tions between Heterocycles and Aromatic Amino Acid Side Chains [Journal Article].

Journal of the American Chemical Society. 2019;141(28):11027–11035. Available from:

https://doi.org/10.1021/jacs.9b00936.

[10] Seguin TJ, Wheeler SE. Electrostatic Basis for Enantioselective Bronsted-

Acid-Catalyzed Asymmetric Ring Openings of meso-Epoxides [Jour-

nal Article]. ACS Catalysis. 2016;6(4):2681–2688. Available from:

https://doi.org/10.1021/acscatal.6b00538.

[11] Sandoval CA, Ohkuma T, Muniz K, Noyori R. Mechanism of asymmetric hy-

drogenation of ketones catalyzed by BINAP/1,2-diamine-ruthenium(II) complexes

[Journal Article]. J Am Chem Soc. 2003;125(44):13490–503. Available from:

https://www.ncbi.nlm.nih.gov/pubmed/14583046.

[12] Grimme S. Supramolecular binding thermodynamics by dispersion-corrected density

functional theory [Journal Article]. Chemistry A European Journal. 2012;18(32):9955–

64. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22782805.

[13] Verloop A, Hoogenstraaten W, Tipker J. Chapter 4 - Development and Application of

New Steric Substituent Parameters in Drug Design. Drug Design. 1976:165 – 207.

[14] Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery JA, Morokuma K,

et al. Combining Quantum Mechanics Methods with Molecular Mechanics Meth-

ods in ONIOM [Journal Article]. Journal of Chemical Theory and Computation.

2006;2(3):815–826. Available from: https://doi.org/10.1021/ct050289g.

22

<Go to ISI>://WOS:000305393700004
<Go to ISI>://WOS:000418158400001
https://doi.org/10.1021/jacs.9b00936
https://doi.org/10.1021/acscatal.6b00538
https://www.ncbi.nlm.nih.gov/pubmed/14583046
https://www.ncbi.nlm.nih.gov/pubmed/22782805
https://doi.org/10.1021/ct050289g

[15] Iwamoto H, Imamoto T, Ito H. Computational design of high-performance lig-

and for enantioselective Markovnikov hydroboration of aliphatic terminal alkenes

[Journal Article]. Nature Communications. 2018;9(1):2290. Available from:

https://doi.org/10.1038/s41467-018-04693-9.

[16] Iwamoto H, Imamoto T, Ito H. Computational design of high-performance

ligand for enantioselective Markovnikov hydroboration of aliphatic terminal

alkenes [Journal Article]. Nat Commun. 2018;9(1):2290. Available from:

https://www.ncbi.nlm.nih.gov/pubmed/29895938.

[17] Jain A, Ong SP, Chen W, Medasani B, Qu X, Kocher M, et al. FireWorks: a dynamic

workflow system designed for high-throughput applications. Concurrency and Compu-

tation: Practice and Experience. 2015;27(17):5037–5059. CPE-14-0307.R2. Available

from: http://dx.doi.org/10.1002/cpe.3505.

[18] Wheeler SE, Seguin TJ, Guan Y, Doney AC. Noncovalent Interactions

in Organocatalysis and the Prospect of Computational Catalyst Design

[Journal Article]. Acc Chem Res. 2016;49(5):1061–9. Available from:

https://www.ncbi.nlm.nih.gov/pubmed/27110641.

[19] Guan Y, Wheeler SE. Automated Quantum Mechanical Predictions of Enan-

tioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation [Journal Ar-

ticle]. Angew Chem Int Ed Engl. 2017;56(31):9101–9105. Available from:

https://www.ncbi.nlm.nih.gov/pubmed/28586140.

[20] Doney AC, Rooks BJ, Lu T, Wheeler SE. Design of Organocatalysts for Asymmetric

Propargylations through Computational Screening [Journal Article]. ACS Catalysis.

2016;6(11):7948–7955.

[21] Pracht P, Bohle F, Grimme S. Automated exploration of the low-energy chemical space

with fast quantum chemical methods. Phys Chem Chem Phys. 2020;22:7169–7192.

Available from: http://dx.doi.org/10.1039/C9CP06869D.

23

https://doi.org/10.1038/s41467-018-04693-9
https://www.ncbi.nlm.nih.gov/pubmed/29895938
http://dx.doi.org/10.1002/cpe.3505
https://www.ncbi.nlm.nih.gov/pubmed/27110641
https://www.ncbi.nlm.nih.gov/pubmed/28586140
http://dx.doi.org/10.1039/C9CP06869D

[22] Wheeler SE. Understanding Substituent Effects in Noncovalent Interactions Involving

Aromatic Rings [Journal Article]. Accounts of Chemical Research. 2013;46(4):1029–

1038. Available from: https://doi.org/10.1021/ar300109n.

FURTHER READING

QChASM GitHub

https://github.com/QChASM

AaronTools GitHub Wiki (Perl)

https://github.com/QChASM/AaronTools/wiki

AaronTools GitHub Wiki (Python)

https://github.com/QChASM/AaronTools.py/wiki

24

https://doi.org/10.1021/ar300109n

