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ALMOST-SIMPLE AFFINE DIFFERENCE ALGEBRAIC GROUPS

MICHAEL WIBMER

ABSTRACT. Affine difference algebraic groups are a generalization of affine algebraic groups
obtained by replacing algebraic equations with algebraic difference equations. We show that
the isomorphism theorems from abstract group theory have meaningful analogs for these groups
and we establish a Jordan-Holder type theorem that allows us to decompose any affine differ-
ence algebraic group into almost-simple affine difference algebraic groups. We also characterize
almost-simple affine difference algebraic groups via almost-simple affine algebraic groups.

INTRODUCTION

Affine algebraic groups can be described as subgroups of a general linear group defined by
polynomials in the matrix entries. In a similar spirit, affine difference algebraic groups can be
described as subgroups of a general linear group defined by difference polynomials in the matrix
entries, i.e., the defining equations involve a formal symbol ¢ that has to be interpreted as a ring
endomorphism. Many concepts and results from the theory of algebraic groups have meaningful
analogs for affine difference algebraic groups, e.g., the o-dimension is a measure for the size of an
affine difference algebraic group analogous to the dimension of algebraic varieties. For example,
the full general linear group GL,, considered as a difference algebraic group, has o-dimension
n?, while the difference algebraic subgroup G = {g € GL,, | 0(g9)Tg = go(g)* = I,,} of GL, has
o-dimension zero.

An affine difference algebraic group is strongly connected if it has positive o-dimension and
no proper difference algebraic subgroup of the same o-dimension. The eponymous protagonists
of this article, the almost-simple affine difference algebraic groups, are the strongly connected
affine difference algebraic groups with the property that every proper normal difference algebraic
subgroup has o-dimension zero. For example, as we show, an almost-simple affine algebraic
group, considered as a difference algebraic group, is an almost-simple affine difference algebraic
group.

The main goal of this paper is to elucidate the structure of affine difference algebraic groups
“up to o-dimension zero”. Another crucial notion for this objective, besides the notion of
almost-simple affine difference algebraic groups, is the concept of isogeny: Two affine difference
algebraic groups GG1 and Gy are isogenous if there exists an affine difference algebraic group H
and surjective morphisms H — G1 and H — G5 with kernels of o-dimension zero. Our first main
result is a Jordan-Holder type theorem for affine difference algebraic groups (Theorem [7.13)):

Theorem A. Let G be a strongly connected affine difference algebraic group. Then there exists
a subnormal series

G=Gy2G 222G, =1
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of strongly connected difference algebraic subgroups of G such that G;/G;y1 is almost-simple for
i=0,...,n—1.1If
G=Hy2H 2---2Hp=1

is another such subnormal series, then m = n and there exists a permutation 7 such that G;/Gi+1
and Hy )/ Hy ;)41 are isogenous fori=0,...,n — 1.

We also show that any affine difference algebraic group of positive o-dimension has a strong
identity component that is strongly connected, i.e., a (unique) minimal difference algebraic
subgroup of the same o-dimension. Therefore, the above theorem yields a decomposition result
for arbitrary affine difference algebraic groups.

Theorem A prompts us to determine the structure of the almost-simple affine difference alge-
braic groups. This is the content of our second main result (Theorem [8.13)):

Theorem B. A strongly connected affine difference algebraic group is almost-simple if and only
if it is isogenous to an almost-simple affine algebraic group, considered as an affine difference
algebraic group.

Difference algebraic groups are the discrete analog of differential algebraic groups and the lat-
ter have always played an important role in differential algebra. See, e.g., the textbooks [Kol85]
and [Bui92] on differential algebraic groups. The last couple of years have seen an exciting and
fruitful interaction between the theory of differential algebraic groups and the Galois theory of
linear differential or difference equations depending on a differential parameter, also known as
parameterized Picard-Vessiot theory ([Lan08], [CS07], [HS08]). In this Galois theory the Galois
groups are differential algebraic groups and in this capacity they measure the differential alge-
braic relations (with respect to an auxiliary derivation) among the solutions of linear differential
or difference equations. The structure theory of differential algebraic groups has facilitated the
development of very strong hypertranscendence criteria that have been applied to various spe-

cial functions ([Arrl3], [DV12], [HO15] [DHRI1S], [HMO17], [Harl6], [AS17], [ADR], [ADH20])
and the development of algorithms for computing these Galois groups ([Drel4], [Arri4], [Arrl6],

Arrl7], [MOS14], [MOS15], [MO18]).

Similar Galois theories exist for linear differential or difference equations depending on a dis-
crete parameter ([DVHW14], [OW15]). In these Galois theories the Galois groups are affine
difference algebraic groups and they measure the difference algebraic relations among the so-
lutions. While there has been some progress ([DVHW17], [DHR], [BWa]), the case of discrete
parameters is far less developed than the case of differential parameters and the difference
analogs of current results at the interface of differential algebraic groups and parameterized
Picard-Vessiot theory, such as [SP], are far beyond reach at the moment. This is mainly due
to the fact that the theory of difference algebraic groups is practically non-existent. In sharp
contrast to the situation in differential algebra, difference algebraic groups have long played no
role at all in difference algebra. At present, only a few scattered results on difference algebraic
groups are available in the literature: Some results relating to cohomology of difference algebraic
groups are in [BWb], [CK18], [CK], [Tom]. Groups definable in ACFA, the model companion of
difference fields, played a crucial role in Hrushovski’s proof of the Manin-Mumford conjecture in
[Hru01]. The relation between affine difference algebraic groups and groups definable in ACFA
is somewhat analogous to the relation between affine group schemes of finite type over a field
and groups definable in ACF, the theory of algebraically closed fields. Further results related
to the Manin-Mumford conjecture and groups definable in ACFA are in [SV99], [KP02|] [Sca05],
[KP07], [CH17].

Because of the present infantile state of the theory of difference algebraic groups, the purpose
of this article is also to lay the groundwork for a further comprehensive study of affine difference
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algebraic groups To this end we build on [Wib20], where some basic finiteness properties
of affine difference algebraic groups have been established and numerical invariants for affine
difference algebraic groups, such as the o-dimension o- dim(G) and the limit degree 1d(G), have
been introduced. On our path to Theorems A and B above we encounter several basic results
and constructions that we deem fundamental for the further development of the theory of affine
difference algebraic groups:

e We introduce four different difference algebraic subgroups of an affine difference alge-
braic group that are in a certain sense analogous to the maximal reduced subgroup of
an affine algebraic group.

e We establish the existence of the quotient G/N of an affine difference algebraic group
G by a normal difference algebraic subgroup N and show that it is well-behaved, e.g.,
o-dim(G/N) = o- dim(G) — o~ dim(N) and 1d(G/N) = 135

e We show that every morphism G — H of affine difference algebraic groups factors
uniquely as a quotient map followed by an embedding.

e We establish the analogs of the isomorphism theorems from abstract group theory. This,
in particular, includes formulas such as H/(HNN) ~ HN/N or (G/N)/(H/N) ~ G/H
and the correspondence between difference algebraic subgroups of G/N and difference
algebraic subgroups of G containing N.

e We introduce and study the identity component G° and the strong identity component
G*° of an affine difference algebraic group. In particular, we show that G° is a charac-
teristic subgroup of G (in the sense that it is stable under automorphisms even after
base change) and we isolate conditions that guarantee that G*° is normal in G.

Let us elaborate a little more on the first point in the above list: It is well-recognized (see
e.g., [Mil17]) that allowing nilpotent elements in the coordinate rings of affine algebraic groups
has its benefits. The situation for affine difference algebraic groups is similar. Without allowing
“o-nilpotent” elements, the Galois correspondences in [DVHW14] and |[OW15] would not be
complete and the isomorphism theorems for affine difference algebraic groups would not hold.
In difference algebraic geometry there is a whole zoo of elements playing a role analogous to
nilpotent elements in algebraic geometry. They roughly correspond to the following assertions
valid for elements in a difference field but not generally valid for elements in a difference ring:

a™ = 0 implies a = 0.
o(a) =0 implies a = 0.
ab = 0 implies ao(b) = 0.
ac(a) = 0 implies a = 0.

In this spirit we obtain four difference algebraic subgroups of an affine difference algebraic group
that play a role analogous to the maximal reduced subgroup of an affine algebraic group.

We conclude this introduction with an outline of the article: In Section 1 we go through the
details of the definition of affine difference algebraic groups and we recall the necessary results
from [Wib20]. Sections 2 to 6 roughly correspond to the five bullet points in the above list. In
Section 7 we establish our Jordan Hélder type theorem (Theorem A) and in the final section on
almost-simple affine difference algebraic groups we prove Theorem B.

1Some further steps in this direction can be found in the author’s habilitation thesis [Wib15], which encompasses
the first seven sections of this article.
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1. NOTATION AND PRELIMINARIES

In this section we introduce some notation that will be used throughout the text. We also
recall the required constructions and results from [Wib20]. The reader familiar with [Wib20]
may safely skip this section.

All rings are assumed to be commutative and unital. The natural numbers N include 0. We
begin by recalling the jargon of difference algebra. Standard references for difference algebra
are [Coh65] and |Lev08]. However, note that in these references the transforming operators are
always assumed to be injective. Here we do not make this assumption.

A difference ring (or o-ring for short) is a ring R together with a ring endomorphism o: R —
R. We usually omit ¢ from the notation and simply refer to R as a o-ring. Moreover, as
customary, we use the same symbol o for various different endomorphisms. A morphism between
o-rings R and S is a morphism : R — S of rings such that

Y.

Jf I

R——S

commutes. A o-subring of a o-ring is a subring that is stable under o. A o-ring R is inversive if
0: R — R is bijective. A o-field is a o-ring whose underlying ring is a field. If K is a o-subring
of a o-ring L such that K and L are o-fields, then L is a o-field extension of K.

A o-ideal of a o-ring R is an ideal a of R such that o(a) C a. In this case R/a is naturally a
o-ring such that the canonical map R — R/a is a morphism of o-rings. For a subset F' of R the
smallest o-ideal containing F' is denoted by [F|. It is called the o-ideal o-generated by F and
agrees with the ideal generated by o'(f) (i € N, f € F). A o-ideal a is finitely o-generated if
there exists a finite subset I of a such that a = [F]].

Let k£ be a o-ring. A k-o-algebra is a o-ring R together with a morphism k — R of o-rings. A
morphism of k-c-algebras is a morphism of o-rings that is a morphism of k-algebras. The tensor
product R®y S of two k-o-algebras is a k-o-algebra via o(r®s) = o(r)®@0o(s). A k-o-subalgebra
of a k-o-algebra is a o-subring that is a k-subalgebra. For a subset F' of a k-o-algebra R, the
smallest k-o-subalgebra of R containing F' is denoted by k{F'}. It is called the k-o-subalgebra
o-generated by F and agrees with the k-subalgebra of R generated by o'(f) (i €N, f € F). A
k-o-algebra R is finitely o-generated (over k) if there exists a finite subset F' of R with R = k{F'}.

The o-polynomial ring in the o-variables yi, ..., y, over k is
E{yi,...,yn} =k [Ji(yj)| 1eN, 1<j< n] ,
where the action of o on k{y1,...,y,} extends the action of o on k and o acts on the variables

o'(y;) as suggested by their names. The order a o-polynomial f € k{yi,...,yn} is the largest
power of o that occurs in f. For a k-o-algebra R, a o-polynomial f € k{yi,...,y,} and
x = (x1,...,2,) € R™, we denote with f(z) the element of R obtained from f by specializing
o'(yj) to o*(x;). For F C k{yi,...,ys} the set of R-valued solutions of F is

Vr(F) = {z € R"| f(z) =0V f € F}.

Note that R ~» Vg (F') is naturally a functor from the category of k-o-algebras to the category
of sets.

Definition 1.1. A o-variety over k is a functor from the category of k-o-algebras to the category
of sets that is isomorphic to a functor of the form R ~» Vg(F) for some n > 1 and F C

E{y1,...,yn}-
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It would be more accurate to add the word “affine” into the above definition. We chose
not to do so because we have no need to consider non-affine o-varieties in this article and to
avoid countless repetitions of the word “affine”. A morphism of o-varieties over k is a natural
transformation of functors.

If X = V(F) is the o-variety defined by F' C k{y1,...,yn}, i.e., X(R) = Vg(F) for all
k-o-algebras R, then

I(X)={f€k{yi,....un}| f(x) =0V 2 € X(R) V k-o-algebras R}

is a o-ideal of k{yi,...,y,} that agrees with [F] (choose R = k{y1,...,yn}/[F]). The k-o-al-
gebra k{X} = k{y1,...,yn}/I(X) is called the coordinate ring of X. For every k-c-algebra
R we have a bijection Hom(k{X}, R) ~ X(R) that assigns to a morphism ¢: k{X} — R of
k-o-algebras the tuple (¢¥(71),...,%(¥n)) € R™. As these bijections are functorial in R, we see
that X is represented by k{X}. It follows that a functor from the category of k-o-algebras
to the category of sets is a o-variety if and only if it is representable by a finitely o-generated
k-o-algebra. By the Yoneda Lemma the k-o-algebra representing a o-variety X is uniquely
determined up to a unique isomorphism. As above, it is called the coordinate ring of X and
denoted by k{X}. Moreover, X ~» k{X} is an equivalence of categories between the category of
o-varieties over k and the category of finitely o-generated k-o-algebras. We will usually identify
X with Hom(k{X}, —).

For a morphism ¢: X — Y of o-variety the corresponding morphism ¢*: k{Y'} — k{X}
of k-o-algebras is called the dual of ¢. For o-varieties X and Y the functor X x Y given by
R ~» X(R) x Y(R) is a product in the category of o-varieties over k. In fact, k{X x Y} =
E{X} @ k{Y}.

Let X be a o-variety. An element f € k{X} defines for every k-o-algebra R amap f: X(R) —
R, v — (f). For F C k{X} the subfunctor Y = V(F) of X given by Y(R) = {x €
X(R)| f(z) = 0 Vf € F} for all k-o-algebras R is called the o-closed o-subvariety of X de-
fined by F. Note that Y is a o-variety with coordinate ring k{Y'} = k{X}/[F]. The map
a — V(a) is a bijection between the o-ideals of k{X} and the o-closed o-subvarieties of X
([Wib20, Lemma 1.4]). The o-ideal corresponding to a o-closed o-subvariety Y of X is denoted
by I(Y) C k{X} and called the defining ideal of Y. We use the notation “Y C X” to indicate
that Y is a o-closed o-subvariety of X.

The intersection Y7 N Y5 of two o-closed o-subvarieties of X is defined by (Y7 N Ys)(R) =
Yi(R) NY2(R) for any k-o-algebra R. It is a o-closed o-subvariety of X corresponding to the
sum of o-ideals.

A morphism ¢: X — Y of g-varieties is a o-closed embedding if it induces an isomorphism
between X and a o-closed o-subvariety of Y. This is equivalent to ¢*: k{Y'} — k{X} being
surjective ([Wib20, Lemma 1.6]). We will usually indicate a o-closed embedding as X < Y.

For a morphism ¢: X — Y of o-varieties there exists a unique o-closed o-subvariety ¢(X) of
Y such that ¢ factors through the inclusion ¢(X) C Y and for any other o-closed o-subvariety
Z of Y such that ¢ factors through Z C Y, one has ¢(X) C Z ([Wib20, Lemma 1.5]). In
fact, ¢(X) is the o-closed o-subvariety of Y defined by the kernel of ¢*: k{Y'} — k{X}. For a

o-closed o-subvariety V' of X, we define ¢(V') as ¢y (V), where ¢y : V — X %Y. Thus o(V)
is the o-closed o-subvariety of Y defined by the kernel of k{Y} — k{X} — k{V}.
For a morphism ¢: X — Y of g-varieties and a o-closed o-variety Z of Y, we can define a
subfunctor ¢~1(Z) of X by ¢~(Z)(R) = ¢ (Z(R)) for any k-o-algebra R. If Z = V(a), then
¢ (Z)(R) = {¢ € Hom(k{X}, R)| a C ker(¢")}
= {¢ € Hom(k{X}, R)| ¢"(a) C ker(s)} = V(¢"(a))(R).
Therefore ¢~1(Z) = V(¢*(a)) is a o-closed o-subvariety of X.
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Let kK — K be a morphism of o-rings. For a o-variety X over k the functor Xg defined by
Xk(R') = X(R') for every K-o-algebra R, is a o-variety over K. Indeed, K{Xx} = k{X}®i K.

Note that for a o-ring k£ the map o: k£ — k is a morphism of o-rings. For an object X over
k (e.g., a o-variety or a k-o-algebra) we denote the new object over k obtained by base change
via 0: k — k by °X. A similar notation applies for morphisms and higher powers of o.

From now on and throughout the article we assume that k is a o-field. All schemes
and o-varieties are assumed to be over k unless indicated otherwise.

Definition 1.2. A c-algebraic group G over k is a group object in the category of o-varieties
over k.

In particular, G(R) is a group for every k-c-algebra R. A list of examples of o-algebraic
groups can be found in [Wib20, Section 2]. A o-closed o-subvariety H of a o-algebraic group
G is a o-closed subgroup if H(R) is a subgroup of G(R) for any k-o-algebra R. In symbols, we
express this as H < G. A o-closed subgroup N of a o-algebraic group G is normal if N(R) is a
normal subgroup of G(R) for every k-o-algebra R. We indicate this as N < G.

A morphism ¢: G — H of o-algebraic groups is a morphism of o-varieties such that the map
¢r: G(R) — H(R) is a morphism of groups for every k-o-algebra R. A morphism of o-algebraic
groups is a o-closed embedding if it is a o-closed embedding of o-varieties.

A k-o-Hopf algebra is a k-o-algebra R equipped with the structure of a Hopf-algebra over
k such that the Hopf algebra structure maps, (i.e., the comultiplication A: R — R ®; R, the
counit €: R — k and the antipode S: R — R) are morphisms of k-o-algebras. A k-o-Hopf
subalgebra of a k-o-Hopf algebra is a k-o-subalgebra that is a Hopf subalgebra.

The category of o-algebraic groups over k is anti-equivalent to the category of k-o-Hopf
algebras that are finitely o-generated over k ([Wib20, Rem. 2.3]). A o-closed o-subvariety H of
a o-algebraic group G is a o-closed subgroup if and only if I(H) C k{G} is a Hopf-ideal (J[Wib20,
Lemma 2.4]). A o-ideal that is also a Hopf ideal will be called a o-Hopf ideal.

For a o-algebraic group G, we denote the kernel of the counit k{G} — k by mq. Note that
mg is the o-ideal of k{G} that defines the trivial subgroup 1 of G.

For a k-o-algebra R we denote with R! the k-algebra obtained from R by forgetting o. The
functor R ~ R! from the category of k-o-algebras to the category of k-algebras has a left adjoint
A ~~ [o]A ([Wib20, Lemma 1.7]). Explicitly, for a k-algebra A the k-o-algebra [o]xA is given
as follows: For i € Nlet A = A ®j, k denote the k-algebra obtained from A by base change via
ol k — k and set Afi] = A ®; A ®y, ... ®) 7 A. Then [0];A is the union of the A[i]’s.

Lemma 1.3 ([Wib20, Lemma 1.7]). The inclusion A = A[0] — [o|xA satisfies the following
universal property: If R is a k-o-algebra and A — R a morphism of k-algebras, then there exists
a unique morphism (o] A — R of k-o-algebras such that

A

[o]LA

R

commutes.

Let X be an affine scheme of finite type over k. Then the functor R ~ ([o]zX)(R) = X (R?)
from the category of k-o-algebras to the category of sets is a k-o-variety. Indeed, [o]pX is
represented by [o]xk[X], where k[X] is the coordinate ring of X, (i.e., X = Spec(k[X]) respec-
tively X = Hom(k[X],—)). To simplify the notation we will sometimes write k{X'} instead of
k{loled} = [o]xk[X].
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Notation for algebraic groups: For the purposes of this article, an algebraic group (over
k) is, by definition, an affine group scheme of finite type (over k). In particular, in positive
characteristic, an algebraic group need not be reduced. For an algebraic group G, we denote
with |G| the dimension of k[G] as a k-vector space. (If it is not finite this is simply oo and we
employ the usual rules for calculating with this symbol.) A closed subgroup of an algebraic group
is, by definition, a closed subgroup scheme. With G,.q we denote the underlying reduced scheme
of an algebraic group G. (If k is perfect, Goq is a closed subgroup of G by [Mill7, Cor. 1.39].)
The identity component of G is denoted with G°. A morphism 7: G — H of algebraic groups or
affine group schemes is a quotient map if the dual map 7*: k[H] — k[G] is injective (equivalently
faithfully flat). This is the appropriate analog of a surjective morphism of smooth algebraic
groups over an algebraically closed field ([Mill7, Prop. 5.47]). The image 7(G) of a morphism
m: G — H of algebraic groups or affine group schemes is the scheme-theoretic image (as in

Def. 1.73]).

Note that if G is an algebraic group over k, then [0]pG is a o-algebraic group over k. A
o-closed subgroup of G is, by definition, a o-closed subgroup of [o]|xG. If there is no danger of
confusion we may sometimes write G instead of [0];G also in other places.

When working with examples of o-algebraic groups we sometimes take the liberty to drop the
k-o-algebra R in the notation. For example, we may simply write G = {g € G| o(9)°¢® = 1},
instead of cumbersomely saying that G is the o-closed subgroup of the multiplicative group G,,
given by G(R) = {g € R*| 0(g)°g® = 1} for any k-o-algebra R.

Proposition 1.4 ([Wib20, Prop. 2.16]). For every o-algebraic group G, there exist exists an

algebraic group G and a o-closed embedding G — [0]xG. In particular, every o-algebraic group
is isomorphic to a o-closed subgroup of some general linear group.

For a o-variety X we denote with X* the (affine) scheme obtained from X by forgetting o,
i.e., X# = Spec(k{X}!) or, equivalently, X = Hom(k{X}# —) as a functor from the category of
k-algebras to the category of sets. For example, for an algebraic group G, we have ([0],G)f =
g x9G x UZQ X .... The following lemma is a geometric reformulation for groups of Lemma [1.3.

Lemma 1.5. Let G be an algebraic group. The projection ([0],G)* — G onto the first factor
satisfies the following universal property: If G is a o-algebraic group and G* — G a morphism
of group schemes, then there exists a unique morphism ¢: G — [0]xG of o-algebraic groups such
that

([o]G)* G
o
commutes.
Proof. This is clear from Lemma[l.3 and [Wib20, Lemma 2.15], where the statement is formu-
lated in terms of Hopf-algebras. O

Definition 1.6. Let X be an affine scheme of finite type over k and let Y be a o-closed o-sub-
variety of [o|pX. Then'Y is defined by a o-ideal I(Y) C k{X} = Ujenk[X][i]. For i € N the
closed subscheme YTi] of X x X x ... x 7 X defined by 1I(Y[i]) = 1(Y') N k[X][i] is called the i-th
order Zariski closure of Y in X. The o-variety Y is Zariski dense in X if Y[0] = X.

We may sometimes also refer to H[0] as the Zariski closure of Y in X. Note that for a o-closed
subgroup G of an algebraic group G, the i-th order Zariski closure G[i] of G in G is a closed
subgroup of G X °G x ... X "ig . Moreover, the projections

m: Gli| = Gli — 1], (go,---59i) = (9o, - -+ gi-1)



ALMOST-SIMPLE AFFINE DIFFERENCE ALGEBRAIC GROUPS 8

are quotient maps of algebraic groups .

Theorem 1.7 ([Wib20, Theorem 3.7]). Let G be a o-algebraic group, considered as a o-closed
subgroup of some algebraic group G via a o-closed embedding G — [0|xG. For i € N let Gi]
denote the i-th order Zariski closure of G in G. Then there exist d,e € N such that

dim(G[i]) = d(i + 1) + e for all sufficiently large i € N.

The integer d does not depend on the choice of G and the o-closed embedding G — [o]xG. If
d = 0, the integer e does not depend on the choice of G and the o-closed embedding G — [0]G.

The integer d = o-dim(G) from the above theorem is the o-dimension of G. If o- dim(G) = 0,
the integer e = ord(G) is the order of G. If o-dim(G) > 0, we set ord(G) = oo.

Example 1.8. For an algebraic group G one has o-dim([c|xG) = dim(G) ([Wib20, Exam-
ple 3.10]).

Lemma 1.9. Let G be a o-algebraic group and let K be a o-field extension of k. Then
o-dim(Gg) = o-dim(G) and ord(Gg) = ord(QG).

Proof. Since the formation of Zariski closures is compatible with base change, the claim follows
from the fact that the dimension of a finitely generated k-algebra is invariant under base change.
O

Lemma 1.10. Let G and H be o-algebraic groups. Then G x H is a o-algebraic group with
o-dim(G x H) = o-dim(G) + o-dim(H) and ord(G x H) = ord(G) + ord(H).

Proof. Let G and H be algebraic groups containing G and H respectively as o-closed subgroups.
Then G x H is a o-closed subgroup of G x H and the claim reduces to the similar formula for
algebraic groups. O

Proposition 1.11. Let G be a o-algebraic group, considered as a o-closed subgroup of some
algebraic group G via a o-closed embedding G — [o]G. For i € N let G[i] denote the i-th
order Zariski closure of G in G. Set Gy = G[0] and for i > 1 let G; denote the kernel of
mi: G[i] = G[i — 1]. Then, for every i > 1, there is a closed embedding G; — °(G;_1), which, for
sufficiently large i, is an isomorphism. Moreover:

(i) The sequence (dim(G;))ien is non-increasing and stabilizes with value o-dim(G).

(ii) The sequence (|G;|)ien is non-increasing and therefore eventually constant. The eventual

value ¢ = lim;_, |G;| does not depend on the choice of G and the o-closed embedding

Proof. The first statement is [Wib20, Prop. 3.1]. Point (i) is [Wib20, Cor. 3.16]. Point (ii) is
[Wib20, Prop. 5.1]. O

The value ¢ = 1d(G) from the above proposition is the limit degree of G. Note that 1d(G) is
finite if and only if o- dim(G) = 0 (otherwise 1d(G) = o).
The o-closed subgroups of a o-algebraic group satisfy a dimension theorem:

Theorem 1.12 ([Wib20, Theorem 4.6]). Let Hy and Hy be o-closed subgroups of a o-algebraic
group G. Then

o-dim(H; N Hy) > o-dim(H;) + o-dim(H3z) — o-dim(G).

The following finiteness theorem is the combination of Theorem 4.1 and Corollaries 4.2 and

4.3 in [Wib20)].
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Theorem 1.13. Every descending chain of o-closed subgroups of a o-algebraic group is finite.
In fact, if G is a o-closed subgroup of a o-algebraic group H, then I(G) C k{H} is finitely
o-generated. Moreover, if H = [0]G for some algebraic group G and G[i] denotes the i-th order
Zariski closure of G in G, then there exists an m € N such that

I(G)[i] = ((G)[i — 1], o (I(G)[i —1]))
for all i > m.
There is also second finiteness theorem:

Theorem 1.14 ([Wib20, Theorem 4.5]). Let R be a k-o-Hopf algebra that is finitely o-generated
over k and let S be a k-o-Hopf subalgebra of R. Then S is finitely o-generated over k.

Remark 1.15. To specify the structure of a k-o-algebra on a given k-algebra R, is equivalent
to specifying a morphism °R — R of k-algebras. Moreover, to specify a morphism R — S of
k-o-algebras is equivalent to specifying a morphism : R — S of k-algebras such that

R—>R (1)

T

98 —— 8

commutes (cf. the proof of [Wib20, Prop. 5.9]). Similarly, to specify the structure of a k-o-Hopf
algebra on a given k-Hopf algebra R is equivalent to specifying a morphism °R — R of k-Hopf
algebras and to specify a morphism R — S of k-o-Hopf algebras is equivalent to specifying a
morphism : R — S of k-Hopf algebras such that (1)) commutes. By dualizing one obtains
the category of (affine) difference group schemes over k (|[CK18], [CK]): An (affine) difference
group scheme G over k is an affine group scheme over k together with a morphism og: G — °G
of group schemes over k. A morphism between difference group schemes over k is a morphism
¢: G — H of group schemes such that

G 2% g

J |

H -2 opg

commutes. The category of difference algebraic groups is equivalent to the full subcategory of
the category of difference group schemes consisting of those difference group schemes whose
coordinate ring is finitely o-generated over k. Thus the relation between difference group schemes
and difference algebraic groups is similar to the relation between (affine) group schemes and
(affine) group schemes of finite type (i.e., (affine) algebraic groups).

Some constructions, results and proofs of this article (e.g., the identity component and the
isomorphism theorems) could also be performed in the larger category of difference group schemes.
On the other hand, the concepts of o-dimension, strong identity component and almost-simplicity
only apply to difference algebraic groups. In particular, for our main results, the “of finite o-type”
assumption is indispensable.

Occasionally, a certain construction or proof might in fact be swifter in the category of differ-
ence group schemes, since there one can apply results from the theory of group schemes directly.
On the other hand, we think it is useful to make available the difference analogs of proof tech-
niques of the theory of algebraic groups and so we prefer to stick with our formalism for difference
algebraic groups throughout.
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2. SUBGROUPS DEFINED BY IDEAL CLOSURES

If G is an algebraic group over a perfect field, then G,..q, the associated reduced scheme, is
a closed subgroup of G ([Mill7, Cor. 1.39]). In difference algebra, there are several closure
operations one can define on difference ideals that are in some way similar to taking the radical
of an ideal. Therefore, as we detail in this section, one obtains several o-closed subgroups of a
o-algebraic group that are in some way analogous to G eq-

The results of this section are relevant for the proof of Theorem A from the introduction
because they enable us to show that strongly connected o-algebraic groups have certain desirable
properties (see e.g., Lemma [6.20), which in turn is needed for establishing the existence part of
Theorem A.

Let us recall the relevant properties of o-ideals (cf. [Lev08| Section 2.3].)

Definition 2.1. Let R be a o-ring and a C R a o-ideal. Then a is called
o reflexive if 071(a) = a, i.e., o(f) € a implies f € a,
e mixed if fg € a implies fo(g) € a,
e perfect if c® (f)--- o (f) € a implies f € a for aj,...,an €N,
e g-prime if it is reflexive and a is a prime ideal.

Among properties of a o-ideal one has the following implications:

prime ——— mixed

.

o-prime =——=> perfect == radical

~

reflexive

Definition 2.2. A o-ring whose zero ideal is reflexive / mixzed / perfect / o-prime is called
o-reduced / well-mixed / perfectly o-reduced / a o-domain.

Let a be a o-ideal of a o-ring R. Since the intersection of reflexive / radical mixed / perfect
o-ideals is a reflexive / radical mixed / perfect o-ideal there exists a smallest reflexive / radical
mixed / perfect o-ideal of R containing a. It is called the reflexive closure a*/ the radical mized
closure {a}tywm/ the perfect closure {a} of a. A direct computation shows that

at={feR|IneN: o"(f) €a}.

The radical mixed closure and the perfect closure of a do not have such a simple elementwise
description. Cf. [Lev08, Section 2.3, p. 121ff] and [Lev15, Lemma 3.1].

Definition 2.3. A o-variety is reduced / o-reduced / reduced well-mixed / perfectly o-re-
duced if its coordinate ring has this property. It is integral / o-integral if its coordinate ring
is an integral domain / o-domain. For a o-variety X there exists a unique largest o-closed
o-subvariety

Xred /Xcr—rod / me / Xper

of X that is reduced / o-reduced / reduced well-mized / perfectly o-reduced. Its defining ideal is
the radical / reflexive closure / radical mized closure / perfect closure of the zero ideal of k{X}.

We have the following inclusions of o-closed o-subvarieties of X:
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X
/ \
Xred Xo-red
Xwm
\
X

per

The importance of perfectly o-reduced o-varieties stems from the fact that they correspond to
the classical difference varieties as studied in [Coh65] and [Lev08], where one is only looking for
solutions of difference polynomials in o-field extensions of k. Mixed o-ideals play a crucial role
in the theory of difference schemes as developed by E. Hrushovski in [Hru04]. Note that for an
arbitrary non-empty o-variety Xp,e; and Xy, might be empty. Take for example k{X} =k x k
with o((a,b)) = (6(b),o(a)). This pathology does not occur for o-algebraic groups because the
kernel mg C k{G} of the counit k{G} — k is a o-prime o-ideal.

Example 2.4. If G is a smooth, connected algebraic group, then [¢];G is o-integral and therefore
also perfectly o-reduced. However, for a smooth algebraic group G, the o-ring k{G} need not
be well-mixed, in particular, [0]xG need not be perfectly o-reduced.

Proof. For i € N the algebraic groups G[i] = G x °G x ... x ?'G are smooth and connected. Thus
k[Gi]] is an integral domain and so k{G} = [J;cy Kk[G[7]] is also an integral domain. One can
check directly from the definition that o: [o|x A — [0]; A is injective for any k-algebra A. From a
more geometric perspective, the projection maps o;: Gx...x°G — Gx...x°G, (go,...,gi)
(g1,---,9i) are dominant, so the dual maps are injective.

If G is not connected, then [o]; need not be perfectly o-reduced. For example, consider
G = pa, ie., G(A) = {g € AX| g?> = 1} for any k-algebra A. We have k[G] = k[y]/(y* — 1) and
k{G} = k{y}/ly* —1]. So (y —1)(y+1) = 0 € k{G}, however, (y—1)a(y+1) = (y—1)(o(y) +1)
is not zero in k{G}. So k{G} is not well-mixed. O

The following lemma will be needed in Section |6l It illustrates the general principle that when
dealing with perfectly o-reduced o-varieties one can usually restrict to points in o-fields.

Lemma 2.5. Let ¢: X — Y be a morphism of o-varieties and let Z CY be a o-closed o-subva-
riety. Assume that X is perfectly o-reduced. If ¢ (X (K)) C Z(K) for every o-field extension
K of k, then ¢(X) C Z, i.e., ¢ factors through Z < Y.

Proof. We have to show that I(Z) C k{Y} lies in the kernel of ¢*: k{Y'} — k{X}. So let
f € I(Z). We have to show that ¢*(f) = 0. Since the zero ideal of k{X} is perfect, it is
the intersection of o-prime o-ideals ([Coh65, Chapter 3, p. 88]). Therefore, it suffices to show
that ¢*(f) lies in every o-prime o-ideal of k{X}. Let p C k{X} be a o-prime o-ideal. Then
the field of fractions K of k{X}/p naturally is a o-field extension of k and the canonical map
x: k{X} — K is a morphism of k-o-algebras. By assumption, ¢x(z) € Z(K), i.e., [(Z) lies in
the kernel of x o ¢*. So ¢*(f) € p. O

Remark 2.6. For a o-algebraic group G the following statements are equivalent:
(i) G(K) =1 for every o-field extension K of k.
(i) Gper = 1.
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(iii) The ideal mq is the only o-prime o-ideal of k{G}.

Proof. It g € G(K) = Hom(k{G}, K), then the kernel of g is a o-prime o-ideal of k{G}. Con-
versely, if p is a o-prime o-ideal of k{G}, then the field of fractions K of k{G}/p is naturally a
o-field and the canonical map g: k{G} — K belongs to G(K). Therefore (i) and (iii) are equiv-
alent. The equivalence with (ii) follows from the fact that a perfect o-ideal is the intersection
of o-prime o-ideals ([Coh65, Chapter 3, p. 88]). O

An example of a o-algebraic group satisfying the above three equivalent conditions is the
o-closed subgroup G of GL,, given by G(R) = {g € GL,(R)| 0%(g) = I,,} for any k-o-algebra R.
(Here d > 1 is a fixed integer, o is applied to g entry-wise and I, is the n x n-identity matrix.)
Another such example, would be G = [o]ip, over a o-field of characteristic p > 0. Here p,, is
the algebraic group of p-th roots of unity, i.e., pu,(A) = {g € A*| g* =1} for any k-algebra A.

To show that for a o-algebraic group G the o-closed o-subvarieties Greq / Go-red / Gwm / Gper
are o-closed subgroups, we need to know that the corresponding properties are preserved under
tensor products:

Lemma 2.7. Let R and S be k-o-algebras.

(i) If k is perfect and R and S are reduced, then R ®y, S is reduced.
(ii) If k is inversive and R and S are o-reduced, then R ®j, S is o-reduced.
(i) If k is algebraically closed and R and S are well-mized and reduced, then R ®y S is
well-mized and reduced.
(iv) If k is inversive and algebraically closed and R and S are perfectly o-reduced, then
R ®y, S is perfectly o-reduced.

Proof. Point (i) is well-known. See e.g., [Bou90, Theorem 3, Chapter V, §15.5, A.V.125]. Note
that (i) is a special case of (ii) as we may take o as the Frobenius endomorphism. Point (ii)
follows from [TW18, Prop. 1.2].

For (iii), note that the zero ideal of a reduced well-mixed o-ring is the intersection of prime
o-ideals ([Hru04, Lemma 2.10]). If p is a prime o-ideal of R and q a prime o-ideal of S, then
PR S+ R®qis a prime o-ideal of R ®; S since

(RerS)/(p@S+R®q)=R/p®r S/q

and the latter is an integral domain, as the tensor product of integral domains over an al-
gebraically closed field is again an integral domain ([Bou90, Corollary 3, Chapter V, §17.5,
A.V.143]). We see that the zero ideal of R ®j, S is the intersection of prime o-ideals of the form
p® S+ R®q. This shows that R ®j, S is well-mixed and reduced.

To prove (iv) we can proceed as in (iii) by noting that a o-ideal is perfect if and only if it is
the intersection of o-prime o-ideals and that the tensor product of o-domains over an inversive
algebraically closed o-field is again a o-domain by (ii). O

There are counterexamples showing that the conditions on k in Lemma 2.7 cannot be relaxed.
For example, take k = R with o the identity map, R = C with the identity map and .S = C with
o complex conjugation. Then R and S are perfectly o-reduced (hence well-mixed) but R ®; S
is not well-mixed (hence not perfectly o-reduced).

If X and Y are o-varieties, then (X X Y),e is contained in Xper X Yper € X X Y but this
inclusion might be proper since Xper X Yper need not be perfectly o-reduced. The situation is
similar in the other cases. However, this issue can be circumvented by adding extra assumptions
on the base o-field.

Corollary 2.8. Let X andY be o-varieties.
(i) If k is perfect, then (X X Y )req ™~ Xied X Yied-
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(i) If k is inversive, then (X XY )s_ red =~ Xo-red X Yo-red-
(i) If k is algebraically closed, then (X XY )wm ~ Xwm X Yim-
(iv) If k is inversive and algebraically closed, then (X X Y )per & Xper X Yper-

Proof. The proof is similar in all four cases. Exemplarily, let us proof (iv). In terms of k-o-al-
gebras, we have to show that the canonical map

R{X}/{0} @ k{Y}/{0} — (R{X} @ k{Y'})/{0}

is an isomorphism. (Note that here {0} denotes the perfect closure of the zero ideal and not
the set containing 0.) As the left hand side is perfectly o-reduced by Lemma 27, we see that
{0} = {0} @ K{Y'} + K{X} ® {0} O

If »: R — S is a morphism of o-rings, one can check directly that ¢~1(a) is a radical /
reflexive / radical mixed / perfect o-ideal if a has the corresponding property. This shows that
1 maps the radical / reflexive closure / radical mixed closure / perfect closure of the zero ideal
of R into the radical / reflexive closure / radical mixed closure / perfect closure of the zero ideal
of S. Therefore, a morphism of o-varieties X — Y induces a morphism

Xrod — Y}ed / X, _red Yo—rod / me — Ywm / Xper — Yper'

Corollary 2.9. Let G be a o-algebraic group.

(i) If k is perfect, then Gyeq is a o-closed subgroup of G.

(ii) If k is inversive, then Gy_req 1S a o-closed subgroup of G.
(iii) If k is algebraically closed, then Gy is a o-closed subgroup of G.
(iv) If k is inversive and algebraically closed, then Gper is a o-closed subgroup of G.
Proof. Again, let us restrict to (iv). The other cases are similar. The multiplication morphism
G x G — G induces a morphism (G X G)per — Gper- But by Corollary [2.8] the o-closed
o-subvariety (G x G)per of G x G can be identified with Gper X Gper € G x G. Therefore, the
multiplication maps Gper X Gper into Gper. As the inversion G — G, g — g~ ! also passes to
Gper, We see that Gper is a subgroup of G. O

In the following example all the groups G, Gred, Go-red, Gwm and Gper are different.

Example 2.10. Consider the o-closed subgroup of G2, given as
G={(9,n) €Gp| o°(9)* =1, > =1, a(h) = h?}

over k = Iy, the algebraic closure of the field Fy with two elements considered as o-field with
o: k — k the identity map. As 0°(9)? — 1 = (¢°(g) — 1)? over a field of characteristic 2 we see
that
Grea = {(9.h) € G}, 0°(9) =1, h* =1, o(h) = h*}.
We have
Go-red = {(ga h) € G$n| 92 =1, h3 =1, U(h) = h2}
and we claim that
Gym = {(97 h) € ng‘ 05(9) =1, h= 1}-

To see the latter, note that if R is a k-o-algebra that is an integral domain and h € R* satisfies
h3 =1 and o(h) = h%, then necessarily h = 1. (This is because the equation y> = 1 has only 3
solutions in an integral domain and they all lie inside k. Moreover, o fixes k, so h = o(h) = h?
and so h = 1.) The claim then follows from the fact that the radical well-mixed closure of
a o-ideal is the intersection of the prime o-ideals it contains ([Hru04, Lemma 2.10]). Finally,
Gper = 1, for example, using Remark [2.6]
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Example 2.11. Let k be a o-field, G a finite group and o: G — G a group endomorphism. In
[Wib20, Example 2.14] it is explained how one can associate a g-algebraic group G to this data.
There is a one-to-one correspondence between the o-closed subgroups of G and the subgroups
of G stable under o.

As k{G} = kC® is reduced, G is reduced. The o-algebraic group G is o-reduced if and only if
o: G — G is an automorphism. Moreover, G is reduced well-mixed if and only if it is perfectly
o-reduced if and only if 0: G — G is the identity map.

In general, G._req corresponds to the o-stable subgroup (,cny 0™ (G) of G and Gper = Guwm
corresponds to the subgroup {g € G| o(g) = g} of G. This follows from the fact that the prime
ideals in k{G} = k€ are in bijection with the elements in G and a prime ideal is a o-ideal if only
if it is a o-prime o-ideal if and only if the corresponding element of G is fixed by o.

The following example shows that G,...q need to be a subgroup if k is not inversive.

Example 2.12. Let k£ be a o-field of characteristic zero which is not inversive. So there exists
A € k with A ¢ o(k). Let G be the o-closed subgroup of the additive group G, given by

G(R) = {g € R| o°(g) + Ao(g) = 0}

for any k-o-algebra R. We will first show that G has no proper, non-trivial o-closed subgroup
other than the one defined by the equation o(g) = 0. Suppose that H is a proper, non-trivial
o-closed subgroup of G. By Corollary A.3 in [DVHW17] every o-closed subgroup of G, is of
the form V(f), where f € k{y} is the unique monic linear homogeneous difference polynomial
of minimal order in I(H) C k{G,} = k{y}. As H is non-trivial and properly contained in G, f
must have order one, i.e., f = o(y) + py for some p € k. But then o?(h) + o(u)o(h) = 0 and
therefore (A — o(u))o(h) = 0 for all h € H(R) for any k-o-algebra R. Because A\ ¢ o(k) this
shows that o(h) = 0 for all h € H(R). Therefore f = o(y).

Suppose Gy req is a subroup of G. By the above, then either Gy req = G, Ggreq = 1 or
Go.reqd = H, where H is defined by the equation o(y) = 0.

Because 0™ (y) does not lie in [02(y) + Ay] for n € N, the cases Gy.1eq = 1 and Gy_req = H
can be excluded. To arrive at a contradiction, it therefore suffices to find a non-zero element in
the reflexive closure of the zero ideal of k{G}.

Assume that \? € o(k). (For example, we can choose k = C(y/z,v/z + 1,...) with action of
o determined by o(z) =z + 1 and A = y/z.) We have k{G} = k[y,o(y)] and if we choose n € k
such that o(n) = A2, then o(y)? — ny? lies in the reflexive closure of the zero ideal of k{G}.

The following example shows that the o-closed subgroups constructed in Corollary [2.9] are in
general not normal.

Example 2.13. Let N be the o-closed subgroup of G, given by N(R) = {g € R| o(g) = 0} for
any k-o-algebra R. The o-algebraic group H = G,, acts on N by group automorphisms

H(R) x N(R) = N(R), (h,n) — hn.

So we can form the semidirect product G = N x H which is the o-variety N x H with group
multiplication given by

(n1,h1) - (n2, he) = (n1 + hang, hihs).
Then k{G} = k{N}@,k{H} = k[z]®1k{y,y~'} with o(x) = 0. The reflexive closure of the zero
ideal of k{G?} is the ideal of k{G} generated by z. Therefore G, rc.q = H < G. For h € H(R)
and n € N(R) we have

(n,1)(0,h)(n,1)"t = (n — hn, h),

which shows that G, cq is not normal in G.



ALMOST-SIMPLE AFFINE DIFFERENCE ALGEBRAIC GROUPS 15

In Lemmal6.14] we will show that o- dim(Gheq), o- dim(Go- yed), 0- dim(Gym) and o- dim(Gper)
are all equal to o- dim(G). The following example shows that the order of G, ;oq might be strictly
smaller than the order of G.

Example 2.14. Let G be the o-closed subgroup of G, given by
G(R) ={g € R| 0"(g9) = 0}
for any k-o-algebra R. Then G has order n and G, eq is the trivial group, which has order 0.

Remark 2.15. Our notion of o-variety (Definition [L 1) is the difference analog of an affine
scheme of finite type over a field in usual algebraic geometry. The affine schemes of finite type
over a field that can be recovered from their field-valued points are exactly the reduced ones. The
o-varieties that can be recovered from their points in o-fields are exactly the perfectly o-reduced
ones. Thus, one can argue that perfectly o-reduced o-varieties are the difference analog of reduced
affine schemes of finite type over a field. Varieties are commonly assumed to be geometrically
reduced, i.e., a reduced affine scheme of finite type over a field is an affine variety if its base
change to the algebraic closure is reduced. Therefore, one might argue that the difference analog
of an affine variety is a perfectly o-reduced o-variety that remains perfectly o-reduced after base
change to an inversive algebraically closed o-field. Or, if we do not mind restrictions on the base
field, an affine variety is an affine reduced scheme of finite type over an algebraically closed field
and the difference analog of this is a perfectly o-reduced o-variety over an inversive algebraically

closed o-field.

3. QUOTIENTS

In this section we establish the existence of the quotient G/N of a o-algebraic group G modulo
a normal o-closed subgroup N. Key ingredients for the proof are a result from M. Takeuchi about
Hopf-algebras, which is more or less equivalent to the existence of quotients of affine groups
schemes (not necessarily of finite type) and our finiteness theorem for k-o-Hopf subalgebras
(Theorem [[LT4). We also show how to compute o- dim(G/N), ord(G/N) and 1d(G/N) from the
corresponding values for G and N.

We do not address the question of the existence of the quotient G/H, where H is an arbi-
trary o-closed subgroup. In this article, we have no need for this more general construction.
Moreover, for (affine) algebraic groups, the quotient G/H is in general not affine (but rather
quasi-projective). So, addressing this more general question would necessitate the introduc-
tion of a more complicated setup for difference algebraic geometry that goes beyond our affine
treatment.

Let G be a o-algebraic group. Recall that a o-closed subgroup N of G is normal if N(R) is a
normal subgroup of G(R) for any k-o-algebra R. We write N <G to express that N is a normal
o-closed subgroup of G.

If $: G — H is a morphism of o-algebraic groups, we define the kernel ker(¢) of ¢ to be the
subfunctor of G given by R ~- ker(¢r). Then ker(¢) is a normal o-closed subgroup of G. Indeed
ker(¢) = ¢~ 1(1), where 1 < H is the trivial o-closed subgroup of H defined by the kernel my
of the counit k{H} — k. Explicitly, we have I(ker(¢)) = (¢*(mg)) C k{G}.

The quotient G/N is defined by the following universal property.

Definition 3.1. Let G be a o-algebraic group and N I G a normal o-closed subgroup. A
morphism of o-algebraic groups 7: G — G/N such that N C ker(w) is a quotient of G mod N
if it universal among such maps, i.e., for every morphism of o-algebraic groups ¢: G — H with
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N C ker(¢) there exists a unique morphism of o-algebraic groups ¢': G/N — H such that

commutes.

Of course, if a quotient of G mod N exists, it is unique up to a unique isomorphism. We will
therefore usually speak of the quotient of G mod N. Note that for a quotient 7: G — G/N of
G mod N it is a priori not clear that ker(m) = N. Allowing ourselves a little abuse of notation
we will sometimes also refer to the o-algebraic group G/N as “the quotient”.

For affine group schemes over a field (not necessarily of finite type), the fundamental theorem
on quotients can be formulated in a purely Hopf algebraic manner ([Tak72]). Recall that a Hopf
ideal a in a Hopf algebra A over k is normal if, using Sweedler notation,

Zf(l)s(f(?»)) ®@ fro) € A®k a

for any f € a, where S is the antipode of A. Normal Hopf ideals in A correspond to normal closed
subgroup schemes ([Tak72, Lemma 5.1]). Similarly, if G is a o-algebraic group, then normal
o-Hopf ideals in k{G} correspond to normal o-closed subgroups of G (cf. [Wib20, Lemma 2.4]).
For a Hopf algebra A over k& we denote the kernel of the counit e: A — k by m4.

Theorem 3.2 (M. Takeuchi). Let A be a Hopf algebra over k and a C A a normal Hopf ideal.
Then A(a) ={f € Al A(f)—f®1 € A®ya} is a Hopf subalgebra of A with (m4(q)) = a. Indeed,
A(a) is the unique Hopf subalgebra with this property and the largest Hopf subalgebra with the
property that (my(q)) C a.

Proof. By [Tak72, Lemma 4.4] A(a) is a Hopf subalgebra. By [Tak72, Lemma 4.7] it is the
largest Hopf subalgebra with (m4()) € a. Finally, by [Tak72, Theorem 4.3] it is the unique
Hopf subalgebra with (m4(,)) = a. O

The existence of the quotient of G mod N can be reduced to Theorem[3.2l A similar approach
was taken in [DVHWIT7, Section A.9]. While the result in [DVHW17] is formulated in a more
general setup (there the k-o-Hopf algebras need not be finitely o-generated over k) the result we
prove here is stronger. Indeed, with the aid of Theorem [1.14 we show that G/N is o-algebraic,
i.e., K{G/N} is finitely o-generated over k. This question remained open in [DVHWI17].

Theorem 3.3. Let G be a o-algebraic group and N <G a o-closed subgroup. Then the quotient
of G mod N exists. Moreover, a morphism of o-algebraic groups m: G — G /N is the quotient
of G mod N if and only if ker(w) = N and 7*: k{G/N} — k{G} is injective.

Proof. By Theorem [3.2]
HGHIN)) =A{f € K{G} A(f) = f®1 € K{G} @ I(N)}

is a Hopf subalgebra of k{G}. Clearly it also is a k-o-Hopf subalgebra. From Theorem [[.14]
we know that k{G}(I(N)) is finitely o-generated over k. So we can define G/N as the o-alge-
braic group represented by k{G}(I(N)), i.e., kK{G/N} = k{G}(I(N)). Let 7: G — G/N be the
morphism of o-algebraic groups corresponding to the inclusion k{G/N} C k{G} of k-o-Hopf
algebras.

Let ¢: G — H be a morphism of o-algebraic groups such that N C ker(¢). As ker(¢) =
V(¢*(mg)), the Hopf algebraic meaning of N C ker(¢) is ¢*(myg) C I(IN). To show that 7 has
the required universal property, it suffices to show that ¢*(k{H}) C k{G/N}. We know from



ALMOST-SIMPLE AFFINE DIFFERENCE ALGEBRAIC GROUPS 17

Theorem [3.2 that k{G/N} is the largest Hopf subalgebra of £{G} such that myq/ny C I(N).
As m(b*(k{H}) = (b*(mH) - H(N), we find ¢*(k{H}) - k{G/N}
Clearly 7* is injective. Moreover, ker(r) = V(7*(mg,x)) = V(I(N)) = N by Theorem
If 7: G — G/N is a morphism of g-algebraic groups such that N = ker(7) and 7*: k{G/N} —
k{G} is injective, then 7*(k{G/N}) is a Hopf subalgebra of k{G} such that (m-q/ny)) =
I(N). Therefore 7*(k{G/N}) = E{G}(I(N)) by Theorem B.Z. O

Corollary 3.4. Let ¢: G — H be a morphism of o-algebraic groups. Then the induced morphism
G/ker(¢) — H is a o-closed embedding.

Proof. The Hopf subalgebra ¢*(k{H}) C k{G} satisfies (my-(my)) = (¢"(mu)) = I(ker(¢)).
Therefore ¢* (k{H}) = k{G}(I(ker(¢))) = k{G/ ker(¢)} by Theorem[3.2l Consequently the map
k{H} — k{G/ker(¢)} is surjective and G/ ker(¢) — H is a o-closed embedding. O

Theorem [3.3] yields a rather practical method for determining the quotient: Given a normal
o-closed subgroup N of a o-algebraic group G, to determine G/N it suffices to find a morphism
¢: G — H with N =ker(¢) and ¢*: k{H} — k{G} injective. Let us illustrate this idea with a
few examples.

Example 3.5. Let GG be the o-closed subgroup of G,, given by
G(R) = {g € R*| 0(9)’ =1} < G(R)
and let N be the normal o-closed subgroup of G given by
N(R)={g e R*| o(g) =1}
for any k-o-algebra R. We would like to determine the quotient G/N. Let H be the o-algebraic
group given by H(R) = {g € R*| ¢> = 1} and let ¢: G — H be the morphism given by
¢r: G(R) = H(R), g — o(g)-
Then ¢ has kernel N and the dual map ¢*: k{H} — k{G} is injective. Thus it follows from
Theorem [3.3] that ¢ is the quotient of G mod N, i.e., G/N = H.

Example 3.6. Let N be the o-closed subgroup of the additive group G = G, defined by a
linear difference equation 0" (y) + Ap_10" "1 (y) + - - + Aoy = 0. The morphism

¢: Ga = Gay g+ 0™(9) + Aam10™ () + -+ + dog

has kernel N and the dual map ¢*: k{y} — k{y}, v — o"(y) + A_10" L(y) + - + Aoy is
injective. Therefore, ¢ is the quotient of G mod N, i.e., G/N = G,.

Example 3.7. If G is an algebraic group with a normal closed subgroup N, then [o]x N is a
normal o-closed subgroup of [0]xG and [0]|xG/[c|xN = [0]x(G/N). To verify this, note that the
morphism [o]x7: [0]xG — [0]x(G/N) induced by 7: G — G/N has kernel [o]pN. Moreover, as
7 k[G/N] — k[G] is injective, it follows that also [o]x(7*): k{G/N} — k{G} is injective.

Example 3.8. In [Wib20, Example 2.14] it is explained how one can associate a c-algebraic
group G = G(G,0) to a finite group G equipped with an endomorphism o: G — G: For a
k-o-algebra R, the group G(R) consists of all locally constant maps g: Spec(R) — G such that

Spec(R) .G

g l

Spec(R) .G
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commutes, where X(p) = o~ !(p) (for 0: R — R). If N is a normal subgroup of G such that
o(N) € N, then N = G(N, o) is a normal o-closed subgroup of G. As ¢(N) € N we have an
induced endomorphism o: G/N — G/N and composing ¢g: Spec(R) — G with G — G/N yields a
morphism 7: G — G(G/N, o) of o-algebraic groups with kernel N. The dual map 7*: KG/N 5 kG
is injective. Thus 7 is the quotient of G mod N. In other words, G(G,0)/G(N,o) = G(G/N, o).

As one may expect, the formation of quotients is compatible with base change:

Lemma 3.9. Let N G be o-algebraic groups and K a o-field extension of k. Then (G/N)g =
Gk /Nk.

Proof. Tt is clear from Theorem that the kernel of the morphism Gx — (G/N)g obtained
from G — G/N by base change is Ng. So by Theorem [3.3 again, it suffices to note that the
dual map k{G/N} @ K — k{G} ®; K is injective. O

Now that the existence of the quotient G/N is established, we can start to study its properties.
To see how the numerical invariants o-dimension, order and limit degree behave with respect to
quotients, we first need to understand how quotients intertwine with Zariski closures.

Lemma 3.10. Let G be an algebraic group and let N < G < G be o-closed subgroups. Fori >0
let G[i] and Ni] denote the i-th order Zariski closure of G and N in G respectively. Then N is
normal in G if and only if N[i] is normal in G[i] for every i > 0.

Proof. As k{G} = U;>ok[G]t]] is the union of the Hopf subalgebras k[G]i]], we see that I(N) is
a normal Hopf ideal of k{G} if and only if I(/V) N k[G[i]] is a normal Hopf ideal of k[G[i]] for
every 7 > 0. O

Proposition 3.11. Let G be an algebraic group and N <G < G o-closed subgroups. For i > 0
let G[i] and NTi] denote the i-th order Zariski closure of G and N in G respectively. Then there
exists an integer m > 0 such that G/N is a o-closed subgroup of G[m]/N|m| and for i > 0 the
i-th order Zariski closure of G/N in G[m]/N|m]| is the quotient of G[i +m] mod N[i +m], i.e.,

(G/N)[i] = Glm + i]/N[m +1].
Proof. By Theorems and [3.3] we have
HGIN}Y ={f € H{G} A(f) — f @1 € k{G} @ L(N)}
= | J{f € G| A(f) - f®1 € K[Gl)] @, INi])}

i>0

= |J kIGLil/N[)-

i>0
Moreover,
K[Gli]/NTi]] € k[Gli+ 1]/NT[i +1]] and o(K[G[i]/Ni]]) € k[Gli + 1]/NT[i +1]].
(

By Theorem [L.13, there exists an integer m > 0 such that I(N[j + 1]) = (I(N[j]), o(I(N[4]))),
ie., N[j+1] = (N[j] x 7’G)n (G x 9(N[4])) for 7 > m. We claim that

k [k‘[G[m]/N[m]], . ,Ji(k[G[m]/N[m]])] = k[G[m +i]/N[m +i]] fori>0. (2)
The inclusion “C” is obvious. To prove the inclusion “D” it suffices to show that
¥ k[G]/N ]l @ CkIG]/N[j]) — kG + 1/N[j+1]], fi @ (A® f2) = firo(fa)
is surjective for j > m. With

Tj+1: G[j + 1] — G[j], (907"' 7gj+1) = (907--’ 7gj)
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and
ojr1: Gli + 1] = Gj]), (g0,---595+1) = (91, -+, Gj+1),
the morphisms

Glj + 1] = Glj] = GUI/NU) and Glj +1] = (Glj)) = “(GLi]/N[])
combine to a morphism
Glj +1] = (GlI/NID) x AG[]/N1)
of algebraic groups with kernel (N[j] x ©°G) N (G x °(N[j])) = N[j + 1]. Therefore
Glj + 1/Nj+ 1] — (GI/N[]) x A(Gl5]/N5])

is a closed embedding and so the dual map is surjective, but the dual map is precisely ;. We
have thus proved (2)). It follows from (2) that k{G[m]/N|m|} — k{G/N} is surjective, i.e., G/N
is a o-closed subgroup of G[m|/N[m|. As the ring to the left hand side of (2)) is the coordinate
ring of the i-th order Zariski closure of G/N in G[m]/N[m], we obtain the required equality of
the Zariski closures. O

The following example shows that in general one cannot take m = 0 in Proposition B.111

Example 3.12. Let G = G = G, and N < G the o-closed subgroup given by N(R) = {g €
R| o(g) = 0} for any k-o-algebra R. Then N|[0] = G[0] = G, and G[0]/N]0] is the trivial group.
Therefore G/N cannot be a o-closed subgroup of G[0]/N]0].

Corollary 3.13. Let G be a o-algebraic group and N < G a normal o-closed subgroup. Then
o-dim(G) = o-dim(N) + o-dim(G/N) (3)

and
ord(G) = ord(N) + ord(G/N). (4)

Proof. We may assume that G is a o-closed subgroup of some algebraic group G (Proposition [[4]).
For i > 0 let G[i] and N[i] denote the i-th order Zariski closure of G and N in G respectively. By
Theorem [T there exist e, ey > 0 such that dim(G[i]) = o- dim(G)(i+1) +eq and dim(N[i]) =
o-dim(N)(i+ 1)+ ey for all sufficiently large i € N. Let m > 0 be as in Proposition 31T and for
i > 0let (G/N)[i] denote the i-th order Zariski closure of G/N in G[m]/N[m]. By Theorem [I.7]
there exist eg/y > 0 such that dim((G/N)[i]) = o-dim(G/N)(i + 1) + eq/n. For all sufficiently
large ¢ € N we have

o-dim(G/N)(i + 1) + eg/n = dim((G/N)[i]) = dim(G[m + i]/N[m +i]) =
= dim(G[m +i]) — dim(N[m +i]) =
=o-dim(G)(m+i+1)+eg—o-dim(N)(m+i+1) —ey =
= (o-dim(G) — o-dim(N))(i + 1) + (o- dim(G) — o-dim(N))m + e — en.
This proves ([B). As ord(G) < oo if and only if o-dim(G) = 0, it follows from (3) that (H)
is valid if o-dim(G) > 0. We can therefore assume that o-dim(G) = 0, and consequently

o-dim(N) = o-dim(G/N) = 0 as well. But then the above formula reduces to ord(G/N) =
eq/n = eg — ey = ord(G) — ord(N). O
Next we will show how to compute 1d(G/N) from 1d(N) and 1d(G). For clarity of the expo-

sition, we single out a lemma on algebraic groups.

Lemma 3.14. Let N1 <Gy and No < Gy be algebraic groups and let ¢: Go — Gy be a quotient
map with kernel G. Assume that the restriction of ¢ to No has kernel N and image N7. Then
the kernel of the induced map Ga/No — G1 /N7 is isomorphic to G/N .
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Proof. Since ¢ is a quotient map we may identify G; with G,/G. Note that the (Noether)
isomorphism theorems also hold for algebraic groups. (See e.g., [Mill7, Chapter 5]). We have

N1 = No/N = NoJGN Ny = NoG /G and so G /N1 = (G2/G)/(N2G/G) = Go/N2G. This shows
that the kernel of Go /Ny — G1 /N1 = Go/NoG equals NoG /Ny = G/NoNG =G/N. O

Corollary 3.15. Let G be a o-algebraic group and N < G a normal o-closed subgroup. Then
1d(G) =1d(G/N) - 1d(N).

Proof. The limit degree of a g-algebraic groups is finite if and only if the o-dimension is zero. So
by Corollary [3.13 the claim is valid if o- dim(G) > 0. We may thus assume that o-dim(G) = 0
and therefore 1d(G), 1d(G/N) and 1d(NV) are all finite. Let m > 0 be as in Proposition [3.11} For

1 > 1 we have commutative diagrams

(G/N)[i] (G/N)[i = 1]

- -

Glm + 4] /Nm + i] —2 Glm +i — 1)/Njm +i — 1]

Ur

where ¢; is induced from the projection G|m +1i] - G[m + i — 1]. For all sufficiently large i € N
we have 1d(G/N) = | ker(m;)| = | ker(¢;)|. Let Gpvi and N4y be the kernels of

Gm+i —-Gm+i—1] and N[m+i]— Nim+i—1]
respectively. It follows from Lemma B.I4] that ker(¢;) = Gpti/Niyi- Therefore
Id(G/N) = |Gm+i/Nm+il = |Gmtil /[ Nimi| =1d(G)/1d(N).

4. MORPHISMS OF DIFFERENCE ALGEBRAIC GROUPS

In this section we characterize the morphisms of o-algebraic groups that play a role similar to
injective and surjective morphisms in the category of (abstract) groups. These are the o-closed
embeddings and the quotient maps. We also show that any morphism of o-algebraic groups
factors uniquely as a quotient map followed by a o-closed embedding. Analogous results for
algebraic groups can be found in Chapter 5].

Proposition 4.1. Let ¢: G — H be a morphism of o-algebraic groups. Then the following

statements are equivalent:

(i) The kernel of ¢ is trivial.

(ii) The map ¢r: G(R) — H(R) is injective for every k-o-algebra R.

(iii) The morphism ¢: G — H is a o-closed embedding.

(iv) The dual map ¢*: k{H} — k{G} is surjective.

(v) The morphism ¢: G — H is a monomorphism in the category of o-algebraic groups,
i.e., for every pair ¢1,¢o: H' — G of morphisms of o-algebraic groups with ¢pp1 = dpo
we have ¢p1 = ¢o.

Proof. Clearly (1)< (ii), (iii)<(iv), (iii)=-(ii) and (ii)=(v). So it suffices to show that (v) implies
(iv). Define H' = G x g G by

(G xu G)(R) ={(g91,92) € G(R) x G(R)| ¢(g1) = ¢(g2) }

for any k-o-algebra R. This is a o-closed subgroup of G x GG. Indeed, G x g G is represented by
k{G} @y B{G}. Let ¢1 and ¢2 denote the projections onto the first and second coordinate
respectively. We have ¢¢1 = ¢¢po and so by (iv) we must have ¢ = ¢5. This implies that the
maps f — f@land f — 1@ f from k{G} — k{G} Qg k{G} are equal. As ¢*(k{H}) is a Hopf
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subalgebra of k{G} we know that k{G} is faithfully flat over ¢*(k{H}) ([Wat79, Chapter 14]).
Therefore f®@1 = 1® f in k{G} @y k{G} = F{G} @p+(qmy) K{G} if and only if f € ¢*(K{H})
by [Wat79, Section 13.1, p. 104]. Summarily, we find that ¢*: k{H} — k{G} is surjective. [

We may sometimes write ¢: G — H to express that a morphism ¢: G — H satisfies the
equivalent conditions of Proposition [£.11

Example 4.2. The morphism ¢: G,, — G, given by ¢r(g) = o(g) for any k-o-algebra R and
g € R* is not a o-closed embedding even though ¢g is injective for every o-field extension R of

k.
Example 4.3. The morphism ¢: G,, — G2, given by

¢r: Gm(R) = G, (R), g~ (90(9),7(9))
is a o-closed embedding.

Example 4.4. If G — H is a closed embedding of algebraic groups, then [0],G — [o]xH is a
o-closed embedding of o-algebraic groups.

We next consider morphisms of o-algebraic groups that are analogous to surjective morphisms
of (abstract) groups. Note that for a normal o-closed subgroup N of a o-algebraic group G, the
quotient 7: G — G/N of G mod N need not be surjective in the blunt sense that 7r: G(R) —
(G/N)(R) is surjective for every k-o-algebra R. Let us illustrate this with an example.

Example 4.5. Consider the o-closed subgroup N = {g € G,4| 0(g9) = 0} of G = G,. Then
m: Gy — Gg, g — o(g) is the quotient of G mod N (Example[3.6). Somg: (R,+) = (R, +), g —~
o(g) is surjective if and only if o: R — R is surjective (which, depending on R, may or may not
be the case).

While the maps 7r: G(R) — (G/N)(R) are not surjective on the nose, these maps are in
some sense, to be made precise in the following definition, close to being surjective.

Definition 4.6. Let ¢p: R — S be a morphism of k-o-algebras. Then 1 is faithfully flat if the
underlying morphism *: Rf — St of k-algebras is faithfully flat. In this case, we also call S is
a faithfully flat R-o-algebra.

Let F be a functor from the category of k-o-algebras to the category of sets. A subfunctor D of
F is fat if for every k-c-algebra R and every g € F(R) there exists a faithfully flat R-o-algebra
S such that the image of g in F(S) belongs to D(S).

As we will see in the next section, fat subfunctors are a useful tool for proving the isomorphism
theorems for o-algebraic groups.

Example 4.7. We continue Example 4.5l While an individual 7r: (R, +) — (R, +), g+ o(9)
need not be surjective, these maps are close to being surjective in the sense that for every h € R
there exists a faithfully flat R-o-algebra S and g € S such that 7g(g) = h. For example, we can
take S = R[z], a univariate polynomial ring over R with o: S — S determined by o(x) = g.

Let G be a g-algebraic group and N a normal o-closed subgroup. By Theorem[3.3 the kernel of
G — G/N equals N. We can therefore identify the functor R ~~ G(R)/N(R) with a subfunctor
of G/N. The following lemma provides a useful replacement of the missing surjectivity of the
maps G(R) — (G/N)(R).

Lemma 4.8. Let G be a o-algebraic group and N <G a o-closed subgroup. Let R be a k-o-algebra
and g € (G/N)(R). Then there exists a faithfully flat morphism R — S of k-o-algebras and
g € G(S) such that G(S) — (G/N)(S) maps g to the image of g in (G/N)(S).

In other words, the subfunctor R ~~ G(R)/N(R) of G/N is a fat subfunctor.
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Proof. We may use g € (G/N)(R) = Hom(k{G/N}, R) to form S = k{G} ®p(c/n} R. Since
kE{G} is faithfully flat over k{G/N} ([Wat79, Chapter 14]), it follows that R — S, r — 1 ®r is
faithfully flat ([Wat79l Section 13.3, p. 105]). Let us set g: k{G} — S, f— f® 1. Then the

maps k{G/N} 9% R — S and k{G/N} = k{G} % S are equal. So g € G(S) has the required
property. ]

Remark 4.9. It is possible to understand the quotient G/N as a sheafification of the functor
R ~~ G(R)/N(R). This is carried out in full detail in [Wib15, Section 5.1].

The following proposition characterizes morphisms of o-algebraic groups that are analogous
to surjective morphisms of (abstract) groups.

Proposition 4.10. Let ¢: G — H be a morphism of o-algebraic groups. The following state-
ments are equivalent:
(i) (G) =H.
(ii) The morphism ¢ is a quotient, i.e., there ezists a normal o-closed subgroup N of G
such ¢ is the quotient of G mod N.
(iii) The dual map ¢*: k{H} — E{G} is injective.
(iv) For every k-o-algebra R and every h € H(R), there exists a faithfully flat R-o-algebra
S and g € G(S) such that the image of h in H(S) equals ¢(g), i.e., the subfunctor
R~ ¢r(G(R)) of H s fat.

Proof. As ¢(G) is the o-closed o-subvariety of H defined by ker(¢*), we see that (i) and (iii)
are equivalent. It is clear from Theorem B.3 that (iii) and (ii) are equivalent. Moreover, (ii)
implies (iv) by Lemma [4.8. It thus suffices to show that (iv) implies (iii). Take R = k{H}
and h = idy;gy € H(R) = Hom(k{H },k{H}). By (iv) there exists a faithfully flat morphism
Y: k{H} — S of k-o-algebras and an element g € G(S) = Hom(k{G},S) such that the image
of hin H(S) = Hom(k{H?},S) equals ¢(g) = g¢*. This means that ¢ = g¢*. As any faithfully
flat morphism of rings is injective, 1 is injective. Therefore ¢* is injective as well. O

Definition 4.11. A morphism of o-algebraic groups satisfying the equivalent properties of
Proposition [{.10 is a quotient map.

We write ¢: G — H to indicate that ¢ is a quotient map.

Example 4.12. If G — # is a quotient map of algebraic groups, then [¢|xG — [o]xH is a
quotient map of o-algebraic groups (as is best seen using point (iii) of Proposition A10).
Further examples of quotient maps are in Examples [3.5] [3.6] and [3.8]

Corollary 4.13. A morphism of o-algebraic groups that is a o-closed embedding and a quotient
map s an isomorphism.

Proof. By Propositions 4.1 and [4.10], such a morphism corresponds to a surjective and injective
morphism on the coordinate rings. O

Corollary 4.14. FEvery morphism of o-algebraic groups factors uniquely as a quotient map
followed by a o-closed embedding.

Proof. Let ¢: G — H be a morphism of o-algebraic groups. The uniqueness in the statement of
the corollary means that if G - H; — H and G — Hy — H are two factorizations of ¢, then
there exists an isomorphism H; — Hs of g-algebraic groups making

G—H“——H

|

G—= H‘"——>H
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commutative. The k-o-Hopf subalgebra ¢*(k{H}) of k{G} is finitely o-generated over k. So
we can define Hy as the o-algebraic group represented by ¢*(k{H}). The claim of the corollary
then follows immediately by dualizing. ([l

Note that H; has two interpretations, either as ¢(G) or as G/ ker(¢). See Theorem [5.2| below.
Example 4.15. Let ¢: G, — G2 be the morphism given by

¢r: Ga(R) = GL(R), g (0(9),0%(9))

for any k-o-algebra R. Let us determine the factorization of ¢ according to Corollary .14l Let
H be the o-closed subgroup of G2 given by

H(R) ={(g1,92) € R*| 0(g1) = g2}

for any k-o-algebra R. Then H is isomorphic to G, (via (g1,92) — ¢1) and ¢ maps into H.
The dual map of ¢: G, - H ~ G, is given by k{y} — k{y}, y — o(y), which is injective. So
#: G, — H is a quotient map and ¢: G, — H < G2 is the searched for factorization of ¢.

5. THE ISOMORPHISM THEOREMS

In this section we establish the difference analogs of the isomorphism theorems for (abstract)
groups. These three theorem sometimes also go under the names, homomorphism theorem,
isomorphism theorem and correspondence theorem. In any case, these are essential for the proof
our Jordan-Holder type theorem. Our approach largely follows [Mill17, Chapter 5].

Lemma 5.1. Let ¢: G — H be a morphism of o-algebraic groups and let G1 be a o-closed
subgroup of G. Then ¢(G1) is a o-closed subgroup of H.

Proof. The o-closed o-subvariety ¢(G1) of H is defined by the kernel a of kK{H} — k{G} —
k{G1}. Since this is a morphism of k-o-Hopf algebras, it follows that a is a o-Hopf ideal. So
#(Q) is a o-closed subgroup of H. O

The following theorem is the difference analog of the first isomorphism theorem for (abstract)
groups.

Theorem 5.2. Let ¢: G — H be a morphism of o-algebraic groups. Then ¢(G) is a o-closed
subgroup of H and the induced morphism G/ ker(¢) — ¢(G) is an isomorphism.

Proof. We already observed in Lemma [l that ¢(G) is a o-closed subgroup. Since ker(¢) is
the kernel of G — ¢(G), the induced morphism G/ ker(¢) — ¢(G) is a o-closed embedding by
Corollary B4 and so we can identify G/ker(¢) with a o-closed o-subvariety of ¢(G). Since ¢
factors through G/ ker(¢) it follows from the definition of ¢(G) that G/ ker(¢) = ¢(G). O

For the proof of the second and third isomorphism theorem we need a little preparation.
The fact that for a quotient map 7: G — G/N of o-algebraic groups, the maps 7g: G(R) —
(G/N)(R) need not be surjective, makes it difficult to transfer proofs in the category of (abstract)
groups, that would usually be carried out by a diagram chase, to proofs in the category of
o-algebraic groups. The following lemmas are useful for overcoming this difficulty. See, for
example, the proof of Lemma [7.1]

Let X be a o-variety. If R — S is an injective morphism of k-o-algebras (e.g., S is a faithfully
flat R-o-algebra), then

X(R) = Hom(k{X}, R) - Hom(k{X},S) = X(5)

is injective. To simplify the notation, we will, in the sequel, often identify X (R) with its image
in X(S).
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Lemma 5.3. Let Y be a o-closed o-subvariety of a o-variety X and let R — S be an injective
morphism of k-o-algebras (e.g., R — S is faithfully flat). Then

Y(R) = X(R)NY(S),

where, using the above described identification, the intersection is understood to take place in
X(9).

Proof. The inclusion “C” is obvious. To prove “D” it suffices to note that for a morphism
E{X} — S with factorizations k{X} — k{Y} — S and k{X} — R — S, one has an arrow
E{Y'} — R such that

k{Y}

SN

R{X} |

comimutes. O
The following lemma provides an explicit description of the points of ¢(G).

Lemma 5.4. Let ¢: G — H be a morphism of o-algebraic groups and G1 < G a o-closed
subgroup. Let R be a k-o-algebra. Then ¢(G1)(R) equals the set of all h € H(R) such that there
exists a faithfully flat R-o-algebra S and g1 € G1(S) with ¢(g1) = h.

Proof. The induced morphism G; — ¢(G1) is a quotient map. So it follows from Proposi-
tion [4.10/ (iv) that for h € ¢(G1)(R) there exists a faithfully flat R-o-algebra S and g1 € G1(5)
with ¢(g1) = h.

Conversely, if h = ¢(g1), then h € ¢(G1(S)) C ¢(G1)(S) and we can deduce from ¢(G1)(S) N
H(R) = ¢(G1)(R) (Lemma 53] that h € ¢(G1)(R). O

The following lemma provides one of the reasons why fat subfunctors are useful for us.

Lemma 5.5. Let X and Y be o-varieties and let D be a fat subfunctor of X. Then any
morphism D —'Y (of functors) extends uniquely to a morphism X — Y.

Proof. The key property of faithfully flat algebras we need is the following: If S is a faithfully
flat R-algebra then the sequence R — S == S ®p S is exact, i.e, if s € S is such that s® 1 =
1®s € S®rS, then there exists a unique 7 € R mapping to s under R — S. See e.g., [DGT0,
Chapter I, §1, Lemma 2.7] (with M = C). It follows that for any k-o-algebra R and faithfully
flat R-o-algebra S, the sequence X (R) — X (S) = X(S ®g S) is exact and similarly for ¥ in
place of X. N

Let us first show the uniqueness of an extension ¢: X — Y of ¢p: D — Y. Let R be a
k-o-algebra and x € X(R). Since D C X is fat, there exists a faithfully flat R-o-algebra S such
that the image d of z in X (5) lies in D(S). The commutative diagram

X(R) —= X(5) == X(S®r 5)
D(R)

R) —— D(S) == D(S ®y 5)

l |

Y(R) —=Y(5) ==Y (S@r S)
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with exact top and bottom rows, shows that ¢r(x) is the unique element of Y (R) that maps to
ps(d) € Y(5). N

To establish the existence, we need to show that ¢, when constructed as above, is well-defined,
i.e., if S1 and Sy are faithfully flat R-o-algebras and dy € D(S7) and dy € D(S2) are the image
of z € X(R) in X(S1) and X (S2) respectively, then ¢g, (d1) € Y (S1) and ¢g,(d2) € Y (S2) are
both the image of the same y € Y (R).

The images of d; and ds in D(S1®pS2) agree, since they both are the image of z € X(R). Let
us denote this common image by d € D(S1 ®g S2). Then ¢g, (d1) € Y (S1) and ¢g,(d2) € Y (S2)
have the same image, namely ¢g, g ,s,(d), in Y (S1 ®r S2). Thus, identifying elements along the
inclusions

we see that ¢g, (d1), ¢s,(d2) and ¢g,¢,s,(d) all agree with the same element y of Y (R).

So we have for every k-o-algebra R amap ¢p: X(R) — Y (R) that extends ¢r: D(R) — Y (R).
These ¢ form a morphism ¢: X — Y of functors extending ¢: D — Y. O

As an immediate consequence of this lemma we obtain:

Corollary 5.6. Let D and D' be fat subfunctors of the o-varieties X and X' respectively. Then
any isomorphism D — D' uniquely extends to a morphism X — X' and this morphism is an
1somorphism. O

The next lemma is the o-analog of the basic fact that surjective morphism of (abstract) groups
preserve normal subgroups.

Lemma 5.7. Let ¢: G — H be a quotient map of o-algebraic groups. If N is a normal o-closed
subgroup of G, then ¢(N) is a normal o-closed subgroup of H.

Proof. We already know from Lemma [5.1] that ¢(V) is a o-closed subgroup of H. Let R be
a k-o-algebra, h € ¢(N)(R) and hy € H(R). We have to show that hihh]' € ¢(N)(R). By
Proposition .10} there exists a faithfully flat R-o-algebra S and g € N(S) with ¢(g) = h.
Similarly, there exists a faithfully flat R-o-algebra S and ¢; € G(S7) with ¢(¢g1) = h1. Then
S" = S®p Sy is a faithfully flat R-o-algebra ([Wat79l Section 13.3, p. 106]) and we can consider
G(S) and G(S;) as subgroups of G(S'). Since N(S') 9 G(S') we see that gigg;' € N(S').
Therefore
hihhi' = é(gr907") € S(N(S") € S(N)(S").

As ¢(N)(S') N H(R) = ¢(N)(R) by Lemmal5.3| this shows that hyhh' € ¢(N)(R). O

Let N and H be o-closed subgroups of a g-algebraic group G such that H normalizes N,
i.e., H(R) normalizes N(R) for any k-o-algebra R. Then we can form the semidirect product
N x H: This is a g-algebraic group with underlying o-variety N x H and multiplication given
by ((n1,h1), (n2,he)) — (nlhlnghl_l,hlhg) for any k-o-algebra R and ni,ny € N(R), hy,he €
H(R). The map

m: Nx H— G, (n,h)— nh
for any k-o-algebra R and n € N(R), h € H(R) is a morphism of o-algebraic groups. We define

HN := NH :=m(N x H).
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Then HN is a o-closed subgroup of G (Lemma [5.1). In fact, HN is the smallest o-closed
subgroup of G that contains N and H. Since N x H — HN is a quotient map, it follows from
Proposition [4.10/ that the functor R ~~ N(R)H(R) = H(R)N(R) is a fat subfuntor of HN.
Moreover, by Lemma [5.4] we have

(HN)(R) = {g € G(R)| 3 faithfully flat R-o-algebra S such that g € N(S)H(S) = H(S)N(S)}

for any k-o-algebra R. Since N is normal in N x H we know from Lemma [5.7 that N = m(N)
is normal in HN.
The following theorem is the analog of the second isomorphism theorem for groups.

Theorem 5.8. Let H and N be o-closed subgroups of a o-algebraic group G such that H
normalizes N. Then the canonical morphism

H/(HNN)— HN/N
18 an isomorphism.

Proof. By Lemma L8] the functor R ~» H(R)/H(R) N N(R) is a fat subfunctor of H/(H N N).

Similarly, since R ~» (HN)(R)/N(R) is a fat subfunctor of HN/N and R ~» H(R)N(R) is a

fat subfunctor of HN, it follows that R ~» H(R)N(R)/N(R) is a fat subfunctor of HN/N.
For every k-o-algebra R we have an isomorphism

H(R)/(H(R)NN(R)) = H(R)N(R)/N(R). (5)

So the canonical morphism H/(H N N) — HN/N restricts to an isomorphism between the fat
subfunctors on the left and right hand side of (&). Corollary [5.6] implies that the canonical
morphism must be an isomorphism itself. ]

The following theorem is the o-analog of the third isomorphism theorem for (abstract) groups.

Theorem 5.9. Let G be a o-algebraic group, N < G a normal o-closed subgroup and w: G —
G/N the quotient. The map H — w(H) = H/N defines a bijection between the o-closed sub-
groups H of G containing N and the o-closed subgroups H' of G/N. The inverse map is
H' + 77 Y(H'"). A o-closed subgroup H of G containing N is normal in G if and only if H/N
is normal in G /N, in which case the canonical morphism

G/H — (G/N)/(H/N)
s an isomorphism.

Proof. Theorem [5.2] applied to H — G/N shows that H/N = 7w(H). Let us show that
7 Y (n(H)) = H for every o-closed subgroup H of G containing N. Let R be a k-c-algebra
and g € 7 Y(7(H))(R), i.e., m(g) € m(H)(R). By Lemma [5.4] there exists a faithfully flat
R-o-algebra S and h € H(S) with w(h) = w(g9) € (G/N)(S). As ker(r) = N by Theorem [3.3,
this implies that gh~' € N(S) < H(S). Therefore g € H(S) and g € H(S) N G(R) = H(R) by
Lemma [5.3l Thus 7~ !(7(H)) C H. The reverse inclusion is obvious.

Let us next show that m(7~'(H')) = H' for a o-closed subgroup H' of G/N. As m maps
7~ L(H') into H', it is clear form the definition of 7(7~*(H')) that =(7~*(H')) C H'.

Conversely, let R be a k-c-algebra and h' € H'(R). There exists a faithfully flat R-o-algebra
S and g € G(S) such that 7(g) = #’. So g € n~1(H')(S) and I/ = 7(g) € n(x~1(H')(S)) C
m(x L (H"))(S). Thus b’ € w(7~Y(H"))(S) N H'(R) = m(7—*(H"))(R). Hence (7 1(H'")) = H'.

If H is normal in G, then 7(H) is normal in G/N by Lemma 5.7 Clearly 7—!(H’) is normal
if H' is normal.

Note that R ~~ (G/N)(R)/(H/N)(R) is a fat subfunctor of (G/N)/(H/N) by Lemma (8.
Moreover, for any k-o-algebra R, the map G(R)/N(R) — (G/N)(R)/(H/N)(R) has kernel
H(R)/N(R) (as 7~ Y(n(H)) = H). So, using Lemma [4.8] again, we see that the functor R ~»
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(G(R)/N(R))/(H(R)/N(R)) is a fat subfunctor of R ~ (G/N)(R)/(H/N)(R). It follows that
g ~ (hG(R)/N(R))/(hlfl(R)/N(R)) is a fat subfunctor of (G/N)/(H/N). For every k-o-algebra
we have an isomorphism

G(R)/H(R) = (G(R)/N(R))/(H(R)/N(R)).

In other words, the canonical morphism G/H — (G/N)/(H/N) restricts to an isomorphism be-
tween the fat subfunctors R ~ G(R)/H(R) and R ~~ (G(R)/N(R))/(H(R)/N(R)) of G/N and
(G/N)/(H/N) respectively. By Corollary [5.6] the canonical morphism must be an isomorphism
itself. 0

6. COMPONENTS

In this section we study the identity component G° and the strong identity component G*° of
a o-algebraic group GG. The identity component G° is the analog of the usual identity component
G° of an algebraic group G. Indeed, the underlying group scheme (G°) of the identity component
G° of G is the identity component (G*)° of the underlying group scheme G* of G.

Recall that the strong identity component G of an algebraic group G can be defined as the
smallest closed subgroup with the same dimension as G (see Def. 6.9 and Prop. 6.10]).
The strong identity component G*° of a o-algebraic group G is defined similarly: it is the smallest
o-closed subgroup with the same o-dimension as G. The strong identity component and the
related notion of being strongly connected are fundamental for establishing our Jordan-Holder
type theorem for o-algebraic groups.

6.1. The identity component. Rather than defining the identity component G° of a o-alge-
braic group directly, it turns out to be more convenient to first define the quotient G/G° through
a universal property. Our approach is analogous to the approach taken in [Wat79l Chapter 6].
We begin by recalling some definitions and results from [Wib20, Section 6].

Definition 6.1. A finitely o-generated k-o-algebra R is o-étale (over k) if R is integral over k
and separable as a k-algebra. A o-algebraic group G is o-étale if k{G} is a o-étale k-o-algebra.

Recall that a k-algebra A is étale if A ®j k is isomorphic (as a k-algebra) to a finite direct
product of copies of k, where k denotes the algebraic closure of k. Other equivalent ways to
express that a finitely o-generated k-o-algebra R is o-étale are:

e Every r € R satisfies a separable polynomial over k.
e The k-algebra R is a union of étale k-algebras.

Example 6.2. If G is an étale algebraic group, then [0];G is a o-étale o-algebraic group. The
o-algebraic group from [Wib20, Example 2.14] is also o-étale.

For a k-algebra A, we let my(A) denote the union of all étale k-subalgebras of A. That is,
mo(A) consists of all elements of A that annul a separable polynomial over k. Then 7my(A) is a
k-subalgebra of A. (Cf. Section 6.7 in [Wat79].) Clearly, a o-algebraic group G is o-étale if and
only if mo(k{G}) = k{G}.

Lemma 6.3. Let A and B be k-algebras. Then mo(A ®@p B) = mo(A) @ mo(B).

Proof. We may assume that A and B are finitely generated as k-algebras. In this case the
statement is proved in [Wat79, Section 6.7, p. 50]. O

If R is a k-o-algebra, one can show that mo(R) is a k-o-subalgebra. Moreover, for a o-al-
gebraic group G, one can use Lemma [6.3] to show that mo(k{G}) is a k-o-Hopf subalgebra of
k{G}, which, by Theorem [1.14] is finitely o-generated and therefore represents a o-étale o-al-
gebraic group my(G). The quotient map G' — my(G) corresponding to the inclusion k{my(G)} =
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mo(k{G}) C k{G} of k-o-Hopf algebras satisfies a universal property detailed in the following
proposition. See [Wib20, Prop. 6.13].

Proposition 6.4. Let G be a o-algebraic group. There exists a o-étale o-algebraic group mo(G)
and a morphism G — 7o(G) of o-algebraic groups satisfying the following universal property: If
G — H is a morphism of o-algebraic groups with H o-étale, then there exists a unique morphism
mo(G) — H such that

G

m0(G)

H
commutes.

Of course 7y(G) is uniquely characterized by the above universal property.

Definition 6.5. Let G be a o-algebraic group. The o-étale o-algebraic group mo(G) defined by
the universal property in Proposition|6.4] is the group of connected components of G. The kernel
G° of G — mo(G) is the identity component of G.

So G/G° = mp(@). For an ideal a of a ring R we denote with V(a) the closed subset of Spec(R)
consisting of all prime ideals of R that contain a. The following lemma combines Lemmas 6.7

and 6.15 from [Wib20)].

Lemma 6.6. Let G be a o-algebraic group. Then:

(i) The connected components and the irreducible components of Spec(k{G}) coincide.
(ii) For a prime ideal p of k{G?}, the connected component of Spec(k{G}) containing p equals
V(a), where a is the ideal generated by all idempotent elements of k{G} contained in p.
(iii) The connected components of Spec(k{G}) are in bijection with the connected components

of Spec(k{mo(G)}).

(iv) Ewvery connected component of Spec(k{mo(G)}) consists of a single point.
The following lemma characterizes connected o-algebraic groups.

Lemma 6.7. The following four conditions on a o-algebraic group G are equivalent:
(i) G° =G.
(ii) 7m0(G) =
(iii) Spec(k:{G}) is connected.
v)

(iv) The nilradical of k{G} is a prime ideal.
Proof. Clearly, (i)<(ii). We have (ii)<>(iii) by Lemmal6.6] (iii) and (iv). Point (iv) is equivalent
to Spec(k{G}) being irreducible. Thus (iii)<(iv) by Lemma [6.0] (i). O

Definition 6.8. A o-algebraic group is connected if is satisfies the equivalent conditions of

Lemma 6.7,

Example 6.9. Let G be the o-closed subgroup of G, defined the linear difference equation
o™(y) + Ap_10" Hy) + - 4+ Xy = 0. Then E{G} = k[y,0(y),...,0" (y)] is an integral
domain. Therefore GG is connected.

Example 6.10. Let G be the unitary o-algebraic group, i.e.,

G(R) ={g € GLa(R)| go(9)" = 9(9)"g = In} < GLn(R)
for any k-o-algebra R. The defining equations may be written as o(g) = (¢~")T. So the
coordinate ring k{G} = k[z;;, ﬁ(m)] is an integral domain. Therefore GG is connected.
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It is not obvious from the definition that the identity component G° of a g-algebraic group
is connected. The following lemma closes this gap. The proof also shows that Spec(k{G°}) is
homeomorphic to the connected component of Spec(k{G}) containing the “identity” mg. (Recall
that mq is the kernel of the counit k{G} — k.)

Lemma 6.11. Let G be a o-algebraic group. Then G° is connected.

Proof. An étale k-algebra is a finite direct product of finite separable field extensions of k. Thus
every ideal in an étale k-algebra is generated by idempotent elements. Thus, also every ideal
of k{mo(G)} is generated by idempotent elements. As every idempotent element of k{G} lies
in k{mo(G)}, it follows that m () = mg N k{m(G)} is generated by all idempotent elements
contained in mg. Therefore, [(G°) = (my(q)) is the ideal of k{G} generated by all idempotent
elements of k{G} contained in mg. In other words, by Lemmal6.6l (ii), V(I(G?)) is the connected
component of Spec(k{G}) that contains mg. As V(I(G?)) and Spec(k{G°}) = Spec(k{G}/I(G?))
are homeomorphic, this implies that G° is connected. ([l

The formation of Zariski closures is compatible with taking the identity component.

Lemma 6.12. Let G be a o-closed subgroup of an algebraic group G and for i > 0 let G[i] and
G°[i] denote the i-th order Zariski closure of G and G° in G respectively. Then

G°[i] = G[i]°.
In particular, G is connected if and only if all its Zariski closures are connected.

Proof. Both groups are defined by the ideal of k[G[i]] C k{G} that is generated by all idempotent
elements of k[G[i]] contained in the kernel of the counit k[G[i]] — k. O

Corollary 6.13. Let G be a o-algebraic group. Then o-dim(G°) = o-dim(G) and ord(G°) =
ord(G).

Proof. Let G be a o-algebraic group containing G as a o-closed subgroup. Then for i > 0
we have dim(G[i]) = dim(G[i]°) = dim(G°[i]) by Lemma Thus the claim follows from
Theorem [L.7) O

The limit degree of G and G° are in general distinct. Indeed 1d(G) = 1d(mo(G)) - 1d(G°) by
Corollary B.151

As announced in Section 2, we can now show that Gred, Go-red, Gwm and Gper all have the
same o-dimension as G.

Lemma 6.14. Let G be a o-algebraic group. Assume that k has the relevant properties as
stated in Corollary (so that we are dealing with o-closed subgroups). Then o-dim(Gieq),
o-dim(Gy-red), 0-dim(Gym) and o-dim(Gper) are all equal to o-dim(G).

Proof. As the dimension of a finitely generated k-algebra remains invariant if we factor by the
nilradical, it follows that o-dim(Gyeq) = o-dim(G).

Since (G%)p-red < Go-reds (G%)wm < Guym and (G%)per < Gper Wwe may assume that G is
connected by Lemma [6.11] and Corollary [6.13l But then the nilradical of k{G} is a prime
o-ideal (Lemma [6.7]) and therefore Gy = Greq and thus o- dim(Gyy) = o- dim(G) also in this
case.

To prove o- dim(Gper) = 0-dim(G) we may assume that G is reduced. Then the zero ideal
of k{G} is prime and therefore its reflexive closure U;>107¢(0) is a o-prime o-ideal. This shows
that Gper = Go-red-

It thus suffices to show that o- dim(Gy.;ed) = 0-dim(G). Let G be an algebraic group con-
taining G as a o-closed subgroup and for i > 0 let G[i] and G- reqi] denote the i-th order Zariski
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closure of G and G,. eq in G respectively. By Theorem [1.13] we have
H(Go— rod[i]) = (H(Gcr— rcd[i - 1])7 U(H(Go— rod[i - 1]))) - k[G[ZH - k{G}

for all sufficiently large i € N. But [(Gy-ved) = {f € K{G}| 3 n > 1: ¢"(f) = 0}. This
shows that there exist f1,..., fm in k{G} such that [(Gy1ea[?]) = (f1,..., fm) C k[G[i]] for all
sufficiently large i. Therefore dim(G[i]) — dim(G,. eq[i]) < m for all sufficiently large i € N and
consequently o-dim(G) = o- dim(Gy- req)- O

A normal subgroup of a normal subgroup of an (abstract) group G need not be a normal
subgroup of G. However, a characteristic subgroup of a normal subgroup of a group G is a
normal subgroup of G. The following definition, analogous to Def. 1.51], allows us to
transfer this kind of reasoning to o-algebraic groups.

Definition 6.15. A o-closed subgroup H of a o-algebraic group G is a characteristic subgroup
of G if for every k-o-algebra R, every automorphism of Gr induces an automorphism of Hpg.

To be precise, here an automorphism ¢ of G is an isomorphism ¢: Gr — Gg of functors form
the category of R-o-algebras to the category of groups. In particular, ¢r: G(R') — G(R') is
an isomorphism of groups for every R-o-algebra R/, and the requirement is that ¢r (H(R')) =
H(R'). Since conjugation with ¢ € G(R) induces an automorphism of Gr, we see that a
characteristic subgroup is normal.

Our next goal is to show that G° is a characteristic subgroup of G. To this end we record a
practical criterion to test if a normal o-closed subgroup is characteristic.

Lemma 6.16. Let G be a o-algebraic group and N <G a normal o-closed subgroup. If for every
k-c-algebra R, every automorphism of the R-o-Hopf algebra k{G} @i R maps k{G/N} @ R
into kK{G/N} @k R, then N is a characteristic subgroup of G.

Proof. Let ¢ be an automorphism of Ggr. We have to show that ¢ induces an automorphism
of Npg, ie., for every R-c-algebra R’ the map ¢r maps Ng(R') = N(R') bijectively onto
N(R'). The automorphism ¢ of G corresponds to an automorphism ¢* of the R-o-Hopf algebra
E{G} @i R. By assumption ¢* and the inverse of ¢* map k{G/N} ®j R into itself. Thus, ¢*
induces an automorphism of k{G/N} ®; R. This yields a commutative diagram

G(R') — (G/N)(R')
o
G(R') — (G/N)(R')

where the vertical arrows are isomorphisms. The claim now follows from the fact that the kernel
of G(R') — (G/N)(R') is N(R') (Theorem [3.3)). O

Proposition 6.17. Let G be a o-algebraic group. Then G° is a characteristic subgroup of G.

Proof. By Lemma it suffices to show that for every k-o-algebra R, every automorphism 1)
of the R-o-Hopf algebra k{G} ®j R maps mo(k{G}) ®x R into mo(k{G}) ®x R. Using LemmalG.3,
we have
P(mo(F{G}) @ 1) € ¢(mo(k{G} @k R)) € mo(K{G} @k R) =
= mo(k{G}) @k mo(R) € mo(k{G}) @ R.

Thus ¢(mo(k{G}) @k R) C mo(k{G}) ®k R as required. O
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6.2. The strong identity component. The following lemma facilitates the definition of the
strong identity component.

Lemma 6.18. Let G be a o-algebraic group with o-dim(G) > 0. Among the o-closed subgroups
H of G with o-dim(H) = o-dim(G), there exists a unique smallest one.

Proof. Let Hy and Hs be o-closed subgroups of G with o-dim(H;) = o-dim(Hsz) = o- dim(G).
By Theorem we have o-dim(H; N Hy) = o-dim(G). Thus the claim follows from Theo-
rem [[T3] O

Definition 6.19. Let G be a o-algebraic group with o-dim(G) > 0. The strong identity compo-
nent G*° of G is the smallest o-closed subgroup of G with o-dimension equal to the o-dimension
of G. A o-algebraic group is strongly connected if it has positive o-dimension and equals its
strong identity component.

Thus a o-algebraic group G with o-dim(G) > 0 is strongly connected if and only if it has
no proper o-closed subgroup of the same o-dimension. The strong identity component of a
o-algebraic group is strongly connected. As G° is a o-closed subgroup with o-dim(G°) =
o-dim(G) (Corollary [6.13]), we see that a strongly connected o-algebraic group is connected.

Lemma 6.20. Assume that k is perfect and inversive. Then a strongly connected o-algebraic
group 1is o-integral (in particular, perfectly o-reduced).

Proof. Let G be a strongly connected o-algebraic group. Then G is connected and because
o-dim(G) = o-dim(Gyeq) by Lemma[6.14] we must have G = Geq. So G is reduced and hence
integral by Lemma[6.7l Similarly, G = G,._,cq by Lemma [6.14. Thus G is o-integral. O

Example 6.21. If G is a smooth, connected algebraic group with dim(G) > 0, then G = [0];G is
strongly connected. Indeed, as G is smooth and connected, the same holds for G[i] = G x...xG
for every ¢ > 0. So if H is a proper o-closed subgroup of G, then dim(H[i]) < dim(G][i]) for all
sufficiently large i € N. But dim(G[i]) = dim(G)(i + 1) and so it follows from Theorem [[7] that
o-dim(H) < o-dim(G).

If G is not smooth or not connected, then [0];G need not be strongly connected.

We next give an example of a o-integral o-algebraic group that is not strongly connected.

Example 6.22. Let G be the o-closed subgroup of G2 given by
G(R) = {(91,92) € R*| 0(g1) = 91} < GZ(R)
for any k-o-algebra R. As k{G} = k[y1]{y2} with o(y1) = y1 we see that G is o-integral. We

have o- dim(G) = 1. The o-closed subgroup H of G given by H(R) = {(0,g) € R?} is isomorphic
to G, and therefore also has o-dimension one. Using Example we see that G*° = H.

The following example shows that Lemma [6.20] fails over an arbitrary base o-field. There
exists a strongly connected o-algebraic group that is not o-reduced.

Example 6.23. Let k be a non-inversive o-field of characteristic zero. So there exists A € k
with A ¢ o(k). Let G be the o-closed subgroup of G2 given by

G(R) = {(91.92) € R*| 0(g1) = Ao(g2)}
for any k-o-algebra R. Then k{G} = k[y1,y2,0(y2),...] with o(y1) = Ao(y2). For i > 0 let
G[i] denote the i-th order Zariski closure of G in G2. Then k[G[i]] = k[y1,y2,...,0%(y2)] and
therefore dim(GJi]) =1- (i + 1) + 1, in particular, o- dim(G) = 1.
We claim that G is strongly connected. Suppose that H < G is a proper o-closed subgroup
with o-dim(H) = o-dim(G). Let a; and ag denote the image of y; and y2 in k{H } respectively.
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By [DVHWIT7, Corollary A.3] the o-ideal I(H) C k{G2} is o-generated by homogenous linear
o-polynomials. Thus there exists a non-trivial k-linear relation between a,as,o(ag),.... If
that relation would properly involve o?(ag) for i > 1, then o-dim(H) = 0. Thus there exists a
non-trivial k-linear relation between a; and as. We have a1 # 0 and as # 0 because otherwise
o-dim(H) = 0. So there exists p € k with a; — pay = 0. Consequently

0=o(a1) —o(p)o(az) = Ao(az) — o(n)o(az) = (A — o(p))o(az).
Since A ¢ o(k) this implies o(ag) = 0. But then o-dim(H) = 0; a contradiction.
Now assume that A\? € (k). (For example, we can choose k = C(y/z,v/z + 1,...) with action
of o determined by o(z) =z + 1 and A\ = \/z.) If u € k with (i) = A\? then o(y? — uy?) = 0.
Thus G is not o-reduced.

The strong identity component is essential for the proof of our Jordan-Holder type theorem
(Theorem A from the introduction). The idea for the proof of the existence part of this theorem
is easy to explain: Starting with a strongly connected o-algebraic group G, we can a choose
among all proper normal o-closed subgroups of positive o-dimension one, say (G7, of maximal
o-dimension. Since G is strongly connected, o-dim(G;) < o-dim(G). Moreover, G/G; is
almost-simple by choice of G;. To conclude the proof by induction on the o-dimension, one
would like to replace G by its strong identity component Gi°. However, for this to work one
needs to know that G{° is normal in G. The latter would be true if we knew that G{° is a
characteristic subgroup of G.

It is clear that every automorphism of a o-algebraic group G of positive o-dimension, induces
an automorphism of G*°. However, this is weaker than Definition [6.15] and indeed, in general,
G*° need not be a characteristic subgroup of G. In fact, the following example illustrates that
G*° need not even be normal in G. (This is similar to the situation with algebraic groups. Cf.

6.11].)

Example 6.24. Let G = N x H be the o-algebraic group from Example[2.13. Then o-dim(G) =
1. The o-closed subgroup H = G,, of G has o-dimension one. Since H is strongly connected
(Example [62T)) we see that H = G*°. We already noted in Example 2I3] that H is not normal
in G.

The following proposition salvages the above plan to establish the existence part of our Jordan-
Hoélder type theorem.

Proposition 6.25. Assume that k is algebraically closed and inversive. Let G be a perfectly
o-reduced o-algebraic group and H a normal o-closed subgroup of G with o-dim(H) > 0. Then
H*° is normal in G. (In particular, H*° is normal in H.)

As an immediate corollary to Proposition [6.25] we obtain:

Corollary 6.26. Let G be a perfectly o-reduced o-algebraic group over an inversive algebraically
closed o-field with o-dim(G) > 0. Then G*° is a normal o-closed subgroup of G.

For the proof of Proposition [6.25] we need two preparatory lemmas.

Lemma 6.27. Assume that k is algebraically closed and inversive. Let K be a o-field extension
of k. Then there exists a o-field extension L of K such that only the elements of k are fized by
all o-field automorphisms of L/k, i.e., LAuL/k) — .

Proof. Let us start with proving the following claim: There exists a o-field extension L of K
such that for all a € K \ k there exists a o-field automorphism 7 of L/k with 7(a) # a and such
that every o-field automorphism of K/k extends to a o-field automorphism of L/k.

Since k is algebraically closed, K ®; K is an integral domain. Since k is inversive, K @ K is
o-reduced (Lemma [2.7 (ii)). Therefore the field of fractions L of K ®j K is naturally a o-field.
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Consider L as a o-field extension of K via the embedding a — a ® 1. The o-field automorphism
7 of L/k determined by 7(a ® b) = b® a moves every element of K \ k. Moreover, every o-field
automorphism 7/ of K/k extends to L/k, for example, by 7/(a ® b) = 7/(a) ® b.

Now let us prove the lemma. By the above claim, there exists a o-field extension L;/K
such that every element of K ~\ k can be moved by a o-field automorphism of L;/K and every
o-field automorphism of K/k extends to a o-field automorphism of L;/k. Now apply the claim
again to Li/k to find a o-field extension Ly/L; such that every element of L; \ k can be
moved by a o-field automorphism of Lo/k and every o-field automorphism of L /k extends to
a o-field automorphism of Lo/k. Continuing like this we obtain a chain of o-field extensions
kC K CLy CLyC.... The union L = UL; has the required property. U

The formation of the strong identity component is compatible with base change under certain
assumptions:

Lemma 6.28. Assume that k is algebraically closed and inversive. Let G be a o-algebraic group
with o-dim(G) > 0 and let K be a o-field extension of k. Then (Gk)** = (G*°) k.

Proof. As the o-dimension is invariant under base extension (Lemma [[.9]),
o-dim((G*°) i) = 0-dim(G*°) = o- dim(G) = o-dim(Gk).

Therefore (G )*° < (G*°) k.

Let us now next show that (Gk)® descends to k, i.e., there exists a o-closed subgroup
H of G with (Gk)*® = Hg. By Lemma there exists a o-field extension L of K such
that LAWK — E where Aut(L|k) is the group of all o-field automorphisms of L|k. The
group Aut(L|k) acts on L{Gr} = k{G} ® L by k-o-algebra automorphisms via the right
factor. Let H' be a o-closed subgroup of G;. Since the Hopf algebra structure maps commute
with the Aut(L|k)-action, 7(I(H')) is a o-Hopf ideal of k{G} ® L for every T € Aut(L|k).
Moreover, the o-dimension of the o-closed subgroup of Gy, defined by 7(I(H')) is equal to the
o-dimension of H'. Since I((G1)*°) is the unique maximal o-Hopf ideal of k{G} ®j L such that
o-dim((G)*°) = o-dim(Gy,), we see that 7(I((G)*?)) = I((GL)*°) for every 7 € Aut(L|k). Let

a={fel((GL)) 7(f) = fV7eAut(Llk)} =1(GL)*) N k{G}.
Since the action of Aut(L|k) commutes with the Hopf algebra structure maps, a is o-Hopf
ideal of £{G} and therefore corresponds to a o-closed subgroup H of k{G}. We have a ® L =
I((GL)®*°). (See [Bou90, Corollary to Proposition 6, Chapter V, §10.4, A.V.63|.) So H;, = (G1)*°.
As o-dim(H) = o-dim((G)%°) = o-dim(G) = o-dim(G) we see that G*° < H, therefore
(G*°)r, < Hp, = (G1)*°. Hence also
(6*)i)s = (6¥)1 < (61)" < (G,

Thus (G*°)g < (Gg)*°. O

The following example shows that the formation of the strong identity component is in general
not compatible with base change.

Example 6.29. Let G be the strongly connected c-algebraic group from Example [6.23] Let
K = k* be the inversive closure of k (see (|[Lev08, Definition 2.1.6])) and let p € K with o(u) = .
Then G is not strongly connected since it has the o-closed subgroup H of o-dim(H) =1 =
o-dim(G) given by

H(R) ={(91,92) € R?| g1 = pga}

for any k-o-algebra R. So (G )% is properly contained in (G*°)x = Gk

We are now prepared to prove Proposition [6.25
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Proof of Proposition 6.25. We have to show that the morphism of o-varieties
¢: G x H = G, (g9,h) — ghg™*

maps into H*°. We know from Lemma [6.20] that H*° is perfectly o-reduced. By assumption also
G is perfectly o-reduced. Therefore, by Lemma [2.7] (iv), also the product G x H*° is perfectly
o-reduced. So, by Lemma [2.5] it suffices to show that ¢ ((G x H*?)(K)) C H*°(K) for every
o-field extension K of k. Let g € G(K). Then g induces an automorphism of G by conjugation.
Since H is normal in G we have an induced automorphism on Hg. This automorphism maps
(Hg)® into (Hg)*°. But (Hg)®* = (H%°)g by Lemmal6.28] This shows that conjugation by ¢
maps H*°(K) into H*°(K). Thus ¢x((G x H*°)(K)) C H*°(K) as required. O

7. JORDAN-HOLDER THEOREM

In this section we apply the results from the previous sections to establish our Jordan-Holder
type theorem for o-algebraic groups. A Jordan-Hoélder type theorem for algebraic groups can be
found in [Ros56], while a Jordan-Holder type theorem for differential algebraic groups has been
proved in [CS11].

As we will show, the Schreier refinement theorem also holds for o-algebraic groups (Theo-
rem [7.5). In particular, any two decomposition series of a o-algebraic group are equivalent.
Here a decomposition series is a subnormal series such that the quotient groups have no proper
non-trivial normal o-closed subgroups.

However, a o-algebraic group rarely has a decomposition series. It is therefore useful to
consider more general subnormal series and to relax the condition that the quotient groups
should have no proper non-trivial normal o-closed subgroups. This is where the almost-simple
o-algebraic groups enter into the picture.

The basic idea is to consider o-algebraic groups up to quotients by zero o-dimensional normal
subgroups. Formally this is realized by replacing in the uniqueness statement of the classical
Jordan-Holder theorem the notion of isomorphism by the notion of isogeny.

Our first aim is to prove the analog of the Schreier refinement theorem, which plays a key
role in the proof of the uniqueness part of our Jordan-Holder type theorem. We follow along

the lines of the well-known proof via the Butterfly lemma. (Cf. [Lan02, Section 1.3] and
Section 6 al.) We will need two analogs of elementary statements about groups.

Lemma 7.1. Let N, G and H be o-closed subgroups of a o-algebraic group G' such that N <G
and N normalizes H. Then GNNH = N(GN H).

Proof. As N<GNNH and GNH < GNNH it is clear that N(GNH) CGNNH.
Conversely, let R be a k-o-algebra and g € (G N NH)(R). There exists a faithfully flat
R-o-algebra S and n € N(S), h € H(S) such that g = nh in G'(S). But then h = n~tg € G(S)
and therefore g = nh € N(S)(G(S)NH(S)) C (N(GNH))(S). It follows from Lemma [5.3] that
g€ (N(GNH))R). O

Lemma 7.2. Let Hy < Hy be o-closed subgroups of a o-algebraic group G. Assume that Ho
normalizes N < G. Then NHy < NHs.

Proof. Clearly N x H; is a normal o-closed subgroup of N x Hy. Therefore NHy = m(N x Hy)
is a normal o-closed subgroup of NHy = m(N x Hs) by Lemma [5.7. O

The following lemma is the analog of the Butterfly (or Zassenhaus) lemma.
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Lemma 7.3. Let N1 < Hy and No < Hy be o-closed subgroups of a o-algebraic group G. Then
Nl(Hl N Ng) < Nl(Hl N Hg), Ng(Nl N Hg) < Ng(Hl N HQ) and

Nl(Hl N Hg) - NQ(Hl N Hg)

Nl(HlﬁNQ) Ng(NlﬂHg)'
Proof. Since HyN Ny is normal in Hy N Hy it follows from Lemma[7:2] that Nq(H;, N N3) is normal
in Nl(Hl N Hg) Similarly, NQ(Nl N Hg) < NQ(Hl N HQ) As H; N Hy normalizes Nl(Hl N NQ)
it follows from Theorem [5.8] that

HyN Hy - (HlﬂHg)Nl(HlﬂNg)
(HlﬂHg)ﬁNl(HlﬁNg) Nl(HlﬂNg) '
Lemma [Tl with N = Hy N Ny, G = H; N Hy and H = Ny shows that
(H1 N Hg) M Nl(Hl M Ng) = (H1 N NQ)(Hl NHyN Nl) = (H1 M Ng)(Nl N Hg)

Because Hy N Ny C Hy; N Hy we find (H1 N Hg)Nl(Hl N Ng) = Nl(Hl N HQ) Therefore (IED
becomes

(6)

H, N Hy N Nl(HlﬁHg)
(H1 ﬂNQ)(Nl ﬂHg) o Nl(Hl ﬂNg)‘

By symmetry

HiN Hy N NQ(HlﬂHg)
(H1 N NQ)(Nl N HQ) o Ng(Nl N HQ) '
O
Definition 7.4. Let G be a o-algebraic group. A subnormal series of G is a sequence
G=Gy2G12---2G,=1 (7)
of o-closed subgroups of G such that G;11 is normal in G; fori =0,...,n—1. Another subnormal
series
G=Hy2H 2 2Hy,=1 (8)

of G is a refinement of (7) if {Go,...,Gn} C{Hi,...,Hpy}. The subnormal series (1) and (8)
are equivalent if m = n and there exists a permutation 7 such that the quotient groups G;/G;y1
and H,T(Z-)/H,T(i)ﬂ are isomorphic for i =0,...,n— 1.

The following theorem is the analog of the Schreier refinement theorem.
Theorem 7.5. Any two subnormal series of a o-algebraic group have equivalent refinements.

Proof. Let
G=Gy2G1 2

1

Gp,=1
and
G=HyoH DO ---ODHp,=1
be subnormal series of a og-algebraic group G. Set G; ; = Gi1(H;NG;) for i =0,...,n—1 and
j=0,...,m. Then
G=Gy=Go02G012G022 2Gom=G1=G102G112 - 2G—1m=1
is a subnormal series for G. Similarly, setting H;; = Hj41(G; N Hj) for j =0,...,m — 1 and
1 =0,...,n, defines a subnormal series for G. By Lemma [7.3]

Gij/Gijr1 = Hji/Hjit1.
[l

See Example[8.17 for an example illustrating Theorem [7.5. The following definition is crucial
for the uniqueness part of our Jordan-Holder type theorem.
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Definition 7.6. Let G and H be strongly connected o-algebraic groups. A morphism ¢: G — H
is an isogeny if ¢ is a quotient map and o-dim(ker(¢p)) = 0. Two strongly connected o-algebraic
groups Hy and Hy are isogenous if there exists a strongly connected o-algebraic group G and
isogenies G - Hy and G — Hs.

By Theorem 5.2 and Corollary [3.13 a quotient map ¢: G — H is an isogeny, if and only if
o-dim(G) = o-dim(H). In particular, isogenous o-algebraic groups have the same o-dimension.

Lemma 7.7. The composition of two isogenies is an isogeny.

Proof. Clearly the composition of two quotient maps is a quotient map. If G; — G2 and
G2 — Gj3 are isogenies, then o-dim(G,) = o-dim(G2) and o-dim(G2) = o-dim(G3). Therefore
- dim(Gl) = 0- dim(Gg). ]

Lemma 7.8. Isogeny is an equivalence relation on the class of strongly connected o-algebraic
groups.

Proof. Reflexivity and symmetry are obvious. Let us prove the transitivity. So let ¢1: G — Hj,
¢2: G — Hyand ¢y: G' — Ho, ¢: G' — Hg be isogenies. The morphism ¢ x ¢h: GXG' — Hax
Hy is a quotient map with kernel ker(¢9) x ker(¢)), which has o-dimension zero by Lemmall.10
The diagonal D < Hy x Hj given by D(R) = {(ha, ha)| ha € H2(R)} for any k-c-algebra R is a
o-closed subgroup of Hy x Hy isomorphic to Hy. Therefore G” = (¢ x ¢4)~1(D))*° is a o-closed
subgroup of G x G’ with o-dim(G”) = o-dim(Hs). Let 7: G” — G and ©': G” — G’ denote
the projections onto the first and second factor respectively. We have the following diagram:

G//
G G’
N\ N
H,y Ho Hj

We claim that 7 and 7" are isogenies. We have ker(7) < 1xker(¢,). Therefore o- dim(ker(r)) =
0 and consequently

o-dim(m(G")) = o-dim(G") = o-dim(Hz) = o- dim(G).

Since G is strongly connected, this shows that 7(G”) = G, so 7 is a quotient map. Hence 7 is
an isogeny. Similarly, it follows that 7’ is an isogeny. The isogenies ¢;m and ¢57" (Lemma [7.7))
show that H; and Hj are isogenous. O]

Difference algebraic groups rarely possess decomposition series, i.e., a subnormal series such
that the quotient groups have no proper, non-trivial normal o-closed subgroups. This is illus-
trated in the following example.

Example 7.9. Let k be a o-field of characteristic zero. The o-algebraic group G = G, does
not have a decomposition series. Indeed, by [DVHW17, Corollary A.3], every proper o-closed
subgroup G of G, is of the form G(R) = {g € R| f(g) = 0} for some non-zero homogeneous
linear difference equation f = o™(y) + Ap_10" *(y) + --- + Xoy. If h is another non-trivial
linear homogeneous difference equation, then the product h * f in the sense of linear difference
operators (see [Lev08, Section 3.1]) defines a o-closed subgroup H of G, with G & H & G,. For
example, for h = o(y) we have

H(R)={g € Rl 0" (9) + 0(An-1)0"(y) + - + 0(Xo)o(g) = O}.
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To remedy this shortcoming we need to relax the condition that the quotient groups of a
decomposition series should have no proper non-trivial normal o-closed subgroups. This leads
to the following definition:

Definition 7.10. A o-algebraic group over an algebraically closed, inversive o-field is almost-
simple if it is perfectly o-reduced, has positive o-dimension and every normal proper o-closed
subgroup has o-dimension zero.

Recall that almost-simple algebraic groups are, by definition, required to be geometrically
reduced. As argued in Remark [2.15, the assumption to be perfectly o-reduced over an alge-
braically closed inversive o-field can be seen as an analog of this requirement. The structure of
almost-simple o-algebraic groups is investigated in the next section. In particular, it is shown
there that for an almost-simple algebraic group G, the o-algebraic group [o];G is almost-simple.
See Examples [8.14] and [8.15] for further examples of almost-simple o-algebraic groups.

Lemma 7.11. Assume that k is algebraically closed and inversive. An almost-simple o-algebraic
group 1is strongly connected and o-integral.

Proof. Clear from Corollary [6.26] and Lemma [6.20] O
Almost-simplicity is preserved under isogeny:

Lemma 7.12. Assume that k is algebraically closed and inversive. Let G and H be strongly
connected isogenous o-algebraic groups. Then G is almost-simple if and only if H is almost-
simple.

Proof. We may assume, without loss of generality, that there exists an isogeny ¢: G — H.
Recall from Lemma that G and H are perfectly o-reduced. If G is almost-simple, then H
is almost-simple by Theorem and Corollary B.13]

Conversely, assume that H is almost-simple and let N be a proper normal o-closed subgroup
of G. Then ¢(N) is a normal o-closed subgroup of H. There are two cases: either ¢(N) = H or
¢(N) has o-dimension zero. In the latter case it follows that N has o-dimension zero and we are
done. So it suffices to show that the case ¢(N) = H cannot occur. Suppose, for a contradiction,
that ¢(N) = H. Then N ker(¢) = G by Theorem [5.91 Using Theorem [5.8 we find

H ~ G/ker(¢) = N ker(¢)/ ker(¢) ~ N/(N Nker(¢)).

This implies o- dim(N) = o-dim(H) = o-dim(G). As G is strongly connected, we arrive at the
contradiction N = G. O

We are now prepared to prove our Jordan-Hélder type theorem.

Theorem 7.13. Assume that k is algebraically closed and inversive. Let G be a strongly con-
nected o-algebraic group. Then there exists a subnormal series

G=Gy2G12 - 2G,=1 9)
of strongly connected o-closed subgroups such that G;/G;y1 is almost-simple fori=0,...,n—1.
If

G=HyoH,D2 ---DH,=1 (10)
is another such subnormal series, then m = n and there exists a permutation 7 such that G;/Gi+1
and Hy(;)/Hr@i)41 are isogenous for i =0,...,n — 1.

Proof. Let us first prove the existence statement. Among all normal proper o-closed subgroups
of G choose one, say H, with maximal o-dimension. If o-dim(H) = 0, then G is almost-
simple and we are done. So let us assume that o-dim(H) > 0. Since G is strongly connected,
o-dim(H) < o-dim(G). By construction G/H is almost-simple (Theorem [5.9]). Let G = H*°.
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Then G is normal in G by Proposition [6.25] and o- dim(G/G1) > 0. Let us show that G/G; is
almost-simple. Let N be a proper normal o-closed subgroup of GG containing G;. By choice of H,
o-dim(N) < o-dim(H), but since o-dim(H) = o-dim(G;) < o-dim(N) we have o-dim(N) =
o-dim(Gy). So G/G; is almost-simple (Theorem [5.9). As o-dim(G1) < o-dim(G) the claim
follows by induction on o- dim(G).

Now let us prove the uniqueness statement. It follows from Theorem [Z.5] that (9) and (10Q))
have equivalent refinements. Let

G=Go2G012G022  2G0m 2G12G112 - 2GCG 10 2G 2---2G, =1 (11)

be such a refinement of (9). For i = 0,...,n — 1, as G; is strongly connected and G;/G;11
is almost-simple, o-dim(G;/G; 1) = o-dim(G;/Git1) > 0 and o-dim(G; /G j41) = 0 for j =
1,...,n; — 1, also o-dim(G; ,/Gi+1) = 0. The kernel of G;/Gi;1 — G;/G;1 has o-dimension
zero, so G;/G;y1 and G;/G;; are isogenous. In summary, we find that among the quotient
groups of the subnormal series (L1]), there are precisely n of positive o-dimension, (namely
Gi/Gi1, i =0,...,n—1). A similar statement applies to the equivalent refinement of (I0).
Therefore n = m and, using Lemma [T.8] we see that there exists a permutation w such that
Gi/Giy1 and Hy )/ Hp ;)41 are isogenous for i = 0,...,n — 1. O

Remark 7.14. It is clear from the proof that the uniqueness statement in Theorem|7.13 is valid
without any restriction on the base o-field k.

See Examples [8.16] and [8.17 for examples illustrating Theorem [7.13!

8. ALMOST-SIMPLE DIFFERENCE ALGEBRAIC GROUPS

Roughly speaking, Theorem [7.13] shows that any difference algebraic group of positive o-di-
mension can be decomposed into almost-simple o-algebraic groups. This begs the question that
we address in this final section: what are the almost-simple o-algebraic groups?

We first show that for an almost-simple algebraic group G, the difference algebraic group [0]xG
is almost-simple (Proposition [8.6). Then, we show that, up to o-dimension zero, every almost-
simple o-algebraic group is of this form. More precisely, if G is an almost-simple o-algebraic
group, then there exists a normal o-closed subgroup N of G with o-dim(N) = 0 such that G/N
is isomorphic to [0]G, for some almost-simple o-algebraic group G (Corollary BI2). It follows
that a strongly connected o-algebraic group is almost-simple if and only if it is isogenous to
[0]xG for some almost-simple algebraic group G. These results, at least to some extend, parallel
results for differential algebraic groups. See |CS11], [Minl5|, [Frel5]. However, the ideas and
structure of the proofs are quite different.

8.1. Almost-simple algebraic groups are almost-simple o-algebraic groups. We begin
by recalling some definitions from the theory of algebraic groups. See, e.g., [Mill7]. A semisimple
algebraic group over an algebraically closed field k is a smooth connected algebraic group whose
radical (i.e., the maximal smooth, connected normal solvable closed subgroup) is trivial. Almost
simple algebraic groups play a central role in the structure theory of semisimple algebraic groups.
They are commonly defined as follows:

Definition 8.1. An algebraic group over an algebraically closed field is almost simple if it is
non-trivial, semisimple and every proper normal closed subgroup is finite, i.e., has dimension
Z€ero.

Alternatively, an algebraic group is almost simple if and only if it is smooth, connected, non-
commutative and every proper normal closed subgroup is finite. In particular, the algebraic
groups G, and G,, are not considered to be almost simple, even though they are smooth, con-
nected and every proper normal closed subgroup is finite. For our purposes it will be convenient
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to have a more inclusive definition that also encompasses the multiplicative and the additive
group:

Definition 8.2. An algebraic group over an algebraically closed field is almost-simple if it
18 non-trivial, smooth, connected and every proper normal closed subgroup is finite, i.e., has
dimension zero.

Alternatively, an algebraic group is almost-simple if and only if it is smooth, has positive di-
mension and every proper normal closed subgroup has dimension zero. Arguably, Definition [Z.10]
is the exact analog of the latter characterization.

Caution: There is a difference between “almost simple” and “almost-simple”. See Defini-
tions BT and above. As detailed in the following remark, the almost-simple algebraic groups
are exactly the almost simple algebraic groups plus G, and G,,.

Remark 8.3. The almost-simple algebraic groups over an algebraically closed field are classified:
A commutative almost-simple algebraic group is isomorphic to either the additive group G, or
the multiplicative group G,,. A non-commutative almost-simple algebraic group is an almost
simple algebraic group and these are classified by their root data (see, e.g., Section 24]).

Proof. A smooth connected commutative algebraic group G over an algebraically closed field
is a direct product of a torus with a smooth connected unipotent algebraic group ([Mill7,
Cor. 16.15]). Thus if G is almost-simple, then G must be isomorphic to a torus, and in this case
G ~ Gy, or G is a smooth connected unipotent group. In the later case G ~ G, because a non-
trivial smooth connected unipotent algebraic group contains a copy of G, ([Mill7, Cor. 14.55]).

O

We will need the following lemma.

Lemma 8.4. Assume that k is perfect. Let G be a reduced o-algebraic group and let N be a
normal o-closed subgroup of G. Then Nyeq is normal in G.

For the proof of Lemma [84 we will use the following lemma on algebraic groups that is also
used in the proof of Proposition [8.11l Note that in general, even over an algebraically closed
field, Gyeq need not be a normal closed subgroup of G. However:

Lemma 8.5. Assume that k is perfect. Let G be a smooth algebraic group and N a normal
closed subgroup of G. Then Nieq s normal in G.

Proof. This follows from [SW16, Lemma 3.2]. g

Proof of Lemma|8.4l Let G be an algebraic group containing G as a o-closed subgroup. Fori € N
let N[i] and G[i] be the i-th order Zariski closure of N and G in G respectively. Then NJi] is a
normal closed subgroup of G[i] (Lemmal[310). As G is reduced, also G[i] is reduced and therefore
smooth. So it follows from Lemma [8.5 that N[i],eq is normal in G[i]. As Ni];eq = Nyeqli], the
i-th order Zariski closure of N,eq in G, we deduce that N,eq is normal in G by Lemma [3.10 [

Proposition 8.6. Assume that k is algebraically closed and inversive. Let G be an almost-simple
algebraic group. Then G = [0]xG is an almost-simple o-algebraic group.

Proof. We know from Example2A4lthat G = [0]G is perfectly o-reduced. Moreover o- dim(G) =
dim(G) > 0 by Example So it remains to show that for a proper normal o-closed subgroup
N of G one has o-dim(N) = 0. For i € N let N[i] denote the i-th order Zariski closure of N in
g.

Let us first get the commutative case out of the way. So we assume G = G, or G = G,,
(Remark [8.3). By Theorem [L.7l there exists an e € N such that dim(N[i]) = o-dim(N)(i+1) +e
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for all sufficiently large i € N. Since N[i| < G x ... X G and dim(g x ... X "lg) =4+ 1, the
assumption o- dim(N) = 1 would imply N = G. Thus o-dim(NN) = 0 as desired.

We now assume that G is non-commutative, i.e., almost simple. By Lemmas and we
may assume that NV is reduced. It follows from Proposition that N¢ is a normal o-closed
subgroup of G. By Corollary we may assume that N is connected. Thus N[i] is a smooth
connected normal closed subgroup of G[i] = G x ... x 9G for all i € N (Lemmas [3.10 and [6.12).
Note that G/[i] is semisimple and that G,°G,...,°G can be identified with the almost simple
factors of G[i]. As NJi] is smooth and connected, it follows from Theorem 21.51] that
N|i] is a product of some of the almost simple factors. Let iy € N be minimal with the property
that Nlig] is properly contained in G[i]. As N[ip—1] =G x ... x 7°'G and NTig] is a product

of some almost simple factors, we must have N[ig] = G x ... x 707G x 1 < Glip]. But then
N[i] =G x ... x0T G x1x ... x1 <G x...x7G for i > ig. Consequently o-dim(N) =0 as
desired. O

8.2. Almost-simple o-algebraic groups are isogenous to almost-simple algebraic groups.
The idea of the following definition is fundamental for proving the claim made in the above head-
line.

Definition 8.7. Let G be a o-algebraic group. We denote with Emb(G) the collection of all
morphisms ¢: G — [0|xG of o-algebraic groups such that

e G is an algebraic group,

e ker(¢) has o-dimension zero,

o ¢(Q) is Zariski dense in G and

e the kernel of m1: ¢(G)[1] — ¢(G)[0], (90,91) — go has dimension o-dim(G), where
d(Q)[1] and ¢(G)[0] denote the first order Zariski closure and the Zariski closure of
&(G) in G respectively.

Note that if G is an algebraic group and ¢: G — [0];G is a morphism with o- dim(ker(¢)) = 0,
then o-dim(¢(G)) = o-dim(G). By Proposition 8.11] the sequence (dim(ker(m;));en, where
it ¢(G)[i] — ¢(G)[i — 1], is non-increasing and stabilizes with value o-dim(G). The last
condition of Definition BT thus signifies that the sequence (dim(ker(7;));en already stabilizes at
1= 1.

The following lemma shows that Emb(G) is non-empty. The key idea to showing that every
almost-simple o-algebraic group G is isogenous to [0]xG for some almost-simple algebraic group
G, is to consider an element ¢: G — [0];G of Emb(G) with dim(G) minimal. We will eventually
show that any such ¢ is an isogeny.

Lemma 8.8. Let G be a o-algebraic group. Then there exists an algebraic group G and a o-closed
embedding ¢: G — G such that ¢(G) is Zariski dense in G and the kernel of m: ¢(G)[1] —
o(G)[0] has dimension o-dim(G). In particular, Emb(G) is non-empty.

Proof. By Proposition [L.4] there exists an algebraic group G’ and a o-closed embedding ¢': G —
G'. For i € N let ¢/(G)[i] denote the i-th order Zariski closure of ¢/(G) in G" and let G, denote
the kernel of 7;: ¢/(G)[i] — ¢'(G)[i — 1]. (By definition Gy = G[0].) By Proposition [L.11] (i)
the sequence (dim(G!));en is non-increasing and stabilizes with value o- dim(¢(G)) = o- dim(G).
Let n € N be minimal with the property that dim(g),) = o-dim(G) and set G = ¢'(G)[n].
By Lemma [1.5] the morphism ¢/(G)f — ¢'(G)[n] = G of group schemes, corresponding to the
inclusion k[¢'(G)[n]] C k{¢'(G)}, induces a morphism ¢": ¢'(G) — [0];G of o-algebraic groups.
We claim that ¢: G N ' (G) AN [0]kG has the required properties. Note that the dual
(") : k{G} — k{¢'(G)} of ¢" is surjective because k{¢'(G)} is o-generated by k[¢'(G)[0]] C
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k¢ (G)[n]] = K[G] C k{¢'(G)}. Thus ¢" is a o-closed embedding and so also ¢ is a o-closed
embedding. As k[G] C k{¢'(G)} ~ k{G} we see that ¢(G) is Zariski dense in G.

Note that k[¢p(G)[1]] = k[k[G], o (k[G])] = k[¢'(G)[n + 1]] C k{¢'(G)}. So we have a commu-
tative diagram

7_‘_/

¢ (G)ln +1] == ¢/(G)[n]
zl lz

$(G)[1] —— ¢(G)[0]

As the kernel of 7], has dimension o- dim(G), we see that the kernel of 7y has dimension o- dim(G)
as desired. ]

We need a few preparatory results.

Lemma 8.9. Let G be a o-algebraic group and let ¢: G — [0]|xG be an element of Emb(G) such
that dim(G) is minimal. Let ¢(G)[1] < G x G denote the first order Zariski closure of ¢(G) in
G. Then the image of the projection o1: ¢(G)[1] = G, (go,91) — g1 has dimension dim(G).

Proof. Let H < °G denote the image of ;. According to Lemma [L5] the morphism ¢(G)* —
H(G)[1] 25 H of group schemes induces a morphism ¢': ¢(G) — [o]pH of o-algebraic groups.
We will show that ¢” = ¢'¢ € Emb(G).

Let F be a finite set such that k[¢(G)[0]] = k[F] {6(G)}. Then k{p(G)} = k{F}, k[H] =

Ck
klo(F)] and ¢ Corresponds to the inclusion k{¢"(G)} = k{¢'(6(G))} = k‘{J(F)} - k:{(;ﬁ( )}
?40?60‘7%? klp(G)i]] = k[F,...,o"(F)] and k[¢"(G)[i] = k[¢'(¢(G))[i] = k[o(F),... o (F)]
or 1 € IN.

We have a surjective map k[F] ®y k[o(F),..., 0" (F)] — k[F,...,0" " (F)]. Therefore
dim(o¢(G)[i + 1]) < dim(¢(G)[0]) + dim(¢”(G)[i]). By Theorem [L.7l we have dim(¢(G)[i]) =
o-dim(¢'(Q))(i + 1) + e = 0-dim(G) (i + 1) + e for some e € N for all sufficiently large i € N.

Therefore

dim(¢"(G)[i]) > dim(¢(G)[i + 1]) — dim(¢(G)[0]) = o- dim(G) (i + 2) + e — dim(¢(G)[0]) =

= o-dim(GQ)(i + 1) + ¢
for all sufficiently large . It follows from Theorem [L.7] that o-dim(¢”(G)) > o-dim(G). So
o-dim(¢"(G)) = o- dim(G) and o-dim(ker(¢”)) = 0.

As the map k[H] — k{¢"(G)} is injective, we see that ¢ (G) is Zariski dense in H. We have

a commutative diagram of k-Hopf algebras

"(/fiF])% "(HRJ(F)])
klo(F)]— k[o(F),0%(F)]
where the vertical maps are given by applying o, corresponding to the commutative diagram
¢"(G)[1] —— ¢”(Cf) [0]
“(p(G)[1]) — (o(G)]0])

of algebraic groups. As ¢"(G)[1] < “(¢(G)[1]) maps the kernel of ¢ (G)[1] — ¢"(G)[0] injectively
into the kernel of 7(¢(G)[1]) — “(¢#(G)[0]), which has dimension o-dim(G) since ¢ € Emb(G),
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we see that the dimension of the kernel of ¢ (G)[1] — ¢”(G)[0] is at most o- dim(G). By Propo-
sition [L.11] the sequence dim(ker(¢”(G)[i] — ¢"(G)[i — 1]));>1 is non-increasing and stabilizes
with value o-dim(¢”(G)) = o-dim(G). Therefore, the dimension of ker(¢”(G)[1] — ¢"(G)[0])
equals o- dim(QG).

In summary, we find that ¢” € Emb(G). Thus the minimality of dim(G) implies dim(H) >
dim(G). O

Lemma 8.10. Let G be a o-closed subgroup of an algebraic group G such that the dimension of
the kernel of m: G[1] — G[0] equals o-dim(G). Furthermore, let H < G be a smooth, connected,
closed subgroup such that H x “H C G[1]. Then [o]H C G.

Proof. Let us abbreviate d = o-dim(G). It follows from the assumption that dim(G[1]) =
dim(G[0]) +d. Using the assumption together with Proposition [L.11] (i), we see that dim(G[i]) =
dim(G[0]) + id for all i € N.

For i > 1 let H; denote the closed subgroup of G x G x ... x G given as

<G[1] X 7Gx ... % ”ig) N (g x (G1]) x 7Gx ... x ”ig) Nn...N (g x...x77°G x C’iil(G[l])) .

Note that I(H;) = (I(G[1]),o(I(G[1])),...,o" " HI(G[1]))) C k[G x %G x ... x 7G]. Thus I(H;) C
I(G) and G[i] C H;.

We will show by induction on i that dim(#;) < dim(G[0]) + id. As H1 = G[1] the statement

is true for s = 1. So we assume ¢ > 1. Note that the projection

T GXGx..x"GGxGx...x G
maps H; into H;—1. The kernel of m; on H; has dimension at most d because, if (hg,...,h;) €
H; lies in the kernel of m;, i.e., (hg,...,h;) = (1,...,1,h;), then (1,h;) lies in the kernel of
o) o HG)) — 7 (G[0]), which has dimension d. It follows that dim(#;) < dim(H_1)+
d < dim(G[0]) 4 id by the induction hypotheses. As G[i] C H; we have indeed dim(H;) =
dim(G[0]) + id.

So Gi] € H; and dim(G[i]) = dim(H,;) for all ¢ > 1. This implies that (H?)rea € GJi]. Since
H x °H C G[1] it is clear that H x °H x ... x “H C H;. As H is smooth and connected, the
same holds for H x °H x ... x H. Thus H x °H x ... x “H C (H)rea C G[i] for all i > 1.
Therefore [o]zH C G. O

The following proposition is the main step towards showing that every almost-simple o-alge-
braic group is isogenous to an almost-simple algebraic group.

Proposition 8.11. Assume that k is algebraically closed and inversive. Let G be an integral
o-algebraic group with o-dim(G) > 0 and let ¢: G — [0]G be an element of Emb(G) such that
dim(G) is minimal. Then there exists a normal closed subgroup N of G with dim(N) > 0 such
that [o]xN C ¢(G).

Proof. As G is integral also ¢(G) is integral. Since ¢(G) is Zariski dense in G (i.e., k[G] —
k{6(G)} is injective) it follows that G is integral (i.e., connected and smooth).

We consider the first order Zariski closure ¢(G)[1] < G x %G of ¢(G) in G and 71: ¢(G)[1] —
o(@)[0] = G, (90,91) — go. We also have a morphism o1: ¢(G)[1] — G, (g0,91) — ¢1 of
algebraic groups. From Lemma we know that the image of o1 has dimension dim(G). As %G
is integral we can conclude that o) is a quotient map. Let G; < ?G be such that ker(7;) = 1 x G;.
Similarly, let Gy < G be such that ker(o;) = Gy x 1. Then Gy x G; is a normal subgroup of
¢(G)[1]. Moreover, as m is a quotient map, Gy is normal in G and because o is a quotient map,
G1 is normal in °G. Because k is assumed to be inversive, there exists a normal closed subgroup

G} of G with 9(G}) = G;. Then M = Gy N G} is normal in G.
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Suppose dim(M) = 0, i.e., M is finite. Define H = ¢(G)[1]/(Go x G1) and consider the
morphism ¢': ¢(G) — [o]xH of o-algebraic groups induced from the morphism
$(G)F — ¢(G)[1] = H
of group schemes as in Lemma [1.5]

We will show that ¢ = ¢'¢ € Emb(G). The maps in the sequence Gf — ¢(G)* — ¢(G)[1] —
H are all quotient maps. So ¢”(G) is Zariski dense in H. Note that ¢ is given by

B(G) = (olH)F, (9091 ) = (G gim))

1€N
where (g;, gi+1) denotes the image of (g;, gi+1) under the quotient map

“(e(@)1]) = T (B(G)[1]) /7 (Go x Gr).

So if (g0, 91,...) € qﬁ(G)jj < G x %G x ... lies in the kernel of ¢*, then gy € Gy, g1 € Gi, ¢1 €
Go, g2 € G1, g2 € Uzgo and so on. As G NGy = %G1 NGy = 9(G1 NGy) = M, it follows
that the kernel of ¢ is contained in Gy x IM x M x .... Since M is finite, this implies that
o-dim(ker(¢')) = 0. Using Corollary BI3]it follows that also o- dim(ker(¢”)) =

The quotient map ¢(G)[1] — G/Go, (90,91) — o has kernel Gy x G; and therefore induces
an isomorphism 7: H — G/Gy of algebraic groups. The isomorphism %n: “H — °G/°Gy has an
inverse (°n)~1: 9G/°Gy — “H. We claim that the image of the morphism

& G(G)[1] — M x K, (90.90) = ((90:92). ()~ (31))
of algebraic groups, contains ¢"(G)[1] = ¢'(¢(G))[1]. An element of ¢'(¢(G))[1] is of the form
<(90,91), (91792)> with (o, g1, 92) € (G)[2] < GxGx°G, so in particular (go, g1) € ¢(G)[1] and
(91.92) € (G(G)[1)). As n ({g1.92)) = T, we sce that {g1,92) = ()~ (@). Thus ¢"(G)[1] C
&(o(G)[1]) as claimed. The kernel of ¢ is
Go % (“GoNG1) = Go x (%Go N(G})) = Go x M.
It follows that
dim(¢"(G)[1]) < dim(£(¢(G)[1])) = dim($(G)[1]) — dim(ker(§)) = dim(¢(G)[1]) — dim(Go).

Therefore

dim(ker(¢"(G)[1] — ¢”(G)[O])) dim(¢"(G)[1]) — dim(¢"(G)[0]) <
dim(¢(G)[1]) — dlm( 0) —dim(H) =
= dlm( (@)[1]) — dim(Go) — (dim(¢(G)[1]) — (dim(Go) + dim(G,)) =

=dim(G,) = o- dlm(G),

where the last equality above holds because ¢ € Emb(G). We already know that o- dim(¢”(G)) =
o-dim(G) (because o- dim(ker(¢”)) = 0). It thus follows from Proposition[1.11/(i) that the kernel
of ¢"(G)[1] — ¢"(G)[0] has dimension o-dim(G). In summary, we conclude that ¢” € Emb(G).

By the minimality of dim(G), we have dim(#) > dim(G). But H ~ G/Gp and so we must
have dim(Gy) = 0. As o1: ¢(G)[1] — G is a quotient map with kernel Gy x 1, it follows that
dim(¢(G)[1]) = dim(G). As ¢(G)[0]| = G, we find

o-dim(G) = dim(G;) = dim(¢(G)[1]) — dim(¢(G)[0]) = 0.

This contradicts our assumption that o- dim(G) > 0. Thus dim(M) > 1.

By construction M x °M C ¢(G)[1]. The identity component M of M is a characteristic

subgroup of M ([Mil17, Prop. 1.52]). Therefore M? is a normal closed subgroup of G. Moreover,
as G is smooth, it follows from Lemma (8.5 that (M?),eq is normal in G. Clearly dim((M°);eq) =
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dim(M) and so N' = (M?)eq is a connected, smooth, normal subgroup of G with dim(N) > 0
and N x N C M x "M C ¢(G)[1]. So it follows from Lemma[8.10/ that [o]zN C ¢(G). O

Corollary 8.12. Assume that k is algebraically closed and inversive. Let G be an almost-
simple o-algebraic group. Then there exists an almost-simple algebraic group G and an isogeny

Proof. We know from Lemma [T that G is integral. By Proposition there exists an
algebraic group G, a normal closed subgroup N of G with dim(N') > 0 and a morphism ¢: G —
[0]kG such that o- dim(ker(¢)) = 0 and [o]pN C ¢(G). As N is normal in G, [o]; A is normal in
[0]xG and therefore o]z N is also normal in ¢(G). Thus N = ¢~!([oc]zN) is a normal o-closed
subgroup of G. As N/ker(¢) ~ [o|xpN and o-dim(ker(¢)) = 0, we see that o-dim(N) =
o-dim([o]pN) = dim(N) > 0. So N = G.

This implies that ¢(G) = [o]pN. So ¢: G — [o]pN is an isogeny. It remains to see that N
is almost-simple. As G is integral it follows that also N is integral, i.e., smooth and connected.
Assume A is a normal closed subgroup of N with dim(N”) > 0. Then N’ = ¢~ !([o]zN") is
a normal o-closed subgroup of G with o-dim(N’) = o-dim(N'/ker(¢)) = o-dim([o]xN) =
dim(N’) > 0. Thus N’ = G. This implies [o|xN' = [0]pN and so N = N’. Therefore N is
almost-simple. O

Combining the above corollary with Proposition 8.6, we obtain a characterization of almost-
simple o-algebraic groups:

Theorem 8.13. Assume that k is algebraically closed and inversive. Let G be a strongly con-
nected o-algebraic group. Then G is almost-simple if and only if G is isogenous to [o]xG for
some almost-simple algebraic group G.

Proof. An almost-simple o-algebraic group is isogenous to [0];G for some almost-simple algebraic
group G by Corollary [8.12] If G is an almost-simple o-algebraic group, then [0];G is an almost-
simple o-algebraic group by Proposition [8.6l Thus the claim follows from Lemma [7.12. O

While Theorem [8.13] and Corollary [8.12 elucidate the structure of the almost simple o-al-
gebraic groups, a full classification of the almost-simple o-algebraic groups up to isomorphism
remains a topic for future research. A natural approach to this question is to investigate how
the isogeny class of an almost-simple o-algebraic group splits into isomorphism classes. The fol-
lowing example shows that the isogeny class of an almost-simple o-algebraic group may contain
infinitely many isomorphism classes.

Example 8.14. We give an example of an infinite family of pairwise non-isomorphic almost-
simple o-algebraic groups isogenous to [0]xG,,. Assume that k is algebraically closed and inver-
sive. For n > 1 let

G ={(h,g) € G| a(h) = g"}.
Then k{G,} = k[z, 271, y,y7 ', 0(y),o(y)~!,...], with o(z) = y", which is a o-domain. So G,
is o-integral. In particular, G,, is perfectly o-reduced.

Let H be a o-closed subgroup of G,,. The o-closed subgroups of G2, are defined by multi-
plicative functions ([DVHW14] Lemma A.40]). So there exist ag,...,a,5Bo,...,3s € Z such
that

g (h)r ... o"(h)* g% ... 0%(g)P =1 (12)
for all (h,g) € H(R) for all k-o-algebras R. Using the defining equation o(h) = ¢" of H,
equation (12) can be transformed to an equation of the form

W g a(g)? ... ot (g)" = 1. (13)
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If H is properly contained in G,,, then there exists a non-trivial such relation, i.e., not all of
0,71, -+, are zero. Applying o to equation (13) yields g®"c(g)" ...o'* 1 (g)* = 1. So
we have a non-trivial relation ¢%o(g)% ...0™(g)% = 1 satisfied by all (h,g) € G(R) for all
k-o-algebras R. Raising this equation to the n-th power and replacing ¢" with o™(h), we see
that o(h)%0?(h)% ...c™* 1 (h)o" = 1. So, with

H, = {h c Gm| 0(h)6002(h)61 ] ..0m+1(h)67” _ 1},
Hy = {g c Gm| 9500.(9)51 » .O'm(g)5m _ 1}’

we have H C Hy x Ha. As every proper o-closed subgroup of G,, has o-dimension zero (Propo-
sition B.6), we see, using Lemma [[LT0 that

o-dim(H) < o-dim(H; x Hy) = o-dim(H;) + o-dim(Hsz) = 0.

This shows that G, is almost-simple. The morphism G,, — [0]xG,,, (h,g) — h is an isogeny.
(The projection onto the second component is also an isogeny.)

It remain to see that G,, and G, are not isomorphic for n # m. To this end we consider the
kernel N,, of the morphism ¢: G,, — °G,, (h,g) — (o(h),o(g)). Here °G,, is the o-algebraic
group over k obtained from G,, by base change via o: k — k. (In this example, in fact, °G,, ~ G,
as G, is defined over the prime field.) The dual map of ¢ is Y(k{G,}) = k{G,} @k k —
E{G.}, f® A~ o(f)A, which is an invariant under isomorphism. It follows that also the kernel
N, of ¢ is an invariant under isomorphism.

So, assuming that GG,, and G,, are isomorphic, it follows that also NV,, and IV,,, are isomorphic.
We have N,, = {(h,g) € G2,| o(h) =1, o(g) = 1, ¢" = 1} and consequently (N,,)* = G,, X pin,
where 1, denotes the group of n-th roots of unity. As (N,)*/((Nn)?)° = pi,, we find iy, = fir,.
Thus m = n.

The following example exhibits a fairly general construction of almost-simple o-algebraic
groups that are not isomorphic to almost-simple algebraic groups, considered as o-algebraic
groups. We note that Example can be seen as a special case of Example (choose
G=H =G, and 7: G, > Gy, g+ g").

Example 8.15. Assume that k is algebraically closed and inversive. Let G be an almost-simple
algebraic group, H an algebraic group, and 7: G — “H a quotient map. Set

G ={(h,g9) e H x G| a(h) = m(g)}-

Since o: [o]pH — “([o]xH) and [o]x7: [0]xG — °([0]xH) are morphisms of o-algebraic groups, we
see that GG is a o-closed subgroup of H xG. We will show that G is almost-simple and isogenous to
[0]xG. Moreover, if ker(7) is non-trivial, then G is not isomorphic to an almost-simple algebraic
group (considered as a o-algebraic group).

The morphism 7: G — “H corresponds to a morphism 7*: %(k[H]|) = k[H] @k k — k[G]. The
coordinate ring of G is k{G} = k[H] @y k{G} with o: k{G} — k{G} given by o(f1 ® f2) =
1@m*(fi ®1)o(f2) € k[H] @k k{G} for f1 @ fo € k[H] ® k{G}. (In particular, G is o-integral.)

The projection ¢: G — [0]xG onto the second factor is a quotient map (corresponding to
the inclusion k{G} — k[H] ®x k{G}) and ker(¢) = {(h,1) € H x G| o(h) = 1}, which has
o-dimension zero. To show that G is almost-simple it thus suffices, by Lemma [[.12] to show
that G is strongly connected.

So let H be a o-closed subgroup of G with o-dim(H) = o-dim(G). We have to show that
H = G. As ¢(H) is a o-closed subgroup of [0];G with o-dimension o-dim(H) = o-dim(G) =
o-dim([o]xG) and [0];G is strongly connected, we see that ¢(H) = [0]xG. This signifies that the
defining ideal I(H) C k[H] ®k k{G} of H has zero intersection with k{G}.
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Suppose H is properly contained in G, i.e., I(H) C k{G} = k[H] ®; k{G} contains a non-zero
element f. As I(H) is a o-ideal, it follows that o(f) is a non-zero element of I(H) N k{G}; a
contradiction. Thus G is almost-simple and isogenous to [¢];G.

To show that G is not isomorphic to an almost-simple algebraic group, consider the kernel
N ={(h,9) o(h) =1, o(g) =1, 7(g) =1} of 0: G — °G. Then N* = H x ker(r).

For an almost-simple algebraic group G, the kernel N’ of o: [0],.G — [0]1G’ satisfies (N')f =
G'. Thus, if ker () is non-trivial, G cannot be isomorphic to [¢];G’, because otherwise H x ker(m
would be isomorphic to G’ (which is impossible since G is connected by H x ker(r) is not).

We conclude with two examples illustrating Theorem [7.13] The following example shows that
in a certain sense Theorem [7.13] generalizes the Jordan-Holder theorem for algebraic groups.

Example 8.16. Let k be algebraically closed and inversive. Let G be a smooth connected
algebraic group of positive dimension. Then there exists a subnormal series G = Gy O ... 2
Gn = 1 of smooth connected closed subgroups of G such that G;/G;+1 is almost-simple. By
Example [6.2T] the o-algebraic groups [0];G; are strongly connected. Moreover, [0],G;/[0]kGit1 =
[0]k(Gi/Gix1) is almost-simple (Example [3.7] and Proposition [8.6). Thus

[0]kG = [0]1Go 2 [0]kG1 2 ... D [0]kGn = 1
is a subnormal series of G = [0];G as in Theorem [7.13]

The following example shows that in Theorem [7.13] the word “isogenous” cannot be replaced
with the word “isomorphic”.

Example 8.17. Let k be algebraically closed and inversive. Let G be the o-closed subgroup of
G3, given by G = {(a,b,c) € G3,| o(a) = bc?}.
Let us first show that G is strongly connected. We have

G} =Kz, 2 Y y,yt 2,27 o(y),o(y) L o(2),0(2)71, .. ]

with o(z) = y2?, which is a o-domain. The morphism ¢: G — [0]G2,, (a,b,c) — (b,c) is a
quotient map, corresponding to the inclusion k{G2,} = k{y,y ™!, z,0(2)7%,...} C k{G}. The
kernel ker(¢) = {(a,1,1) € G},| o(a) = 1} has o-dimension 0. Let H be a o-closed subgroup
of G with o-dim(H) = o-dim(G) = 2. Then ¢(H) < [0],G2, also has o-dimension 2. Because
[0]xG2, is strongly o-connected, it follows that ¢(H) = [0],G?2,. This signifies that the inter-
section I(H) N k{y,y~ ', 2,27 ,...} is zero. However, if f € I(H) is non-zero, then o(f) is a
non-zero element of I(H) N k{y,y~ ', z,27,...}. This shows that I(H) =0, i.e., H = G and G
is strongly connected.

Set G1 = {(1,b,¢c) € G| b2 =1} < G. As G ~ [0];Gy, (via (1,b,¢) — c), we see that Gy
is strongly connected and in fact almost-simple. The quotient G/G; is isomorphic to [0]xGy,
indeed, G — [0]xG, (a,b,c) — a is a quotient map with kernel G;. Thus

GDG D1 (14)

is a subnormal series as in Theorem [7.13] The quotient groups are G/G1 ~ [0]xG,, and G ~
[0]kGm.

Set Hy = {(a,1,¢)| o(a) = ¢*} < G. Then H; is isomorphic to the group labeled Gy in
Example[8.14] So H; is strongly connected and almost-simple. The quotient G/ H; is isomorphic
to [0]xGp,. Indeed G — [0]kG, (a,b,c) — b is a quotient map with kernel H;. Thus

GDH D1 (15)

is a subnormal series as in Theorem [1.13] The quotient groups are G/H; ~ [0]|xG,, and H;.
As predicted by Theorem [7.13] and verified through Example [8.14, the quotient groups [0]xGy,
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[0]kGy, of (14) are isogenous with the quotient groups [0];xG,, and H; of (L5]). Note, however,
that H; is not isomorphic to [0]xG,, (Example [8.14).

Theorem [7.5] predicts that the subnormal series (14]) and (15]) have equivalent refinements. So
let us find such refinements. We set Go = Hy = {(1,1,¢) € G3,| ¢ = 1} =~ [0]gjt2. Then

G2G12Gy21 (16)
and
GDH D2Hy 21 (17)

are equivalent refinements of (IZ) and (IT]) respectively. Indeed, the quotient groups for both
subnormal series are [0];Gp, [0]xGy, and [o]xpa. Note that Gy — [0]xGp, (1,b,¢) + 2 is a
quotient map with kernel Gy and that Hy — [0]xG,,, (a,1,¢) — ais a quotient map with kernel
H,.
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