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ABSTRACT
Pair programming is a popular strategy in computer science educa-
tion to teach programming to novices. In this study, we examined
the effect of three different pair programming conditions on up-
per elementary school students’ CS conceptual understanding. The
three conditions were one-computer with roles (1C with roles), two
computers without roles (2C no roles), and two computers with
roles (2C with roles). These students were engaged in four days
of computer programming activities and took the CS concept as-
sessment, CS attitudes, and collaboration perceptions before and
after the activities. We used the validated E-CSCA (Elementary
Computer Science Concepts Assessment) to measure elementary
students’ understanding of CS concepts. We tested the relation-
ship of different pair programming conditions on the students’ CS
conceptual understanding and found that different conditions im-
pacted students’ CS conceptual understanding, wherein students
in 2C roles demonstrated better CS learning than the other two
conditions. The results also showed no changes in students’ CS
attitudes and perceptions of collaboration before and after the ac-
tivities. Furthermore, the results indicated no significant impact
of these attitudinal factors on students’ learning CS concepts in
pair programming settings. Our study highlights the importance of
the roles and number of computers in pair programming settings,
especially for elementary students.

CCS CONCEPTS
• Social and professional topics→ K-12 education; • Applied
computing → Collaborative learning.
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1 INTRODUCTION
How students regulate their learning can profoundly influence
their performance in school [30], their motivation and affect [29],
and their use of strategies like help-seeking [27]. Moreover, when
students effectively regulate their learning they are more likely
to persist in challenging learning situations, to apply a range of
strategies, and make use of feedback [4]. Most research has focused
on how individual learners regulate their own learning [2, 45, 47],
but a growing body of work has looked at regulation in collaborative
learning contexts [eg. 15]. Research has also explored the degree to
which teachers or peers [28, 34] and technology [5, 26] can influence
students’ academic regulation.

Teachers regularly encourage collaborative work and assign
group projects across the content areas [1]; moreover, these are
widely used strategies in elementary contexts (e.g., [9]). For effective
collaboration to occur, all learners must successfully regulate their
individual and collective learning. Regulated, collaborative learning
requires negotiation of task goals, monitoring, and evaluation of
diverse strategies and processes [13, 14]. Learning environments
are most conducive to effective collaborative talk when students
can verbally interact with each other and when they have access to
strategies to consider diverse ideas [25].

Themajority of research on how students collaborate in computer-
supported collaborative learning (CSCL) environments are nested
in university or high school settings [cf. 41]. A particularly active
area of research in secondary CS education has been on collabora-
tive (pair) programming [e.g. 24, 44]. Developmental differences,
in addition to varied experiences with technology, underscore the
need to examine how much younger learners interact in such en-
vironments. Relatedly, there are far fewer studies in elementary
and middle school settings that explore how students collaborate
in computer science-based environments in particular [e.g. 7, 36].
Moreover, studies that examine young students’ social-emotional
functioning and academic motivations in settings like computer
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science (CS) are extremely limited. This highlights a significant gap
across the fields of regulation of learning, CS education, and CSCL.

More specifically, the most significant gap across these fields
might be how the technology itself mediates collaboration among
elementary-aged group members. Gómez et al. [10] found that
kindergarten-aged children who shared a display but who used
their own mouse to make changes made vast improvements in oral
language and social skills compared to the experimental group.
Similarly, Zurita and Nussbaum [48] found that elementary stu-
dents with lower problem-solving capacities were heightened when
using technology; in particular, the children were better able to
communicate, negotiate, and coordinate when they used handheld
devices during collaborative math and language arts tasks. From
a pragmatic standpoint, students can better express agency when
they have control of their own materials; by introducing individual
workstations for each learner engaged in a collaborative task, there
is potential to explore differences in young students’ collaboration.

The increase over the past ten years in studies aimed at examin-
ing students’ collaborative work denotes educational researchers’
interest in understanding the complexities involved in aligning the
efforts, interests, and abilities of multiple students across diverse
settings. In spite of this, there remains much to explore; namely,
to what extent condition might influence elementary students’ CS
learning, attitudes, and their perceptions of working collaboratively.

2 BACKGROUND AND RELATEDWORKS
2.1 Pair Programming in CS
Many researchers in computer science education agree generally
on the benefits of pair programming. Studies involving computer
science students from high school through university level indicate
that pair programming enhances students’ overall enjoyment of
and confidence in programming [21], increases computer science
(CS) competence for females and lower ability students [20], some
improvement in CS self-efficacy [6], and higher grades [23]. At its
core, traditional pair programming (henceforth called 1C with roles)
comprises two programmers sharing one computer and alternating
the driver-navigator roles after a set time or portion of the task
was completed. We maintain that by incorporating an additional
computer, pair programmers each can express their own agency
through their input devices. However, even with two computers,
students can still have assigned roles (i.e., driver and navigator) as
they do in traditional (1C) pair programming. Here, we delineate
this two-computer pair programming into two categories: with and
without roles, 2C no Roles and 2C with Roles, respectively. All three
of these conditions are explored in detail below.

2.2 Student Perceptions of Collaboration
Many would agree that collaboration is beneficial to student learn-
ing. However, it is important to explore to what extent collaboration
might impact student perceptions of such activity. Lee et al. [18]
conclude that when students have more experience with collab-
oration, their ability to collaborate and interest in collaborative
activities increases. In fact, Kurucay [16] found that students who
were guided to collaborate in specific ways reported more positive
perceptions of collaboration than of those guided to work individu-
ally. There are noted barriers to successful collaboration, however.

These include not knowing the basic conventions of collaboration,
partners who asymmetrically contribute (or engage in social loaf-
ing), one partner’s real or perceived competence leading to power
imbalances, and working with a friend [17]. Some students simply
prefer to work alone. When required to collaborate, their nega-
tive associations with group activity significantly influences their
willingness to contribute to joint work [37].

2.3 Regulation of Learning
Collaborative regulation of learning is a transitional process in
which an individual student acquires regulatory skills from the col-
laborative group member(s) [13]. These skills include appropriate
planning, monitoring, and evaluation processes implemented while
learning. Such regulation can be triggered in a learning activity by
the student asking for assistance, by others prompting the student
to engage in some strategic process, or by a technology-driven cue.
One of the affordances of learning alongside others is how the pro-
cesses involved in learning can be guided by, or distributed among,
those in the group. An external regulating agent, such as a peer,
can allow a student to focus on the task and internalize the regula-
tory behaviors necessary for future tasks [13]. Such collaborative
regulation can help by directing the behaviors of the learner for the
benefit of the group activity [11], and by providing opportunities
for the learner to appropriate these regulatory skills for the future.

Roles, as typically implemented in pair programming in CS, in-
volve each student taking on a set responsibility that is in some way
complementary to his or her partner. However, designated roles are
not guaranteed in pair programming. In some configurations, expe-
rienced programmers are left to naturally organize how they work
together and separately [31]. The number of computers program-
mers use in a pair programming situation has ranged from one to
four, as noted previously. For pragmatic purposes, only one or two
computers will be considered for this study. Assigned roles, such as
the driver and navigator used in traditional (1C) pair programming,
can provide a structure within the collaborative relationship that
supports regulation of learning. Roles can provide guidance for
novice collaborators as to how to contribute effectively to the task
and guard against either overly aggressive or passive approaches
to the collaboration. Formal assignment of roles also scaffold the
learning of regulatory skills that can be applied to future collab-
orative activity. Logistically, there is no reason why roles cannot
be utilized in 2C programming configurations. However, there is a
paucity of research that explores this possibility.

2.4 Current Work
The purpose of the current study was to examine the impact of dif-
ferent pair programming conditions on upper elementary (4th and
5th grades) students’ conceptual understanding of CS, CS attitudes,
and their perceptions of working in a collaborative setting. The
following research questions guided the current study:

(1) How does the combination of roles and number of computers
used in pair programming configurations affect the students’
CS learning outcomes?

(2) Does pair programming improve elementary students’ atti-
tudes towards CS and collaboration?



3 METHODS
3.1 Participants and Context
A total of 44 elementary students (10 to 11 years old) from three
classes of 5th grades were recruited to participate in the current
study. They attended a single rural elementary school located in the
southeastern United States. 59% of the participating students were
female and 41% were male. Half of these students (50%) identified
as White, 21% Latinx, 5% Native American/American Indian, 5%
multiracial, 2% Asian, and the remaining 18% reported as Other.

Students were grouped into pairs by the teacher upon completion
of the pre-study Collaboration survey measure such that students
with similar scores (i.e., collaboration perspectives) were paired;
students maintained these partnerships over the course of the study.
The students participated in a series of four visual block-based
coding lessons, taught by the school technology teacher who had
some prior experience with teaching block-based coding. The class
served as a "special" that all students attended once per week for 45
minutes, much like Music, Art, or Physical Education. Each of the
three classes were randomly assigned one condition andmaintained
that condition for the duration of the study.

The study’s curriculum covered block-based coding lessons on
foundational CS concepts such as loops, conditionals, and variables.
As part of the curriculum, and as appropriate by condition, students
were introduced to pair programming in 1C and 2C programming
configurations using the NetsBlox [3] programming environment.
NetsBlox allows students on two computers to use a shared, virtual
programming space where both students can interactively work on
the same code.

The curriculum remained constant across the classes and was
written such that the concepts increase in difficulty as the students
become more familiar with the programming environment. More-
over, the lessons were designed for student-driven exploration; the
pairs were given basic instruction in how to use the specific blocks
in the environment, but it was expected that the students would
explore and make decisions about which blocks to use, all while
consulting with their partner.

3.2 Conditions
The conditions for this study involve the use of roles and com-
puters. The resulting 2x2 matrix suggests four possible conditions:
1C with no roles, 1C with roles, 2C with no roles, and 2C with
roles. However, it is not practical, nor educationally desirable, to
implement 1C with no roles. This follows because in this scenario,
two elementary-aged students would work on a single computer
without the structures and routines set in place that would foster
equitable contributions and learning that guide the logic behind
the driver-navigator roles. In unstructured settings, effective learn-
ing occurs when the learner receives elaborated explanations and
then constructively uses that information [42]. A 1C with no roles
condition is the least likely to support this as the students are not
given information nor guidance on how to talk or interact. Lewis
and Shah [19] emphasize that the quality of students’ participation
is a measure of equity; as such 1C without roles is not likely to
support equitable contributions from elementary-aged students.
When students’ collaborative interactions are structured, they en-
gage in more and deeper argumentation [35]. Pragmatically, simply

putting students together and telling them to or hoping they will
work together does not mean it will occur; this seems even less
likely to occur in a 1C with no roles condition when one student
has literal control of the learning devices and no direction to share
or collaborate. Moreover, giving children access to materials and
assisting educators’ classroom structure by not disrupting equitable
participation ought to be a priority of classroom-based research.
As such, this condition was not be considered.

3.2.1 1C with Roles. In traditional pair programming, the roles are
driver and navigator [44]. The driver inputs all coding changes via
the keyboard and mouse/trackpad, whereas the navigator checks
the driver’s work and makes suggestions. The programmers switch
roles after a set amount of time. The students in this condition were
introduced to the roles and concomitant responsibilities as well as
the process: when the alarm sounds on the teacher’s phone and she
announces it is time to switch, the students do not change seats,
but rather the driver relinquishes control of the computer and the
navigator assumes driving responsibilities.

3.2.2 2C no Roles. In this condition, students work on individual,
yet networked computers, so the coding changes completed on one
appear on the other. Students were not given roles to guide their
interactions nor talk; however, they were directed to collaboratively
code, problem-solve, and debug. Moreover, they were told that both
partners needed to agree on a plan and any changes made.

3.2.3 2C with Roles. In this condition, students also worked on
networked individual computers. However, they were assigned
roles that mirror 1C roles but leverage the physical configuration
of this condition and which support their collaborative regulation.
Given the subtle but important differences in roles from 1C, these
roles are called by a different pair of names: reviewer-proposer. The
reviewer appraised past learning at the start of the new learning
task and reviewed what had been done/learned at mid-task. The
proposer advanced ideas post-review for what ought to occur for the
day/session and adjusted their proposal after the mid-task review.
Given the brief 45-minute class, the students in this condition were
directed to enact their roles twice, once at the beginning and once
midway through the session.

3.3 Instruments
3.3.1 E-CSA. The CS Elementary Attitudes Survey is an 11-item
Likert scale survey that queries upper elementary students on their
attitudes toward and perspectives on CS, coding in particular. It is
based on a validated STEM attitudes survey and has both undergone
cognitive interviewing with upper elementary students to deter-
mine appropriate wording for the age [40] and has recently been
psychometrically validated [39]. The items cover two psychological
constructs: self-efficacy and outcome expectancy [43]. An example
item is “I would like to use coding to make something new” which
the students would answer from strongly disagree to strongly agree
on a 5-point Likert-scale.

3.3.2 CS Conceptual Knowledge (E-CSCA). This assessment was
adapted from the validated middle-grade version [32]. These items
were based on Grover and Basu’s [12] Focal Knowledge, Skills, and



Table 1: Psychometric Properties of E-CSCA

Item Measure infit MNSQ Outfit MNSQ

Item1-Variable1 1.30 0.97 1.07
Item3-Conditional3 0.16 1.10 1.19
Item4-Loops1 -0.69 1.05 1.07
Item6-Variables3 0.53 1.17 1.22
Item7-Conditionals3 0.08 1.01 1.06
Item8-Loops2 0.10 0.95 0.92
Item9-Variables4 0.70 1.04 1.00
Item12-Variables6 0.19 0.87 0.85
Item13-Algorithms1 1.42 0.97 1.28
Item15-Algorithms3 -0.59 0.91 0.83
Item16-Algorithms4 0.52 0.98 0.98
Item19-Algorithms5 -0.98 0.71 0.73
Item20-Loops4 0.08 0.89 0.81
Item21-Loops5 -1.85 0.98 0.74
Item22-Algorithms6 -1.69 1.06 0.95
Item24-Conditionals6 0.36 0.90 0.91
Item25-Conditionals7 0.36 1.10 1.19

Abilities (FKSAs) framework and assessed students’ conceptual un-
derstanding of core CS concepts (i.e., variables, loops, conditionals,
and algorithms). Individual items were written mostly using block-
based coding text, although others are word problems. We then
tested these 25 items on 120 upper elementary school students to
gain more insights into each of the items’ psychometric properties.
A combination of classical test theory and item response theory
Rasch was used to validate this assessment before using it in the
current study. We found only 18 items having acceptable infit and
outfit MNSQ values, a cutoff range of 0.70 to 1.30 [46]. An item
with infit and outfit MNSQ within the cutoff range means that
the item could differentiate students based on their CS conceptual
understanding levels (e.g., low and high achievers). This 18-item as-
sessment also had acceptable reliability values [> .70 8] with person
reliability .71, item reliability .88. Table 1 presents the psychometric
properties of the final assessment.

3.3.3 Collaboration. The Collaboration Survey is a 5-item Likert-
scale survey that queries students on their non-domain specific
collaboration interests. It is based on collaboration work done with
middle school students by [7]. An example item is “Whenmore than
one person works on a project, we do better” which the students
would answer from strongly disagree to strongly agree.

3.4 Analysis
Multilevel modeling (MLM) was run using SAS to answer the re-
search questions. MLM is frequently used to analyze repeated, lon-
gitudinal, and nested data and therefore is appropriate for the data
we had. Moreover, unlike traditional multivariate analysis (e.g.,
ANOVA) that require balanced data, MLM can still be performed
with unbalanced data. Thus, students who took only either pre-test
or post-test would not be dropped and still included in the analysis
[33]. Also, MLM can be performed with our current sample size
with minimal bias estimation [22]. MLM is particularly useful to

model intraindividual variability, such as in this study, because we
examined changes in students’ conceptual understanding of CS in
three different conditions. Furthermore, we also sought the explore
changes related to students’ attitudes towards CS and collaboration.
Our hypotheses about the changes in CS conceptual understanding,
CS attitudes, and perceptions of collaboration (Level 1) and their
association with the three conditions (Level 2) were tested using
the following equations:

Level 1 (Time):
CS Conceptual Understanding𝑖𝑡 = 𝛽0𝑖𝑡 + 𝛽1𝑖𝑡 (Time) + 𝛽2𝑖𝑡
(CS Attitudes) + 𝛽3𝑖𝑡 (Collaboration) + 𝛽4𝑖𝑡 (Time*CS Attitudes) +
𝛽5𝑖𝑡 (Time*Collaboration) + r𝑖𝑡

Level 2 (Student):
𝛽0𝑖 (M CS Conceptual Understanding) = 𝛾00 + 𝛾01 (Condition) + u01
𝛽1𝑖 (Time) = 𝛾10 + 𝛾11 (Condition)
𝛽2𝑖 (CS Attitudes) = 𝛾20
𝛽3𝑖 (Collaboration) = 𝛾30
𝛽4𝑖 (Time*CS Attitude) = 𝛾40
𝛽5𝑖 (Time*Collaboration) = 𝛾50

Equation under Level 1 (Time) denotes the within-person rela-
tionship of CS conceptual understanding, test occasion (Time), CS
attitudes, and collaboration perceptions. The intercept 𝛽0𝑖𝑡 is the
expected CS score for student i in the pretest, given that we coded
Time as 0 (pretest) and 1 (post-test), and who had average CS atti-
tudes and perceptions of collaboration. We grand-mean centered CS
attitudes and perceptions of collaboration, so all the interpretation
should be based on students with average CS attitudes and percep-
tions of collaboration. The first slope, 𝛽1𝑖𝑡 , is called a CS learning
slope specifying the CS conceptual understanding changes from
pretest to post-test. The second and third slopes, 𝛽2𝑖𝑡 and 𝛽3𝑖𝑡 , are
the expected changes in CS conceptual understanding associated
with CS attitudes and perceptions of collaboration, respectively.
The fourth and fifth slopes, 𝛽4𝑖𝑡 and 𝛽5𝑖𝑡 , are the expected changes
in CS learning (CS conceptual understanding and Time) associated
with changes in CS attitudes and perceptions of collaboration, re-
spectively. The r𝑖𝑡 is the residual error term that represents the
variation around the mean of the CS score.

The intercept and slopes in Level 1 became the outcome variables
in Level 2. The intercept 𝛾00 represents the average CS score for
students in the 1C with roles condition (1C with roles, coded as
0). The intercept 𝛾10 represents the average relationship between
CS conceptual understanding with the test occasion, and 𝛾11 tests
whether this relationship (i.e., CS learning) varies based on the pair
programming conditions to which students are assigned. We used
𝛾11 to answer the first research question. We used 𝛾40 and 𝛾50 to
answer the second research question, given that these intercepts
tested whether CS learning depended on changes in CS attitudes
and perceptions of collaboration.

A null or unconditional model was performed before testing the
above equation. This null model consisted of only the CS concep-
tual understanding score without any predictors. The null model
was used to explore whether significant within- (𝜎2) and between-
students (𝜏00) variability exist in the CS conceptual understanding
to proceed with MLM.



4 RESULTS
4.1 Preliminary Analysis
The null or unconditional model generated the interclass correlation
coefficient (ICC) [𝜌 = 𝜏00 / (𝜏00 + 𝜎2)] that presents the amount of
within- and between-student variances in the dependent variable,
CS conceptual understanding. Based on the results, we found a
significant (p < .05) within- and between-student variance in the
CS conceptual understanding. The results indicated that 61% of the
variability in students’ CS conceptual understanding was within-
student (𝜎2 = 167.95, z = 3.89, p < .001) and 39%was between-student
(𝜏00 = 109.53, z = 2.33, p = .038). This indicated that we could run
MLM in the subsequent analysis.

4.2 Multilevel Modeling Results
Table 2 presents the MLM results. It can be seen that the students’
CS Learning was not significantly (p > .05) associated with the
changes in CS attitudes and perceptions of collaboration (𝛾40 and
𝛾50, respectively). However, we found that the pair programming
conditions students were assigned to were significantly (p = .040)
associated with students’ CS learning (𝛾11). This model accounted
for 34% of within-student and 7% of between-students variability
in CS conceptual understanding.

Tests of significant contrast were run to decompose this interac-
tion effect. Figure 1 visualizes these results. Looking pre to post for
each condition, we found no significant increase in students’ CS
conceptual understanding in the 1C with roles condition (two-tailed
t = 1.37, p = .181). In contrast, we found a statistically significant
increase in CS conceptual understanding in both 2C without and
with roles (two-tailed t = 4.79, p < .001; t = 4.72, p < .001, respec-
tively). Moreover, we did not find significant differences (p > .05)
in students’ CS conceptual understanding before the intervention,
meaning that all three groups of students had relatively similar
levels of CS conceptual understanding prior to the intervention.
Looking at post-test scores after the intervention, we found that
students in 2C with roles had a significantly higher CS conceptual
understanding than those in 2C without roles condition (one-tailed
t = 1.81, p = .040) and 1C with roles (one-tailed t = 2.95, p = .001).
Also, students in the 2C without roles condition had significantly
higher CS conceptual understanding than students in 1C with roles
after the intervention (one-tailed t = 1.83, p = .039).

5 DISCUSSION
Learning both computer science concepts and how to collaborate
effectively can be a challenging prospect, especially for young chil-
dren who often struggle with sharing materials and articulating
their thoughts clearly to one another. We set out to explore how to
scaffold upper elementary students’ learning of CS concepts using
three pair programming configurations: traditional 1 computer with
driver-navigator roles, 2 computers without roles, and 2 computers
with roles. We found that the condition students were assigned
was significantly associated with learning outcomes. In particular,
the students in the 2C with roles condition performed statistically
significantly higher on the CS conceptual assessment.

Prior research indicates that many upper elementary students do
not enjoy the 1C condition [38]. The children in that study report

that they only felt like contributors when they were driving and
that miscommunications occurred between driver and navigator.
Tsan et al. [38] further reported that students in the 2C without
roles condition felt they learned more from hands-on experience
and enjoyed having independence and control over their work. We
surmise that their findings are behind what we see in our results. 1C
with roles students may have had intermittent engagement, likely
when they were driving, and suffered from missed opportunities
to learn from their partners’ input and mistakes when they were
navigating. 2C without roles students likely benefited from more
hands-on/"driving time" because each student had a computer; how-
ever, without expectations of how and when to collaboratively talk,
students lost intentional moments to talk through their thinking,
their problem solving processes, and their desired next steps. To
this end, it is not surprising that 2C with roles resulted in such
positive outcomes. It leveraged the best attributes of the other two
conditions (collaborative talk expectations supporting regulation
and student agency with individual computers) to provide enriching
scaffolding for students to learn.

6 CONCLUSION AND FUTUREWORK
We are one of the first to utilize synchronous virtual pair pro-
gramming with elementary students and to assign roles based on
foundational learning theory to make empirical conclusions about
how to best scaffold young students’ learning in computer science.
In sum, we found that collaborative regulation matters, that it helps
students’ academic accomplishments, and that a simple interven-
tion such as assigning roles in pair programming can positively
affect how students perform. Our findings have readily applicable
strategies for practitioners, including the simplicity of assigning
roles to students. Limits on in-class devices, however, mean that
not all teachers and students can benefit from our findings regard-
ing the 2C condition. Teachers must make decisions over student
technology use and the practical limitations they face in their class-
rooms. That noted, policy-makers at the district or state level ought
to consider the long-term investment of providing sufficient devices
to classrooms in order to address not only CS learning gaps but also
to bolster students’ collaborative regulation. Lastly, our findings
have implications for theory by contributing to the foundational
work of others in CS education who research collaborative work,
in particular pair programming. Our work was not without lim-
itation, however. Our sample size was rather small and we only
gathered data from a single school. This small sample, resulting in
low power, may contribute to the insignificant findings with CS
attitudes and collaboration; results from a larger sample may show
different results. Future work ought to address these limitations.
Moreover, qualitative work providing triangulating evidence, such
as analysis of students’ collaborative discourse, would enrich the
findings.
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Table 2: Unstandardized Coefficients (and Standard Errors) of Multilevel Models of CS Conceptual Understanding (Notes: Ref-
erence group/Intercept = Pretest, average CS Attitudes, and collaboration; no asterisk p > .05, *p < .05, **p < .01, ***p <.001)

Effects Parameter Unconditional Model 1

CS Conceptual Understanding, 𝛽0
Intercept 𝛾00 39.19***(2.21) 31.67***(4.00)
Condition 𝛾01 0.30 (3.10)

CS Learning slope, 𝛽1
Time(Post-test) 𝛾10 5.99 (4.63)
Condition 𝛾11 7.24* (3.37)

CS Attitudes slope, 𝛽2
CS Attitudes 𝛾20 -1.74 (3.76)

Collaboration slope, 𝛽3
Collaboration 𝛾30 -4.16 (0.27)

CS Learning x Attitudes slope, 𝛽4
Time x CS Attitudes 𝛾40 0.65 (7.29)

CS Learning x Collaboration slope, 𝛽5
Time x Collaboration 𝛾50 -1.05 (6.33)

Random Effects
Between-student (𝜏00) 109.53* (52.66) 101.36* (45.21)
Within-person fluctuation (𝜎2) 167.95*** (43.22) 110.33*** (33.36)

Figure 1: Students’ CS Learning Based on Pair Programming Conditions(Notes: # p > .05, *p < .05, **p < .01, ***p <.001)
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