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ABSTRACT: Bleeding frequency and severity within clinical categories of hemophilia A are highly variable and the origin of this
variation is unknown. Solving this mystery in coagulation requires the generation and analysis of large data sets comprised
of experimental outputs or patient samples, both of which are subject to limited availability. In this review, we describe how a
computationally driven approach bypasses such limitations by generating large synthetic patient data sets. These data sets
were created with a mechanistic mathematical model, by varying the model inputs, clotting factor, and inhibitor concentrations,
within normal physiological ranges. Specific mathematical metrics were chosen from the model output, used as a surrogate
measure for bleeding severity, and statistically analyzed for further exploration and hypothesis generation. We highlight results
from our recent study that employed this computationally driven approach to identify FV (factor V) as a key modifier of
thrombin generation in mild to moderate hemophilia A, which was confirmed with complementary experimental assays. The
mathematical model was used further to propose a potential mechanism for these observations whereby thrombin generation
is rescued in FVIll-deficient plasma due to reduced substrate competition between FV and FVIII for FXa (activated factor X).
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used computational modeling to discover a potential

modifier of thrombin generation in mild to moder-
ate hemophilia A." We were motivated by the variation
in bleeding frequency and severity within clinical cat-
egories—severe, moderate, mild—of hemophilia Az2®
characterized by coagulation FVIII (factor VIII) levels of
<1%, 1% to 5%, and 5% to 20%, respectively. Although
the bleeding severity in the majority of patients corre-

This review highlights our recent study in which we

manipulated to improve outcomes for patients with high-
frequency bleeding and, more generally, help predict
bleeding patterns early in life, before serious bleeding
begins. However, numerous variables could potentially
be at play either working alone, additively, antagonisti-

lates with their factor levels, up to 10% of patients in
the severe category have a bleeding phenotype that
would be classified clinically as mild.*® The underlying
mechanism(s) of these observations are unknown. This
prompts the question: in the case of severe quantitative
defects with mild bleeding, what is compensating for the
deficient clotting protein? If we can answer that ques-
tion, we may identify variable(s) that can be adjusted or

cally, or synergistically. These variables could be biologi-
cal, biochemical, or biophysical in nature. Measuring all
possible variables in a clinical environment or testing how
single variables affect the clotting response under flow,
one at a time, would be time consuming and expensive,
and in some cases, not possible. Our goal was to exploit
the efficiency of a computationally driven approach to
search for clues to solve this scientific mystery.
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Nonstandard Abbreviations and Acronyms

Highlights

F factor
TF tissue factor

Data-Driven Versus Computationally Driven
Approaches to Discovery in Coagulation

Discovering these clues, particularly if multiple fac-
tors are involved, requires the generation and analysis
of large data sets comprised of experimental outputs
or patient samples. One approach to this problem is to
simply look for patterns in such data sets with statisti-
cal or machine learning algorithms, an approach known
as data-driven. In this case, algorithms are trained on
existing data sets to learn features that are associated
with well-defined outcomes. These approaches typically
improve with exposure to more and more data and with
good data sets and well-defined inputs and outputs;
these approaches can yield useful predictive tools. For
example, machine learning was used to inform dosing
strategies for warfarin,®=8 which is known to have a wide
interindividual variability in dose requirement® incor-
porating dozens of input characteristics for thousands
of patients. Another example of this approach is from
Chatterjee et al,’® in which a data set was generated in
vitro specifically to train a machine learning algorithm
to learn platelet calcium responses, the ultimate goal
being prediction of responses due to any combination
of agonists beyond the training data. This method was
extended to handle additional agonists to generate a
human platelet calcium calculator'’ and used to pre-
dict platelet activation states within a large multiscale
mathematical model of platelet deposition under flow."?
Machine learning algorithms can identify patterns and
serve as powerful prediction tools, but because of their
nonmechanistic nature, they may not be able to deter-
mine the mechanism(s) underlying those patterns.

To address our question using a data-driven approach,
we first needed to determine if generating an ideal
experimental data set was even feasible. An ideal data
set would involve systematic variation of clotting factor
and inhibitor concentrations and subsequent monitoring
of thrombin generation and thrombus formation under
flow, for each variation. This can quickly require a very
large number of complicated experiments, for example,
choosing only b clotting factors to vary could result in
over 2000 different possible combinations, plus techni-
cal replicates. Furthermore, unless a synthetic plasma
is used for the experiments, modulating the levels of
individual clotting factors in whole blood is challenging.
Performing a handful of these experiments is certainly
doable but generating the entire desired data set is not.
This roadblock, combined with our goal to understand
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+ Computational approaches complement experimen-
tal ones and enable discovery in coagulation.

* Enormous synthetic data sets, created with compu-
tational models, can be used for focused and effi-
cient searches for modifiers of coagulation.

* lterating between mathematical predictions, experi-
mental validation, and mathematical exploration of
mechanism allowed for identification of FV (factor
V) as a modifier of thrombin generation in mild to
moderate hemophilia A.

the mechanism(s) underlying the observed variability in
bleeding severity, led us to take a different approach that
we call computationally driven. We illustrate our compu-
tational driven framework in Figure 1.

What if instead of generating a large experimental
data set, we use a mathematical model to generate a
large computational data set? In such mathematical
experiments, we can easily and systematically vary all
of the clotting factor and inhibitor concentrations within
a specified range. For each set of variations, we then
run the model to produce a computational prediction
of thrombin generation and clot formation under flow.
This process allowed us to, in essence, create a math-
ematical depiction of thrombin generation in hundreds
of thousands of individuals with moderate to mild hemo-
philia A, or in other words, create synthetic patient data.
Generation of this type of data set is possible because
of computational efficiency since one of the simulations
takes only seconds to complete. We can generate a
massive amount of data that can subsequently be statis-
tically analyzed to extract and identify complex interac-
tions between multiple clotting factors or inhibitors, as
we illustrate in Figure 2. Moreover, with a mechanistic
mathematical model, as further described below, we have
access to the time-varying concentrations of every coag-
ulation reactant and reaction intermediate, which enables
us to search for biochemical mechanisms underlying any
patterns found in the data. This means that, with our
model, in addition to monitoring the changes that occur
in the output (thrombin generation), we can determine
how those changes occur.

To statistically analyze the synthetic patient data, we
first need a mathematical metric to serve as a surrogate
for bleeding severity and then need to study how that
metric is affected by manipulations of model inputs. We
chose thrombin generation as our surrogate metric of
bleeding severity and clotting factor and inhibitor levels
that are input into the mathematical model as potential
biomarkers. Our choice of metric is suitable since throm-
bin generation is decreased in hemophilias A and B; defi-
ciency in clotting factors VIl or IX leads to decreased
thrombin generation since they comprise the tenase
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Figure 1. Computationally driven approach for discovery in coagulation.
A mechanistic mathematical model is used to create large synthetic patient samples which are then analyzed to reveal modifiers, propose
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mechanisms, and generate hypotheses for experimental validation.

complex, which is necessary for the propagation phase of
coagulation and subsequent robust thrombin generation.
We chose clotting factors and inhibitors as inputs since
they are commonly measured and because, interestingly,
their normal ranges are accepted as around 50% to
150% of the mean values of the healthy population.’'
Because of this known variation, we hypothesized there
could be clues hidden within the plasma composition and
that there may be synergistic or antagonistic behavior
between proteins at levels still considered normal. To test
this hypothesis, we asked the following question: how do
clotting factor and inhibitor levels alter thrombin genera-
tion during flow-mediated coagulation when factor VIl is
deficient? Investigating this question requires the use of
a mechanistic dynamic model that describes flow-medi-
ated coagulation. We next describe what we mean by
dynamic models and briefly review some dynamic models
of coagulation.

Dynamic Models and Coagulation Thresholds

A dynamic model of coagulation is a mathematical rep-
resentation of a network of biochemical reactions that
yields time-varying concentrations of coagulation pro-
teins. A mechanistic dynamic model of coagulation is one
that is based on explicit consideration of the reactions

Arterioscler Thromb Vasc Biol. 2021;41:79-86. DOI: 10.1161/ATVBAHA.120.314648

that yield observed thrombin generation data; an example
of a nonmechanistic model of coagulation is a descriptive
model that provides a quantitative summary of observed
data, such as using linear regression to fit a line to data.
The Mann laboratory developed one of the first dynamic
models of the extrinsic blood coagulation system. That
model displayed a nonlinear, threshold-like dependence
of thrombin generation on concentrations of TF (tissue
factor) bound to FVlla, tissue factor pathway inhibitor,
and antithrombin,’®'® which agreed well with previous
observations made in the authors’ experimental studies
using synthetic plasma.'” In relation to our work described
below, the Mann model was also used in a combined
experimental and computational approach to investi-
gate variation in thrombin generation in mild to moderate
hemophilia A as a result of changing other variables in
the model.'® The authors simulated thrombin generation
at various concentrations of FVIII with other factor levels
set to either all high-normal (150% of mean values) or
all low-normal levels (50% of mean values). Interestingly,
their model showed that if all factor levels are at high-
normal levels when FVIIl is low, that the thrombin genera-
tion can be slightly enhanced. This model has been used
extensively to investigate sensitivity to normal variations
of clotting factors in healthy individuals,'® to assess risk
of disease,?® and to investigate mechanisms underlying
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Figure 2. A mathematical model of coagulation under flow identifies FV (factor V) as a modifier of thrombin generation in

hemophilia A.

FV is a modifier of thrombin generation in a mathematical model of flow-mediated coagulation. A, Thrombin concentration time series generated
by uniformly and independently varying plasma protein levels including inhibitors tissue pathway inhibitor (TFPI) and antithrombin (AT) £50%
from normal (110000 total simulations); mean (solid black line), boundaries that encompass 50% (pink), 90% of the data (orange), and the

maximum/minimum of the computed solutions (gray-dashed); blue line drawn at 1 nM. B, First (blue) and total (orange) order Sobol indices are
plotted as meant+SD computed with 5000 bootstrap samples of the original 110000 simulations. C, Plasma protein levels distributions shown
as box-and-whisker plots (mean in red, whiskers drawn at 3x the interquartile range), conditioned on achieving >1 nM of total thrombin by 40

min. D, Calibrated automated thrombography. FVIlI-deficient (<10%) plasma treated with vehicle control, 50 ug/mL exogenous prothrombin,
100 pg/mL anti-FV, and exogenous prothrombin and anti-FV. Assay conducted with 5 pM TF (tissue factor) and phospholipids. E, Flow assays
with whole blood from FVIII-deficient individuals. A, Representative images of DIOCS labeled platelets and leukocytes and Alexa Fluor 555
labeled fibrin(ogen) on collagen-TF surfaces at 100 per second after 25 min for vehicle control, 560 pug/ mL exogeneous prothrombin, 100 pg/
mL anti-FV, and exogenous prothrombin and anti-FV. Scale bar=50 pm. CS indicates condition for samples; and VAT, variance analysis time.

complications of trauma and coagulopathies,?’? but it
does not explicitly consider lipid surfaces, either phos-
pholipid vesicles or activated platelet surfaces, known
to regulate coagulation.?®2° Collectively, these studies
suggest that the type of surface, that is, lipid vesicle ver-
sus platelet surface, may be important in differentiating
and understanding coagulation thresholds.?® Additionally,
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biophysical effects on coagulation such as flow and dif-
fusion likely contribute to how the thresholds manifest in
vivo, but that cannot be studied with static models. We
refer the reader interested in models of static coagula-
tion to other reviews.2"®"

Models incorporating the dynamic interplay between
flow, surface, and coagulation allow for investigations

Arterioscler Thromb Vasc Biol. 2021;41:79-86. DOI: 10.1161/ATVBAHA.120.314648
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considering transport effects. Kuharsky and Fogelson®?
developed a model (denoted as KF model) to simulate
thrombin generation at the site of a small vascular injury
under flow. The model accounts for platelets, platelet
deposition, and surface-mediated coagulation reactions,
all under flow. Transport of each protein and platelet spe-
cies to and from the reaction zone by flow and diffusion
is described using mass transfer coefficients.® The reac-
tion zone is a region located just above a small patch of
exposed subendothelium; its height is defined by how
high a protein molecule can be above the injury and still
diffuse to the injury before being carried away by the
flow. The authors proposed an inhibitory, anticoagulant
role for the adherent platelets, namely that they physi-
cally inhibit the enzyme complexes embedded in the
injury patch. This notion of paving over the injury was
later confirmed experimentally.3* The KF model was
later extended to include endothelial cell reactions®® and
the FXI pathway.®® Results from these models aided in
proposing testable hypotheses including thrombin gen-
eration dependence on a surface tissue factor threshold
under flow®2%° (later experimentally validated at venous
and arterial shear rates®); the effects of platelet count
on thrombin generation under flow in hemophilia C%;
and the effects of FXla and TF in postintravenous immu-
noglobulin treatment of thrombotic events.® There are
a variety of other models of clotting under flow, using
different mathematical and computational techniques,
including some spatial models that account for each indi-
vidual red blood cell and platelet. Here, we base our stud-
ies on the extended version of the KF model but refer the
reader to other reviews devoted to this topic.39#

Quantifying Uncertainty in Computational
Models

The extended KF model, as well as other models
described above, rely on numerous assumptions regard-
ing the biochemical reaction networks, kinetic rate con-
stants, and the experimental assays used for model
calibration. The inherent uncertainty in these assump-
tions raises an issue of the value of kinetic modeling of
thrombin generation for prediction and proposal of test-
able hypothesis.*®*° A main point of contention involves
thrombin generation simulated with different existing
mathematical models giving contrasting results, even
when using the same initial concentrations of plasma
proteins.*® Counter arguments in favor of mathematical
modeling stress that for a model to be truly predictive
and accurately simulate coagulation reactions and per-
turbations; it must be carefully validated with the experi-
ments that it simulates, and any additional sources of
uncertainty and variability should be quantified. Statisti-
cal methods attempt to examine the extent to which
model outputs depend on model inputs. Specifically,
sensitivity analysis and uncertainty quantification

Arterioscler Thromb Vasc Biol. 2021;41:79-86. DOI: 10.1161/ATVBAHA.120.314648
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methods seek to assess how the uncertainty in a model
input (such as a kinetic rate or factor level) propagates
through the model to produce variations in a model out-
put (such as the level of thrombin at a particular time).
Many uncertainty quantification approaches exist and,
depending on the question under investigation, they
may be employed to identify plausible ranges of model
inputs from observations of model outputs or to investi-
gate the variability, uncertainty, and goodness of a par-
ticular computational model itself.

Sensitivity analysis techniques have been used to
study static and flow-mediated models of coagula-
tion.151959-52 Danforth et al®® performed a local sensi-
tivity analysis of the Mann model'® to investigate the
sensitivity of thrombin generation as a function of its
reaction rates, as well as to investigate the sensitivity of
thrombin production to initial coagulation protein con-
centrations' alone or through their pairwise changes/
interactions. A similar analysis was conducted by Naidu
and Anand®' on the model of Anand et al.%® In Link et
al,® a tailored sensitivity analysis approach was devel-
oped to analyze the effects of variability within the
model of Fogelson et al.*® In that approach, concentra-
tions of coagulation proteins, kinetic rate constants, and
biophysical and platelet specific parameters were var-
ied. Robust thrombin production was seen for variations
of plasma proteins within the physiological range, and
wider variations in thrombin generation occurred with
variation in individual kinetic rate constants.

Identifying FV as a Modifier of Thrombin
Generation in Hemophilia A Using a
Computationally Driven Approach

Using our mathematical model®® and computationally
driven approach, we generated an enormous amount
of synthetic patient data and used it to identify FV as
a modifier of thrombin generation in mild to moderate
hemophilia A. All simulations used to generate the data
set considered a low TF density of 5 fmol/cm? and a low
shear rate of 100 s™'. Motivated by our previous stud-
ies,32%38 we first did an initial screening and determined
a range of critical TF levels where thrombin sharply tran-
sitioned between an attenuated response with thrombin
peaking at a concentration below 1 nmol/L and an ampli-
fied thrombin response in which the thrombin concentra-
tion reached at least 1 nmol/L by 40 minutes; the TF
range is 4.63 to 7.78 fmol/cm? for FVIlI-deficient plasma.
Since individuals with FVIII deficiencies are known to
bleed in regions of the body with low TF levels,%%" we
chose a single TF level, 5 fmol/cm?, near the low end of
our computationally determined critical TF range.

Our synthetic patient data set exhibited large vari-
ance in thrombin generation due to changes in clotting
factor and inhibitor levels, see Figure 2A. To determine
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which clotting factor and inhibitor levels were the most
important for enhancing thrombin generation within our
synthetic data set, we used Sobol sensitivity analysis®®
to determine the fraction of the observed variance in
thrombin generation that was attributable to each factor
or inhibitor level, see Figure 2B. We found that FV and
prothrombin (FIl) contributed the most to the variance,
with their interaction explaining nearly 20% of it. We
then looked more directly at the 5% of simulations that
produced an amplified thrombin response (see above) in
FVlll-deficient plasma. We examined the plasma clotting
factor and inhibitor levels that produced the amplified
response and observed that the distributions of these
levels were highly skewed for 2 factors: FV and pro-
thrombin. All simulations with an amplified response had
plasma FV level of <75% of its mean population level and
most had a prothrombin level above 125% of its mean
population level (shown in Figure 2C). These results indi-
cated that, within our mathematical model, low-normal
FV levels and high-normal prothrombin levels enhanced
thrombin generation in FVlll-deficient plasma and thus
FV and Fll became leading candidates as potential modi-
fiers of thrombin generation.

Our mathematically identified candidates, FV and
prothrombin, were then confirmed as modifiers by cali-
brated automated thrombography and microfluidic flow
assays® on collagen-tissue factor surfaces at a shear
rate of 100 s utilizing both FVIll-inhibited plasma and
whole blood from FVIli-deficient individuals. Using mix-
tures of FV and prothrombin-depleted plasmas, purified
FV and prothrombin, and an anti-FVIIl function—block-
ing antibody yielding FVIII activity of <1%, we gener-
ated four cases of variations in Fll and FV plasma levels.
Results were consistent with the mathematical model,
showing that low-normal FV (439%) increased the peak
thrombin concentration and endogenous thrombin
potential and that both of these measures were fur-
ther enhanced with high prothrombin (1369%). Similar
trends were seen with FVIlI-deficient plasma from indi-
viduals using the same treatments as in the microfluidic
flow assay experiments, see Figure 2D. Whole blood
microfluidic assays were performed using both syn-
thetic plasma and blood from individuals with moder-
ate and mild FVIII deficiencies. There was a significant
increase in both the rate and maximum accumulation of
fibrin(ogen) with partial inhibition of FV via the anti-FV
antibody, and an even greater response occurred with
the addition of prothrombin, see Figure 2E.

What could be the basis of this enhanced response?
Because our model is mechanistic, we are able to probe
it further to determine which reactions in the coagulation
system become more effective on the path to thrombin
generation when FV is in the low-normal range. Doing so
allowed us to recognize that in the model the mechanism
for enhanced thrombin production is decreased substrate
competition of platelet-bound FV with platelet-bound
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FVIII to bind to and be activated by platelet-bound FXa
(activated factor X). In our simulations, FXa is the domi-
nant activator of FV and FVIII before significant amounts
of thrombin have been produced; therefore, FV and FVIII
compete to form their respective substrate-enzyme com-
plexes before their cleavage to FVa (activated factor V)
and FVllla (activated factor FVIII). Model results showed
higher concentrations of substrate-enzyme complexes
(FVIIl with FXa) for low-normal FV cases, indicating that
lowering FV levels increases activation of FVIII by FXa.
Further evidence in support of this mechanism is that
decreasing the kinetic rate constant for the association
of platelet-bound FV and FXa by 50% led to 30-fold
higher thrombin concentrations (with normal FV levels)
by 40 minutes. These results support the notion that
reducing substrate competition between FV and FVIII for
FXa is the mechanism (in the model) by which thrombin
generation is rescued in FVIlI-deficient plasma.

The model results and explorations of mechanism
described above were performed under the assumption
of severe hemophilia whereby extremely low levels of
FVIII were used in the model (1% of normal or about
0.01 nmol/L) and for normal and low-normal levels of FV.
Additional simulations showed that a further decrease in
FV levels (down to about 10%) enhanced thrombin gen-
eration and further increase in FV levels (up to 200%)
inhibits thrombin generation. Below an FV level of 10%,
there was insufficient FV and FVIII to support significant
thrombin generation (see Figure S2 in previous article’).
Additionally, we observed variations in thrombin gen-
eration when decreasing FV levels from normal to low-
normal levels for varying categories of hemophilia A, by
using FVIIl levels at 1, 3, 5, and 8% (see Figure S6 in our
previous article'). For example, with FVIII at 8%, there
was significant thrombin formed by 40 minutes when
FV was at normal levels. But when FV was decreased
to low-normal levels, there was enhanced thrombin gen-
eration as shown by a significant decrease in the time
it took the system to achieve that thrombin concentra-
tion. These results are in line with a recent study by Shao
et al®® where peak thrombin concentration in calibrated
automated thrombography was decreased when FV was
titrated back into blood from individuals with combined
FV/FVIII deficiencies.

CONCLUSIONS

In conclusion, computational modeling enables the cre-
ation of enormous synthetic patient data sets. These
data sets are complementary to clinical or experimen-
tally derived data sets in that they can be screened for
specific metrics and statistically analyzed to direct small
numbers of difficult experiments or identify biomark-
ers. As evidenced by our work described in this article,
combining computationally driven and experimental
approaches enhances the potential to discover modifiers

Arterioscler Thromb Vasc Biol. 2021;41:79-86. DOI: 10.1161/ATVBAHA.120.314648
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of coagulation. Further exploration with mechanistic
dynamic models can provide focused analysis and pre-
dictions of any underlying biochemical mechanisms that
lead to patterns in the synthetic data sets. Certainly, com-
putational approaches have their limitations; the models
should be simple enough to be truly computationally
efficient to run but complex enough to include the rel-
evant biochemistry and biophysics. That said, we think
that computational approaches can help steer experi-
mental approaches in directions that otherwise may not
have been considered; even if a computational model
fails to include one'’s favorite protein or reaction, they
may still provide novel intuition about other proteins and
interactions in coagulation, and can also usually be eas-
ily modified to consider more species or reactions. With
advancements in computational power and technology,
we think this is an exciting time to explore computational
techniques for further discovery in coagulation.
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