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FREE DIFFERENTIAL GALOIS GROUPS

ANNETTE BACHMAYR, DAVID HARBATER, JULIA HARTMANN AND MICHAEL WIBMER

Abstract. We study the structure of the absolute differential Galois group of a rational function
field over an algebraically closed field of characteristic zero. In particular, we relate the behavior of
differential embedding problems to the condition that the absolute differential Galois group is free
as a proalgebraic group. Building on this, we prove Matzat’s freeness conjecture in the case that
the field of constants is algebraically closed of countably infinite transcendence degree over Q. This
is the first known case of the twenty year old conjecture.

1. Introduction

In this paper, we prove the first known case of a conjecture due to Matzat on the freeness of
absolute differential Galois groups of rational geometric function fields of characteristic zero:

Conjecture (Matzat’s conjecture). If k is an algebraically closed field of characteristic zero, the
absolute differential Galois group of k(x) is the free proalgebraic group on a set of cardinality |k|.

Here k(x) is a differential field with respect to the derivation d/dx.
This conjecture was stated during the 1999 MSRI program Galois Groups and Fundamental

Groups and has stymied researchers since. Implicit in the conjecture was the existence of a suitable
notion of freeness for proalgebraic groups. This notion had been introduced and studied in [LM82]
and [LM83] in the case of prounipotent groups, but for the general case the notion was established
only in [Wib20].

In the present paper, we obtain several equivalent conditions that characterize the freeness of
an absolute differential Galois group in terms of differential embedding problems; see Theorem 3.7.
This theorem is shown over an arbitrary differential field of characteristic zero with algebraically
closed field of constants. When the differential field is countable, we obtain a particularly simple
criterion (see Corollary 3.9):

Theorem. Let K be a countable differential field with algebraically closed field of constants of
characteristic zero. Then the absolute differential Galois group of K is free on a countably infinite
set if and only if every differential embedding problem of finite type is solvable.

Combining that with the main result of [BHHP20] on solutions to differential embedding prob-
lems over rational function fields gives the following theorem (see Theorem 3.10):

Theorem. Let k be an algebraically closed field of countably infinite transcendence degree over Q.
Then Matzat’s conjecture holds for k(x).
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Matzat’s conjecture strengthens the inverse differential Galois problem, by asserting that every
linear algebraic group G is realizable in |k| different ways (see Corollary 3.8(b)). An affirmative
answer to the inverse differential Galois problem over k(x) is known, for k an algebraically closed
field of characteristic zero; i.e., every linear algebraic group over k is a differential Galois group
over k(x). The solution was given by [TT79] over C(x) (building on Plemelj’s work ([Ple08]) on
Hilbert’s 21st problem), and for more general algebraically closed fields of characteristic zero in
[Hrt05] (building on work of a number of authors; see especially [Kov69] and [MS96]).

The results in this paper (and in [Wib20]) are motivated by analogous statements in ordinary
Galois theory. The classical inverse Galois problem over a field K asks whether every finite group
G is the Galois group of a Galois field extension of K. This holds if K = k(x) with k algebraically
closed: the case k = C is classical; the characteristic zero case holds by [Gro71, Exp. XIII, Cor. 2.12];
and the general case was shown in [Har84, Corollary 1.5]. Going beyond this problem, the geometric
Shafarevich conjecture states that the absolute Galois group of k(x) is a free profinite group if k is
algebraically closed (in analogy, for k = F̄p, to the original Shafarevich conjecture in number theory,
which says that the absolute Galois group of Qab = Qcycl is free). The geometric Shafarevich
conjecture was proven in characteristic zero in [Dou64], and in the general case in [Har95] and
[Pop95]. Moreover it was shown there that the absolute Galois group of k(x) is free of rank |k|.
These proofs relied on a result of Iwasawa [Iwa53] in the countable case, and a result of Melnikov-
Chatzidakis in the general case (see [Jar95, Lemma 2.1]); those results say that a profinite group is
free of the desired rank if and only if all embedding problems are “sufficiently solvable”. Proalgebraic
analogs of these results were proven in [Wib20], and we rely on those to obtain our theorems above.

A. Magid has recently shown in [Mag20] that the maximal prounipotent quotient of the absolute
differential Galois group of any differential field K of characteristic zero with algebraically closed
constants is a free prounipotent group.

We should note that there is another interpretation of Matzat’s conjecture. For k an alge-
braically closed field of characteristic zero, the category of finite dimensional differential modules
over K = k(x) is naturally a neutral tannakian category over k. (See [Del90, Section 9] or [vdPS03,
Example B.23] for details.) The corresponding fundamental group scheme is the absolute differen-
tial Galois group of K and there is an equivalence of tannakian categories between the category of
finite dimensional differential modules over K and the category of finite dimensional representations
of the absolute differential Galois group of K.

According to the proof of [Wib20, Theorem 2.17] the free proalgebraic group on a set X can be
constructed as the fundamental group of the neutral tannakian category of all cofinite representa-
tions of FX . Here FX is the (abstract) free group on the set X, and a finite dimensional k-linear
representation of FX is called cofinite if all but finitely many elements of X act trivially. One thus
obtains a tannakian reformulation of Matzat’s conjecture:

Conjecture (Tannakian formulation of Matzat’s conjecture). For k an algebraically closed field of
characteristic zero, the tannakian category of finite dimensional differential modules over K = k(x)
is equivalent to the tannakian category of all cofinite representations of FX , where X is a set of
cardinality |k|.

2. Preliminaries

2.1. Proalgebraic groups. In this subsection, we recall some definitions and properties of proal-
gebraic groups from [Wib20]. We present the results in a form suitable for application in this
paper, rather than presenting them in the greatest generality. In particular, we do not consider
pro-C-groups for arbitrary classes C (i.e., projective limits of groups contained in C, for example
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pro-unipotent-groups), but only use the results in [Wib20] for the class C of all affine group schemes
of finite type over k.

Let k be a field with algebraic closure k̄. A proalgebraic group over k (or more accurately
a pro-affine algebraic group) is a projective limit of affine group schemes of finite type over k.
Projective limits exist in the category of proalgebraic groups and they can be taken pointwise, i.e.,
(lim←−Gi)(R) = lim←−Gi(R) for any k-algebra R. The coordinate ring k[lim←−Gi] is the direct limit of
the coordinate rings k[Gi]. It is well-known that the concepts of “proalgebraic groups” and “affine
group schemes” are equivalent. We say that a proalgebraic group is algebraic, if it is an affine group
scheme of finite type.

Let φ : G → H be a morphism of proalgebraic (e.g., algebraic) groups, and write φ(G) for its
scheme-theoretic image (i.e., the smallest closed subscheme of H through which φ factors). We
say that φ is an epimorphism if φ(G) = H. This condition holds if and only if the dual map
φ∗ : k[H] → k[G] on coordinate rings is injective (or equivalently, faithfully flat); see [Wib20,
Section 2.1].

For a family φi : Gi ! H, i ∈ I, of epimorphisms of algebraic groups, the fiber product of
the groups Gi over H is a proalgebraic group with coordinate ring the direct limit of the rings
k[Gi1 ]⊗k[H] · · ·⊗k[H] k[Gin ], over all finite subsets {i1, . . . , in} of I ordered by inclusion.

A closed normal subgroupN of a proalgebraic group G is called coalgebraic if G/N is algebraic. A
set N of coalgebraic subgroups of G is called a neighborhood basis at 1 for G if for every coalgebraic
subgroup N of G there exists an N ′ ∈ N with N ′ ⊆ N .

The rank of a non-trivial proalgebraic group G is defined as the smallest cardinal κ such that
there exists a neighborhood basis at 1 of cardinality κ. The rank of the trivial group is defined as
zero. Note that if G '= 1 is algebraic, then it is of rank one. If G is not algebraic, then the rank of
G equals the dimension of k[G] as a k-vector space and it also equals the smallest cardinal κ such
that k[G] can be generated as a k-algebra by a set of cardinality κ. In particular, G is of finite rank
if and only if it is algebraic (and then the rank is one or zero as noted above).

We now proceed to free proalgebraic groups. Let X be a set and let G be a proalgebraic group
over k. We say that a map φ : X → G(k̄) converges to 1 if for every coalgebraic subgroup N of
G almost all elements of X map into N(k̄). Following [Wib20, Def. 2.18], a proalgebraic group Γ
together with a map ι : X → Γ(k̄) that ι converges to 1 is called a free proalgebraic group on X if
Γ satisfies the following universal property: For every other pair (Γ′, ι′) with these properties there
exists a unique morphism ψ : Γ→ Γ′ of proalgebraic groups with ι′ = ψk̄ ◦ ι:

X
ι !!

ι′ ""!
!
!
!
!
!
!
!

Γ(k̄)

ψk̄##""
""
""
""

Γ′(k̄)

The existence of such a Γ is shown in [Wib20, Theorem 2.17] and it is unique (up to isomorphism)
by the universal mapping property. If k has characteristic zero and |X| ≥ |k|, the rank of Γ is |X|
(see Corollary 3.12 of [Wib20]).

An embedding problem for a proalgebraic group Γ consists of epimorphisms G ! H and Γ ! H
of proalgebraic groups. A (proper) solution is an epimorphism Γ ! G such that

Γ

$$$$ %% %%#
##

##
##

#

G !! !! H
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commutes. In [Wib20], such an embedding problem is called a pro-C-embedding problem and it
is called a C-embedding problem if G (and thus also H) are algebraic (as before, C is the class of
affine group schemes of finite type over k).

2.2. Differential Galois theory. In this subsection we recall the basics of differential Galois
theory. Classic references are [vdPS03] and [Mag94]. In this paper, we consider infinite families of
differential equations. In particular, we want to define the absolute differential Galois group of a
differential field. Some of the intermediate results are also shown for general fields of constants (not
necessarily algebraically closed). Differential Galois theory in this generality is treated in [AMT09]
(see [Tak89, Cor. 3.5] for a proof that our definition of Picard-Vessiot extensions given below is
equivalent to the Hopf-algebraic definition in [AMT09]).

For the remainder of the paper, K denotes a differential field of characteristic zero and k its field
of constants; i.e., the field K is equipped with a derivation ∂ : K → K and

k = K∂ = {a ∈ K| ∂(a) = 0}.

The most important example for us is the field K = k(x) of rational functions over k with
derivation ∂ = d

dx . We are interested in linear differential equations

∂(y) = Ay, A ∈ Kn×n.

Differential Galois theory associates an algebraic group to such an equation. This is achieved by
first constructing a so-called Picard-Vessiot extension of K for ∂(y) = Ay. More generally, one
associates a proalgebaic group to a (possibly infinite) family of differential equations

(1) ∂(y) = Aiy, Ai ∈ Kni×ni , i ∈ I.

Definition 2.1. A differential field extension L/K is a Picard-Vessiot extension for the family (1)
if

(i) for every i ∈ I there exists Yi ∈ GLni
(L) such that ∂(Yi) = AiYi,

(ii) L is generated as a field extension of K by the entries of all the Yi,
(iii) L∂ = K∂ .

The differential subalgebra R of L generated over K by all the entries and the inverses of the
determinants of all Yi is called a Picard-Vessiot ring for (1). A matrix Yi as in (i) is called a
fundamental solution matrix for the differential equation ∂(y) = Aiy.

If k = K∂ is algebraically closed, there exists a Picard-Vessiot extension for any family of
differential equations and it is unique up to an isomorphism of differential field extensions of K.

An extension L/K of differential fields is a Picard-Vessiot extension if it is a Picard-Vessiot
extension for some family of linear differential equations; here the family is not uniquely determined
by the extension. In Definition 2.1, the Picard-Vessiot ring R ⊆ L consists of all the differentially
finite elements in L, i.e., the elements f where the K-space spanned by f, ∂(f), ∂2(f), . . . is finite-
dimensional. Thus R does not depend on the choice of the family of differential equations, and so
we may define the differential Galois group of a Picard-Vessiot extension as follows.

In the literature the expressions “Picard-Vessiot extension” and “Picard-Vessiot ring” usually
refer to the Picard-Vessiot extension (or ring) of a single differential equation. However, in the
sequel we will use this term in the general sense of Definition 2.1. Thus, a Picard-Vessiot extension
need not be finitely generated as a field extension of K.

Definition 2.2. Let L/K be a Picard-Vessiot extension and let R ⊆ L be its Picard-Vessiot ring.
The differential Galois group Gal(L/K) of L/K is the functor from the category of k-algebras to
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the category of groups that associates to a k-algebra T the group of differential automorphisms
Aut∂(R ⊗k T/K ⊗k T ) of R⊗k T over K ⊗k T .

Here T is considered a differential ring with the trivial derivation. This functor is representable;
i.e., the differential Galois group G is a proalgebraic group over k. In fact, k[G] = (R ⊗K R)∂ is
the ring of constants of R⊗K R and the canonical map

(2) R⊗k k[G]
$
−→ R⊗K R

is an isomorphism.

Remark 2.3. Let L/K be a Picard-Vessiot extension with Picard-Vessiot ring R and differential
Galois group G. Then the following statements are equivalent (see [AMT09, Cor. 3.15]):

(i) L is finitely generated as a field extension of K.
(ii) R is finitely generated as a K-algebra.
(iii) G is algebraic.
(iv) L/K is a Picard-Vessiot extension of a single equation.

A Picard-Vessiot extension (or ring) satisfying the above equivalent conditions is said to be of
finite type. Another equivalent condition is that L/K is a Picard-Vessiot extension of a finite family
of equations.

Definition 2.4. Assume that k = K∂ is algebraically closed. The Picard-Vessiot extension K̃ of
K for the family of all linear differential equations over K is called the complete Picard-Vessiot
compositum for K. The differential Galois group of K̃/K is called the absolute differential Galois
group of K.

Note that K̃ is unique since k = K∂ is algebraically closed. The term complete Picard-Vessiot
compositum for K was introduced in [Mag94, Def. 3.32] and we will adhere to this convention.
Contrary to the situation in ordinary Galois theory, K̃ can itself admit nontrivial Picard-Vessiot
extensions and so is not “differentially closed”.

In the case of a Picard-Vessiot extension L/K of finite type, over an algebraically closed field of
constants k = K∂ and with Picard-Vessiot ring R, it is traditional to identify the differential Galois
group G with its set of k-points; i.e., with the algebraic group Aut∂(R/K) = Aut∂(L/K). For k
algebraically closed this can still be done even if L/K is not of finite type (e.g., as in Definition 2.4),
though in this case G is a proalgebraic group.

Let L/K be a Picard-Vessiot extension with Picard-Vessiot ringR and differential Galois groupG.
Let T be a k-algebra and g ∈ G(T ). Then the automorphism g : R⊗k T → R ⊗k T extends to an
automorphism g̃ of the total ring of fractions of R ⊗k T . Note that the total ring of fractions of
R⊗k T contains L as a subring. We say that a ∈ L is fixed by g if g̃(a) = a.

For a closed subgroup H of G we set

LH = {a ∈ L| a is fixed by all g ∈ H(T ) for all k-algebras T}.

Let L/K be a Picard-Vessiot extension with differential Galois group G. Then there is the
following Galois correspondence:

(a) The maps M *→ Gal(L/M) and H *→ LH are inclusion reversing bijections that are inverse to
each other, between the set of all intermediate differential fields K ⊆M ⊆ L and the set of all
closed subgroups H of G.

(b) An intermediate differential field M is a Picard-Vessiot extension of K if and only if Gal(L/M)
is a normal subgroup of G. In this case, the restriction map Gal(L/K) → Gal(M/K) is an
epimorphism and thus induces an isomorphism Gal(L/K)/Gal(L/M) + Gal(M/K).
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(c) The fixed field LG0

under the connected component of the identity of G is the relative algebraic
closure of K in L .

Let L/K be a Picard-Vessiot extension with differential Galois group G and consider a family of
closed subgroups Hi ⊆ G, i ∈ I. Then by the Galois correspondence,

(3) L
⋂

i∈I
Hi =

∏

i∈I

LHi ,

where the right hand side indicates the field compositum in L.

Lemma 2.5. Let L1/K and L2/K be Picard-Vessiot extensions that are contained in a common
overfield L with no new constants, i.e., L∂ = K∂. Then L1 and L2 are isomorphic as differential
K-algebras if and only if L1 = L2.

Proof. Let γ : L1 → L2 be an isomorphism of differential K-algebras. Fix a family of differential
equations ∂(y) = Aiy, i ∈ I, over K such that L1 is generated over K by the entries of fundamental
solution matrices Yi for Ai, i ∈ I. Then for every i ∈ I, γ(Yi) is also a fundamental solution matrix
for Ai. Thus Y

−1
i γ(Yi) has entries in L∂ = k and so L1 is generated over K by the entries of γ(Yi)

for i ∈ I and L1 ⊆ L2 follows. Similarly, L2 ⊆ L1. "

3. Differential embedding problems and Matzat’s conjecture

In this section we give necessary and sufficient conditions for a differential field to have free
absolute differential Galois group, in the case of an algebraically closed field of constants. This is
given in Theorem 3.7, which uses Theorems 3.24 and 3.42 in [Wib20] to obtain statements about
Picard-Vessiot extensions. Afterwards, in Corollary 3.9 and Theorem 3.10, we obtain the theorems
from the introduction, thereby proving Matzat’s conjecture in the case of an algebraically closed
field of constants of countably infinite transcendence degree over Q.

In order to carry this out, we first need to introduce and characterize the rank of a Picard-Vessiot
extension, and study composita of Picard-Vessiot extensions.

3.1. The rank of Picard-Vessiot extensions.

Definition 3.1. The rank of a Picard-Vessiot extension L/K, denoted by rank(L/K), is the small-
est cardinal number κ such that L/K is the Picard-Vessiot extension for a family of differential
equations of cardinality κ.

Lemma 3.2. Let L/K be a Picard-Vessiot extension with Picard-Vessiot ring R. Assume that
L/K is not of finite type. Then the following cardinal numbers are equal:

(i) rank(L/K), i.e., the smallest cardinal κ such that L/K is a Picard-Vessiot extension for a
family of differential equations of cardinality κ.

(ii) The smallest cardinal κ such that L can be generated as a field extension of K by κ many
elements.

(iii) The smallest cardinal κ such that R can be generated as a K-algebra by κ many elements.
(iv) The vector space dimension of R over K.
(v) The rank of the differential Galois group of L/K.

Proof. Let κ1, . . . ,κ5 be the cardinal numbers defined in the above five items, respectively. If L/K
is a Picard-Vessiot extension for an infinite family of differential equations of cardinality λ, then
L can be generated as a field extension of K by λ many elements. (Namely, the entries of the
corresponding fundamental solution matrices.) Conversely, if L/K can be generated by λ many
elements, say ai, i ∈ I with |I| = λ, then we can choose for every i ∈ I a differential equation
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∂(y) = Aiy such that ai ∈ Li ⊆ L, where Li is a Picard-Vessiot extension for ∂(y) = Aiy. So L is
a Picard-Vessiot extension of the family ∂(y) = Aiy, i ∈ I. This shows that κ1 = κ2. A similar
argument shows that κ1 = κ3.

Clearly, κ3 ≤ κ4. Conversely, if (fi)i∈I generate R as a K-algebra, then the union of the sets
{f e1

i1
· · · f er

ir | i1, . . . , ir ∈ I} over r ∈ N and e1, . . . , er ∈ N generates R as a K-vector space. This is
a countable union of sets of cardinality less or equal than |Ir| = |I| and thus κ4 ≤ |I| = κ3. Finally,
if G is the differential Galois group of L/K, then R ⊗k k[G] + R ⊗K R by (2) of Section 2.2. It
follows that L⊗k k[G] + L⊗K R. Therefore the K-dimension of R agrees with the k-dimension of
k[G], i.e., the rank of G. "

We note that by definition rank(K/K) = 0, and that the rank of a non-trivial Picard-Vessiot
extension L/K is finite (and then equal to 1) if and only if L/K is of finite type. Further-
more, rank(L/K) ≥ trdeg(L/K) for every Picard-Vessiot extension L/K. Also, rank(L1/K) ≤
rank(L2/K) for Picard-Vessiot extensions L1, L2/K with L1 ⊆ L2, using the characterization given
in Lemma 3.2 (iv).

As in [Wib20, Section 3.2], the dimension of a proalgebraic group G over k is the transcendence
degree over k of the field of fractions of k[G0]/a, where a is the nilradical of k[G0]. This agrees with
the usual notion of dimension in the case of algebraic groups.

Lemma 3.3. Let L/K be a Picard-Vessiot extension with differential Galois group G. Then
rank(L/K) = rank(G) and trdeg(L/K) = dim(G).

Proof. If L/K is of finite type, then G is algebraic by Remark 2.3, and the first equality then holds
by definition. On the other hand, if L/K is not of finite type, then rank(L/K) = rank(G) by
Lemma 3.2.

To show that trdeg(L/K) = dim(G), let K ⊆ R ⊆ L be the Picard-Vessiot ring and letK1 denote
the relative algebraic closure of K in L. Then trdeg(L/K) = trdeg(L/K1) and Gal(L/K1) = G0

by the Galois correspondence. We can therefore assume that G is connected (and hence that K is
relatively algebraically closed in L). Then L⊗kk[G] = L⊗KR is an integral domain and if A ⊆ k[G]
is a transcendence basis for the field of fractions of k[G] over k, then 1⊗A is a transcendence basis
for the field of fractions of L ⊗k k[G] over L. Similarly, if B ⊆ R is a transcendence basis for L
over K, then 1 ⊗ B is a transcendence basis for the field of fractions of L⊗K R over L. Thus the
transcendence degree of the field of fractions of k[G] agrees with trdeg(L/K). "

Clearly rank(L/K) ≤ |K| for every Picard-Vessiot extension L/K. Therefore, if G is the absolute
differential Galois group of K, then rank(G) ≤ |K|. To say that the absolute differential Galois
group of K is the free proalgebraic group on a set of cardinality |K| is thus a precise reformulation
of the idea that the absolute differential Galois group of K is as big as possible.

3.2. Composita of Picard-Vessiot extensions.

Lemma 3.4. Let L1 ⊆ L2 be an inclusion of Picard-Vessiot extensions of K and let R1 ⊆ R2

denote the corresponding inclusion of Picard-Vessiot rings. Then R2 is a flat R1-algebra.

Proof. Let G1 respectively G2 denote the corresponding differential Galois groups. Every inclusion
of Hopf algebras over a field is flat (in fact faithfully flat); e.g., see [Wat79, Theorem 14.1]. Thus
k[G2] is a flat k[G1]-algebra. It follows that L2 ⊗k k[G2] is a flat L2 ⊗k k[G1]-algebra. Since
R1 ⊗k k[G1] = R1 ⊗K R1 and R2 ⊗k k[G2] = R2 ⊗K R2 we have L2 ⊗k k[G1] = L2 ⊗K R1 and
L2 ⊗k k[G2] = L2 ⊗K R2. Thus L2 ⊗K R2 is a flat L2 ⊗K R1-module. Since L2/K is faithfully flat
it follows that R2 is a flat R1-algebra. "
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We will need the following group theoretic characterization of linear disjointness of Picard-Vessiot
extensions.

Lemma 3.5. Let L0, L1, L2, L be Picard-Vessiot extensions of K subject to the inclusions depicted
in the following diagram:

L

$$
$$
$$
$$

%%
%%

%%
%%

L1

&&
&&

&&
&&

L2

''
''
''
''

L0

K
and let Ri ⊆ Li denote the corresponding Picard-Vessiot rings. Then

(a) the field compositum L1L2 ⊆ L is a Picard-Vessiot extension whose Picard-Vessiot ring is the
ring compositum of R1 and R2 in L (i.e., the smallest subring containing R1 and R2), and

(b) there is a canonical embedding

(4) Gal(L1L2/K)→ Gal(L1/K)×Gal(L0/K) Gal(L2/K)

which is an isomorphism if and only if L1 and L2 are linearly disjoint over L0.

Proof. Assertion (a) is immediate from the definitions. The embedding (4) is induced by the
restriction homomorphisms Gal(L1L2/K)→ Gal(Li/K).

We define Gi = Gal(Li/K) for i = 0, 1, 2. Let us first show that the map R1⊗R0
R2 → L1⊗L0

L2

is injective. Let S be the multiplicatively closed set S = R0 ! {0}. Then

R1 ⊗R0
R2 → S−1(R1 ⊗R0

R2) = S−1R1 ⊗L0
S−1R2 ↪→ L1 ⊗L0

L2.

It thus suffices to show that every element s ∈ S is a non-zero-divisor in R1⊗R0
R2. Multiplication

with s is an injective R0-linear map R2 → R2. Because R1 is flat over R0 (Lemma 3.4), we see that
multiplication with s is also an injective map on R1 ⊗R0

R2.
Assume that L1 and L2 are linearly disjoint over L0. Then it follows from the above paragraph

that the map R1 ⊗R0
R2 → R1 ·R2 is an isomorphism, where R1 ·R2 denotes the ring compositum

of R1 and R2 in L. For a k-algebra T we have differential isomorphisms

(R1 · R2)⊗k T = R1 ⊗R0
R2 ⊗k T = (R1 ⊗k T )⊗(R0⊗kT ) (R2 ⊗k T ),

which allows us to define an inverse to Gal(L1L2/K) → Gal(L1/K) ×Gal(L0/K) Gal(L2/K). This
finishes the first direction of the proof.

Let us now assume that the map (4) is an isomorphism. Equivalently, the comorphism

k[G1]⊗k[G0] k[G2]→ k[G12]

is an isomorphism. We have

(R1 ⊗R0
R2)⊗K (R1 ⊗R0

R2) = (R1 ⊗K R1)⊗(R0⊗KR0) (R2 ⊗K R2)

= (R1 ⊗k k[G1])⊗(R0⊗kk[G0]) (R2 ⊗k k[G2])

= (R1 ⊗R0
R2)⊗k (k[G1]⊗k[G0] k[G2])

and
(R1 ·R2)⊗K (R1 ·R2) = (R1 ·R2)⊗k k[G12],
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where G12 = Gal(L1L2/K). Since k[G1]⊗k[G0] k[G2]→ k[G12] is an isomorphism, the kernel of

(R1 ⊗R0
R2)⊗k (k[G1]⊗k[G0] k[G2])→ (R1 · R2)⊗k k[G12]

is generated by its intersection with (R1 ⊗R0
R2)⊗k (1⊗k[G0] 1). Thus the kernel of

f : (R1 ⊗R0
R2)⊗K (R1 ⊗R0

R2)→ (R1 · R2)⊗K (R1 ·R2)

is generated by its intersection with (R1⊗R0
R2)⊗K (1⊗R0

1), where we write f for the composition

(R1⊗R0
R2)⊗K(R1⊗R0

R2)→ (R1⊗R0
R2)⊗k(k[G1]⊗k[G0]k[G2])→ (R1·R2)⊗kk[G12]→ (R1·R2)⊗K(R1·R2).

As G1 and G2 are both quotients of G12 and the torsor isomorphisms are compatible with taking
quotients (compare with [BHHW18, Lemma 2.8]), the following diagram commutes for both i = 1, 2:

Ri ⊗K Ri

$$

Ri ⊗k k[Gi]

$$

$&&

(R1 · R2)⊗K (R1 ·R2) (R1 ·R2)⊗k k[G12]$
&&

It follows that f equals µ⊗ µ with µ : R1 ⊗R0
R2 → R1 ·R2 the multiplication morphism.

We conclude that the kernel of µ⊗µ is generated by its intersection with (R1⊗R0
R2)⊗K (1⊗R0

1)
which is only possible if µ is injective. But then also L1⊗L0

L2 → L is injective because L1⊗L0
L2

is a localization of R1 ⊗R0
R2, so L1 and L2 are linearly disjoint over L0. "

3.3. Differential embedding problems and free differential Galois groups. We define dif-
ferential embedding problems as in [BHHW18], [BHH18] and [BHHP20]. The only difference here
is that we omit the “of finite type assumption” present in these articles.

Definition 3.6. A differential embedding problem over K is a pair (α : G ! H, L/K), where α
is an epimorphism of proalgebraic groups and L/K is a Picard-Vessiot extension with differential
Galois groupH. A (proper) solution is a Picard-Vessiot extension M/K containing L, together with
an isomorphism G + Gal(M/K) that identifies α : G ! H with the restriction map Gal(M/K) !
Gal(L/K).

A differential embedding problem (α : G ! H, L/K), is of finite type if G is an algebraic group.
(Then necessarily L/K is also of finite type.) The kernel of (α : G ! H, L/K) is the kernel of α.
The embedding problem is trivial if its kernel is trivial (i.e., α is an isomorphism).

Abusing notation, we will sometimes refer to the Picard-Vessiot extension M/K as a solution
to (α : G ! H, L/K). In particular, if M ′/K is a Picard-Vessiot extension containing L, then
the compositum of all solutions of (α : G ! H, L/K) in M ′ is the compositum of all Picard-
Vessiot extensions M/K contained in M ′ and containing L such that there exists an isomorphism
G + Gal(M/K) that identifies α with the restriction map Gal(M/K) ! Gal(L/K).

Now assume that the field of constants k is algebraically closed. Then differential embedding
problems over K correspond to embedding problems for the absolute differential Galois group of
K as we will now explain.

Let K̃/K denote the complete Picard-Vessiot compositum for K and let Γ = Gal(K̃/K) denote
the absolute differential Galois group of K.

Let H be a proalgebraic group. To specify an epimorphism β : Γ ! H is equivalent to specifying
a Picard-Vessiot extension L/K together with an isomorphism H + Gal(L/K): If β : Γ ! H is an
epimorphism, then L = K̃ker(β) is a Picard-Vessiot extension of K and the restriction map Γ !

Gal(L/K) has kernel ker(β) (by the Galois correspondence). Thus H + Γ/ ker(β) + Gal(L/K).
Conversely, given a Picard-Vessiot extension L/K together with an isomorphism H + Gal(L/K),
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there exists an embedding of L/K into K̃/K. The image of this embedding is unique and so there
is no harm in also denoting this image by L. The restriction map then yields an epimorphism
β : Γ ! Gal(L/K) + H.

Thus to specify a differential embedding problem (α : G ! H, L/K) over K is equivalent to
specifying an embedding problem (α : G ! H, β : Γ ! H) for Γ. Moreover, if φ : Γ ! G is a
solution of (α : G ! H, β : Γ ! H), then M = K̃ker(φ) contains L = K̃ker (β) and

G
α !! !!

$

$$

H

$

$$

Γ/ ker(φ)

$

$$

!! !! Γ/ ker(β)

$

$$

Gal(M/K) !! !! Gal(L/K)

commutes. Conversely, if M/K and G + Gal(M/K) constitute a solution of a differential embed-
ding problem (α : G ! H, L/K), then M/K embeds into K̃/K and

Γ

$$$$ '' ''(
((

((
((

((
((

((

Gal(M/K) !! !!

$

$$

Gal(L/K)

$

$$

G
α !! !! H

commutes.
We are now prepared to provide characterizations of the freeness of the absolute differential Galois

group in terms of differential embedding problems. In the following theorem, all composita are as
fields, and are taken inside a fixed complete Picard-Vessiot compositum. The seven conditions below
respectively parallel the corresponding conditions in [Wib20, Theorem 3.24], where the context was
that of abstract proalgebraic groups (or more generally, pro-C-groups).

Theorem 3.7. Let K be a differential field of cardinality κ with an algebraically closed field of
constants. Then the following statements are equivalent:

(i) The absolute differential Galois group of K is the free proalgebraic group on a set of cardinal-
ity κ.

(ii) Every differential embedding problem (G ! H, L/K) with rank(L/K) < κ and rank(G) ≤ κ
has a solution.

(iii) Every differential embedding problem (G ! H, L/K) with rank(L/K) < κ and algebraic
kernel has a solution.

(iv) For every differential embedding problem (G ! H, L/K) of finite type and every Picard-
Vessiot extension M/K containing L with rank(M/K) < κ, there exists a solution L′, such
that L′ and M are linearly disjoint over L.

(v) For every non-trivial differential embedding problem (α : G ! H, L/K) of finite type and every
Picard-Vessiot extension M/K containing L with rank(M/K) < κ, there exists a solution L′,
such that L′ " M and such that trdeg(L′M/M) > 0 if dim(ker(α)) > 0.
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(vi) For every non-trivial differential embedding problem (α : G ! H, L/K) of finite type, the
compositum M of all solutions satisfies rank(M/K) = κ and it satisfies trdeg(M/K) = κ if
dim(ker(α)) > 0.

(vii) For every non-trivial differential embedding problem (G ! H, L/K) of finite type there exist
κ solutions Mi such that the Mi are linearly disjoint over L.

Proof. Let K̃/K denote the complete Picard-Vessiot compositum for K and let Γ = Gal(K̃/K)
denote the absolute differential Galois group of K. We will first verify that each of the conditions
(i),. . . ,(vii) implies that rank(Γ) = κ. Since rank(Γ) ≤ |K| = κ it suffices to show that rank(Γ) ≥ κ.

Since |k| ≤ |K|, condition (i) implies rank(Γ) = κ by Corollary 3.12 in [Wib20]. To see that
(ii) implies rank(Γ) = κ, fix a proalgebraic group G over k with rank(G) = κ (such a G exists by
[Wib20, Ex. 3.3]). Then (ii) implies that G is a quotient of Γ (by choosing L = K and H = 1) and
thus rank(Γ) = κ.

To see that (iii) implies rank(Γ) = κ, fix a non-trivial algebraic group G and consider the
compositum L of all Picard-Vessiot extensions with differential Galois group isomorphic to G inside
K̃. If rank(L/K) ≥ κ then also rank(Γ) ≥ κ. So we suppose that rank(L/K) < κ. Then
(iii) applied to the differential embedding problem (G × Gal(L/K) ! Gal(L/K), L/K) yields
a Picard-Vessiot extension M/K containing L. Without loss of generality we may assume that
M is contained in K̃. The Picard-Vessiot extension L1/K that corresponds to the kernel of the
projection G×Gal(L/K) ! G has differential Galois group isomorphic to G but is not contained
in L; a contradiction.

Clearly (iv)⇒(v), so it suffices to show that (v) implies rank(Γ) = κ.
We argue in a fashion similar to what we did for (iii). Fix a non-trivial algebraic group G and let

M be the compositum of all Picard-Vessiot extensions with differential Galois group isomorphic to
G inside K̃. If rank(M/K) ≥ κ we are done. If not, we can apply (v) to the differential embedding
problem (G ! 1, K/K) to find a solution L′ such that L′ " M . This solution L′ is a Picard-Vessiot

extension of K with differential Galois group isomorphic to G contained in K̃ but not in M . This
contradicts the definition of M .

To see that (vi) and (vii) both imply rank(Γ) = κ, we can choose a non-trivial algebraic group
G and consider the differential embedding problem (G ! 1, K/K). Both (vi) and (vii) imply that
there exists a Picard-Vessiot extension M of K with rank(M/K) = κ (in (vii) we let M be the
compositum of the fields Mi). But then also rank(Γ) = rank(K̃/K) = κ.

Now that we know that rank(Γ) = κ ≥ |k| in all seven cases, we can use Theorem 3.42 in [Wib20]
to see that (i) is equivalent to Γ being saturated and that statements (ii) to (vii) are merely refor-
mulations of the different characterizations of saturation in [Wib20, Theorem 3.24]: (ii) corresponds
to (i) in [Wib20, Theorem 3.24], while (iii) corresponds to (ii) in Theorem [Wib20, Theorem 3.24].
To see that (iv) here corresponds to (iv) in [Wib20, Theorem 3.24], we use Lemma 3.5 above and
Remark 3.28 in [Wib20].

For the correspondence between (v) here and (v) in [Wib20, Theorem 3.24], we conform to the
notation in [Wib20, Theorem 3.24] by setting N = Gal(K̃/M) and φ : Γ ! G given by Γ !

Gal(L′/K) ∼= G. Using Equation (3) of Section 2.2, we obtain

φ(N) ∼= N/ ker(φ) ∩N = Gal(K̃ker(φ)∩N/M) = Gal(K̃ker(φ)K̃N/M) = Gal(L′M/M).

To see that (vi) here corresponds to (vi) in Theorem [Wib20, Theorem 3.24], we note that the
intersection of kernels of solutions in (vi) in Theorem [Wib20, Theorem 3.24] corresponds to the
compositum of all solutions in (vi) again by Equation (3).
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Finally, to show that (vii) corresponds to (vii) in Theorem [Wib20, Theorem 3.24], let I be a
set of cardinality κ and consider the I-fold fiber product

∏
i∈I(G ! H) of G with itself over H.

We claim that the solutions Mi for i ∈ I are linearly disjoint over L if and only if the product
map

∏
φi : Γ →

∏
i∈I(G ! H) is an epimorphism, where φi : Γ ! Gal(Mi/K) = G. By [Wib20,

Remark 3.23] that product map is an epimorphism if and only if the product maps
∏
φj : Γ →∏

j∈J(G ! H) are epimorphisms for every finite subset J ⊆ I which in turn is the case if and
only if the the embedding Gal(

∏
j∈J Mj/K) →

∏
j∈J(Gal(Mj/K) ! H) given by restriction is an

epimorphism. That however is equivalent to Mj , j ∈ J , being linearly disjoint over L by repeatedly
applying Lemma 3.5 and the claim follows. "

The following corollary explains how Matzat’s conjecture goes beyond the solution of the inverse
problem over k(x). The solution of the inverse problem over k(x) only tells us that every algebraic
group is a differential Galois group over k(x). Matzat’s conjecture tells us which proalgebraic groups
are differential Galois groups over k(x) and it tells us in how many different ways an algebraic group
can occur as a differential Galois group.

Corollary 3.8. Let K be a differential field with an algebraically closed field of constants such that
the absolute differential Galois group of K is the free proalgebraic group on a set of cardinality |K|.
Then:

(a) A proalgebraic group G is a differential Galois group over K if and only if rank(G) ≤ |K|. In
particular, every algebraic group is a differential Galois group over K.

(b) For a non-trivial algebraic group G, the set of isomorphism classes of Picard-Vessiot extensions
with differential Galois group isomorphic to G has cardinality |K|.

Proof. Condition (ii) of Theorem 3.7 applied to the differential embedding problem (G ! 1, K/K)
shows that every proalgebraic group G with rank(G) ≤ |K| is a differential Galois group over K.
On the other hand, rank(G) ≤ |K| for every differential Galois group G over K. This proves the
first part.

For the second part, condition (vii) of Theorem 3.7 shows that the differential embedding prob-
lem (G ! 1, K/K) has a set of |K| solutions in K̃ that are linearly disjoint, and in particular
unequal. By Lemma 2.5 they are non-isomorphic. So the set of isomorphism classes of Picard-
Vessiot extensions with differential Galois group isomorphic to G has cardinality at least |K|, and
hence exactly |K|, since the reverse inequality follows from the fact that there are only |K| linear
differential equations over K. "

We note that the cardinality of the set of all isomorphism classes of Picard-Vessiot extensions
with a fixed differential Galois group has been studied in detail by Kovacic in [Kov69] for the case
of solvable algebraic groups. In particular, Kovacic proved, as predicted by Matzat’s conjecture,
that the cardinality of the set of all isomorphism classes of Picard-Vessiot extensions of K = k(x)
with a fixed non-trivial connected solvable differential Galois group has cardinality |K|.

For a countable differential field the equivalence of (i) and (iii) in Theorem 3.7 reduces to the fol-
lowing corollary. Alternatively, this can be deduced from Corollary 3.43 in [Wib20] by a translation
from embedding problems to differential embedding problems.

Corollary 3.9. Let K be a countable differential field with an algebraically closed field of constants.
Then the absolute differential Galois group of K is free on a countably infinite set if and only if
every differential embedding problem of finite type over K is solvable. "

We conclude with a special case of Matzat’s conjecture.
12



Theorem 3.10. Matzat’s conjecture (as stated in the introduction) is true if the field of constants
k is countable and of infinite transcendence degree over Q. In other words, Matzat’s conjecture is
true for the field k = Q(y1, y2, . . .), the algebraic closure of a field of rational functions in countably
many variables over Q.

Proof. If k is countable, also K = k(x) is countable. Thus, according to Corollary 3.9, it suffices to
show that every differential embedding problem of finite type over K is solvable. For k of infinite
transcendence degree this has been proved in [BHHP20, Cor. 4.5]. "
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