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Abstract. Let W be an irreducible complex reflection group acting on its reflection representation
V . We consider the doubly graded action of W on the exterior algebra ∧(V ⊕ V ∗) as well as
its quotient DRW := ∧(V ⊕ V ∗)/〈∧(V ⊕ V ∗)W+ 〉 by the ideal generated by its homogeneous W -
invariants with vanishing constant term. We describe the bigraded isomorphism type of DRW ;
when W = Sn is the symmetric group, the answer is a difference of Kronecker products of hook-
shaped Sn-modules. We relate the Hilbert series of DRW to the (type A) Catalan and Narayana
numbers and describe a standard monomial basis of DRW using a variant of Motzkin paths. Our
methods are type-uniform and involve a Lefschetz-like theory which applies to the exterior algebra
∧(V ⊕ V ∗).

1. Introduction

Let C[x1, . . . , xn, y1, . . . , yn] be a polynomial ring in 2n variables equipped with the diagonal
action of the symmetric group Sn:

(1.1) w.xi := xw(i) and w.yi := yw(i)

for all w ∈ Sn and 1 ≤ i ≤ n. The quotient of C[x1, . . . , xn, y1, . . . , yn] by the ideal generated
by the homogeneous Sn-invariants of positive degree is the diagonal coinvariant ring; its bigraded
Sn-structure was calculated by Haiman [11] using algebraic geometry.

In the last couple years, algebraic combinatorialists have studied variations of the diagonal coin-
variants involving sets of commuting and anti-commuting variables [3, 6, 9, 16, 18, 21, 22]. In this
paper we completely describe the bigraded Sn-structure of the diagonal coinvariants involving two
sets of anti-commuting variables (but no commuting variables). Our methods apply equally well
(and uniformly) to any irreducible complex reflection group W 1 as to the symmetric group Sn.

Let W be an irreducible complex reflection group of rank n acting on its reflection representation
V ∼= C

n. The action of W on V induces an action of W on

• the dual space V ∗ = HomC(V,C),
• the direct sum V ⊕ V ∗ of V with its dual space, and finally
• the exterior algebra ∧(V ⊕ V ∗) over the 2n-dimensional vector space V ⊕ V ∗.

By placing V in bidegree (1, 0) and V ∗ in bidegree (0, 1), this last space ∧(V ⊕ V ∗) attains the
structure of a doubly graded W -module.

If we let Θn = (θ1, . . . , θn) be a basis for V and Ξn = (ξ1, . . . , ξn) be a basis for V ∗, we have a
natural identification

(1.2) ∧(V ⊕ V ∗) = ∧{Θn,Ξn}

of ∧(V ⊕ V ∗) with the exterior algebra ∧{Θn,Ξn} generated by the symbols θi and ξi over C.
Following the terminology of physics, we refer to the θi and ξi as fermionic variables. In physics,
such variables are used to model fermions, with relations θ2i = ξ2i = 0 corresponding to the Pauli
Exclusion Principle: no two fermions can occupy the same state at the same time2. The model

Key words and phrases. coinvariant algebra, fermion, exterior algebra, Lefschetz element.
1And, in fact, to a wider class of groups G; see Remark 4.5.
2A commuting variable xi is called bosonic; the power x2

i corresponds to two indistinguishable bosons in State i.
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∧{Θn,Ξn} for ∧(V ⊕V ∗) will be helpful in our arguments. The following quotient ring is our object
of study.

Definition 1.1. The fermionic diagonal coinvariant ring is the quotient

(1.3) DRW := ∧(V ⊕ V ∗)/〈∧(V ⊕ V ∗)W+ 〉

of ∧(V ⊕ V ∗) by the (two-sided) ideal generated by the subspace ∧(V ⊕ V ∗)W+ ⊆ ∧(V ⊕ V ∗) of
W -invariant elements with vanishing constant term.

The ideal 〈∧(V ⊕ V ∗)W+ 〉 is W -stable and bihomogeneous, so the quotient ring DRW has the
structure of a bigraded W -module. We will see (Proposition 4.1) that this ideal is principal,
generated by a ‘Casimir element’ δW ∈ V ⊗ V ∗. Our results are as follows.

• We describe the bigraded W -isomorphism type of DRW in terms of the isomorphism types
of the exterior powers ∧iV and ∧jV ∗ (Theorem 4.2).

• We show that dimDRW =
(

2n+1
n

)

whenever W has rank n and relate the dimensions of its
graded pieces to Catalan and Narayana numbers (Corollaries 4.3 and 4.4).

• We describe an explicit monomial basis of DRW using a variant of Motzkin paths and
describe the bigraded Hilbert series of DRW in terms of the combinatorics of these paths
(Theorem 5.2).

• When W = Sn, in Section 6 we give variants of the above results as they apply to the
n-dimensional permutation representation of Sn (as opposed to its (n − 1)-dimensional
reflection representation).

The key tool in our analysis is the realization (Theorem 3.2) of the Casimir generator δW of
the ideal defining DRW as a kind of ‘W -invariant Lefschetz element’ in the ring ∧(V ⊕ V ∗). The
ring ∧(V ⊕ V ∗), similar to the cohomology ring of a compact smooth complex manifold, satisfies
‘bigraded’ versions of Poincaré Duality and the Hard Lefschetz Theorem. This is somewhat unusual
on two counts.

• Any homogeneous linear form in an exterior algebra squares to zero, and hence is not
well-suited to be a (strong) Lefschetz element.

• Lefschetz elements arising in coinvariant theory are rarelyW -invariant. For example, ifW is
a Weyl group with associated complete flag manifold G/B we may present the cohomology
of G/B as

(1.4) H•(G/B;C) = C[h]/〈C[h]W+ 〉

where h is the Cartan subalgebra of the Lie algebra g of G. An element ` ∈ C[h]1 = h∗ is a
Lefschetz element if and only if it is not fixed by any element of W [14]. So the Lefschetz
property is in some sense opposite to W -invariance in this case.

For examples of coinvariant-like quotients of superspace C[V ]⊗∧V ∗ satisfying other nontraditional
bigraded versions of Poincaré Duality and (conjecturally) Hard Lefschetz, see [18].

The remainder of the paper is organized as follows. In Section 2 we give background material on
complex reflection groups, Gröbner theory associated to exterior algebras, and the representation
theory of Sn. In Section 3 we prove that ∧(V ⊕ V ∗) satisfies bigraded versions of the Hard
Lefschetz Property and Poincaré Duality. This builds on work of Hara and Watanabe [12] showing
that the incidence matrix between complementary ranks of the Boolean poset B(n) is invertible.
In Section 4 we apply these Lefschetz results to determine the bigraded W -structure of DRW . In
Section 5 we describe the standard monomial basis of DRW using lattice paths. In Section 6 we
specialize to W = Sn and translate our results to the setting of the permutation representation of
Sn. We close in Section 7 with some open problems.
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2. Background

2.1. Complex reflection groups. Let V = C
n be an n-dimensional complex vector space. An

element t ∈ GL(V ) = GLn(C) is a reflection if its fixed space V t := {v ∈ V : t(v) = v} satisfies
dimV t = n− 1.

A finite subgroup W ⊆ GL(V ) is a complex reflection group if it is generated by reflections. The
W -module V is called the reflection representation of W . The dimension dimV = n of V is called
the rank of W .

If W1 and W2 are reflection groups with reflection representations V1 and V2, the direct product
W1×W2 is naturally a reflection group with reflection representation V1⊕V2. A reflection group W
acting on V is irreducible if it is impossible to express W as a direct product W1 ×W2 of reflection
groups acting on V = V1 ⊕ V2 unless V1 = 0 or V2 = 0.

2.2. Exterior Gröbner theory. Let Θn = (θ1, . . . , θn) be a list on n anticommuting variables
and let ∧{Θn} be the exterior algebra generated by these variables over C. For any subset S =
{i1 < i2 < · · · < ik} ⊆ {1, 2, . . . , n}, we let

(2.1) θS := θi1θi2 · · · θik

where the multiplication is in increasing order of subscripts. We refer to the θS as monomials; the
set {θS : S ⊆ {1, 2, . . . , n}} is the monomial basis of ∧{Θn}. Given two monomials θS and θT , we
write θS | θT to mean S ⊆ T .

A total order < on the set {θS : S ⊆ {1, 2, . . . , n}} is a term order if

• we have 1 = θ∅ ≤ θS for all S and
• for all subsets S, T, U with U ∩ S = U ∩ T = ∅, θS < θT implies θS∪U < θT∪U .

Given a term order <, for any nonzero element f ∈ ∧{Θn}, let lm(f) be the largest monomial
θS under the total order < such that θS appears with nonzero coefficient in f . If I ⊆ ∧{Θn} is a
two-sided ideal, let

lm(I) := {lm(f) : f ∈ I − {0}}

stand for the set of leading monomials of nonzero elements in I. The collection of standard mono-
mials (or normal forms) for I is

(2.2) N(I) := {monomials θS : S ⊆ {1, 2, . . . , n} and θS /∈ lm(I)}.

The set N(I) of monomials descends to a C-basis of the quotient ∧{Θn}/I; this is the standard
monomial basis with respect to < (see for example [5]).

2.3. Representation Theory. If V =
⊕

i,j≥0 Vi,j is a bigraded vector space with each piece Vi,j

finite-dimensional, the bigraded Hilbert series is Hilb(V ; q, t) :=
∑

i,j≥0 dimVi,j · q
itj . This is a

formal power series in q and t.
The irreducible representations of the symmetric group Sn are in one-to-one correspondence

with partitions λ ` n. Given λ ` n, let Sλ be the corresponding Sn-irreducible. For example, the
trivial representation is S(n) and the sign representation is S(1n).

Let Λ denote the ring of symmetric functions and let {sλ : λ a partition} denote its Schur basis.
The Hall inner product on Λ declares the Schur basis to be orthonormal:

(2.3) 〈sλ, sµ〉 = δλ,µ

for any partitions λ and µ.
Any finite-dimensional Sn-module U may be expressed uniquely as a direct sum U ∼=

⊕

λ`n cλS
λ

for some multiplicities cλ. The Frobenius image of U is the symmetric function

(2.4) Frob(U) :=
∑

λ`n

cλsλ,
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where sλ is the Schur function. The Kronecker product of two Schur functions sλ and sµ for λ, µ ` n
is defined by

(2.5) sλ ∗ sµ = Frob(Sλ ⊗ Sµ)

where Sn acts diagonally on Sλ ⊗ Sµ.
If V =

⊕

i,j≥0 Vi,j is a bigraded Sn-module with each piece Vi,j finite-dimensional, the bigraded
Frobenius image is

(2.6) grFrob(V ; q, t) =
∑

i,j≥0

Frob(Vi,j) · q
itj .

This is a formal power series in q and t with coefficients in the ring of symmetric functions.

3. Lefschetz theory for exterior algebras

Let A =
⊕n

i=0Ai be a commutative graded C-algebra. The algebra A satisfies Poincaré Duality
(PD) if An

∼= C and if the multiplication map Ai⊗An−i → An
∼= C is a perfect pairing for 0 ≤ i ≤ n.

In particular, this implies that the Hilbert series of A is palindromic, i.e. dimAi = dimAn−i.
If A =

⊕n
i=0Ai satisifes PD, an element ` ∈ A1 is called a (strong) Lefschetz element if for every

0 ≤ i ≤ n/2, the linear map

(3.1) `n−2i · (−) : Ai → An−i

given by multiplication by `n−2i is bijective. If A has a Lefschetz element, it is said to satisfy the
Hard Lefschetz Property (HL).

Algebras A which satisfy PD and HL arise naturally in geometry as the cohomology rings (with
adjusted grading) of smooth complex projective varieties. HL for of the cohomology ring of the
n-fold product P

1 × · · · × P
1 of 1-dimensional complex projective space with itself was studied

combinatorially by Hara and Watanabe [12].
Recall that the Boolean poset B(n) is the partial order on all subsets S ⊆ {1, . . . , n} given by

S ≤ T if and only if S ⊆ T . The poset B(n) is graded, with the ith rank given by the family B(n)i
of i-element subsets of {1, . . . , n}. The following classical result states that the incidence matrix
between complementary ranks of B(n) is invertible.

Theorem 3.1. Given r ≤ s ≤ n, define a
(

n
s

)

×
(

n
r

)

matrix Mn(r, s) with rows indexed by B(n)s
and columns indexed by B(n)r with entires

(3.2) Mn(r, s)T,S =

{

1 if S ⊆ T

0 otherwise.

For any 0 ≤ i ≤ n, the square matrix Mn(i, n− i) is invertible.

For example, if n = 4 and i = 1, Theorem 3.1 asserts that the 0, 1-matrix M4(1, 3) given by

{1} {2} {3} {4}












{1,2,3} 1 1 1 0
{1,2,4} 1 1 0 1
{1,3,4} 1 0 1 1
{2,3,4} 0 1 1 1

is invertible. The origins of Theorem 3.1 are difficult to trace. This result follows easily from the
fact that the ‘up operator’ U : CB(n)i → CB(n)i+1 defined by

U(S) :=
∑

S⊂T
|T−S|=1

T
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is injective whenever i < n/2; this is the main lemma in one standard proof that the coefficient
sequence of the q-binomial coefficient

[

n

k

]

q

:=
(qn − 1)(qn−1 − 1) · · · (q − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)× (qn−k − 1)(qn−k−1 − 1) · · · (q − 1)

is unimodal. Stanley [20, Prop. 2.9, P = B(n)] gave a proof of Theorem 3.1 in the context of
differential posets which describes the (nonzero) eigenvalues of Mn(i, n − i). Hara-Watanabe [12]
gave a formula for the (nonzero) determinant of Mn(i, n− i); this latter proof of Theorem 3.1 has
the following geometric interpretation.

The cohomology ring of the n-fold product P1 × · · · × P
1 may be presented as

(3.3) H•(P1 × · · · × P
1;C) = C[x1, . . . , xn]/〈x

2
1, . . . , x

2
n〉

where xi represents the Chern class c1(Li) and Li is the dual of the tautological line bundle over
the ith factor of P1× · · ·×P

1. Hara and Watanabe used Theorem 3.1 to give a combinatorial proof
of the fact that x1 + · · ·+ xn is a Lefschetz element for the ring H•(P1 × · · · × P

1;C) [12].
We want to study PD and HL in the context of the exterior algebra ∧{Θn,Ξn}. This algebra sat-

isfies a natural bigraded version of Poincaré Duality: the top bidegree ∧{Θn,Ξn}n,n is 1-dimensional
and the multiplication map

(3.4) ∧{Θn,Ξn}i,j ⊗ ∧{Θn,Ξn}n−i,n−j → ∧{Θn,Ξn}n,n ∼= C

is a perfect pairing for any 0 ≤ i, j ≤ n.
The notion of a Lefschetz element in ∧{Θn,Ξn} is a bit more subtle because any linear form `

in the variables θ1, . . . , θn, ξ1, . . . , ξn satisfies `2 = 0. To get around this, we introduce the element

(3.5) δn := θ1ξ1 + θ2ξ2 + · · ·+ θnξn ∈ ∧{Θn,Ξn}1,1

The following result states that δn is a bigraded version of a Lefschetz element for the ring
∧{Θn,Ξn}.

Theorem 3.2. Suppose i+ j ≤ n and let r = n− i− j. The linear map

(3.6) ϕ : ∧{Θn,Ξn}i,j
δrn·−−−→ ∧{Θn,Ξn}n−j,n−i

given by multiplication by δrn is bijective.

Proof. The idea is to introduce strategically chosen bases of the domain and target of ϕ and show
that the matrix representing ϕ with respect to these bases is invertible using Theorem 3.1.

Given two subsets A,B ⊆ {1, . . . , n}, write

A−B = {a1 < a2 < · · · < ar}

B −A = {b1 < b2 < · · · < bs}

A ∩B = {c1 < c2 < · · · < ct}

and set

(3.7) v(A,B) := ξc1θc1ξc2θc2 · · · ξctθct · θa1θa2 · · · θar · ξb1ξb2 · · · ξbs .

The family {v(A,B) : A,B ⊆ {1, . . . , n}} is a basis of ∧{Θn,Ξn}. For any sets A and B, a direct
computation shows

(3.8) δn · v(A,B) =
∑

c/∈A∪B

v(A ∪ c, B ∪ c).

The somewhat unusual variable order in the product v(A,B) was chosen strategically so that
Equation (3.8) does not contain any signs.
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Now suppose |A| = i and |B| = j for i + j ≤ n and set r = n − i − j. Iterating Equation (3.8)
yields

(3.9) δrn · v(A,B) =
∑

|C|=n−j, |D|=n−i
A⊆C, B⊆D

|C∩D|−|A∩B|=r

r! · v(C,D).

We need to show that the (square) matrix of dimensions
(

n
i

)

·
(

n
j

)

×
(

n
n−j

)

·
(

n
n−i

)

defined by the

system (3.9) is invertible. For any v(C,D) appearing in on the right-hand side of (3.9) we have
A − B = C − D =: I and B − A = D − C =: J . The matrix representing ϕ therefore breaks up
as a direct sum of smaller matrices indexed by the two sets I and J , so we only need to show that
every (I, J)-submatrix is invertible.

For fixed I and J , the submatrix in the previous paragraph is determined by the system

(3.10) δrn · v(A,B) =
∑

T⊆S
|T |=r

r! · v(A ∪ T,B ∪ T )

where S := {1, . . . , n} − (A ∪B). The system (3.10) represents a linear map

(3.11) span{v(A,B) : |A| = i, |B| = j, A−B = I, B −A = J} →

span{v(C,D) : |C| = n− j, |D| = n− i, C −D = I, D − C = J}

where all sets A,B,C,D are subsets of {1, . . . , n}. In particular, the system (3.10) represents a

square matrix of size
(n−|I|−|J |

k

)

where k := i − |I| = j − |J | is the size of the intersection |A ∩ B|
for any element v(A,B) appearing in the LHS. If we let S′ := {1, . . . , n}− (I ∪ J), the invertibility
of the system (3.10) is equivalent to the invertibility of the system

(3.12) δrn · v(R,R) =
∑

T⊆S′

|T |=r

r! · v(R ∪ T,R ∪ T )

representing a linear map

(3.13) span{v(R,R) : R ⊆ S′ and |R| = k} → span{v(R′, R′) : R′ ⊆ S′ and |R′| = k + r}.

Observe that

(3.14) k + (k + r) = (i− |I|) + (j − |J |) + n− i− j = n− |I| − |J | = |S′|

so that the system (3.12) is invertible by Theorem 3.1. �

4. Casimir elements and fermionic diagonal coinvariants

Let W be an irreducible reflection group with reflection representation V = C
n. Let θ1, . . . , θn be

a basis of V . Given the choice of θ1, . . . , θn, we let ξ1, . . . , ξn be the dual basis of V ∗ characterized
by

(4.1) ξi(θj) = δi,j .

We rename the element δn = θ1ξ1 + · · ·+ θnξn of ∧(V ⊕ V ∗) studied in the previous section as δW :

(4.2) δW := δn = θ1ξ1 + · · ·+ θnξn ∈ V ⊗ V ∗ ⊆ ∧(V ⊕ V ∗).

We refer to δW as the Casimir element of W .
The full general linear group GL(V ) acts on ∧(V ⊕ V ∗) and it is not difficult to check using

elementary matrices and the dual basis property that δW is invariant under this action. The GL(V )-
invariance of δW can be seen more conceptually by noting that δW corresponds to idV under the
isomorphism V ⊗ V ∗ → HomC(V, V ) which sends v ⊗ f to the linear map u 7→ f(u) · v. This

isomorphism V ⊗ V ∗ ∼
−→ HomC(V, V ) is GL(V )-equivariant under the diagonal action on V ⊗ V ∗
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and the conjugation action on HomC(V, V ), and the conjugation action of GL(V ) on HomC(V, V )
fixes idV . The GL(V )-equivariance of δW implies that δW is independent of the choice of basis
θ1, . . . , θn. Since W ⊆ GL(V ), the element δW lies in the W -invariant subring ∧(V ⊕ V ∗)W of
∧(V ⊕ V ∗). In fact,

Proposition 4.1. The Casimir element δW generates the W -invariant subring ∧(V ⊕ V ∗)W of
∧(V ⊕ V ∗).

Proof. Let G be a group and let U,U ′ be irreducible finite-dimensional complex representations of
G. The tensor product U⊗U ′ is a G-module by the rule g.(u⊗u′) := (g.u)⊗(g.u′) for g ∈ G, u ∈ U,
and u′ ∈ U ′. (This is the Kronecker product of the modules U and U ′.) Since we are working over
C, Schur’s Lemma implies

dim(U ⊗ U ′)G = dimHomG(U
′, U∗)(4.3)

=

{

1 U ′ ∼=G U∗

0 otherwise.
(4.4)

Since W is an irreducible complex reflection group, a result of Steinberg (see [13, Thm. A, §24-3,
p. 250]) implies that the exterior powers ∧0V,∧1V, . . . ,∧nV are pairwise nonisomorphic irreducible
representations of W . The same is true of their duals (∧0V )∗, (∧1V )∗, . . . , (∧nV )∗. Since the (i, j)-
bidegree of ∧(V ⊕V ∗) is given by ∧(V ⊕V ∗)i,j = ∧iV ⊗∧j(V ∗), the argument of the last paragraph
gives

(4.5) dim∧(V ⊕ V ∗)Wi,j = dim(∧iV ⊗ ∧j(V ∗))W = dim(∧iV ⊗ (∧jV )∗)W =

{

1 i = j

0 i 6= j

for any 0 ≤ i, j ≤ n where the second equality used the W -module isomorphism ∧j(V ∗) ∼= (∧jV )∗.
On the other hand, we have δW ∈ ∧(V ⊕ V ∗)W1,1. A quick computation shows that δnW is a nonzero

scalar multiple of θ1ξ1θ2ξ2 · · · θnξn so that each of the powers δ0W , δ1W , . . . , δnW is nonzero. The
proposition follows. �

We are ready to describe the bigraded W -module structure of DRW . We state our answer in
terms of the Grothendieck ring of W . Recall that this is the Z-algebra generated by the symbols
[U ] where U is a finite-dimensional W -module and subject to a relation [U ] = [U ′] + [U ′′] for any
short exact sequence

(4.6) 0 → U ′ → U → U ′′ → 0.

In particular, if U ∼= U ′ we have [U ] = [U ′]. Multiplication in the Grothendieck ring corresponds
to Kronecker product, i.e. [U ] · [U ′] := [U ⊗ U ′].

Theorem 4.2. Let W be an irreducible complex reflection group acting on its reflection represen-
tation V = C

n and let 0 ≤ i, j ≤ n. If i + j > n we have (DRW )i,j = 0. If i + j ≤ n, inside the
Grothendieck group of W we have

(4.7) [(DRW )i,j ] = [∧iV ] · [∧jV ∗]− [∧i−1V ] · [∧j−1V ∗]

where we interpret ∧−1V = ∧−1V ∗ = 0.

Proof. Thanks to Proposition 4.1 we can model DRW as

(4.8) DRW = ∧(V ⊕ V ∗)/〈δW 〉 = ∧{Θn,Ξn}/〈δn〉.

If i = 0 or j = 0, the claim follows since δW lies in bidegree (1, 1), so assume i, j > 0.
If i+ j ≤ n, let r = n− i− j + 1. Theorem 3.2 implies that the multiplication map

(4.9) δrW · (−) : ∧(V ⊕ V ∗)i−1,j−1 → ∧(V ⊕ V ∗)n−j+1,n−i+1
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is a linear isomorphism. Whenever a composition f ◦g of maps is a bijection, the map g is injective
and the map f is surjective. Therefore, the map

(4.10) δW · (−) : ∧(V ⊕ V ∗)i−1,j−1 → ∧(V ⊕ V ∗)i,j

is an injection which we know to be W -equivariant. The claimed decomposition of [(DRW )i,j ]
follows from (4.8).

Now suppose i+ j > n. By analogous reasoning

(4.11) δW · (−) : ∧(V ⊕ V ∗)i−1,j−1 → ∧(V ⊕ V ∗)i,j

is a W -equivariant surjection so that (DRW )i,j = 0. �

Corollary 4.3. If W has rank n, the vector space dimension of DRW is dimDRW =
(

2n+1
n

)

.

Proof. Since dim∧kV = dim∧kV ∗ =
(

n
k

)

where V is the reflection representation ofW , Theorem 4.2
yields

dimDRW =

n
∑

k=0

(

n

k

)(

n

n− k

)

+

n
∑

j=1

(

n

j − 1

)(

n

n− j

)

(4.12)

=

(

2n

n

)

+

(

2n

n− 1

)

(4.13)

=

(

2n+ 1

n

)

(4.14)

by the Pascal recursion. �

Recall that the Catalan and Narayana numbers are given by

(4.15) Cat(n) :=
1

n+ 1

(

2n

n

)

and Nar(n, k) :=
1

n

(

n

k

)(

n

k − 1

)

.

We have
∑n

k=1Nar(n, k) = Cat(n). These numbers have many combinatorial interpretations; for
example, Cat(n) counts the number of Dyck paths from (0, 0) to (2n, 0) and Nar(n, k) counts the
number of such paths with k − 1 peaks. The Catalan and Narayana numbers show up as the
dimensions of the ‘boundary’ pieces of DRW .

Corollary 4.4. If W has rank n, we have

(4.16) dim(DRW )k,n−k = Nar(n+ 1, k + 1)

for 0 ≤ k ≤ n so that

(4.17)

n
∑

k=0

dim(DRW )k,n−k = Cat(n+ 1).

Proof. Thanks to Theorem 4.2 one need only verify the identity

(4.18) Nar(n+ 1, k + 1) =

(

n

k

)(

n

n− k

)

−

(

n

k − 1

)(

n

n− k − 1

)

,

which is straightforward. �

For any reflection group W , there are Catalan and Narayana numbers attached to W (see for
example [2]); the numbers appearing in Corollary 4.4 are their type A instances, and depend only
on the rank of W .
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σ •

•

• •

•

• •

•

•

•

θ

θ

µ •

•

•

•

•

• •

•

• •

ξ

θ

Figure 1. Two paths in Π(9).

Remark 4.5. The results in this section and the next apply equally well to any (possibly infinite)
group G and any finite-dimensional G-module V for which the exterior powers ∧0V,∧1V, . . . ,∧nV
are pairwise nonisomorphic irreducibles and n = dimV . The proofs go through mutatis mutandis.

The full general linear group GL(V ) acting on its defining representation V is one such example,
and in this case Theorem 4.2 asserts that

(4.19) ch(∧iV ⊗ ∧jV ∗)− ch(∧i−1V ⊗ ∧j−1V ∗) =

ei(x1, . . . , xn) · ej(x
−1
1 , . . . , x−1

n )− ei−1(x1, . . . , xn) · ej−1(x
−1
1 , . . . , x−1

n )

is the Weyl character of a genuine (and not merely virtual) GL(V )-module. Here ei is the degree i
elementary symmetric polynomial and the Weyl character ch(W ) of any GL(V )-module W is the
function of x1, . . . , xn characterized by

(4.20) ch(W ) = traceW (diag(x1, . . . , xn))

for x1, . . . , xn ∈ C
×.

5. Motzkin paths and standard bases

In this section we describe the standard monomial basis of DRW (with respect to a term order ≺
which we will define) in terms of a certain family of lattice paths. A Motzkin path is a lattice path
in Z

2 consisting of up-steps (1, 1), down-steps (1,−1), and horizontal steps (1, 0) which starts at
the origin, ends on the x-axis, and never sinks below the x-axis. We consider a variant of Motzkin
paths which have decorated horizontal steps and need not end on the x-axis.

Let Π(n) be the family of n-step lattice paths σ = (s1, . . . , sn) in Z
2 which start at the origin and

consist of up-steps (1, 1), down-steps (1,−1), and horizontal steps (1, 0) in which each horizontal
step is decorated with a θ or a ξ. We let Π(n)≥0 ⊆ Π(n) be the family of paths which never sink
below the x-axis. Two paths in Π(9) are shown in Figure 1; the top path lies in Π(9)≥0 but the
bottom path does not.

The depth d(σ) of a path σ ∈ Π(n) is the minimum y-value attained by σ. If σ and µ are as in
Figure 1 then d(σ) = 0 and d(µ) = −2. We have

(5.1) Π(n)≥0 = {σ ∈ Π(n) : d(σ) = 0}

and d(σ) < 0 for any σ ∈ Π(n)−Π(n)≥0.
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Let σ = (s1, . . . , sn) ∈ Π(n). The weight of the ith step si of σ is

(5.2) wt(σ) :=



















1 if si = (1, 1) is an up-step

θi if si = (1, 0) is decorated with θ

ξi if si = (1, 0) is decorated with ξ

θiξi if si = (1,−1) is a down-step

and the weight of σ is the product

(5.3) wt(σ) := wt(s1) · · ·wt(sn)

of the steps of σ in the order in which they appear. For the paths σ and µ in Figure 1 we have

(5.4) wt(σ) = θ3 · θ4ξ4 · θ5ξ5 · θ6 · θ9ξ9 and wt(µ) = θ2ξ2 · θ3ξ3 · θ4ξ4 · ξ6 · θ9.

A moment’s thought shows that σ 7→ wt(σ) gives a bijection from Π(n) to the set of monomials
in ∧{Θn,Ξn}, where monomials with differing signs are considered equivalent. We will identify
paths σ with their monomials wt(σ).

The (total) degree of a path σ is

(5.5) deg(σ) := n− (the terminal y-coordinate of σ).

This is simply the total number of exterior generators θi and ξi appearing in the monomial σ. We
define the θ-degree degθ(σ) and ξ-degree degξ(σ) analogously. Combinatorially,

(5.6) degθ(σ) = (number of down-steps) + (number of θ-horizontal steps)

and

(5.7) degξ(σ) = (number of down-steps) + (number of ξ-horizontal steps).

If σ and µ are as in Figure 1 then

(5.8)











deg(σ) = 8

degθ(σ) = 5

degξ(σ) = 3

and











deg(µ) = 8

degθ(µ) = 4

degξ(µ) = 4

We introduce the total order ≺ on paths σ ∈ Π(n), or on monomials in ∧{Θn,Ξn} given by

(5.9) σ ≺ σ′ ⇔











deg(σ) < deg(σ′) or

deg(σ) = deg(σ′) and d(σ) > d(σ′) or

deg(σ) = deg(σ′) and d(σ) = d(σ′) and σ <lex σ′

where in the last branch <lex means the lexicographical order on the paths σ = (s1, . . . , sn) and
σ′ = (s′1, . . . , s

′
n) induced by declaring the step order

(5.10) (1, 1) < (1, 0) with θ-decoration < (1, 0) with ξ-decoration < (1,−1).

The collection of paths/monomials with a given bidegree (i, j) form a subinterval of ≺ for all
0 ≤ i, j ≤ n. In our running example of Figure 1, we have deg(σ) = deg(µ) but d(σ) > d(µ) so
that σ ≺ µ.

Lemma 5.1. The total order ≺ is a term order for ∧{Θn,Ξn}.

Proof. The first branch of the definition of ≺ guarantees that the monomial 1 with path consisting
of a sequence of n up-steps is the minimum monomial under ≺. Checking that ≺ respects mul-
tiplication amounts to the observation that total degree, depth, and lexicographical order are all
respected by multiplication. �

It turns out that the set {wt(σ) : σ ∈ Π(n)≥0} descends to a C-basis of DRW . In fact, we prove
something stronger.
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Theorem 5.2. Let W be an irreducible complex reflection group of rank n. The set {wt(σ) : σ ∈
Π(n)≥0} is the standard monomial basis of DRW with respect to ≺. The bigraded Hilbert series of
DRW is given by

(5.11) Hilb(DRW ; q, t) =
∑

σ∈Π(n)≥0

qdegθ(σ)tdegξ(σ).

Proof. Let In = 〈δn〉 ⊆ ∧{Θn,Ξn} be the defining ideal of DRW (here we apply Proposition 4.1).
Identifying paths with monomials, we want to show N(In) = Π(n)≥0 with respect to ≺. We proceed
by induction on n, with the base case n = 1 being immediate.

Suppose n > 1 and σ = (s1, . . . , sn) ∈ Π(n) − Π(n)≥0. In particular, we have d(σ) < 0. The
following lemma will show inductively that σ /∈ N(In).

Lemma 5.3. The monomial σ lies in lm(In) or else σ = 0 in the quotient DRW .

Proof. (of Lemma 5.3) Let σ0 ∈ ∧{Θn−1,Ξn−1} be the monomial σ with its last step sn removed.
The proof breaks into cases depending on the step sn.

Case 1: The last step sn is a horizontal step (of either decoration θ or ξ).
We assume the decoration of sn is θ; the other case is similar. In this case, we have σ0 ∈

Π(n − 1) − Π(n − 1)≥0 and σ = σ0θn. We may inductively assume that σ0 ∈ lm(In−1) so that
σ0 = lm(f · δn−1) for some polynomial f ∈ ∧{Θn−1,Ξn−1}. Since

(5.12) f · δn · θn = f · δn−1θn + f · θnξn · θn = f · δn−1 · θn,

we conclude that f · δn−1 · θn ∈ In. We have

(5.13) lm(f · δn−1 · θn) = lm(f · δn−1) · θn = σ0 · θn = σ,

completing the proof of Case 1.
Case 2: The last step sn is a down-step (1,−1).
If σ0 ∈ Π(n− 1)−Π(n− 1)≥0 sinks below the x-axis, the proof is similar to that of Case 1. One

right-multiplies f · δn by θnξn instead of θn; we leave the details to the reader.
In this case we could have σ0 ∈ Π(n− 1)≥0, but this would imply that σ0 ends on the x-axis, so

that deg(σ) = deg(σ0) + 2 = (n − 1) + 2 = n + 1. Theorem 4.2 then forces σ = 0 in the quotient
DRW , completing the proof of Case 2.

Case 3: The last step sn is an up-step (1, 1).
This is the most involved case. We have σ0 = σ and σ0 ∈ Π(n− 1)−Π(n− 1)≥0. By induction,

we may assume that there is f ∈ ∧{Θn−1,Ξn−1} with σ0 = lm(f · δn−1). Now consider

(5.14) f · δn = f · δn−1 + f · θnξn ∈ In.

By discarding redundant terms if necessary, we may assume that f is bi-homogeneous. The mono-
mial σ = σ0 is the ≺-largest monomial appearing in f · δn−1. Since σ does not involve θn or ξn,
it does not appear in f · θnξn. We will have σ = lm(f · δn) unless some monomial µ appearing in
f · θnξn satisfies µ � σ.

Let µ be the ≺-largest element of f · θnξn and assume σ ≺ µ. Let µ0 ∈ Π(n − 1) be the path
obtained from µ by removing its last step (which is necessarily a down-step since µ appears in
f · θnξn). Since σ ≺ µ, the bihomogeneity of f forces d(µ) ≤ d(σ) < 0.

Subcase 3.1: We have µ0 ∈ Π(n− 1)≥0, or equivalently d(µ0) ≥ 0.
Since d(µ) = d(µ0) + 1 < 0, this can only happen if d(µ0) = 0 and µ0 ends at the lattice points

(n − 1, 0). This implies that deg(µ) = deg(µ0) + 2 = (n − 1) + 2 = n + 1 and Theorem 4.2 forces
µ ∈ In. We may therefore discard the term involving µ from (5.14) and still have an element of In
involving σ.

Subcase 3.2: We have µ0 ∈ Π(n− 1)−Π(n− 1)≥0, or equivalently d(µ0) < 0.
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In this case, we induct on n to obtain some polynomial g ∈ ∧{Θn−1,Ξn−1} whose leading
monomial is µ0 = lm(g · δn−1). We calculate

(5.15) lm(g · δn · θnξn) = lm(g · δn−1 · θnξn) = lm(g · δn−1) · θnξn = µ0 · θnξn = µ

where the second equality used the fact that g · δn−1 does not involve θn or ξn. Since σ does not
involve θn or ξn, it does not appear in g · δn · θnξn. We may therefore replace (5.14) by

(5.16) f · δn−1 + (f − g · δn−1) · θnξn ∈ In

to obtain another element of In which involves σ only in its first term, still satisfies σ = lm(f ·δn−1),
but now only involves monomials ≺ µ.

Iterating the arguments of Subcases 3.1 and 3.2, we see that σ ∈ lm(In), proving both Case 3
and the lemma. �

We complete the proof of Theorem 5.2 using Lemma 5.3. Lemma 5.3 implies N(In) ⊆ Π(n)≥0,
and to force equality it suffices to verify

(5.17) dimDRW = |Π(n)≥0|.

In fact, we verify the following equality of polynomials in q and t:

(5.18) Hilb(DRW ; q, t) =
∑

σ∈Π(n)≥0

qdegθ(σ)tdegξ(σ) =: Pn(q, t).

If we let Π(n)=0 ⊆ Π(n)≥0 be the subset of paths that end on the x-axis and let

(5.19) P ′
n(q, t) :=

∑

σ∈Π(n)=0

qdegθ(σ)tdegξ(σ),

considering the addition of one more step to a path yields

(5.20) Pn+1(q, t) = (1 + q + t+ qt) · Pn(q, t)− (qt) · P ′
n(q, t).

On the other hand (adopting the notation DRW (n) for DRW whenever W has rank n) Theorem 4.2
yields

(5.21) dim(DRW (n+1))i,j =











(

n+1
i

)

·
(

n+1
j

)

−
(

n+1
i−1

)

·
(

n+1
j−1

)

if i, j > 0 and i+ j ≤ n+ 1
(

n+1
i

)

·
(

n+1
j

)

if i = 0 or j = 0

0 if i+ j > n+ 1

It can be shown using the Pascal identity and Equation (5.21) that

(5.22) Hilb(DRW (n+1); q, t) = (1+q+t+qt)·Hilb(DRW (n); q, t)−(qt)·
∑

i+j=n+1

dim(DRW (n))i,j ·q
itj ,

which matches the combinatorial recursion in Equation (5.20). �

6. The permutation representation of Sn

In the coinvariant theory of the symmetric group Sn, it is more common to consider its n-
dimensional permutation representation U as opposed to its (n − 1)-dimensional reflection repre-
sentation V . In this section we describe how to translate our results into this setting.

The following decompositions of U and U∗ into Sn-irreducibles are well-known:

(6.1) U = V ⊕ USn and U∗ = V ∗ ⊕ (U∗)Sn .
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It follows that

∧(U ⊕ U∗) ∼= ∧[(V ⊕ USn)⊕ (V ∗ ⊕ (U∗)Sn)](6.2)

∼= ∧[(V ⊕ V ∗)⊕ (USn ⊕ (U∗)Sn)](6.3)

∼= [∧(V ⊕ V ∗)]⊗ [∧(USn ⊕ (U∗)Sn)].(6.4)

Modding out by ideals generated by Sn-invariants with vanishing constant term, we see that

(6.5) ∧(U ⊗ U∗)/〈∧(U ⊗ U∗)Sn
+ 〉 ∼= ∧(V ⊗ V ∗)/〈∧(V ⊗ V ∗)Sn

+ 〉.

Let Sn act on ∧{Θn,Ξn} diagonally, viz. w.θi := θw(i) and w.ξi := ξw(i). Expressing the
left-hand side of (6.5) in terms of coordinates, we have the following translation of Theorem 4.2,
Corollary 4.3, and Corollary 4.3.

Theorem 6.1. Let DRn be the bigraded Sn-module

(6.6) DRn := ∧{Θn,Ξn}/〈∧{Θn,Ξn}
Sn
+ 〉.

We have (DRn)i,j = 0 whenever i+ j ≥ n. If i+ j < n, we have

(6.7) Frob(DRn)i,j = s(n−i,1i) ∗ s(n−j,1j) − s(n−i+1,1i−1) ∗ s(n−j+1,1j−1)

where ∗ denotes Kronecker product. Here we interpret s(n+1,−1) = 0. We have

(6.8) dimDRn =

(

2n− 1

n

)

and, for 1 ≤ k ≤ n, we have

(6.9) dim(DRn)k−1,n−k = Nar(n, k)

so that
∑n

k=1 dim(DRn)k−1,n−k = Cat(n).

Equation (6.8) was conjectured by Mike Zabrocki [23]. We also have a lattice path basis of the
Sn-module DRn in Theorem 6.1. For a partition λ ` n, work of Rosas [19] implies that

(6.10) 〈grFrob(DRn; q, t), sλ〉 = 0

unless the partition λ = (λ1 ≥ λ2 ≥ λ3 ≥ · · · ) satisfies λ3 ≤ 2 (i.e. the Young diagram of λ is a
union of two possibly empty hooks). While these multiplicities can be less than aesthetic in general,
they are nice when λ is a hook. Recall that the q, t-analog of n is given by

(6.11) [n]q,t :=
qn − tn

q − t
= qn−1 + qn−2t+ · · ·+ qtn−2 + tn−1.

Proposition 6.2. The graded multiplicities of the trivial and sign representations in DRn are
given by

(6.12) 〈grFrob(DRn; q, t), s(n)〉 = 1 and 〈grFrob(DRn; q, t), s(1n)〉 = [n]q,t.

If 0 < k < n− 1 we have

(6.13) 〈grFrob(DRn; q, t), s(n−k,1k)〉 = [k + 1]q,t + (qt) · [k]q,t.

Proof. The equation 〈grFrob(DRn; q, t), s(n)〉 = 1 is immediate sinceDRn is obtained from ∧{Θn,Ξn}
by modding out by Sn-invariants with vanishing constant term. The multiplicity of the sign rep-
resentation follows from Theorem 6.1 and the fact that for any partitions λ, µ ` n

(6.14) multiplicity of s(1n) in sλ ∗ sµ =

{

1 if µ = λ′

0 otherwise

where λ′ is the conjugate (transpose) partition of λ.
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We turn our attention to Equation (6.13). For any statement P , let χ(P ) = 1 if P is true and
χ(P ) = 0 if P is false. Rosas proves [19, Proof of Thm. 13 (4)] that the multiplicity of the Schur
function s(n−c,1c) in the Kronecker product s(n−a,1a) ∗ s(n−b,1b) is

(6.15) 〈s(n−a,1a) ∗ s(n−b,1b), s(n−c,1c)〉 = χ(|b− a| ≤ c)× χ(c ≤ a+ b ≤ 2n− c− 2)

whenever 0 < a, b < n and 0 < c < n− 1.
For any 0 ≤ k ≤ n− 1 and all i+ j < n, we have

(6.16) 〈Frob(DRn)i,j , s(n−k,1k)〉 =

〈s(n−i,1i) ∗ s(n−j,1j), s(n−k,1k)〉 − 〈s(n−i+1,1i−1) ∗ s(n−j+1,1j−1), s(n−k,1k)〉

A somewhat tedious casework using Equation (6.15) yields

(6.17) 〈Frob(DRn)i,j , s(n−k,1k)〉 =











1 if i+ j = k

1 if i+ j = k + 1 and i, j > 0

0 otherwise

which is equivalent to Equation (6.13). �

In order to state a DRn-analog of Theorem 5.2, we need some notation. We define the primed
weight wt′(s) of a step s to be

(6.18)



















1 if s = (1, 1) is an up-step

θi if s = (1, 0) is decorated with θ

ξ′i if s = (1, 0) is decorated with ξ

θiξ
′
i if s = (1,−1) is a down-step

where

(6.19) ξ′i := ξi +
n
∑

j=2

ξj .

The primed weight wt′(σ) of a path σ ∈ Π(n) with steps σ = (s1, . . . , sn) is wt
′(σ) := wt′(s1) · · ·wt

′(sn).
Let Π(n)>0 ⊆ Π(n) consist of those paths which only meet the x-axis at their starting point (0, 0)
and stay strictly above the x-axis otherwise.

Theorem 6.3. The set {wt′(σ) : σ ∈ Π(n)>0} descends to a basis of DRn. Consequently, we have

(6.20) Hilb(DRn; q, t) =
∑

σ∈Π(n)>0

qdegθ(σ)tdegξ(σ).

Proof. Proposition 4.1 and the discussion prior to Theorem 6.1 imply that the invariant subalgebra
∧{Θn,Ξn}

Sn is generated by the three elements

θ1 + · · ·+ θn, ξ1 + · · ·+ ξn, and θ1ξ1 + · · ·+ θnξn

and consequently

(6.21) DRn = ∧{θ1, . . . , θn, ξ1, . . . , ξn}/〈θ1 + · · ·+ θn, ξ1 + · · ·+ ξn, θ1ξ1 + · · ·+ θnξn〉.

We express DRn as a successive quotient

DRn = ∧{θ1, . . . , θn, ξ1, . . . , ξn}/〈θ1 + · · ·+ θn, ξ1 + · · ·+ ξn, θ1ξ1 + · · ·+ θnξn〉.(6.22)

=

(

∧{θ1, . . . , θn}/〈

n
∑

i=1

θi〉 ⊗ ∧{ξ1, . . . , ξn}/〈

n
∑

i=1

ξi〉

)

/〈

n
∑

i=1

θi ⊗ ξi〉(6.23)
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Then as graded vector spaces, we identify θ1 = −θ2 − · · · − θn and ξ1 = −ξ2 − · · · − ξn to obtain

DRn
∼= (∧{θ2, . . . , θn} ⊗ ∧{ξ2, . . . , ξn}) /〈(−θ2 − · · · − θn)⊗ (−ξ2 − · · · − ξn) +

n
∑

i=2

θi ⊗ ξi〉(6.24)

= (∧{θ2, . . . , θn} ⊗ ∧{ξ2, . . . , ξn}) /〈

n
∑

i=2

θi ⊗ (ξi +
n
∑

j=2

ξj)〉(6.25)

The transition matrix from the set {ξ2+
∑n

j=2 ξj , . . . , ξn+
∑n

j=2 ξj} = {ξ′2, . . . , ξ
′
n} to the standard

basis {ξ2, . . . , ξn} of the degree 1 component of ∧{ξ2, . . . , ξn} is










2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2











which is easily checked to be invertible. Therefore, the set {ξ′2, . . . , ξ
′
n} is also a basis of the degree

1 component of ∧{ξ2, . . . , ξn} and we may write

(6.26) DRn
∼= ∧{θ2, . . . , θn, ξ

′
2, . . . , ξ

′
n}/〈θ2ξ

′
2 + · · ·+ θnξ

′
n〉.

Theorem 5.2 applies to complete the proof. �

7. Open Problems

The key result underpinning our analysis of DRW and DRn was the Lefschetz Theorem 3.2. Our
proof was combinatorial and ultimately relied on the Boolean poset B(n). Given the importance
of Lefschetz elements in geometry, it is natural to ask the following.

Question 7.1. Is there a geometric proof of Theorem 3.2?

Modern variants of HL and PD were used to great effect in the work of Adiprasito, Huh, and
Katz on the Chow rings of matroids [1]. Is there a deeper meaning to HL and PD as they apply to
exterior algebras? Perhaps the realization of ∧{Θn,Ξn} as the exterior algebra over the holomorphic
tangent space at the origin in C

n ⊕ C
n would be relevant here.

It may also be interesting to consider combining two sets of commuting and anticommuting
variables to get a ring

(7.1) C[Xn, Yn]⊗ ∧{Θn,Ξn} := C[x1, . . . , xn, y1, . . . , yn]⊗ ∧{θ1, . . . , θn, ξ1, . . . , ξn}

which may be identified with the algebra of polynomial-valued holomorphic differential forms on
C
n ⊕ C

n. This ring is quadruply graded, and the diagonal action of Sn gives rise to a coinvariant
space C[Xn, Yn,Θn,Ξn]/〈C[Xn, Yn,Θn,Ξn]

Sn
+ 〉. Setting the ξ-variables to zero, Zabrocki [22] con-

jectured that the triply graded Frobenius image of this quotient is given by the Delta Conjecture
of Haglund, Remmel, and Wilson [8]. Furthermore, again when the ξ-variables are set to zero,
Haglund and Sergel [10] have a conjectural monomial basis of this quotient which would extend a
basis of the diagonal coinvariants due to Carlsson and Oblomkov [7].

Problem 7.2. Find a basis of the quotient C[Xn, Yn,Θn,Ξn]/〈C[Xn, Yn,Θn,Ξn]
Sn
+ 〉 which gener-

alizes the basis of C[Xn, Yn]/〈C[Xn, Yn]
Sn
+ 〉 due to Carlsson-Oblomkov [7] and the conjectural basis

of C[Xn, Yn,Θn]/〈C[Xn, Yn,Θn]
Sn
+ 〉 due to Haglund-Sergel [10].

A solution to Problem 7.2 might be obtained by interpolating between the parking function
‘schedules’ present in [7, 10] and our Motzkin-like paths Π(n)>0.

Let Xk×n = (xi,j)1≤i≤k,1≤j≤n be a k × n matrix of commuting variables and let C[Xk×n] be the
polynomial ring in these variables. The ring C[Xk×n] carries a Sn-module structure inherited from
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column permutation and the quotient C[Xk×n]/〈C[Xk×n]
Sn
+ 〉 is a (Z≥0)

k-graded Sn-module. When
k = 2, we recover the classical diagonal coinvariants. F. Bergeron has many fascinating conjectures
about this object obtained by letting the parameter k grow [3].

We can carry out the construction of the previous paragraph with a matrix Θk×n = (θi,j)1≤i≤k,1≤j≤n

of anticommuting variables. We still have an action of Sn on columns and can still consider the
quotient

(7.2) R(k × n) := ∧{Θk×n}/〈∧{Θk×n}
Sn
+ 〉.

In the case k = 2 we recover DRn. For stability results involving such quotients, and corresponding
quotients using both commuting and anticommuting variables, see [17].

Question 7.3. Find the multigraded Sn-isomorphism type of R(k × n).

The Diagonal Supersymmetry Conjecture of F. Bergeron [4, Conj. 1] predicts that a solution to
Question 7.3 for all values of n and k would determine the multigraded Sn-isomorphism type of

(7.3) C[Xm×n]⊗ ∧{Θk×n}/〈(C[Xm×n]⊗ ∧{Θk×n})
Sn
+ 〉

for all values of n,m, and k. In particular, this includes the classical diagonal coinvariant ring
(k = 0,m = 2) as well as the not-yet-understood case of k = 0,m > 2. In light of [4, Conj. 1]
it is interesting that the m = 0, k = 2 case of DRn was so much easier to analyze than the case
m = 2, k = 0. Furthermore, [4, Conj. 1] suggests that Question 7.3 will become very difficult as k
grows.

It is unclear how to use Lefschetz Theory to solve Question 7.3 for k > 2. For any set S ⊆
{1, 2, . . . , k} of rows, we have a Sn-invariant

(7.4) δS :=
∏

i∈S

θi,1 +
∏

i∈S

θi,2 + · · ·+
∏

i∈S

θi,n ∈ ∧{Θk×n}

where the products are taken in increasing order of i ∈ S. Orellana and Zabrocki proved [15] that the
elements δS generate the invariant subring ∧{Θk×n}

Sn where S ranges over all nonempty subsets
of {1, 2, . . . , k}. In fact, the results of [15] give an explicit generating set of the Sn-invariant subring
of the tensor product C[Xm×n] ⊗ ∧{Θk×n} for any n,m, and k. When |S| is even, the element
δS has the potential to be Lefschetz, but δ2S = 0 when |S| is odd. For |S| = 1, the row sum δS
may be easy to handle, but the situation becomes more complicated as an odd-sized set S grows.
Furthermore, one would have to understand how the various images of multiplication by the δS
between bidegrees intersect as S varies.
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