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Abstract

Motivation: Detailed mechanistic models of biological processes can pose significant challenges for analysis
and parameter estimations due to the large number of equations used to track the dynamics of all distinct
configurations in which each involved biochemical species can be found. Model reduction can help tame such
complexity by providing a lower-dimensional model in which each macro-variable can be directly related to
the original variables.
Results: We present CLUE, an algorithm for exact model reduction of systems of polynomial differential
equations by constrained linear lumping. It computes the smallest dimensional reduction as a linear mapping
of the state space such that the reduced model preserves the dynamics of user-specified linear combinations
of the original variables. Even though CLUE works with nonlinear differential equations, it is based on linear
algebra tools, which makes it applicable to high-dimensional models. Using case studies from the literature,
we show how CLUE can substantially lower model dimensionality and help extract biologically intelligible
insights from the reduction.
Availability: An implementation of the algorithm and relevant resources to replicate the experiments herein
reported are freely available for download at https://github.com/pogudingleb/CLUE.
Supplementary information: Supplementary materials are enclosed below.

1 Introduction

Kinetic models of biochemical systems hold the promise of being able to unravel mechanistic insights in living
cells as well as predict the behavior of a biological process under unseen circumstances, which is a fundamental
premise for many applications including control and synthesis.

In order to obtain an accurate model, however, it is often necessary to incorporate a substantial amount of
detail about the specific mechanisms of interaction between the different components of a biological system.
In many cases, this may lead to an overall representation which hinders physical intelligibility. For example, a
mechanistic description of protein phosphorylation—a basic, ubiquitous process in signaling pathways [Pawson
and Scott, 2005]—may yield models with a combinatorially large number of variables, particularly in the case
of multisite phosphorylation [Salazar and Höfer, 2009].

Model reduction represents a promising class of methods designed for obtaining a lower-dimensional
representation that retains some dynamical features of interest to the modeler. The substantial body of research
available is motivated by the fact that it is a cross-cutting concern throughout many scientific and engineering
disciplines to be able to effectively work with simple but accurate models of complex systems. Specifically,
for applications to systems biology the availability of a smaller model can be particularly beneficial in order
to reduce the number of kinetic parameters [Danø et al., 2006], whose measurements and calibration is a well-
known hindrance, see, e.g., [Babtie and Stumpf, 2017].
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Techniques based on balanced truncation and singular value decomposition can dramatically lower the
dimensionality of a model with small approximation errors [Antoulas, 2005]. Since the reduced model preserves
the input/output behavior, it can be conveniently used in place of the original model to speed up the computation
time of a numerical simulation. However, the coordinate transformation typically destroys the structure, leading
to a loss of physical interpretability of the model. This is recognized as an important property to be maintained
in applications to systems biology, especially if the model is used to validate mechanistic hypotheses [Schmidt
et al., 2008, Sunnaker et al., 2011, Apri et al., 2012].

For models of biochemical systems, many reduction methods are based on exploiting time-scale
separation [Okino and Mavrovouniotis, 1998]. One of the most well-known approaches is quasi-steady-state
approximation [Segel and Slemrod, 1989], in which, roughly speaking, “fast” variables can be approximated as
reaching their stationary values such that they can be replaced by constants (solutions of the associated system
of equations) in the dynamical model for the “slow” variables. Another class of reduction techniques based
on sensitivity analysis studies how model parameters and variables affect the desired output, suggesting the
elimination of the least influential ones [Snowden et al., 2017].

Exact model reduction aims at lowering dimensionality without introducing approximation errors in the
reduced model. Conservation analysis detects linear combinations of variables that remain constant at all
times [Vallabhajosyula et al., 2005]. Exact lumping is a more general approach whereby it is possible to write
a self-consistent system of dynamical equations for a set of macro-variables in which each macro-variable
represents a combination of the original ones [Okino and Mavrovouniotis, 1998]. Linear lumping, known
as early as in Wei and Kuo [1969], expresses such combinations as a linear mapping on the original state
variables. To maintain some degree of physical interpretability, the lumping may be restricted only to a part of
the state space. Li and Rabitz [1991] allow the specification of linear combination of variables that ought to be
preserved. More recently, Cardelli et al. [2017a] presented a lumping algorithm that identifies a partition of the
state variables such that in the lumped system each macro-variable represents the sum of the original variables
of a block. Specialized lumping criteria have also been studied for classes of biochemical models for signaling
pathways, e.g., [Borisov et al., 2005, Conzelmann et al., 2006, Feret et al., 2009], for example by analyzing
higher-level descriptions such as rule-based systems from which ordinary differential equation (ODE) models
can be generated [Danos and Laneve, 2004, Blinov et al., 2004]. However, these approaches identify specific
types of exact linear lumping, namely if the macro-variables represent sums of the original variables of the
original model (but not necessarily induced by a partition of the state space as in Cardelli et al. [2017a]).

There are connections between exact model reduction and observability/identifiability (see [Miao et al.,
2011, Villaverde, 2019] for discussion of these notions in the biological contexts). If a model admits an exact
reduction preserving the observed variables, then it is not observable because the states with the same image
under the reduction are indistinguishable. On the other hand, the reduction provides a reparametrization with
fewer degrees of freedom with respect to the observations. Moreover, since the reduction is exact, the state (or
parameter) identification can be carried out for the reduced model without any loss of information but at lesser
computational costs, especially for identification methods sensitive to the model dimension (e.g., sampling-
based ones [Ballnus et al., 2017]).

Here we present CLUE, an algorithm for constrained linear lumping, applicable to models as ODEs with
polynomial derivatives. The constraints represent the linear combinations of state variables that ought to be
maintained in the reduced model, similarly to Li and Rabitz [1991]. The algorithm hinges on the fundamental
observation by the same authors [Li and Rabitz, 1989, 1991] that exact lumpings correspond to the subspaces
that are invariant under the Jacobian of the ODE system. For finding these subspaces, Li and Rabitz [1989, 1991]
suggest two ways: (i) produce a finite set of constant matrices such that every common invariant subspace of
these matrices would be invariant for the Jacobian (but not necessarily vice versa); and (ii) find eigenvectors
and eigenvalues of the Jacobian symbolically, and explore their combinations. In the former approach, the
obtained set of matrices might be too restrictive, so a lumping might not be found even if there is one. The latter
approach is limited to small sized systems because it involves finding symbolic expressions to the eigenvalues
of a nonconstant matrix (the Jacobian of the system) and requires human intervention for exploring various
combinations of these eigenvectors (for example, [Li and Rabitz, 1989, §4, Example 2]).

Our main contribution is twofold. First, we provide a set of constant matrices whose common invariant
subspaces are exactly the invariant subspaces of the Jacobian. This allows us to obtain a fully algorithmic
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method for finding a constrained lumping based purely on linear algebra. Second, we improve the algorithm by
eliminating redundant computation from the invariant subspace generation and by using modular computation
to avoid intermediate expression swell. This enables the analysis of models with several thousands of equations
on commodity hardware. Together, our results allow us to study large-scale biochemical models, of which
we present a number of case studies, showing the degree of lumpability achieved as well as the physical
interpretation of the reduced system.

2 Approach and method

Definition 1 (Lumping). Consider a system of ODEs with polynomial right-hand side in the form

ẋ = f(x), (1)

where x = (x1, . . . ,xn)T , f = ( f1, . . . , fn)T , and f1, . . . , fn 2 R[x]. We say that a linear transformation y = Lx

with y = (y1, . . . ,ym)T , L 2 Rm⇥n, and rankL = m is a lumping of (1) if there exist g = (g1, . . . ,gm)T with
g1, . . . ,gm 2 R[y] such that

ẏ = g(y)

for every solution x of (1). We say that m is the dimension of the lumping. The variables y in the reduced system
are called macro-variables.

Example 1. Consider the system

ẋ1 = x2
2 +4x2x3 +4x2

3, ẋ2 = 4x3 �2x1, ẋ3 = x1 + x2. (2)

We claim that the matrix
L =

✓
1 0 0
0 1 2

◆
(3)

gives a lumping of (2) of dimension two. Indeed,
✓

ẏ1
ẏ2

◆
=

✓
ẋ1

ẋ2 +2ẋ3

◆
=

✓
(x2 +2x3)2

2x2 +4x3

◆
=

✓
y2

2
2y2

◆
,

so we can take g1(y1,y2) = y2
2 and g2(y1,y2) = 2y2.

The lumping matrix of (3) turns out to exactly preserve the solution of variable x1. In general, one considers
a vector xobs of combinations of the original variables that are to be recovered in the reduced system; that is,
xobs is a vector of linearly independent forms in x such that xobs = Ax. Then we say that a lumping y = Lx is a
constrained linear lumping if each entry of xobs is a linear combination of the entries of y.

Example 2. Using the system (2), setting

xobs = Ax, with A =

✓
1 0 0
1 1 2

◆
,

we see that (3) is a constrained linear lumping because

xobs =

✓
x1

x1 + x2 +2x3

◆
=

✓
y1

y1 + y2

◆
.

Instead, setting xobs = (x2) does not give a constrained lumping for L because (0,1,0) does not belong to the
row space of L.
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Algorithm 1 Simplified algorithm for finding a constrained lumping of the smallest possible dimension

Input a system ẋ = f(x) of n ODEs with a polynomial right-hand side and an s⇥ n matrix A over R of rank
s > 0;

Output a matrix L such that y := Lx is a constrained lumping with observables Ax of smallest possible
dimension.

(Step 1) Compute J(x), the Jacobian matrix of f(x).

(Step 2) Represent J(x) as J1m1 + . . .+JNmN , where m1, . . . ,mN are distinct monomials in x, and J1, . . . ,JN are
nonzero matrices over R.

(Step 3) Set L := A.

(Step 4) Repeat

(a) for every M in J1, . . . ,JN and row r of L, if rM does not belong to the row space of L, append rM
to L.

(b) if nothing has been appended in the previous step, exit the repeat loop and go to (Step 5).

(Step 5) Return L.

For a given vector xobs, there may be more than one constrained linear lumping. We define two lumpings
y1 = L1x and y2 = L2x to be equivalent if there exists an invertible matrix T such that L1 = T L2. It is possible
to prove that, for every nonzero vector xobs, there exists a unique (up to equivalence) lumping of the smallest
possible dimension.

Let J(x) be the Jacobian matrix of f. From [Li and Rabitz, 1989], L gives a lumping of (1) if and only if the
row space of LJ(x) is contained in the row space of L for all x. The universal quantifier in this characterization
can be handled in different ways (e.g., see [Li and Rabitz, 1989, §3] and [Brochot et al., 2005, pages 722-723]).
We eliminate it as follows. Since the entries of J(x) are polynomials in x, we can write J(x) as

J(x) =
N

Â
i=1

Jimi, (4)

where m1, . . . ,mN are distinct monomials in x and J1, . . . ,JN are matrices over R. Then, the fact that the row
space of LJ(x) is contained in the row space of L for every x is equivalent to the containment of the row space
of LJi in the row space of L for every i = 1, . . . ,N (proved in the supplementary material, see Lemma I.1; the
equivalence does not hold for the method from [Li and Rabitz, 1989, §3], see Remark I.1). This leads to the
following algorithm: we start with matrix A and add products of its rows with the matrices J1, . . . ,JN as long as
the dimension of the row space grows. This is detailed in Algorithm 1.

Example 3. We illustrate Algorithm 1 by applying it to the system in Eq. (2) by choosing A = (1,0,0) (thus
corresponding to recovering x1 in the reduced system). The Jacobian matrix of f(x) in Eq. (2) is

J(x) =

0

@
0 2x2 +4x3 4x2 +8x3
�2 0 4
1 1 0

1

A ,

which can be decomposed as J1m1 + J2m2 + J3m3, where m1 = 1, m2 = x2, m3 = x3, and

J1 =

0

@
0 0 0
�2 0 4
1 1 0

1

A , J2 =

0

@
0 2 4
0 0 0
0 0 0

1

A , J3 =

0

@
0 4 8
0 0 0
0 0 0

1

A .
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Starting with L = (1,0,0), for r = (1,0,0) we compute the products:

rJ1 = (0,0,0), rJ2 = (0,2,4), rJ3 = (0,4,8).

Since rJ1 belongs to the row space of L while rJ2 does not, we set

L =

✓
1 0 0
0 2 4

◆
.

The third vector, rJ3, is proportional to the second row of the new L, so we skip it. Since a new row, (0,2,4),
has been added in part (a) of (Step 4), we do not exit the loop. Setting now r = (0,2,4), we get

rJ1 = (0,4,8), rJ2 = (0,0,0), rJ3 = (0,0,0).

Since all these vectors belong to the row space of L, the iteration terminates and the as-computed L gives the
lumping of the smallest dimension from which we can recover the original quantities specified through A. This
L is not equal to the one in (3) but is equivalent to it in the above sense.

3 Implementation

Algorithm 2 Finding the smallest invariant subspace
(to be used instead of (Step 4) of Algorithm 1)

Input an s⇥n matrix A over field K and a list M1, . . . ,M` of n⇥n matrices over K;

Output an r⇥n matrix L over K such that

• the row span of A is contained in the row span of L.

• for every 1 6 i 6 `, the row span of span of LMi is contained in the row span of L;

• r is the smallest possible.

(Step 1) Let L be the reduced row echelon form of A.

(Step 2) Set P be the set of indices of the pivot columns of L.

(Step 3) While P 6=? do

(a) For every j 2 P and every 1 6 i 6 `

i. Let r be the row in L with the index of the pivot being j.
ii. Reduce rMi with respect to L. If the result is not zero, append it as a new row to L.

iii. Reduce other rows with respect the new one in order to bring L into the reduced row echelon form.

(b) Let eP be the set of indices of the pivot columns of L.

(c) Set P := eP\P.

(Step 4) Return L.

The CLUE algorithm was implemented in Python using the SymPy library [Meurer et al., 2017]. The
source code and all examples from Section 4 are available at https://github.com/pogudingleb/CLUE. Our
implementation accepts models typed manually or provided in the input format of the tool ERODE [Cardelli
et al., 2017b] (which has an importer from SBML, see Pérez-Verona et al. [2019] for details).

For our implementation, we keep the general framework of Algorithm 1 but replace (Step 4), the most time-
consuming part, with a more efficient algorithm. (Step 4) of Algorithm 1 solves the following problem: given a
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set of n-dimensional vectors and a set of n⇥n matrices, find a basis of the smallest vector space that is invariant
under the matrices and that contains the vectors.

We present and implement two algorithms, Algorithm 2 and 3 for replacing (Step 4) of Algorithm 1 (we
apply them with A = L, `= N, and Mi = Ji for every i). The former is typically faster if the intermediate results
of the computation are not too large, while the performance of the latter is less sensitive to the intermediate
expression swell, and it can tackle models that are out of reach for the former (for more details, see Section V
in the Supplementary Materials). Algorithm 3 requires the system to have rational coefficients, but all of the
systems we considered are of this type. Therefore, our implementation runs Algorithm 2 first and, if the size of
intermediate expressions exceeds a threshold (10000 digits), stops it and runs Algorithm 3. We now describe
the key ideas behind these algorithms.

Algorithm 2 is a result of applying the following observations to (Step 4) of Algorithm 1:

• If we maintain L in the reduced row echelon form, we can test whether a vector rM belongs to the row
space of L in O(n2) instead of computing rank, e.g., in O(n3) using Gaussian elimination or in O(n2.373)
using more advanced algorithms [Bürgisser et al., 1997, Section 16.5].

• We do not need to consider all the products of the from rM but only the ones corresponding to the pivots
of L added at the previous iteration of the loop. The largest number of products considered is reduced
from about n2N/2 to at most nN; for justification and details, see the proof of Proposition I.1 in the
Supplementary Materials.

In CLUE, we also take advantage of the fact that the input matrices are frequently very sparse (see Remark III.1
in the Supplementary Materials).

Algorithm 3 Finding the smallest invariant subspace (modular)
(to be used instead of (Step 4) of Algorithm 1)

Input s⇥n matrix A and a list M1, . . . ,M` of n⇥n matrices over Q;

Output an r⇥n matrix L over Q such that:

• the row span of A is contained in the row span of L.

• for every 1 6 i 6 `, the row span of LMi is contained in the row span of L;

• r is the smallest possible.

(Step 1) Repeat the following

(a) Pick a prime number p that does not divide any of the denominators in A,M1, . . . ,M` and has not been
chosen before.

(b) Compute the reductions eA, eM1, . . . , eM` modulo p.

(c) Run Algorithm 2 on eA, eM1, . . . , eM` as matrices over Fp and denote the result by eL.

(d) Apply the rational reconstruction algorithm ([von zur Garthen and Gerhard, 2013, § 5.10], [Wang et al.,
1982]) to construct a matrix L over Q such that the reduction of L mod p equals eL.

(e) Check whether the row span of L contains the row span of L and is invariant under M1, . . . ,M`. If yes,
exit the loop.

(Step 2) Return the matrix L from step (d) of the last iteration of the loop.

As mentioned, Algorithm 2 may not finish in reasonable time if the intermediate results of computation
(exact rational numbers) grow too large (for examples, see Table 2 in the Supplementary Materials). We
overcome this difficulty in Algorithm 3 as follows. We run Algorithm 2 modulo a prime number. This
may be much faster as it replaces computations with big integers using long arithmetic by computation with
residues that typically fit into 64 bits. Then we reconstruct a possible output over rational numbers using
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rational reconstruction (see [von zur Garthen and Gerhard, 2013, § 5.10]) and verify its correctness. Since the
integers in the output (unlike the ones in the computation) are typically small, the residue modulo prime usually
contains already enough information for correct reconstruction. This verification stage is fast because it deals
with the final output that is typically sparse and involves only small integers. We proceed with the a larger
prime until the output is correct. In all practical examples we considered, one prime was enough (we start with
231 �1).

The correctness of Algorithms 2 and 3 is proved in Propositions I.1 and I.3 in Supplementary Materials. We
perform a complexity analysis of Algorithms 1 and 2 in Section III of Supplementary Materials.

4 Examples

In this section, we show the applicability of CLUE to the reduction of biological models through a number of
case studies published in the literature, including some taken from the BioModels repository [Li et al., 2010]. We
additionally compare CLUE against the forward equivalence from [Cardelli et al., 2017a]. Forward equivalence
identifies a partition of an ODE system with polynomial derivatives which induces a lumping where each macro-
variable is equal to the sum of variables in each partition block. Using established terminology for lumping
methods [Wei and Kuo, 1969, Okino and Mavrovouniotis, 1998, Snowden et al., 2017], forward equivalence
can be understood as a form of proper lumping because each original variable contributes exactly to one macro-
variable of the reduced system. By contrast, in general, constrained linear lumping yields an improper lumping
matrix because the linear combination can be arbitrary. Similarly to constrained linear lumping, for forward
equivalence there exists the notion of coarsest partition. This is the partition with the smallest number of
blocks, thus leading to a reduced ODE system of the smallest dimension. In addition, forward equivalence can
be computed with respect to constraints, which are encoded as an initial partition of variables. The algorithm for
computing the coarsest partition iteratively splits each block of the initial partition until the criteria for forward
equivalence are satisfied. For the comparison, we used ERODE [Cardelli et al., 2017b], which implements
the reduction algorithm for forward equivalence. To the best of our knowledge, ERODE is the only publicly
available software tool that supports exact lumping for polynomial differential equations. For each case study,
both CLUE and forward equivalence were initialized so as to preserve the same observables in the reduced
models.

For this study, we computed reductions that were independent from the specific choice of the kinetic
parameters used in the models. This was done as follows. Given the original model in the form ẋ = f(x,k),
where k is the vector of mass-action kinetic parameters, we considered an extended ODE system with the
additional set of equations k̇ = 0. This ensures that the reduction is independent from the initial conditions of
the extended variables, hence of the choice of the original parameters.

Tables 1 and 2 summarize the numerical results for the models that are analyzed in more detail in the next
subsections. For each model, Table 1 reports the reductions in both the state variables and the number of kinetic
parameters. Overall, CLUE provides better reductions than ERODE because the partition found by forward
equivalence is not guaranteed to be the minimal constrained linear lumping in general. Table 2 compares the
runtimes of the reduction algorithms and of the numerical ODE solutions of the reduced models, computed
on commodity hardware. CLUE requires more computation time. It must be noted that a precise comparison
of the reduction runtimes is difficult because the forward equivalence and CLUE are implemented in different
programming languages (i.e. Java and Python, respectively); instead, to allow for a fair comparison between
the runtimes of the numerical ODE solutions, the reduced models were converted and solved in Matlab (using
the stiff ODE solver ode15s).

The results indicate that the availability of a reduction becomes more relevant as the size of the original
model grows. In particular, it makes feasible the analysis of models that would otherwise take considerable time
(i.e., more than six hours in the cases m > 7 in the model by Sneddon et al. [2011]. Nevertheless, we remark that
the reduction can be still useful if the runtimes of the reduction algorithms are of the same order as the runtimes
of the numerical ODE solutions, especially in cases in which the reduced model must be subjected to an analysis
involving multiple simulations, e.g. to study sensitivity to parameter changes or to initial conditions.
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Table 1: Results for the case studies in Section 4 comparing CLUE with forward equivalence (FE) obtained
using ERODE for the reduction of the state variables (Vars) and the kinetic parameters (Params).

Vars Params

Model Orig. FE CLUE Orig. FE CLUE

Li et al. [2006] 21 19 15 25 22 22

Sneddon et al. [2011]
m = 2 18 12 6 6 6 6
m = 3 66 22 6 6 6 6
m = 4 258 37 6 6 6 6
m = 5 1026 58 6 6 6 6
m = 6 4098 86 6 6 6 6
m = 7 16386 122 6 6 6 6
m = 8 65538 167 6 6 6 6

Faeder et al. [2003] 354 105 75 22 22 9

Borisov et al. [2008] 213 66 4 14 10 2

Table 2: Runtimes (in seconds) for the numerical solutions of the original model (third column) and the reduced
models by forward equivalence (FE) and CLUE using initial conditions as in the original publications and time
horizon in column (H); columns Red. indicate the runtimes for the respective reduction algorithms. Entries t/o
indicates timeout after 6 hours.

FE CLUE

Model H Sim. Red. Sim. Red. Sim.

Li et al. [2006] 100 0.004 0.001 0.003 0.023 0.003

Sneddon et al. [2011] 3
m = 2 0.006 0.001 0.004 0.012 0.003
m = 3 0.021 0.002 0.007 0.048 0.003
m = 4 0.534 0.008 0.010 0.245 0.003
m = 5 20.9 0.035 0.032 1.115 0.003
m = 6 1125.0 0.185 0.299 5.238 0.005
m = 7 t/o 1.103 1.266 23.460 0.005
m = 8 t/o 3.552 6.128 97.509 0.005

Faeder et al. [2003] 100 0.268 0.110 0.035 0.863 0.023

Borisov et al. [2008] 50 0.065 0.006 0.010 0.263 <0.001
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Figure 1: (A) Model for AI-2 synthesis adapted from [Li et al., 2006]. (B) Reduced network obtained with
CLUE.

4.1 Modular decomposition of signaling pathways

We first illustrate how CLUE can decompose models of signaling pathways if only certain observables of interest
are chosen. Figure 1(A) depicts a quorum sensing network for AI2 biosynthesis and uptake pathways in E.
coli [Li et al., 2006]; the biochemical model is available in the BioModels repository as MODEL8262229752.
The substrate Methionine (Met) transforms into S-adenosylmethionine (SAM). The blue branch of the pathway
is involved in the production of AI2. The green branch depicts decarboxylation of SAM, which ultimately
produces MTR and Adenine. The dynamics of both branches are mediated by Pfs.

The original model has 21 variables, one for each biochemical species depicted in the pathway. By fixing
the output signal AI2 as the variable to be preserved, CLUE reduces the system to 15 variables. An inspection
of the reduced model reveals that CLUE removes the biochemical species depicted as green boxes in Fig. 1(A),
while the remaining variables are not aggregated further. Overall, this leads to a reduced model that can be
interpreted as the network in Fig. 1(B). The reduction can be explained by the fact that none of the eliminated
variables contribute to the dynamics of the chosen observables. This is because the interactions between the
green pathway and the blue one occur only through Pfs, which acts a catalyst in all the reactions in which it is
involved.

The largest reduction by forward equivalence that preserves AI 2 has 19 variables. It only aggregates
Adenine, MTR, and Spermidine in the same block, while keeping all the other variables separated. This
reduction is, however, a trivial one because these are end products of the pathways that do not interact with any
other species. Mathematically, this results in the differential equation of an end-product variable not featuring
the variable itself in the right-hand side. As a consequence, end-product variables can always be rewritten in
terms of a lumped variable that represents their sum. A similar pattern of modular decomposition, on a pathway
model of cartilage breakdown from [Proctor et al., 2014], is discussed in Supplementary Materials.
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Figure 2: Application of CLUE to a protein phosphorylation model with m = 2 identical and
independent binding sites. A) Model components: empty/full circles denote whether the site is
unphosphorylated/phosphorylated; binding of a kinase or phosphatates is denoted by the color of the square.
B) Graphical representation of the four macro-variables obtained by CLUE; the yellow background groups
variables that appear in more than one macro-variable; we write ‘2x’ under variables that are counted twice.

4.2 Multisite protein phosphorylation

Here we study a basic mechanism of protein phosphorylation, a fundamental process in eukaryotic
cells [Gunawardena, 2005], to show how CLUE can help cope with the combinatorial growth of
mechanistic models for proteins with multiple sites [Salazar and Höfer, 2009]. We consider a model
phosphorylation/dephosphorylation of a substrate with m independent and identical binding sites, taken
from [Sneddon et al., 2011]. Each site can be in four different states: phosphorylated and unbound,
unphosphorylated and unbound, phosphorylated and bound to a phosphatase, unphosphorylated and bound to a
kinase. Thus, the model is described by 4m +2 variables to track all possible protein configurations, in addition
to the concentrations of the free kinase and phosphatase.

For m = 2 independent sites, CLUE reduces the model from 18 to 6 variables if observing the free kinase
(or the free phosphatase). In the reduced model, 2 macro-variables represent the free kinase and phosphatase,
respectively. The other macro-variables are linear combinations of the protein configuration (Fig. 2). An
inspection of the aggregation shows that 3 of these macro-variables represent the total concentration of a
specific binding-site configuration: free and phosphorylated (Fig. 2-B1); free and bound to a kinase (Fig. 2-
B2); phosphorylated and bound to a phosphatase (Fig. 2-B3). Thus, if the two binding sites have the same
configuration, the corresponding variable is counted twice. Also, the aggregation results in an improper lumping
as there are variables that contribute to more than one macro-variable. The last macro-variable escaped physical
intelligibility as it represents the difference between the free substrate with unphosphorylated sites and protein
configurations that appear in the aforementioned lumps. Interestingly, running CLUE for models with more
binding sites until m= 8 always returned a 6-dimensional reduced model that obey the patterns similar to the one
from Fig. 2. Instead, forward equivalence detects the assumption of the binding sites being identical [Cardelli
et al., 2017a, Table S1]. Each macro-variable represents complexes equal up to permutation of the identities of
the binding sites, leading to a polynomial growth in m of the number of variables in the reduced model.
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Figure 3: (A) Components in a model for RTK signaling adapted from [Borisov et al., 2008]: a bivalent Ligand
(L), 2 adapter proteins A and B and a receptor with 3 binding sites: ligand binding site in the extracellular region
(brown); protein binding sites in the intracellular region (red/blue circles). (B) macro-variables obtained in the
reduced model.

A different type of aggregation in multisite phosphorylation models is discussed in [Cardelli et al., 2017a]
regarding the rule-based model of early events of the signaling pathway of the high-affinity receptor for IgE
(FceRI) in [Faeder et al., 2003]. In this model, the bivalent IgE ligand aggregates FceRI through phosphorylation
of the tyrosine residues on its b and g subunits by the Lyn kinase, which in turn recruits the tyrosine kinase
Syk by phosphorylation of two distinct units. The original model consists of 354 variables, each representing
a distinct biochemical complex. In [Cardelli et al., 2017a], the maximal forward equivalence is reported to
yield a reduced model with 105 variables in which all complexes that have the same configuration except
the phosphorylation state of the Syk units are lumped into the same equivalence class. This model can be
further aggregated by CLUE. Observing the concentration of the ligand-receptor complex when both b and
g binding sites are phosphorylated gives a model with 84 macrovariables. This reduction is coarser than the
largest forward equivalence because it contains macrovariables that represent linear combinations with negative
coefficients or with positive coefficients different than one. Because of this, the reduction cannot be found using
specific methods for rule-based systems [Borisov et al., 2005, Conzelmann et al., 2006, Feret et al., 2009]. An
inspection of the lumping matrix reveals macrovariables that may carry a physical interpretation. Specifically,
it is possible to identify three classes of aggregation. Each class consists of macrovariables that are sums of
three original variables, each representing a biomolecular complex consisting of both receptors bound to the
bivalent ligand. Across original variables within a macrovariable, one receptor is found in each of the following
forms: bound to Syk, phosphorylated at the g subunit, or unphosphorylated at the g subunit. The three classes
of aggregation are characterized by the state of the other receptor, which is the same within each macrovariable.
In particular, there are 7 macrovariables in which the other receptor has a phosphorylated and unbound g site;
3 macrovariables in which the g site is phosphorylated and bound to Syk; and 6 macrovariables in which the g
site is unbound and unphosphorylated.

4.3 Aggregation for ordered phosphorylation mechanisms

We now consider an example of ordered phosphorylation, taken from [Borisov et al., 2008], in a receptor
tyrosine kinase (RTK) signaling pathway where receptor autophosphorylation via dimerization is preceded by
ligand binding. Figure 3(A) shows the molecular complexes involved in the pathway. The receptor interacts
with a bivalent ligand and two adapter proteins, A and B. Protein A has a single site that binds to the receptor.
Protein B is a scaffold protein with three binding sites: one extracellular site dedicated to receptor-binding and
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two intracellular tyrosine residues. The phosphorylation state of the tyrosine residues in B is independent of
the state of the receptor-binding site. Upon phosphorylation of the intracellular sites, the receptor can bind the
adapter proteins A and B.

The model, originally expressed in the rule-based language BioNetGen [Blinov et al., 2004], has 213
variables. Applying CLUE to preserve the concentration of free ligand yields a reduced model where 150
variables are removed and the remaining 63 are lumped into four macro-variables, depicted in Fig. 3-B. These
represent: the free ligand (Fig. 3-B1); all configurations of the free receptor regardless of the phosphorylation
state of the intracellular terminals or of protein binding (Fig. 3-B2); all variables that represent the bound
ligand (Fig. 3-B3) and the dimerized form (Fig. 3-B4) regardless of the intracellular states. Instead, forward
equivalence gives 66 variables, aggregating B-bound receptor units regardless of the phosphorylation state of
B.

5 Conclusion

We presented CLUE, an algorithm for the reduction of polynomial ODEs by exact lumping, with the possibility
to fix original variables (or their linear combinations) to be recovered in the reduced system. From a practical
viewpoint, the specification of such constraints allows the preservation of the dynamics of key biochemical
species of interest to the modeler. Importantly, although it is acknowledged that linear lumping may lead to
loss of structure in the reduced model, e.g., [Snowden et al., 2017], the reductions presented here admitted
a biochemical interpretation in most cases. From a computational viewpoint, CLUE casts the analysis of
polynomial equations into a linear-algebra framework, allowing reductions for models of dimension over than
15,000 variables using a prototype implementation. This makes CLUE a general-purpose tool that adds to the
wide range of existing methods. In particular, since it reduces exactly, it can be used as a pre-processing for
techniques that seek more aggressive reductions using approximate methods, or as a complementary method to
those that use orthogonal model properties, e.g. time-scale separation.
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Supplementary Materials

CLUE: Exact maximal reduction of kinetic models
by constrained lumping of differential equations

Alexey Ovchinnikov, Isabel Pérez Verona, Gleb Pogudin, Mirco Tribastone

This document is structured as follows:

• In Section I, we will prove the correctness and termination the algorithms presented in the paper.

• In Section II, we reprove the criterion for lumping in terms of the Jacobian of the system [Li and
Rabitz, 1991, Section 2] for the sake of completeness.

• In Section III, we present a complexity analysis of our algorithms and compare it with the complexity
of ERODE.

• In Section IV, we discuss the application of CLUE to a cartilage breakdown model in [Proctor et al.,
2014].

• In Section V, we compare the performance of our implementations Algorithms 2 and Algorithm 3.

Remark. In the present paper, we have focused on exact maximal reduction for ODEs with a polynomial
right-hand side because our examples are in this class. However, all of our algorithms can be immediately
applied to other kinds of systems, such as discrete-time polynomial systems (e.g. xn+1 = f(xn)).

I Proofs of correctness and termination of algorithms

For the convenience of the reader while navigating between the main paper and the Supplementary materials,
we recall:

Algorithm 1 Simplified algorithm for finding a constrained lumping of the smallest possible dimension

Input a system ẋ = f(x) of n ODEs with a polynomial right-hand side and an s⇥n matrix A over field K
of rank s > 0;

Output a matrix L such that y := Lx is a constrained lumping with observables Ax of smallest possible
dimension.

(Step 1) Compute J(x), the Jacobian matrix of f(x).

(Step 2) Represent J(x) as J1m1 + . . .+ JNmN , where m1, . . . ,mN are distinct monomials in x, and J1, . . . ,JN
are nonzero matrices over R.

(Step 3) Set L := A.

(Step 4) Repeat

(a) for every M in J1, . . . ,JN and row r of L, if rM does not belong to the row space of L, append
rM to L.

(b) if nothing has been appended in the previous step, exit the repeat loop and go to (Step 5).

(Step 5) Return L.

1

ar
X

iv
:2

00
4.

11
96

1v
2 

 [q
-b

io
.M

N
]  

15
 D

ec
 2

02
0



Algorithm 2 Finding the smallest invariant subspace
(to be used instead of (Step 4) of Algorithm 1 for A = L, `= N, and Mi = Ji for 1 6 i 6 `)

Input an s⇥n matrix A over field K and a list M1, . . . ,M` of n⇥n matrices over K;

Output an r⇥n matrix L over K such that

• the row span of A is contained in the row span of L.
• for every 1 6 i 6 `, the row span of span of LMi is contained in the row span of L;
• r is the smallest possible.

(Step 1) Let L be the reduced row echelon form of A.

(Step 2) Set P be the set of indices of the pivot columns of L.

(Step 3) While P 6=? do

(a) For every j 2 P and every 1 6 i 6 `

i. Let v be the row in L with the index of the pivot being j.
ii. Reduce vMi with respect to L. If the result is not zero, append it as a new row to L.

iii. Reduce other rows with respect the new one in order to bring L into the reduced row echelon
form.

(b) Let eP be the set of indices of the pivot columns of L.
(c) Set P := eP\P.

(Step 4) Return L.

Algorithm 3 Finding the smallest invariant subspace (modular)
(to be used instead of (Step 4) of Algorithm 1 for A = L, `= N, and Mi = Ji for 1 6 i 6 `)

Input s⇥n matrix A and a list M1, . . . ,M` of n⇥n matrices over Q;

Output an r⇥n matrix L over Q such that:

• the row span of A is contained in the row span of L.
• for every 1 6 i 6 `, the row span of LMi is contained in the row span of L;
• r is the smallest possible.

(Step 1) Repeat the following

(a) Pick a prime number p that does not divide any of the denominators in A,M1, . . . ,M` and has not
been chosen before.

(b) Compute the reductions eA, eM1, . . . , eM` modulo p.

(c) Run Algorithm 2 on eA, eM1, . . . , eM` as matrices over Fp and denote the result by eL.

(d) Apply the rational reconstruction algorithm ([von zur Garthen and Gerhard, 2013, § 5.10], [Wang
et al., 1982]) to construct a matrix L over Q such that the reduction of L mod p equals eL.

(e) Check whether the row span of L contains the row span of L and is invariant under M1, . . . ,M`. If
yes, exit the loop.

(Step 2) Return the matrix L from step (d) of the last iteration of the loop.
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Notation I.1.

• Matm,n(K) denotes the space of m⇥n matrices over a field K.

• For M 2 Matm,n(K), rspanK(M) is the row span of M over K.

Lemma I.1 is used by Algorithm 1 to pass from the invariance under the Jacobian to the invariance under
a finite set of constant matrices.

Lemma I.1. Let M(x) 2 Matn,n(K[x]), where x = (x1, . . . ,xr) and charK = 0. We write M(x) = M1m1 +
. . .+MNmM so that M1, . . . ,MN 2 Matn,n(K) and m1, . . . ,mN are distinct monomials in x. Then, for a vector
subspace V ⇢Kn, the following are equivalent:

(1) V is invariant under M(x⇤) for every x
⇤ 2Kr;

(2) V is invariant under Mi for every 1 6 i 6 N.

Proof. Assume that V is invariant under M1, . . . ,MN . Since, for every x
⇤ 2Kr, M(x⇤) is an K-linear combi-

nation of M1, . . . ,MN , V is invariant under M(x⇤) as well.
Assume that V is invariant under M(x⇤) for every x

⇤ 2 Kr. Consider v 2 V . Since for all x
⇤ 2 Kr,

M(x⇤)v 2 V , for every 1 6 i 6 r, ∂M
∂xi

(x⇤)v 2 V as well. Consider one of M1, . . . ,MN , say M1. Let m1 =

xd1
1 . . .xdr

r . Iterating the argument with derivative, we obtain

8x
⇤ 2Kr ∂d1+...+dr M

∂xd1
1 . . .∂xdr

r
(x⇤)v 2V.

Taking x
⇤ = 0, we deduce that M1v 2V .

Remark I.1. A different approach to replacing the Jacobian with a finite set of constant matrices was
suggested in [Li and Rabitz, 1989, Sect. 3(A)]:

1. Write the Jacobian J(x) = Âai j(x)Ei j, where Ei j is the matrix with one in the (i, j)-th cell and zeroes
everywhere else;

2. Combine together summands with proportional ai j(x) obtaining a representation J(x) = Âb j(x)B j
with constant B j;

3. Return B j’s.

Consider the system (
ẋ1 = (x2 + x3)2 +(x2 + x4)2,

ẋ2 = ẋ3 = ẋ4 = 0

with the observable x1. Then the procedure from [Li and Rabitz, 1989, Section 3(A)] will lead to the
following decomposition

J(x) = 2(2x2 + x3 + x4)E12 +2(x2 + x3)E13 +2(x2 + x4)E14.

The smallest subspace containing (1,0,0,0) and right-invariant under E12,E13,E14 is the whole space, so
this approach will not produce a nontrivial lumping. On the other hand, using Lemma I.1, we arrive at

J(x) = 2x2(2E12 +E13 +E14)+2x3(E12 +E13)+2x4(E12 +E14).

The matrices 2E12+E13+E14,E12+E13, and E12+E14 have a common proper invariant subspace containing
(1,0,0,0), and this yields a nontrivial lumping:

y1 = x1, y2 = x2 + x3, y3 = x2 + x4.
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Proposition I.1. Algorithm 2 is correct.

Proof. Bringing a matrix to the reduced row echelon form does not change the row span, and adding extra
rows might only enlarge it, so the row span of the output of Algorithm 2 contains the row span of A.

Now we will show that the row span of the output of the algorithm is invariant under M1, . . . ,MN . We
denote the values of L and P before the i-th iteration of the while loop (Step 3) by Li and Pi, respectively.
We set L0 and P to be the 0⇥n matrix and ?, respectively. We will show by induction on k that, for every
k > 0 and every 1 6 i 6 `, we have

rspanK(LkMi)⇢ rspanK(Lk+1). (1)

The case k = 0 is true. Assume that the statement is true for all numbers less than some k > 0. Let L+ be the
matrix consisting of the rows of Lk with the pivot columns in Pk, and let L� be the matrix consisting of the
remaining rows. Fix 1 6 i 6 `. Then rspanK(L+Mi)⇢ rspanK Lk+1 because the rows of L+ will be processed
in the next iteration of the while loop. By the construction, rspanK Lk�1 ⇢ rspanK Lk. The rows of Lk�1 and
L+ are linearly independent because they form a (nonreduced) row echelon form after permuting rows and
columns. Therefore, rspanK Lk = rspanK L++ rspanK Lk�1. This implies

rspanK(L�Mi)⇢ rspanK(L+Mi)+ rspanK(Lk�1Mi).

The inductive hypothesis implies that

rspanK(L�Mi)⇢ rspanK(L+Mi)+ rspanK Lk ⇢ rspanK Lk+1.

Therefore, rspanK(LkMi)⇢ rspanK Lk+1.
Assume that there were N iterations of the while loop. Then we consider one extra iteration. Since

P = ?, this iteration will not do anything, so LN+2 = LN+1. Therefore, rspanK(LN+1Mi) ⇢ rspanK(LN+1)
for every 1 6 i 6 ` due to (1). This implies that rspanK of the output of the algorithm is invariant under
M1, . . . ,M`.

To prove the minimality of r, consider V , the smallest subspace of Kn invariant under M1, . . . ,M` and
containing the rows of the input matrix A. We will show by induction on i that rspanK(Li) ⇢ V . Since
rspanK(L1) = rspanK A, rspanK(L1) ⇢ V . Assume that the statement is true for some i > 1. At the i-th
iteration of the while loop, we consider vectors of the form vMi, where v 2 rspanK(Li). Since v 2 V and V
is Mi-invariant, these vectors also belong to V . Consequent computation of the row echelon form does not
change the row span. Hence, the row span of the output is invariant under M1, . . . ,M` and contained in V , so
it coincides with V . This proves the minimality of r.

The following lemma is used in Proposition I.2 for showing the correctness and termination of Algo-
rithm 3.

Lemma I.2. Let A 2 Mats,n(Q), M1, . . . ,M` 2 Matn,n(Q) and L the result of applying Algorithm 2 to these
matrices. For every prime number p that does not divide the denominators of the entries of A,M1, . . . ,M`,
we denote the result of applying Algorithm 2 to the reductions of these matrices modulo p by L⇤

p. Then

(1) for all but finitely many primes, L⇤
p is equal to L modulo p;

(2) the number of rows in L⇤
p does not exceed the number of rows in L.

Proof. To show (1), consider the run of Algorithm 2 on A,M1, . . . ,M`. The operations performed with the
matrix entries in the algorithm are arithmetic operations and checking for nullity. There is a finite list of
nonzero rational numbers q1, . . . ,qN checked for nullity in the algorithm. Consider a prime number p such
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that the reductions of q1, . . . ,qN modulo p are defined and not zero. Since the arithmetic operations commute
with reducing modulo p and we have chosen p so that all nullity checks will also commute with reduction
modulo p, the result of the algorithm modulo p, that is L⇤

p, will be equal to the reduction of L modulo p.
We now show (1). The number of rows in L is the dimension of the space generated by the rows of

A and their images under all possible products of M1, . . . ,M`. Consider the •⇥ n matrix R formed from
the matrices of the form AX , where X ranges over all possible products of M1, . . . ,M`, stacked on top of
each other. Let Rp be the reduction of R modulo p. For every integer r, having rank at most r can be
expressed as a system of polynomial conditions in the matrix entries (that is, all (r+1)⇥ (r+1) minors are
zero). Therefore, rankRp 6 rankR. Since the numbers of rows in L and L⇤

p are equal to rankR and rankRp,
respectively, the second part of the lemma is proved.

Proposition I.2. Algorithm 3 is correct and terminates in finite time.

Proof. First we will show the correctness. Consider the output of Algorithm 3, call it L0. Since the stop-
ping criterion for the loop in (Step 1) is rspanQ(A) ⇢ rspanQ(L0) and the invariance of rspanQ(L0) under
M1, . . . ,M`, it remains to prove the minimality of the number of rows in L0. Due to Proposition A.1 from
the main paper (correctness of Algorithm 2), it would be equivalent to show that the number of rows in L0
is equal to the number of rows in the output of Algorithm 2 on A,M1, . . . ,M`, call it L. The second part of
Lemma I.2 implies that the number of rows of every matrix eL computed in (Step 1) does not exceed the
number of rows in L. Then the same is true for L0. Since the number of rows in L is the smallest possible, it
is the same as the number of rows in L0, so the output of the algorithm will be correct.

Now we will prove the termination. Let N be the maximum of the absolute values of the numerators
and denominators of the entries of L. Consider a prime number p such that L⇤

p (see Lemma I.2) is equal to
the reduction of L modulo p and p > 2N2. Then [Wang et al., 1982] and [Wang, 1981, Lemma 2] imply
that the result of rational reconstruction in (d) for eL = L⇤

p will be equal to L, so the algorithm will terminate.
Lemma I.2(1) implies that all but finitely many primes satisfy the above properties, so the algorithm will
reach one of these numbers and terminate.

II Proof for the lumping criterion from Li and Rabitz [1989]

In Lemma II.1 and Proposition II.1, we reprove the criterion for lumping in terms of the Jacobian of the
system [Li and Rabitz, 1991, Section 2] for the sake of completeness.

Lemma II.1. Let p(x) 2 R[x], where x = (x1, . . . ,xn), and L 2 Mats,n(R). Let V ⇢ Rn be the orthogonal
complement to rspanR(L). Then p(x) can be written as a polynomial in Lx if and only if 8v2Rn the operator
Dv := v1

∂
∂x1

+ . . .+ vn
∂

∂xn
annihilates p(x).

Proof. Denote the rows of L by r1, . . . ,rs. Assume that there exists a polynomial q in y1, . . . ,ys such that
p(x) = q(Lx). Then

8v 2V Dv p(x) = Dvq(Lx) = (v,r1)
∂q
∂y1

(Lx)+ . . .+(v,rs)
∂q
∂ys

(Lx) = 0.

To prove the lemma in the other direction, choose an orthonormal basis u1, . . . ,u` of V . Since the
rows of L and u1, . . . ,u` span the whole space, there exists a polynomial q in y1, . . . ,ys+` such that
p(x) = q(Lx,(u1,x), . . . ,(u`,x)). Then, for every 1 6 i 6 `, using Dv(u,x) = (v,u), we have

Dui p(x) = Duiq(Lx,(u1,x), . . . ,(u`,x)) = (ui,ui)
∂q

∂ys+i
(Lx,(u1,x), . . . ,(u`,x))

=
∂q

∂ys+i
(Lx,(u1,x), . . . ,(u`,x)).
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Therefore, q does not involve ys+i, so we get a representation of p as a polynomial in Lx.

Proposition II.1. A matrix L 2 Mats,n(R) is a lumping for a n-dimensional system ẋ = f(x) if and only if,
8x 2 Rn, rspanR(L) is invariant under J(x), the Jacobian matrix of f.

Proof. We will use the notation from Lemma II.1. For v 2V ,

DvLf(x) =
⇣

v,
⇣

∂
∂x1

, . . . , ∂
∂xn

⌘⌘
Lf(x) = (LJ(x))v.

Therefore, Lemma II.1 implies that L is a lumping of ẋ = f(x) if and only if rspanR(LJ(x)) is orthogonal to
V for every x. The latter is equivalent to the invariance of rspanR(L) under J(x) for every x 2 Rn.

III Complexity analysis

In this section, we give upper bounds on the arithmetic complexity (that is, each operation with rational
numbers is assumed to have unit cost) of Algorithms 1 and 2 (Propositions III.1 and III.2) and their com-
parison with the complexity bound of the algorithm implemented in ERODE from [Cardelli et al., 2017,
Supporting Information, Theorem 3] (Remark III.3).

As we explain in Section IV, our implementation runs Algorithm 2 first and switches to Algorithm 3
only if it encounters large numbers (more than 10000 digits). For the majority of the models, the switch did
not happen. In these cases, the numbers occurring during the computation will have lengths bounded by the
constants, so the arithmetic complexity will be the same as the bit-size complexity, and, therefore, can be
used to reason about the runtime.

Remark III.1. Before estimating the complexity of the algorithms, we explain the data structures we use
for representing vectors and matrices.

• Vectors. Each vector is represented by an ordered list of indices of the coordinates with nonzero values
and by a hashtable with keys being these indices and the values being the values of the corresponding
coordinates.

For example, the vector v = (0,0,3,1,0,0,5,1,0) will be represented by the list (3,4,7,8) and
hashtable {3 ! 3,4 ! 1,7 ! 5,8 ! 1}.

If two vectors v1 and v2 have n1 and n2 nonzero coordinates, respectively, then their sum and in-
ner product can be computed with expected arithmetic complexitites O(n1 +n2) and O(min(n1,n2)),
respectively.

• Matrices. Each matrix is represented as a sparse vector (as described above) of its rows represented
also as sparse vectors. Then if a matrix M has n nonzero entries, then the product Mv with a sparse
vector v can be computed with expected arithmetic complexity O(n) by computing inner products of
v with the nonzero rows of M,

Proposition III.1. Let A be a full row rank s⇥n matrix over a computable field K and M1, . . . ,M` be n⇥n
nonzero sparse matrices (represented as in Remark III.1) with the total number of nonzero entries being T .
Then the expected arithmetic complexity of Algorithm 2 is O(rn(T + r)) (this is bounded by O(n2(T + n))
since r 6 n), where r is the number of rows in the output.

Proof. We will analyze the complexity step-by-step. The complexity of (Step 1) and (Step 2) is equal to the
complexity of Gaussian elimination, so it can be bounded by O(s2n) field operations (similarly to [Trefethen
and Bau, 1997, p. 165]). (Step 3) involves three different operations: computing matrix-vector products,
reducing a vector with respect to the rows of L, and reducing rows of L with respect to a newly added vector.

We will bound the complexities of these steps separately:
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• Matrix-vector multiplications. The number of vectors v considered in this step does not exceed the
number of pivots in the resulting matrix L, which is r. For each such vector, we multiply it by the
matrices M1, . . . ,M`. Remark III.1 implies that this can be done in O(T ) operations. Thus, the total
complexity will be O(rT ).

• Reducing with respect to the rows of L. Consider the vector v from (Step 3). The total number of
nonzero entries in vM1, . . . ,vM` does not exceed T . Since L is in row reduced echelon form, the total
number of elementary row operations used while reducing these vectors with respect to the rows of L
will not exceed T . Each such row operation has complexity O(n), so the total complexity for the fixed
vector v is O(nT ). Since there will be at most r such vectors, the overall complexity is O(rnT ).

• Reducing rows of L with respect to a newly added vector. There will be r�s newly added vectors. The
total number of elementary row operations will be s+(s+ 1)+ . . .+ r. Hence, the total complexity
will be O((r2 � s2)n).

Summing up, we obtain

O(s2n)+O(rT )+O(rnT )+O((r2 � s2)n) = O(rn(T + r)).

Proposition III.2. Consider a system ẋ = f(x) of n ODEs with polynomial right-hand side. Let

• M be the total number of monomials in the right-hand side;

• p be the maximal number of different variables occuring in a monomial;

• r be the dimension of the reduced system (so r 6 n).

Then the expected arithmetic complexity of Algorithm 1 with (Step 4) performed by Algorithm 2 is
O(rn(pM+ r)).

Remark III.2. If the ODE system represents a chemical reaction network with mass-action kinetics, then
n will be the number of species, M will be the number of reactions, and p will be the maximal number of
different species among the reactants or products of a reaction.

Proof of Proposition III.2. We will analyze the complexity of (Step 1) and (Step 2) together. Each mono-
mial in f(x) will yield at most p nonzero entries in the matrices J1, . . . ,JN . Therefore, the complexity of con-
structing these matrices will be O(pM), and the total number of nonzero entries in these matrices will not
exceed pM. The complexity of (Step 3) is O(1). Now we apply Proposition III.1 to matrices J1, . . . ,JN , and
obtain that the complexity of (Step 4) is O(rn(pM+r)). The overall complexity will be O(rn(pM+r)).

Remark III.3 (Comparison with ERODE). The complexity of the algorithm implemented in ERODE given
by [Cardelli et al., 2017, Supporting infomration, Theorem 3] can be written in the notation of Proposi-
tion III.2 as O(Mp2` logn)6 O(M2 p3 logn) (this is the worst-case complexity of a deterministic algorithm,
so it is also the expected complexity), where ` is the number of distinct partial derivatives among the mono-
mials with different signs (we do not use this parameter in our complexity analysis).

Bringing our bound and this bound to a common set of parameters, we get O(n2(pM + n)) and
O(M2 p3 logn), respectively. These bounds indicate that one algorithm can outperform the other one de-
pending on the parameters of the model considered.
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Figure 1: (A) Adaptation of the three molecular pathways from Proctor et al. [2014]. (B) Reduced model
obtained while preserving the phosphorylated forms of cJun and cFos. Dotted boxes represent abstractions
of groups of biochemical species which are not fully shown here to reduce clutter.

IV Modular decomposition for cartilage breakdown model in Proctor et al.

[2014]

This section discusses a pattern of modular decomposition similar to Section 4.1 in the main text, on a model
of cartilage breakdown pathway from [Proctor et al., 2014], illustrated in Fig. 1(A). The model is available
in the BioModels repository as BIOMD0000000504. The system comprises three modules: an Interleukin-1
(IL1) signaling pathway, an OSM signaling pathway, and a circuit of activation of proMMPs that concludes
with the degradation of Aggrecan and Collagen.

In the first module, IL1 binds its receptor (ISMR) to start a cascade of phosphorylation events (not
shown) that activates cJun. After dimerization, cJun upregulates collagenases MMP{1,3,13} and phosphatases
MKP1, PP44 and DUSP16. In the second module, OSM binds to the receptor OSMR; the pathway con-
cludes with the phosphorylation of cFos. The active cFos can reversibly bind to phosphorylated cJun
in a complex cJun-cFos which acts as transcription factor and upregulates the transcription factor SP1,
TIMPs{1,3}, cFos, cJun, a generic MMPActivator and all the upregulated components from IL1 module. In
the third module, the Aggrecan-Collagen complex separates due to the interaction with ADAMTS4, and
the units of Aggrecan in the complex transform into fragments (AggFrag). The units of Collagen interact
with several Activators (collagenases such as MMP{1,3,13} or MMPAct) that destroy the protein structure,
producing collagen fragments (CollFrag).

The original model consists of 74 variables. By preserving the phosphorylated molecules of cFos and
cJun, which are some of the species of interest in the study by Proctor et al. [2014], CLUE removes the
pathway for the decomposition of the Aggrecan-Collagen complex, together with the mRNA variants of
MMP{1,3,13}, TIMP{1,3}, and SP1. The reduced model with 43 variables can be interpreted as the network
in Fig. 1 (B). Again, CLUE simplifies branches of the pathway that do not affect the dynamics of the ob-
servables. The reduction by forward equivalence, instead, collapses only the variables corresponding to
the species Aggrecan, AggFrag, Collagen, and CollFrag, providing a model with 71 variables. Differently
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from the previous example, this block collapses end species (AggFrag and CollFrag) together with an in-
put species (Aggrecan) which is assumed to have no dynamics (i.e., zero derivative), as well as a species
(Collagen) that undergoes degradation.

V Comparison of Algorithm 2 and Algorithm 3

As mentioned in the main text, Algorithm 2 is typically faster for simpler cases, while the performance
of Algorithm 3 is more robust. The ratios of the runtime of Algorithm 3 and the runtime of Algorithm 2
for an extended set of benchmarks are collected in Table 1 below. The value < 0.01 refers to the fact that
Algorithm 2 has been running for 100 times more than the runtime of Algorithm 3 but did not produce any
result and has been stopped. The benchmarks are available in the repository https://github.com/pogudingleb/
CLUE/tree/master/examples. For three of the models, we had several sets of observables, the indexes of the
sets (as listed in the repository) are given in the parenthesis.

From the table, one can see that Algorithm 2 is faster than Algorithm 3 by about a factor of 6 for the
majority of given examples. Typically, this happens if the dimension of the reduced model is relatively
small or the form of reduction is relatively simple. On the other hand, in the cases in which Algorithm 2
encounters very long integers during the computation (like [Barua et al., 2009] and [Faeder et al., 2003]
models), it is likely to get stuck while Algorithm 3 terminates in reasonable yielding to more than 100-fold
speed up.

Model time(Alg. 3) / time(Alg. 2)
Li et al. [2006] 2.5
Proctor et al. [2014] (1) 3.0
Proctor et al. [2014] (2) 4.0
Proctor et al. [2014] (3) 3.2
Proctor et al. [2014] (4) 4.0
Borisov et al. [2008] 6.0
Sneddon et al. [2011], m = 2 5.0
Sneddon et al. [2011], m = 3 5.0
Sneddon et al. [2011], m = 4 6.0
Sneddon et al. [2011], m = 5 6.7
Sneddon et al. [2011], m = 6 6.9
Sneddon et al. [2011], m = 7 6.7
Sneddon et al. [2011], m = 8 6.6
Barua et al. [2009] (1) < 0.01

Barua et al. [2009] (1) < 0.01

Pepke et al. [2010] 4.0
Faeder et al. [2003] (1) 5.2
Faeder et al. [2003] (2) < 0.01

Faeder et al. [2003] (3) 5.8
Faeder et al. [2003] (4) 5.6
Faeder et al. [2003] (5) 6.6

Table 1: The ratio of the runtimes of Algorithm 3 and Algorithm 2 for an extended set of benchmarks
The numbers in parenthesis after a reference refer to the index of the chosen set of observables.

In our implementation, these algorithms are combined to benefit from their strengths as follows. We
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first run Algorithm 2, and if the algorithm encounters very long rational numbers (we use 10000 digits
as the threshold), then we stop it and run Algorithm 3 instead. In the most frequent case of not so long
rational numbers, the runtime is the same as that of Algorithm 2. In the cases in which using Algorithm 3
is preferable, first trying Algorithm 2 in our implementation adds only a small overhead (less than 10%)
compared to running Algorithm 3 by itself.
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