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Weak covalent interactions and anionic charge-sharing 
polymerisation in cluster environments 
Yerbolat Dauletyarov and Andrei Sanov*a 

We discuss the formation of weak covalent bonds leading to anionic charge-sharing dimerisation or polymerisation in 
microscopic cluster environments. The covalent bonding between cluster building blocks is described in terms of coherent 
charge sharing, conceptualised using a coupled-monomers molecular-orbital model. The model assumes first-order separa-
bility of the inter- and intra-monomer bonding structures. Combined with a Hückel-style formalism adapted to weak cova-
lent and solvation interactions, it offers insight into the competition between the two types of forces and illuminates the 
properties of the inter-monomer orbitals responsible for charge-sharing dimerisation and polymerisation. Under typical 
conditions, the cumulative effect of solvation obstructs the polymerisation, limiting the size of covalently bound core anions.

1 Introduction 
Clusters (as known in chemistry) are microscopic systems whose 
structures and stability are controlled by an interplay of covalent 
and noncovalent interactions.1,2 They can be viewed as aggregate 
entities composed of self-contained atomic or molecular moie-
ties (monomers), which largely preserve their separate identities 
and internal (intra-monomer) bonding properties. In a cluster, 
these moieties are held together by inter-monomer interactions, 
which are often noncovalent in nature, but may also involve the 
formation of dimerising or polymerising covalent bonds. 

This article offers a new look at the formation of weak (order-
of-1/2 or less) covalent bonds between closed-shell monomers in 
anionic cluster environments. This is not a review, but a perspec-
tive on the topic. It exploits straightforward fundamental con-
cepts, such as coherent charge sharing, to provide a tutorial view 
of covalent bonding in clusters and its competition with electro-
static solvation. Given the possibility of forming new covalent 
bonds with the addition of an electron, we seek to understand 
why one rarely observes polymer-anion cluster cores larger than 
a dimer. The answer could be rooted in the limits of electronic 
coherence, but we show that carefully constructed energetic 
arguments are sufficient to provide an explanation. 

The following discussion is framed in the context of a 
Hückel-style molecular-orbital (MO) model, introduced as a 
simple mathematical framework for describing the inter-mono-
mer (IM) covalent bonding and solvation trends. We touch upon 
some classic examples, such as the dimer anion of CO2,3 before 
focussing on the  interactions in cluster anions of organic 
molecules. Contrary to the noncovalent  stacking of neutral 
organics,4 the anionic  interactions discussed in this work are 
covalent in nature, as they involve an electron entering a bonding 

MO. Broadly speaking, they are an example of charge sharing 
leading to covalent bond formation. We discuss the anionic  
bonding using glyoxal and biacetyl as model systems, which 
possess the necessary proclivity to such interactions.5 

In addition to covalent effects, the presence of charge in 
cluster anions also increases the magnitude of the noncovalent 
forces. The ion-neutral interactions (charge-dipole, charge-quad-
rupole, charge-induced dipole, etc.) are typically in the 0.1–1 eV 
range, compared to the 0.004–0.04 eV magnitude of the London 
dispersion forces between neutral atoms or molecules. In clus-
ters, the cumulative effect of all IM forces, including the many-
body interactions, needs to be considered and it is not uncommon 
for the overall effect of solvation to compete successfully with 
covalent bonding. This competition is key to understanding why 
charge sharing tends to be limited to just a few monomers. 

To set the stage, we will consider a broad, but not exhaustive, 
classification of the species known as cluster anions, drilling 
down only on the types discussed in this Perspective. At the top, 
all cluster anions are divided into the homogeneous and hetero-
geneous types. As used in this article, these terms refer only to 
the identities of the monomers, the cluster building blocks. A 
homogeneous cluster consists of n identical molecular or atomic 
moieties X, which bind an excess electron in some fashion. The 
corresponding molecular formula Xn

 does not provide any indi-
cation of how the charge is bound to the cluster (i.e., if it is 
localised on a single X, shared between several X monomers, or 
delocalised over the entire cluster). Examples of homogeneous 
cluster anions include (H2O)n

, (CO2)n
, Arn

, and O2n
, corre-

sponding to X = H2O, CO2, Ar, and O2, respectively. In contrast, 
a heterogeneous cluster consists of at least two types of mono-
mers, e.g. IArn, I2

(CO2)n, (CO2)n
(H2O)k, and others. 

In the ground state of a heterogeneous cluster anion, the 
charge naturally binds to a moiety or moieties with greater elec-
tron affinity, as in the examples above. In homogeneous clusters, 
all building blocks are identical and the binding of the excess 
electron may exhibit several distinct motifs. We will explicitly 
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consider three. To describe them, we will use the more informa-
tive variants of the molecular formula Xn

, which we will refer 
to as structural formulas. The first motif (case A) corresponds to 
the excess charge localized on a single monomer, as conveyed 
by the structural formula XXn1. The anionic moiety X in this 
case is the cluster core, while the remaining (n  1) neutral moie-
ties are viewed as the solvent, bound to the core anion (the solute) 
by noncovalent (electrostatic) interactions. A generic case-A 
cluster is shown in Fig. 1(a), where each of the darker (grey) 
spheres represents an atomic or molecular monomer X, while the 
lighter (blue) halo around one of the monomers represents the 
diffuse wave function of the excess electron, bound to this mono-
mer. An example of type-A clusters is the (CO2)n

 series in the n 
= 7–13 range: these clusters have CO2

 cluster cores.6,7 
Alternatively (case B), the charge in Xn

 may be localised on 
a subset of the building blocks, as conveyed by the structural for-
mula Xk

Xnk, 2 ≤ k ≤ n. In this case, Xk
 is the cluster core, 

solvated by (n  k) neutral moieties. Such clusters tend to have 
dimer-anion cores (k = 2), consisting of two covalently bound 
monomers sharing the excess electron, as in (CO2)n

 with 2 ≤ n 
< 7 and n > 13.6,7 A generic illustration of a type-B cluster, spe-
cifically for k = 2, is given in Fig. 1(b). The shared electron in 
this case occupies an inter-monomer orbital (IMO), described as 
a superposition of the valence orbitals of two monomers. Such 
coherent electron sharing results in IM covalent bonding and the 
formation of a dimer anion, which is the core of the X2

Xn2 
cluster. Clusters with trimer-anion (k = 3) or even larger cores 
are also conceivable, and some examples will be discussed. 

In yet another class of homogeneous cluster anions (case C), 
the excess electron is not bound to any specific monomer(s). 
Instead, it is localized in a solvent cavity or delocalized over the 
surface or the bulk of the cluster. The last case is illustrated in 
Fig. 1(c). To be clear, case-C clusters do not correspond to the k 
= n limit of case B. In case C, the excess electron does not enter 
the valence orbitals of the monomers and does not form covalent 
IM bonds. A case-C scenario may occur when the lowest vacant 
orbital of X is high in energy, preventing the formation of val-
ence X or Xk

 anions. In a case-C cluster, there is no core anion, 
unless one considers the electron itself as the cluster core. The 
famous example of type-C species are the hydrated-electron 
clusters (H2O)n

.8-21 
From this point on, we will focus on the homogeneous case-

A and case-B clusters, Xk
Xnk, 1 ≤ k  n. Among these, we will 

zero in on species with the dimer- or polymer-anion cores, which 
consist of closed-shell (in the neutral state) monomers bound 

together only as a result of electron attachment. In such cases, the 
neutral monomers interact via the van der Waals forces, while 
the Xk

 core anion is formed due to an electron entering a bond-
ing IMO (which is vacant in the neutral state). The reverse pro-
cess causes Xk

 to fall apart to k unbound X moieties: Xk
  k X 

+ e (dissociative detachment).22,23 This scenario plays out, for 
example, in the (CO2)2

 dimer, where the excess electron popu-
lates a bonding superposition of the two CO2s lowest-unoccupied 
orbitals.3 We will refer to such phenomena as anionic charge-
sharing polymerisation, and it is this type of anions that is the 
focus of this Perspective. Such IM bond formation is the result 
of coherent charge-sharing. It is distinct from anionic addition 
chain-growth polymerisation, which is initiated by anions and 
involves the propagation of a localised negative charge.24  

The bonding modalities in cluster anions can be elucidated 
by photoelectron spectroscopy. Solvated anions are strongly 
stabilized by ion-neutral interactions, while the neutral states are 
hardly affected, due to the relative weakness of the van der Waals 
forces. Anion solvation, therefore, results in observable shifts of 
the photodetachment transitions to progressively larger electron 
binding energies (eBE), as the cluster size increases. In the ab-
sence of chemical rearrangements, the increase in eBE with the 
cluster size is monotonic and gradual. Any discontinuities in the 
trend signal changes in the core anion structure.1,2 

Abrupt changes in the core anion properties upon the addition 
of solvent molecules are often referred to as “core switching”. 
Many reports are available in the literature, with the classic ex-
ample being the (CO2)n

 series.6,7 For n = 2–6 and n > 13, these 
clusters have covalent dimer3 cores, (CO2)2

 or C2O4
, while in 

the n = 6-13 range, the core structure switches to the CO2
 mono-

mer. Since C2O4
 and CO2

 have markedly different properties, 
they are clearly distinguishable in the photoelectron spectra of 
size-selected (CO2)n

.6,7 In other cluster series, the size-depend-
ent change from one core type to another may be less abrupt. 
Such clusters exhibit the coexistence of core types over a range 
of n, and it is more appropriate to describe the gradual change as 
core-shifting (rather than core-switching).25 Examples of coexist-
ing monomer- and dimer-anion cores include the (OCS)n

 and 
(CS2)n

 clusters.26-39 Similarly, the heterogeneous O(N2O)n seri-
es also exhibits the coexistence and a gradual shift between the 
O(N2O)n and NNO2

(N2O)n1 structures.40-42 
The question of why certain core types are favoured in the 

presence of fewer solvent molecules, while others gain ground 
when the cluster size is increased, is central to cluster chemistry. 
Sometimes the key lies in reaction dynamics and/or the cluster 
formation mechanism, but under the conditions of thermodyna-
mic equilibrium it comes down to the relative stabilities and free 
energies. We will consider these trends by focusing on the homo-
geneous cluster anions with the generic molecular formula Xn

 
and discuss the factors that promote or obstruct the charge-shar-
ing polymerisation and control the stabilities of the isomers de-
scribed as XXn1, X2

Xn2, …, Xk
Xnk, …., k ≤ n. 

Uncommon acronyms used in this article: 
MMO MonoMer Orbital. Used instead of MO (molecular or-

bital) to distinguish between the orbitals of a monomer 
X and those of the cluster Xn

. Symbol  is used for the 
MMOs throughout. HOMMO and LUMMO are the 

 

Fig. 1. (a)-(c) Schematic representations of case A, B, and C (respectively) 
homogeneous Xn

 cluster anions, as discussed in the text. Darker (grey) 
spheres represent atomic or molecular monomer moieties X, while the lighter 
(blue) halos represent the diffuse wave function of the excess electron. 
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Highest-Occupied and Lowest-Unoccupied MMOs. 
The HOMMO and LUMMO of a specific monomer X(i) 

are 𝜓ୌ୓୑୑୓
(௜)  and 𝜓୐୙୑୑୓

(௜) , respectively. 

IM Inter-monomer. 
IMO Inter-monomer orbital—a cluster MO, defined as a 

linear combination of the MMOs of two or more mono-
mers. Symbol  is used for the IMOs throughout. 

LCMO Linear combination of molecular orbitals, as opposed 
to the linear combinations of atomic orbitals (LCAO) 
in the LCAO-MO theory. 

CMMO Coupled-Monomers MO model. 
VSE Vertical Stabilisation Energy. The combined energy of 

IM interactions within the cluster, including both cova-
lent and electrostatic forces, but excluding the relaxa-
tion energy of the monomers. Defined to be positive. 

CSE Cluster Stabilization Energy. The overall stabilization 
energy of Xn

 relative to the relaxed X + (n  1)X dis-
sociation limit. Defined as a positive value. 

2  Covalent and solvation interactions in clusters 
On a pairwise basis, the noncovalent interactions implicated in 
solvation are usually weaker than the chemical bonds in either 
the solute or the solvent. However, the cumulative effect of sol-
vation, including the many-body interactions,43 in a large enough 
cluster can exceed the energy of a covalent bond, especially if 
the bond in question is weak. We will discuss anionic charge-
sharing polymerisation due to the formation of covalent bonds 
between the monomer building blocks of a cluster. The forma-
tion of such bonds may be impeded by the solvent, i.e., sacrificed 
in favour of maximising the noncovalent solvation interactions. 

The electrostatic interactions within the first solvation shell 
generally favour smaller cluster cores. Comparing the monomer- 
vs. dimer-anion based clusters, the monomer anions, due to their 
smaller size and, therefore, more localised charge, interact more 
strongly with the nearest solvent molecules. In other words, sol-
vation is more favourable in the monomer-based XXn1 clusters 
compared to the dimer or polymer-based counterparts, Xk

Xnk, 
k  2. This sets up a thermodynamic mechanism for the solvation 
impeding the formation of dimer or polymer anions, illustrated 
by the schematic energy diagram in Fig. 2. 

The diagram reflects the competition between the covalent 
and solvation interactions in the dimer- vs. monomer- based clus-
ters: X2

Xn2 (left) vs. XXn1 (right). It accounts for IM inter-
actions only, so that the isolated monomer anion X corresponds 
to the zero of energy (no IM interactions). Upon the addition of 
a second X moiety, one of two basic species can form: a covalent 
dimer anion X2

 (left) or the ion-molecule complex XX (right). 
The dimer dissociation energy, D0(X2

), is usually larger than the 
solvation magnitude in the ion-molecule complex, |𝜎ଵ,ଵ|. Note 
that while D0(X2

) is positive, 𝜎ଵ,ଵ and other similar solvation 

factors used in this work are defined to be negative.  
The addition of a third X moiety to either X2

 or XX leads 
to further stabilisation of either X2

X or XX2 (covalent trimer 
anions X3

 and larger polymers are not included in Fig. 2; they 
will be discussed later). The solvation interaction in X2

X, 𝜎ଶ,ଵ, 

is expected to be weaker than each of the pairwise XX interac-
tions in XX2, because of the smaller charge density in the 
dimer-based cluster. As a result, the difference between X2

X 
and XX2 is smaller than that between X2

 and XX.   
This trend will usually continue with the addition of more X 

moieties, at least until the first solvation shell is filled. Since 
every solvent moiety added to a monomer-based cluster stabi-
lises it by more than a similar molecule added to a dimer-based 
cluster, there will exist a size m for which the dimer and mono-
mer-based structures X2

Xm2 and XXm1 have similar energi-
es, as represented by the isoenergetic (bolded) levels in Fig. 2.  

The (CO2)n
 cluster series is a classic example of this beha-

viour.6,7 In the n = 2–5 range, the formation of an anionic order-
of-1/2 covalent bond between two CO2 moieties3 favours the 
(CO2)2

(CO2)n2 structures. However, already for n = 6, coexist-
ing (CO2)2

(CO2)4 and CO2
(CO2)5 structures are observed.6,7,44-

46 This means that even though the (CO2)2
 dimer anion is more 

stable than the CO2
CO2 ion-molecule complex, the combined 

effect of forming the covalent IM bond and solvating the dimer 
with four CO2’s is approximately the same as that of solvating 
the monomer anion CO2

 by five CO2’s.  
The photoelectron spectra of size-selected (CO2)n

 display 
two band series: one, corresponding to higher vertical detach-
ment energies (VDE), is observed for the n = 2–6 and n  14 
clusters, and the other, with lower VDEs, in the n = 6-13 range.6,7 
The discontinuities at n = 6 and 14 cannot be accounted for by 
solvation and are attributed to structural changes in the cluster 
cores. These changes have been described as core-switching 
from the covalent dimer anion, whose D2d symmetry structure 
was originally proposed by Fleischman and Jordan,3 to the CO2

 
monomer at n = 6 and back to the dimer at n = 14.6,7 The reverse 
core-switching at n = 14 is attributed to the completion of the 
first solvation shell in (CO2)2

(CO2)12. 
Tsukuda et al.47 reported a similar phenomenon for (NO)n

. 
For this series, the VDE was found to increase by ~2.4 eV from 
n = 1 to n = 2 and by nearly 0.8 eV from n = 2 to n = 3, while 
only moderate consecutive increases (~0.1–0.2 eV) occur in the 
n = 3–7 range. The n = 3–7 trend for is consistent with stepwise 

 

Fig. 2. Schematic diagram illustrating the thermodynamics of core-switching/
shifting from the X2

Xn2 to XXn1 cluster structures. Solid levels correspond 
to the preferred isomers for each cluster size n, while the dashed levels 
represent metastable structures. Although the X2

 covalently bound dimer 
anion is assumed to be more stable than the X∙X ion-molecule complex, the 
more efficient solvation of the monomer leads to an approximate degeneracy 
of the X2

Xm2 and XXm1 cluster isomers for certain cluster size m. For the 
Xn

 clusters with n < m, the dimer-based structures are favoured energetically, 
while for n > m the monomer-based isomers are preferred.  

s2,1

X

XXm1
X2

Xm2

XXX2


XX2X2
X

XXm2X2
Xm3

D0(X2
)

X2
Xm1

XXm

s1,1
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solvation of a charged cluster core, but the abrupt changes bet-
ween n = 1 and 2 and between n = 2 and 3 signal structural 
changes in the core anion. The n = 1 species is NO; n = 2 is a 
covalently bound dimer anion (NO)2

, for which several isomeric 
forms have been proposed.40,48-53 The n = 3 cluster is (preferen-
tially) a covalent trimer, (NO)3

. That is, in the n = 1–3 range, 
the excess electron in (NO)n

 is shared between all available NO 
moieties. In larger clusters, however, further polymerisation is 
impeded by solvation and the size of the core anion no longer 
increases with n.47 This brings us back to the question of why, 
once again (as in many other examples), electron binding is 
limited to just 1-3 cluster building blocks. 

3 Anionic dimerisation 

3.1 General types of covalent dimer anions 

We begin the discussion of anionic polymerisation in case-B 
clusters [Fig. 1(b)] with the covalent dimer anions X2

, in which 
the charge is coherently shared between the two monomers. For 
such dimer anions, we identify three possible electronic motifs: 
Type I: Dimers with weak (order-of-1/2) IM bonds formed 

via anionic dimerisation of closed-shell monomers. 
Type II: Dimer anions of radicals or diradicals. 
Type III: Dimer anions of closed-shell molecules involving 

singlet-triplet excitation of the monomers. 
The focus of this Perspective is on type-I species, and so it is 

important to distinguish these dimers from the other two motifs. 
The IM bonding in each type can be understood by considering 
the overlap of the monomer orbitals, leading to the formation of 
the bonding and antibonding IMO pairs, the same way as linear 
combinations of atomic orbitals yield molecular orbitals within 
the LCAO-MO theory framework. We will use the acronym 
MMO for MonoMer Orbitals, to set them apart from MOs (mole-
cular orbitals), in general. Depending on the nature of X, an 
MMO can be either a molecular or atomic orbital. 

The key feature of type-I dimerisation is that the IM bond in 
X2

 forms due to the excess electron populating a bonding IMO. 
For example, there is no covalent bonding between the two CO2s 
in the (CO2)2 van der Waals dimer, but in (CO2)2

,3 the excess 
electron enters an IMO described as a bonding superposition of 
the lowest-unoccupied orbitals of the two monomers.33 As will 
be shown shortly, the resulting electron configuration yields an 
order-of-1/2 IM bond, which is typical of type-I dimer anions. 

Type-II dimers involve the anionic pairing of neutral radicals 
or diradicals. Contrary to type-I cases, the IM bonding in type-II 
dimers is not always due to the excess electron. Because radicals 
and diradicals often dimerise in the neutral state, many (but not 
all) type-II dimer anions are best thought of as products of elec-
tron capture by neutral molecules. For example, F2

 is (techni-
cally) a type-II dimer anion of atomic fluorine. Similarly, the 
anion of fumaronitrile (fn) is a type-II dimer anion of cyanocar-
bene, because the fn molecule, NCC(H)C(H)CN, can be 
viewed as a covalent dimer of HCCN, which is a triplet-ground-
state54 diradical. Since the neutral dimer molecules already have 
covalent bonds between the monomers, the IM bond orders in 
the corresponding dimer anions can be greater than 1/2. For 

example, it is 1/2 in F2
, but 1.5 in fn: the IM (C=C) bond order 

in neutral fn is 2, but the IMO occupied by the excess electron is 
antibonding with respect to this bond. Because of the pre-exist-
ing neutral bonds, one usually does not think about such anions 
as products of anionic dimerisation per se, as no charge is 
required for the dimerisation to occurs. However, there is no con-
tradiction in the term, and in some cases (e.g., O4

),55-60 the IM 
bond formation indeed occurs in the anion state. 

Concluding the overview, type-III dimerisation pairs mono-
mers, which are closed-shell singlets in their ground states, but 
yield dimer anions whose neutral core configurations result from 
singlet coupling of the monomers promoted to their respective 
triplet states. That is, the neutral dimer configurations are doubly 
excited. This is not meant to imply that for type-III dimer anions 
to form, the neutral monomers must first undergo singlet-triplet 
excitations. The more straightforward pathway usually involves 
the anionic dimerisation of singlet monomers (a type-I process), 
followed by internal conversion to the doubly excited (and yet, 
more favourable) configurations in the anion state. Regardless of 
the mechanistic details, the language of double excitations is 
valuable, because it provides a clear depiction of the electronic 
structures of these species. 

Examples of type-III dimers include certain states of (OCS)2
 

and (CS2)2
,27,28,30,31,33,36,37 as well as the dimer anion of fn, 

(fn)2
.61 Fumaronitrile has a special distinction: while its mono-

mer anion fn can be viewed as a type-II dimer of cyanocarbene 
(see above), (fn)2

 is a type-III species.61 The distinction between 
the electronic motifs of (OCS)2

 and (CS2)2
,27,33,36 on the one 

hand, and (CO2)2
,3  on the other, is also striking, considering the 

isovalency of OCS, CS2, and CO2. The origin of this distinction 
is the singlet-triplet gaps in OCS (~ 3.4 eV) and CS2 (~ 3.2 eV) 
vs. CO2 (~ 5.3 eV).27,36 The OCS and CS2 gaps are sufficiently 
small for the singlet-triplet excitation energy of two monomers 
to be recovered through the IM covalent bonding and the large 
electron affinities of the dimers (type-III anionic dimerisation). 
In (CO2)2

, the price of promoting two CO2’s to the triplet state 
is too high and the most stable (CO2)2

 structure3 results from the 
addition of an electron to the lowest unoccupied IMO of the van 
der Waals dimer configuration (type-I dimerisation). 

Having identified three possible electronic motifs in covalent 
dimer anions, we will proceed with the detailed description of 
type-I dimers, which are the focus of this Perspective. 

3.2 Covalent dimer anions of closed-shell monomers 

In type-I dimerisation, the IM bond is the result of electron 
capture by a bonding superposition of the lowest-unoccupied 
MMOs of the two monomers. The feasibility of such process 
depends on the availability of low-lying vacant MMOs and the 
relative stabilisation energy (the bond integral) of the IMO. 
Besides (CO2)2

,6,7,33,62 other pertinent examples, to be discussed 
here, are the dimer-anions of glyoxal and biacetyl. As an illumi-
nating counterexample, a covalently bound dimer anion of 
Helium, He2

, would be a type-I dimer, had it existed as a stable 
species. It does not, due to the lack of low-lying vacant MMOs: 
the 2s orbital of He is too high in energy for the excitation to be 
recovered by bond formation. 
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In general, consider two neutral closed-shell monomers X, 
identified as X(1) and X(2), each with an electron configuration: 

 X(i)(Singlet): … (𝜓ୌ୓୑୑୓
(௜)

)ଶ(𝜓୐୙୑୑୓
(௜)

)଴ (1) 

𝜓ୌ୓୑୑୓
(௜)  and 𝜓୐୙୑୑୓

(௜)  are the highest-occupied and lowest-un-

occupied MMOs (HOMMO and LUMMO) of X(i), i = 1, 2. For 
reference, the configuration of the valence monomer anion X is: 

 (X)(i): … (𝜓ୌ୓୑୑୓
(௜)

)ଶ(𝜓୐୙୑୑୓
(௜)

)ଵ (2) 

The general case of type-I dimerisation is illustrated in Fig. 
3, where the MMO sketches correspond to X = CO2. The overlap 
of the respective HOMMOs and LUMMOs yields pairs of bond-
ing and antibonding IMOs, defined as: 

 𝜙ୌ୓୑୑୓
(±)

= 𝜓ୌ୓୑୑୓
(ଵ)

± 𝜓ୌ୓୑୑୓
(ଶ)   (3) 

 𝜙୐୙୑୑୓
(±)

= 𝜓୐୙୑୑୓
(ଵ)

± 𝜓୐୙୑୑୓
(ଶ)  (4) 

With𝜓 reserved for the monomer orbitals, 𝜙 will be used to 
denote the IMOs.  

Normalisation factors are omitted in Eqs. (3) and (4), while 
the ± signs allow for the formation of the bonding or antibonding 
IMO pairs. As in the LCAO-MO theory, the IMO bonding char-
acter depends not only on the sign of the superposition, but also 
the relative symmetry of the MMOs. Given the specific MMO 

sketches in Fig. 3, 𝜙ୌ୓୑୑୓
(ା)  and 𝜙୐୙୑୑୓

(ା)  are the bonding IMOs, 

but in other scenarios the minus signs can result in bonding 
superpositions. To avoid ambiguity, we will drop the ± notation 
and use the conventional asterisk or lack thereof, respectively, to 
denote the antibonding and bonding IMOs. With that, based on 
the IMO diagram in Fig. 3, the electron configuration of a type-
I dimer anion, is written as: 

 X2
: … (𝜙ୌ୓୑୑୓)ଶ(𝜙ୌ୓୑୑୓

∗ )ଶ(𝜙୐୙୑୑୓)ଵ (5) 

This configuration corresponds to an order-of-1/2 dimerising 
bond, which is entirely due to the excess electron (red arrow in 
Fig. 3) populating 𝜙୐୙୑୑୓. The bond disappears (its order is 
reduced to zero) if the electron is removed. 

While the MMO sketches in Fig. 3 correspond to X = CO2, 
the diagram itself is quite general and applies to numerous other 
systems. In what follows, we will use the IMO framework to 
describe the anionic -stacking of glyoxal and biacetyl. This 

analysis builds on other variants63,64 of the general MO theory. 
In particular, we follow in the footsteps of Krylov and co-auth-
ors, who used a similar approach (adapted to electron removal 
rather than addition) to investigate the bonding patterns in dimer 
cations of benzene,65 uracil,66 adenine and thymine.67 As a side 
note, the diffuse nature of anion orbitals may contribute, in com-
parison, to the greater ease of charge sharing (delocalisation) in 
anionic clusters, especially beyond the dimers. 

Krylov and co-authors fittingly named their theory dimer MO
—linear combination of fragment MOs (DMO-LCFMO),65 and 
it is only because our discussion extends beyond dimers that we 
use the more general term IMO instead of DMO. Moreover, as 
the overall formalism detailed in Sec. 4 includes both covalent 
and solvation interactions, we term it the coupled-monomers MO 
(CMMO) model. In contrast to LCAO/LCMO/LCFMO, the 
name emphasises the physical effect of monomer coupling (via 
whatever interactions are important) over the mathematical for-
malism of linear combinations. For example, a similar approach 
to coupled fragments (instead of monomers) was recently used 
to describe diradical interactions in bond breaking.68 

Turning to glyoxal (gl) and biacetyl (ba), the bonding IMOs 
of the dimer anions (as well as the corresponding trimers and 
tetramers) are shown in Fig. 4. They were calculated using the 
methodology described in Sec. 5.1 and used previously for biace-
tyl.5 The IM distances indicated for these structures are defined 
as the separations between the centres of the middle CC bonds 
in each monomer. All other geometric details are given in Elec-
tronic Supplementary Information. The (gl)2

 and (ba)2
 IMOs in 

Fig. 4 can each be viewed as a superposition of the LUMMOs 

(𝜓୐୙୑୑୓
(௜) , i = 1, 2) of the corresponding monomers, as indicated 

by Eq. (4). The gl and ba LUMMOs correspond to the respective 
gl and ba HOMMOs, shown at the top of Fig. 4. Envisage com-
bining one of these MMOs with its own reflection in a plane 
below, rotated about the vertical axis by some degree, and the 
result is a close approximation to the corresponding dimer IMO.  

The IMO approach to covalent dimers can be easily extended 
to type-I trimers, tetramers, and beyond (Sec. 4), but it is impor-
tant to keep in mind some of the model limitations. First, the 
IMO diagrams, such as Fig. 3, do not account for electron corre-
lation and the complexities of systems with multi-configura-
tional wavefunctions. Second, the model, as presented, attempts 
to separate IM bonding from the bonding structures of the mono-
mers themselves. This is formally justified only if the inter- and 
intra-monomer bonds are decoupled, as in the case of the IMOs 
are formed from nonbonding MMOs. For the IMOs formed from 
orbitals involved in intra-monomer bonding, the model amounts 
to a first-order perturbative approach, justified only if the IM 
interactions are significantly weaker than the intra-monomer 
bonds. This requirement is satisfied in type-I dimer/polymer an-
ions, because of the weakness of the IM bonds in these systems. 
In systems with stronger IM bonds (e.g., type-II and type-III 
dimers), the MMOs contributing to IM bonding may also be re-
sponsible for the bonds within the monomers. As strong IM 
bonding affects the electronic wavefunctions of the monomers, 
it may alter the intra-monomer bonding structures. In that case, 
treating the IM bonding as a first-order perturbation of the intra-
monomer bonds may no longer be justified. 

 

Fig. 3. Generic IMO diagram for type-I anionic dimerisation. The MMO 
sketches correspond to X = CO2 at a bent anion geometry. 
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4  Anionic polymerisation vs. solvation in clusters  
We now turn to a quantitative description of type-I polymerisa-
tion in cluster anions with the general molecular formula Xn

 and 
the structural formulas Xk

Xnk, 1 ≤ k ≤ n. Clusters with k = 1 
correspond to case A, represented in Fig. 1(a), while clusters with 
k  2 correspond to case B, illustrated (for k = 2) in Fig. 1(b). Our 
goal is to combine the MO treatment of covalent interactions 
with the effect of electrostatic solvation and quantify the factors 
controlling the relative stabilities of clusters with the monomer 
(k = 1), dimer (k = 2), and polymer (k  3) anion cores. 

4.1  Dimer anions of closed-shell molecules (n = 2) 

X2
: Covalent dimer anions (n = 2, k = 2). Consider an 

anionic bond between two monomers that are closed-shell 

species in their neutral states. As discussed in Sec. 3.2, the order-
of-1/2 dimerising bond results from a bonding superposition of 
vacant MMOs, populated by an electron in the anion state (Fig. 
3). This type of bonding can be described by a Hückel-style 
Hamiltonian matrix, defined in the basis of the MMOs respon-
sible for the IM bond formation: 

 𝐇 = ቆ
𝛼 + 𝜎ଶ,଴ 𝛽ଵ/ଶ

𝛽ଵ/ଶ 𝛼 + 𝜎ଶ,଴
ቇ = ቆ

𝛼 𝛽ଵ/ଶ

𝛽ଵ/ଶ 𝛼
ቇ (6) 

Here,  and 𝛽ଵ/ଶ are the usual Coulomb and bond integrals: 𝛼 =

ൻ𝜓௜ห𝐻෡ห𝜓௜ൿ, 𝛽ଵ/ଶ = ൻ𝜓௜ห𝐻෡ห𝜓௝ൿ, where 𝜓௜ = 𝜓୐୙୑୑୓
(௜)  are the basis 

MMOs and i, j = 1, 2, 𝑖 ≠ 𝑗 are the monomer indices. The gl and 
ba MMOs are shown at the top of Fig. 4. The Coulomb integral 
 corresponds to the MMO energy, while the bond integral 𝛽ଵ/ଶ 

describes the formation of the dimer IMO. The subscript indicates 
an order-of-1/2 IM bond, but the discussion of the bond order effect 
on the integral value will follow in Sec. 4.2. The quantity 𝜎ଶ,଴ in the 

first part of Eq. (6) is a specific case of the general solvation fac-
tor 𝜎௞,௡ି௞, defined as the total energy of electrostatic solvation 

of the Xk
 core by n  k solvent moieties within the Xk

Xnk 
cluster. In the absence of solvent, as for k = 2 and n  k = 0, 𝜎ଶ,଴ 

= 0 and introduced in Eq. (6) only for completeness. 
The eigenvalues of H in Eq. (6), E1,2 =  ± 𝛽ଵ/ଶ, are the dimer 

IMO energies. The corresponding eigenvectors contain the coef-
ficients representing the IMOs in the MMO basis, as described 
by Eq. (4). Only one electron populates the IMO system de-
scribed by Eq. (6) in a type-I dimer anion. Assuming that the IM 
bonding is due to the stabilisation of the radical electron relative 
to the monomer orbitals, the bond strength is the difference bet-
ween  and the smallest IMO eigenvalue, E1 =  + 𝛽ଵ/ଶ. The 

bond energy is therefore , where the minus sign accounts for 
the negative value of . This bond energy is the total of all IM 
interactions in X2

. Since it does not include the vibrational rela-
xation of the monomers, it corresponds to vertical stabilisation 
energy, VSE = . This result is included in Table 1, summar-
ising the VSE values of the clusters modelled in this section.  

Similar to bond energies, VSE is defined to be positive for 
attractive interactions. The cluster stability is defined not only by 
the IM interactions, but also by how these interactions affect the 
intra-monomer structures. Hence, we will also consider the clus-
ter stabilisation energy (CSE), defined as the difference between 
the relaxed X + (n  1)X limit and the Xn

 cluster. CSE is the 
adiabatic counterpart of VSE, including the monomer relaxation, 
Erel. As illustrated in Fig. 5, CSE = VSE  Erel. As the CMMO 
model separates the inter- and intra-monomer interactions, we do 
not consider Erel in this section; it will be included in Sec. 5. 

The normalized eigenvector for the lowest eigenvalue of H 
in Eq. (6) is ൫1 √2⁄ , 1 √2⁄ ൯. It reflects equal contributions of the 

MMOs, 𝜓ଵ =  𝜓୐୙୑୑୓
(ଵ)  and 𝜓ଶ = 𝜓୐୙୑୑୓

(ଶ) , to the bonding IMO, 

𝜙୐୙୑୑୓, and an even, 0.50/0.50, charge sharing between the 
monomers. This is consistent with the properties of (CO2)2

,3 the 
stacked (gl)2

 structure, and its IMO shown in Fig. 4. A slight 
deviation from an even distribution was previously predicted for 
(ba)2

, due to the two biacetyl moieties adopting slightly differ-
ent geometries.5   

X∙X: An ion-molecule complex (n = 2, k = 1). No covalent 

 
Fig. 4. The  character orbitals populated by radical electrons in the equilib-
rium (gl)n

 and (ba)n
, n = 1-4 structures. Values to the left of each structure 

are the IM distances (in Angstroms), measured between the centres of the 
(middle) CC bonds in the respective monomer moieties.  To the right are the 
overall Hirshfeld-I charges of each gl or ba moiety. 
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bond between the two monomers is present in the XX cluster 
anion, which is held together by electrostatic forces. The Hückel-
style Hamiltonian matrix for such a species is written as: 

 𝐇 = ൬
𝛼 + 𝜎ଵ,ଵ 0

0 𝛼 + 𝜎ଵ,ଵ
൰ (7) 

With no IM bonding, the off-diagonal bond integrals are set to 
zero, but the electrostatic energy of solvation interaction between 
X and X assumes a non-zero value. Both eigenvalues of H in 
Eq. (7) are equal to 𝛼 + 𝜎ଵ,ଵ. The corresponding eigenvectors, 

(1, 0) and (0, 1), describe the degenerate XX and XX states of 
the cluster, each with a VSE = −𝜎ଵ,ଵ (Table 1). 

4.2  Trimer anions of closed-shell molecules (n = 3) 

X3
: Covalent trimer anions (n = 3, k = 3). We will consider 

two different X3
 structures. The first is an [X-X-X] chain or 

stacked anion with a distinct central moiety, bound to two equi-
valent end moieties. Such structures have been proposed for -
stacked trimer anions of organic molecules, e.g., tetrachloroquin-
one69 and biacetyl.5 We will investigate a similar (so far hypo-
thetical) structure for glyoxal. Due to the geometric constraints, 
such a structure is unlikely for (CO2)3

. Other systems may seem 
to be plausible candidates for such covalent trimers, but form 
X2

∙X structures instead. We will also consider a triangular X3
 

structure, in which all three moieties are equivalent. Such a 
trimer can be envisaged for CO2, but it is less stable than the 
(CO2)2

CO2. The recently reported (CO)3
 trimer70 is an actual 

example of a triangular structure, with a caveat that under our 
classification it is a type-III (not type-I) species. 

A triple-decker [X-X-X] structure has two IM bonds of an 
order of 1/4 each. (We will continue to use nominal Lewis-style 
bond orders, rather than those calculated from the eigenvector 
coefficients in the Hückel theory.71) The IM bonding in this 
structure is due to population of the bonding trimer IMO (which 

is empty in the neutral state) by a single electron. The resulting 
order-of-1/2 bonding character is distributed between the two 
equivalent X-X bonds, yielding a nominal bond order (BO) of 
1/4 for each. The trimer IMOs for glyoxal and biacetyl are shown 
in Fig. 4. Similar to the dimer (Sec. 4.1), the IM bonding in the 
stacked trimer results from a bonding overlap of the MMOs: 𝜙 =

∑ 𝑐௜ 𝜓௜ , where 𝜓௜   are the LUMMOs of the neutral monomers, 

𝜓୐୙୑୑୓
(୧)  (𝑖 = 1 − 3), and 𝜙 is the trimer IMO. The Hückel-style 

Hamiltonian matrix for the [X-X-X] structure has the form: 

 𝐇 = ቌ

𝛼 𝛽ଵ/ସ 0

𝛽ଵ/ସ 𝛼 𝛽ଵ/ସ

0 𝛽ଵ/ସ 𝛼
ቍ (8) 

The Coulomb integrals  in Eq. (8) are the same as in other cases, 
depending only on the nature of X, but the bond integrals are 
distinct. As indicated by the subscript, 𝛽ଵ/ସ in Eq. (8) corre-
sponds to a 1/4-bond, while 𝛽ଵ/ଶ in Eq. (6) to a 1/2-bond. The 

use of the bond orders as labels does not imply that the integrals 
depend explicitly on BO; they do not. The bond order is a secon-
dary construct, determined by the populations of the IMOs aris-
ing from the diagonalisation of the Hamiltonian. As in the con-
ventional Hückel theory, the same H can describe systems with 
different bond orders, depending on the number of electrons. 
That said, the integrals 𝛽୆୓ = ൻ𝜓௜ห𝐻෡ห𝜓௝ൿ, 𝑖 ≠ 𝑗, where {𝜓௜} is the 

MMO basis, do depend on the MMO overlap and, therefore, the 
IM separation, which in turn depends on the BO. One might say 
that 𝜕𝛽୆୓ 𝜕(BO)⁄  = 0, but 𝑑𝛽୆୓ 𝑑(BO)⁄ ≠ 0. As bond length 
generally increases with decreasing BO, the smaller the BO, the 
smaller we expect |𝛽୆୓| to be. Specifically, |𝛽ଵ/ସ| < |𝛽ଵ/ଶ|.  

The eigenvalues of H in Eq. (8) are (in increasing order): 𝛼 +

√2𝛽ଵ/ସ, 𝛼, and 𝛼 − √2𝛽ଵ/ସ. Only the lowest-energy IMO will 

be populated by an electron, yielding two 1/4-IM bonds. The 
interaction energy, reflecting the combined energy of these two 
bonds, is VSE = −√2𝛽ଵ/ସ (Table 1). If 𝛽ଵ/ସ and 𝛽ଵ/ଶ were equal, 

this would represent a 40% increase compared to the dimer 
anion. Since |𝛽ଵ/ସ| < |𝛽ଵ/ଶ|, the additional stabilisation of 

[X-X-X], compared to [X-X], is smaller than that. 
The normalized eigenvector corresponding to the bonding 

IMO given by Eq. (8) is (1/2, 1/√2, 1/2). Assuming that all 
other electrons in the trimer are not affected, the partial charges 
of the monomers in [X-X-X] are hence predicted to be 0.25, 
0.50, and 0.25. In comparison, the overall Mulliken charges 
on the monomers in the triple-decker (ba)3

 structure shown in 
Fig. 4 are 0.285, 0.43, and 0.285,5 but further discussion will 
follow in Sec. 5 about the validity of this comparison.  

Table 1. Vertical stabilisation energies in terms of the IM bond integrals and solvation factors for selected Xk
Xnk clusters.*,§ 

Cluster size 
(n) 

Size of the core anion (k) 
1 2 3 4 

1  n/a n/a n/a 

2 −𝜎ଵ,ଵ  n/a n/a 

3 −𝜎ଵ.ଶ −(𝛽ଵ/ଶ + 𝜎ଶ,ଵ)  −1.41𝛽ଵ/ସ n/a 

4 −𝜎ଵ,ଷ −(𝛽ଵ/ଶ + 𝜎ଶ,ଶ) −(1.41𝛽ଵ/ସ + 𝜎ଷ,ଵ) −1.62𝛽ଵ/଺ 

* The factors of 1.41 and 1.62 appearing in the table are the approximate values of √2 and (√5 + 1) 2⁄ , respectively. 
§ Stacked (triple- and tetra-decker) structures are assumed for the k = 3 and 4 anions, respectively. 

 
Fig. 5. Illustration of the vertical stabilisation energy (VSE), monomer relaxa-
tion energy, Erel, and adiabatic cluster stabilisation energy (CSE). Xn

, X, and 
X are the relaxed structures. (X)* and X* are the non-interacting monomers 
constrained to their internal geometries within the cluster. 
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In a cyclic X3
 structure, all three X moieties are presumed 

equivalent and each of the three IM bonds has an order of 1/6. 
This BO value reflects the sharing of the order-of-1/2 bonding 
character, attributed to a single electron in the lowest-energy 
IMO, between three equivalent IM bonds. The Hückel-style 
Hamiltonian matrix in this case has the form: 

 𝐇 = ቌ

𝛼 𝛽ଵ/଺ 𝛽ଵ/଺

𝛽ଵ/଺ 𝛼 𝛽ଵ/଺

𝛽ଵ/଺ 𝛽ଵ/଺ 𝛼

ቍ (9) 

Based on the above arguments, |𝛽ଵ/଺| < |𝛽ଵ/ସ| < |𝛽ଵ/ଶ|. The 
eigenvalues for matrix (9) are 𝐸ଵ = 𝛼 + 2𝛽 and 𝐸ଶ,ଷ = 𝛼 − 𝛽. 

Population of the lowest IMO by one electron results in a VSE = 
−2𝛽ଵ/଺. Since the cyclic core structures will not be discussed 

further, this result is not included in Table 1. 
X2

X or X2X: Covalent dimer anion solvated by one 
monomer (n = 3, k = 2) vs. Monomer anion solvated by two 
monomers (n = 3, k = 1). The Hückel-style Hamiltonian matrix 
describing both situations has a block-diagonal form: 

 𝐇 = ቌ

𝛼 + 𝜎ଶ,ଵ 𝛽ଵ/ଶ 0

𝛽ଵ/ଶ 𝛼 + 𝜎ଶ,ଵ 0

0 0 𝛼 + 𝜎ଵ,ଶ

ቍ (10) 

The first 2×2 block corresponds to the covalently bound dimer, 
described by Eq. (6), now additionally solvated by one neutral X 
moiety, as described by 𝜎ଶ,ଵ. The second block, comprised of a 
single element 𝛼 + 𝜎ଵ,ଶ, represents an X moiety, not participat-

ing in IM bonding, but stabilised by two solvent monomers. Cor-
respondingly, the first two eigenvalues of Eq. (10) describe an 
X2

X structure, with the charge shared between the two X 
moieties within the dimer. The third solution describes an X2X 
(or X∙X2) cluster, with the charge localised on one X moiety. 
Hence, the solvation factors are not the same within the two 
blocks: 𝜎ଶ,ଵ represents the stabilisation of X2

 by one neutral X 
moiety, while 𝜎ଵ,ଶ describes the solvation of X by two neutral 
X. Hence, we expect |𝜎ଶ,ଵ| < |𝜎ଵ,ଶ|. 

The eigenvalues of (10) are E1 = 𝛼 + 𝛽ଵ/ଶ + 𝜎ଶ,ଵ, E2 = 𝛼 −

𝛽ଵ/ଶ + 𝜎ଶ,ଵ, and E3 = 𝛼 + 𝜎ଵ,ଶ. Their order depends on the rela-
tive magnitudes of 𝛽ଵ/ଶ and (𝜎ଵ,ଶ − 𝜎ଶ,ଵ). If covalent bonding 
exceeds the solvation differential, |𝛽ଵ/ଶ| > |𝜎ଵ,ଶ − 𝜎ଶ,ଵ|, E1 is the 

lowest eigenvalue and the X2
∙X structure is preferred. The 

corresponding VSE is −(𝛽ଵ/ଶ + 𝜎ଶ,ଵ). If the covalent bonding is 

weaker than the solvation differential, E3 is the lowest eigen-
value, indicating that it is more favourable for the charge to 
localise of one monomer and for the cluster to adopt the X∙X2 
configuration. The corresponding VSE is −𝜎ଵ,ଶ (Table 1). 

4.3  Tetramer anions of closed-shell molecules (n = 4) 

X4
: Purely covalent tetra-decker anion (n = 4, k = 4). 

There are three IM bonds in the [X1-X2-X3-X4] structure. By 
symmetry, X1-X2 and X3-X4 are equivalent, but X2-X3 is dis-
tinct. We will assume, as in the conventional Hückel theory, that 
all bond integrals are the same. Then, one bonding electron 
shared among these three bonds result in a 1/6 bond order for 
each. All IM interactions in this case are covalent, so there are 
no solvation elements in the Hückel-style Hamiltonian matrix: 

 𝐇 =

⎝

⎜
⎛

𝛼 𝛽ଵ/଺ 0 0

𝛽ଵ/଺ 𝛼 𝛽ଵ/଺ 0

0 𝛽ଵ/଺ 𝛼 𝛽ଵ/଺

0 0 𝛽ଵ/଺ 𝛼
⎠

⎟
⎞

 (11) 

The four eigenvalues are 𝐸ଵିସ = 𝛼 ± 𝛽ଵ/଺ (√5 ± 1) 2⁄ , with 𝐸ଵ= 

𝛼 + 𝛽ଵ/଺ (√5 + 1) 2⁄  being the lowest. Population of this IMO 

by an electron results in the three 1/6-bonds with a combined 
VSE = −𝛽ଵ/଺ (√5 + 1) 2⁄  ≈ −1.62𝛽ଵ/଺ (Table 1). The normal-

ised eigenvector is ൫1, ൫√5 + 1൯ 2⁄ , ൫√5 + 1൯ 2⁄ , 1൯/ඥ5 + √5, 

which evaluates to (0.372, 0.602, 0.602, 0.372) and translates 
into the 0.14, 0.36, 0.36, 0.14 monomer charges. 

X3
X or X3X: Triple-decker anion solvated by one 

monomer (n = 4, k = 3) vs. Monomer-anion solvated by three 
monomers (n = 4, k = 1). Expanding on Eq. (10), the Hamilto-
nian matrix for such species is written as: 

 𝐇 =

⎝

⎜
⎛

𝛼 + 𝜎ଷ,ଵ 𝛽ଵ/ସ 0 0

𝛽ଵ/ସ 𝛼 + 𝜎ଷ,ଵ 𝛽ଵ/ସ 0

0 𝛽ଵ/ସ 𝛼 + 𝜎ଷ,ଵ 0

0 0 0 𝛼 + 𝜎ଵ,ଷ⎠

⎟
⎞

 (12) 

Following the above arguments, |𝜎ଷ,ଵ| < |𝜎ଵ,ଷ|. The eigenvalues 

of matrix (12) are E1 = 𝛼 + √2𝛽ଵ/ସ + 𝜎ଷ,ଵ, E2 = 𝛼 + 𝜎ଷ,ଵ, E3 = 

𝛼 − √2𝛽ଵ/ସ + 𝜎ଷ,ଵ, and E4 = 𝛼 + 𝜎ଵ,ଷ. Which is the lowest dep-
ends on the relative magnitudes of the bond integral 𝛽ଵ/ସ and 

solvation differential (𝜎ଵ,ଷ − 𝜎ଷ,ଵ). If |𝛽ଵ/ସ| > |𝜎ଵ,ଷ − 𝜎ଷ,ଵ|/√2, 

then E1 is the lowest eigenvalue, corresponding to an X3
X 

structure with VSE = −(√2𝛽ଵ/ସ + 𝜎ଷ,ଵ) (Table 1). On the other 

hand, if |𝛽ଵ/ସ| < |𝜎ଵ,ଷ − 𝜎ଷ,ଵ|/√2, E4 is the lowest eigenvalue, 

corresponding to an X3X structure with VSE = −𝜎ଵ,ଷ. 

X2
X2: Covalent dimer anion solvated by two monomers 

(n = 4, k = 2). The Hamiltonian matrix for such species has a 
block-diagonal form: 

 𝐇 =

⎝

⎜
⎛

𝛼 + 𝜎ଶ,ଶ 𝛽ଵ/ଶ 0 0

𝛽ଵ/ଶ 𝛼 + 𝜎ଶ,ଶ 0 0

0 0 𝛼 + 𝜎ଵ,ଷ 0

0 0 0 𝛼 + 𝜎ଵ,ଷ⎠

⎟
⎞

 (13) 

with the expectation that |𝜎ଶ,ଶ| < |𝜎ଵ,ଷ|. The eigenvalues for Eq. 
(13) are E1 = 𝛼 + 𝛽ଵ/ଶ + 𝜎ଶ,ଶ, E2 = = 𝛼 − 𝛽ଵ/ଶ + 𝜎ଶ,ଶ, E3,4 = 𝛼 +

𝜎ଵ,ଷ. If |𝛽ଵ/ଶ| > |𝜎ଵ,ଷ − 𝜎ଶ,ଶ|, then E1 is the lowest and the pre-
ferred cluster structure is X2

X2, with a VSE = −(𝛽ଵ/ଶ + 𝜎ଶ,ଶ) 
(Table 1). If, on the other hand, |𝛽ଵ/ଶ| < |𝜎ଵ,ଷ − 𝜎ଶ,ଶ|, E3,4 is the 

lowest (degenerate) eigenvalue, corresponding to an X3X 
(X2∙X∙X or X2∙X∙X) cluster structure with a VSE = −𝜎ଵ,ଷ. 

5  Examples and discussion  
The CMMO formalism in Sec. 4 provides a simplified descrip-
tion of IM bonding in clusters with monomer and type-I polymer 
core anions. While not precise, the model offers a tutorial 
advantage over full-scale calculations by providing a simple and 
transparent picture of the IM interactions.  

The model assumes either purely covalent or purely electro-
static interactions between certain pairs or groups of monomers. 
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In this section, we compare the model predictions to the proper-
ties of the glyoxal and biacetyl cluster anions determined using 
the density functional theory (DFT). In Sec. 5.1, we elaborate on 
the relevant properties of the (gl)n

 and (ba)n
, n = 2-4 stacked 

structures shown in Fig. 4. The DFT structures are calculated 
without a priori assumptions about the IM interactions character 
and are best described by resonant combinations of covalent 
bonding and electrostatic solvation, optimised in each case to 
minimise the overall energy of the cluster. Comparing the DFT 
results to the baseline CMMO predictions is then used to assess 
the IM bonding character in these clusters, as well as to quantify 
the parameters appearing in the CMMO model. In Sec. 5.2, we 
apply the DFT and CMMO model results to the problem of elec-
trostatic solvation obstructing covalent polymerisation. 

5.1  DFT structures of glyoxal and biacetyl cluster anions 

An overview of the stacked (gl)n
 and (ba)n

, n = 1-4, struc-
tures is shown in Fig. 4; their complete geometric details are 
given in Electronic Supplementary Information. These structures 
were optimised in QChem 5.1,72 using the Minnesota-06 (M06-
2X) functional, chosen for its performance on delocalised sys-
tems with non-covalent interactions.73 All calculations employed 
Dunning’s augmented correlation-consistent basis set of double-
zeta quality (aug-cc-pVDZ).  

The calculations included in this section are meant to create 
a semi-quantitative framework to support the CMMO model. 
Choosing a rigorously quantitative method to describe cluster 
anions requires extensive benchmarking beyond the objective of 
this work. Hence, except for gl, ba, (ba)2

, and (ba)3
, the struc-

tures in Fig. 4 do not necessarily correspond to global potential 
minima. Even if they do, they are not necessarily unique when it 
comes to the experiment. For example, the (ba)3

 structure shown 
in the figure was identified as the global minimum for this clus-
ter,5 but there are several solvated structures, described as 
(ba)2

ba, which are nearly degenerate with the triple-decker 
anion. The structures in Fig. 4 were optimised under the follow-
ing symmetry constraints: D2 for (gl)2

, C2 for (ba)2
, C2h for both 

(gl)3
 and (ba)3

, D2 for (gl)4
, and S4 for (ba)4

. Complete geo-
metric surveys were not attempted, because they are expensive 
and, given our objective, unnecessary. Rather than proven global 
minima, these structures should be viewed as plausible geome-
tries maximizing the IM  stacking interactions. As the best-case 

scenarios for such interactions, these structures can be used to 
show that even under most favourable conditions, anionic poly-
merisation is still hindered by electrostatic solvation. 

The CMMO solutions in Sec. 4 assume either purely covalent 
(𝛽୆୓) or purely electrostatic (𝜎௞,௡ି௞) interactions within pairs or 

groups of monomers. Specifically, the stacked (X)n
, n = 2, 3, 

and 4 clusters, described by Eqs. (6), (8), and (11), respectively, 
are the limiting cases of purely covalent IM interactions. The 
corresponding charge distributions, determined in Sec. 4, are 
summarised in the CMMO column of Table 2. Eqs. (7), (9), (12), 
and (13), on the other hand, describe monomer, dimer, or trimer 
core anions solvated by neutral species. In real cluster structures, 
the bonding may fall in between the extremes of purely covalent 
and purely electrostatic forces. In general, each IM interaction 
within a cluster should be viewed as a coherent superposition of 
covalent bonding and electrostatic solvation, as represented, for 
example, by an [X-X]  XX resonance. We will use the cal-
culated (DFT) structures and their charge distributions to assess 
the corresponding interaction characters.  

The D2 symmetry constraint in the (gl)2
 calculation (Fig. 4) 

requires a 0.50/0.50 charge sharing, as also predicted for a 
covalently bound X2

 structure by Eq. (6). Relaxing the con-
straint leads to several less-favourable ion-molecule structures 
(not shown). In the analogous (ba)2

 structure (C2 symmetry), the 
two ba moieties are not equivalent, due to their different geome-
tric motifs,5 but the charge remains significantly delocalised. 
Formally an [X-X]  XX resonance, the (ba)2

 cluster in Fig. 
4 retains a dominant [X-X] covalent character. The larger IM 
separation in (ba)2

 compared to (gl)2
 (2.89 vs. 2.61 Å, Fig. 4) 

is attributed mostly to the bulky methyl groups in the former. 
For (gl)3

 and (ba)3
 (Fig. 4), the C2h symmetry constraint is 

satisfied by any superposition of two CMMO solutions: the 
purely covalent trimer anion [X-X-X], described by the lowest 
eigenvalue of Eq. (8), and a twice-solvated monomer anion 
XXX, corresponding to the third solution of Eq. (10). The in-
creased IM distances in (gl)3

 and (ba)3
, compared to the respec-

tive dimers, are consistent with the decreased IM bond orders 
(1/4 vs. 1/2, per Sec. 4) and the partial solvated characters. As 
will be discussed later, the monomer charges in the DFT struc-
tures, indeed reflect a mixture of the two bonding types. 

Similarly, the D2 and S4 symmetry constraints of the respec-
tive (gl)4

 and (ba)4
 structures in Fig. 4 require the equivalences 

Table 2. Partial charges on the individual moieties in the stacked double-, triple-, tetra-decker cluster structures calculated using the methods indicated. 

Stacked   X = Glyoxal X = Biacetyl 

Cluster Moiety* CMMO Mulliken Hirshfeld Hirshfeld-I Mulliken Hirshfeld Hirshfeld-I 

X2
 X1 

X2 
0.50 
0.50 

0.50 
0.50 

0.50 
0.50 

0.50 
0.50 

0.51 
0.49 

0.60 
0.40 

0.61 
0.39 

X3
 X1 

X2 
X3 

0.25 
0.50 
0.25 

  0.02 
1.04 
  0.02 

0.19 
0.63 
0.19 

0.15 
0.69 
0.15 

0.29 
0.43 
0.29 

0.20 
0.59 
0.20 

0.17 
0.65 
0.17 

X4
 X1 

X2 
X3 
X4 

0.14 
0.36 
0.36 
0.14 

  0.07 
0.57 
0.57 
  0.07 

0.09 
0.41 
0.41 
0.09 

0.05 
0.45 
0.45 
0.05 

0.23 
0.27 
0.27 
0.23 

0.13 
0.37 
0.37 
0.13 

0.10 
0.40 
0.40 
0.10 

* The monomer moieties in the stacked structures are numbered sequentially: X2
 = [X1-X2], X3

 = [X1-X2-X3], and X4
 = [X1-X2-X3-X4]. 
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of the two terminal and the two inner moieties in each case. This 
restriction is satisfied by any combination of two CMMO solu-
tions: the covalent tetramer anion [XX-X-X], described by the 
lowest eigenvalue of Eq. (11), and the twice-solvated dimer 
structure X[X-X]X, described by Eq. (13). Comparing the 
(gl)4

 structure in Fig. 4 to (gl)2
, it is clear that (gl)4

 is predom-
inantly a covalent dimer anion, solvated by two nearly neutral 
monomers: X1[X2-X3]X4. Indeed, the separation between the 
two inner moieties (X2 and X3) in the tetramer is nearly identical 
to the IM distance in the dimer (2.62 vs. 2.61 Å). The X1-X2 and 
X3-X4 separations, on the other hand, are significantly larger, 
characteristic of solvation interactions. The slight difference 
between X2-X3 in (gl)4

 and the X-X distance in (gl)2
, as well 

as the slight charge delocalisation to the terminal moieties in the 
tetramer (discussed below) suggest some degree of X[X-X]X 
 [XX-X-X] mixing, but the twice-solvated-dimer structure 
clearly dominates. A similar conclusion can be drawn about the 
(ba)4

 structure in Fig. 4, but allowing for a larger, compared to 
(gl)4

, contribution of the covalent character. These conclusions 
about (gl)4

 and (ba)4
 are clearly supported by the appearance of 

their IMOs, which are predominantly localised on the two inner 
monomer moieties in both cases (see Fig. 4). 

We now turn to the quantitative evaluation of the partial 
charges of the monomers. These charges (summed over all atoms 
in each moiety) for the (gl)n

 and (ba)n
, n = 2-4 DFT structures 

are listed in Table 2 alongside the CMMO benchmarks. Three 
types of charges from the DFT calculations are included: those 
based on the Mulliken population analysis,74 the Hirshfeld char-
ges,75 and those determined using the iterative Hirshfeld proce-
dure (Hirshfeld-I).76,77 The Mulliken and Hirshfeld-I charges 
were obtained directly in QChem.72 The standard Hirshfeld 
charges (not available in QChem for charged molecules) were 
obtained from the QChem checkpoint files using the Multiwfn 
wavefunction analyser with build-in atomic densities.78 

The need for a thoughtful examination of the different meth-
ods is evidenced by their divergent results. The Mulliken charges 
are strongly dependent on the choice of basis set,79 which makes 
their use in our analysis problematic; they are included in Table 
2 only as a commonly used reference. For example, qualitatively 
different Mulliken charge distributions are obtained for the (gl)3

 
vs. (ba)3

: XXX vs. [X-X-X], respectively. Similarly, a 
partially zwitterionic, twice-solvated-dimer-anion structure 
XX2

X is indicated for (gl)4
 (Mulliken charges: +0.07/0.57/

0.57/+0.07), compared to the strongly delocalised (even more 
so than the CMMO prediction) [X-X-X-X] structure of (ba)4

 
(0.23/0.27/0.27/0.23). Such significant disparity in the gly-
oxal vs. biacetyl cluster properties of is not supported by an in-
depth review, including the IMO properties in Fig. 4, or by other, 
more reliable types of charges. In contrast to the Mulliken popu-
lation analysis, Hirshfeld charges are known to be nearly indep-
endent of the basis set choice and have linear relationships with 
chemical properties, such as carbon hybridisation and acidity.79 
Between the Hirshfeld and Hirshfeld-I charges included in Table 
2, the latter are most appropriate for charged systems.76,77 They 
are indicated for each monomer moiety in Fig. 4 and the follow-
ing discussion will focus exclusively on them. 

As already mentioned, the charge in the D2 symmetry (gl)2
 

structure (Fig. 4) is shared equally between the equivalent gl 
moieties. It remains significantly delocalised (60/40%) in (ba)2

, 
in which the two ba moieties are not equivalent. This result is 
consistent with the predominantly covalent nature of the IM 
interactions in (ba)2

: the CMMO model would describe it by 
assigning the first ba moiety a slighter greater magnitude of the 
Coulomb integral in Eq. (6).

In the trimers, the Hirshfeld-I charge on the central moiety is 
0.69 for (gl)3

 and 0.65 for (ba)3
, each larger in magnitude 

than 0.50 predicted for a purely covalent trimer by CMMO, but 
smaller than 1 corresponding to an XXX structure. These Hir-
shfeld-I charges suggest truly mixed [X-X-X]  XXX char-
acters of both (gl)3

 and (ba)3
, with the weight of [X-X-X] 

being larger in (ba)3
, compared to (gl)3

. These conclusions are 
consistent with the geometric structures.  

The (gl)4
 and (ba)4

 structures have the 0.05/0.45/0.45/
0.05 and 0.10/0.40/0.40/0.10 Hirshfeld-I charge distribu-
tions, respectively, compared to the purely covalent 0.14/0.36/
0.36/0.14 CMMO benchmark. As in the trimer case, the tetra-
mers should be viewed as superpositions of the covalent [X-X-
X-X] and solvated X[X-X]X IM characters, with the covalent 
share again being greater in (ba)4

, compared to (gl)4
. Again, 

these conclusions are consistent with the bonding characters 
derived earlier in this section from the geometric structures. 

The energetics of IM interactions is most logically quantified 
using the cluster stabilization energy, CSE, defined as the differ-
ence between the relaxed X + (n  1)X dissociation limit and 
the (X)n

 cluster (Fig. 5). For comparison with the CMMO 
model, we will also consider each cluster’s vertical stabilisation 
energy, VSE, defined as the energy of all IM interactions, ex-
cluding the internal relaxation energy of the monomers,Erel. 
VSE is calculated as the difference between the system of non--
interacting monomers, (X)* + (n  1)X*, and the Xn

 cluster, 
where the energy of each asterisked X/X moiety is calculated at 
its geometry within the optimised cluster structure. As shown in 
Fig. 5, CSE = VSE – Erel. 

Since charge sharing is an interaction, in determining the 
(X)* + (n  1)X* energy in the absence of IM interactions, the 
excess electron must be placed on a specific X moiety, making 
VSE dependent on this choice. The logical choice is the mono-
mer with the largest partial charge within the cluster. For exam-
ple, in the stacked X3

 structure, the middle X moiety becomes 
X. In (gl)2

, on the other hand, the two gl moieties are equiva-
lent, so it does not matter which one is assigned the charge in the 
gl + gl limit. In (ba)2

, the top ba moiety in Fig. 4 carries a larger 
fraction of the charge, and so it is this moiety that is treated as 
ba in the VSE calculation.  

When CSE and VSE are determined from the (X)n
, X, and 

X energies calculated separately, the results overestimate the 
cluster stability due to the basis set superposition error (BSSE): 
the effect of using n times as many basis functions for the Xn

 
cluster than for the individual X and X fragments. Although the 
BSSE is often ignored, it can be significant, especially for weak 
interactions. To minimise its effect, we determined the energies 
of all monomers frozen at their respective cluster geometries, 
using the same basis as that used for the entire cluster (the coun-
terpoise correction).80 For each monomer, the atoms of all other 
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moieties were replaced with ghost atoms in the same positions, 
allowing the calculation to be carried out without the extraneous 
moieties, but with their basis functions in place. That is, the ener-
gies of all X and X building blocks and the intact cluster Xn

 
were determined using identical basis sets, with the same num-
bers of basis functions. Table 3 lists the VSE values calculated 
using two approaches: (a) the conventional method, involving 
the calculation of the Xn

, X, and X energies in the respective 
basis sets without the BSSE correction; and (b) the ghost-atom 
method described above, which corrects for the BSSE. As seen 
in the table, the conventional calculations overestimate the inter-
actions by 0.1-0.3 eV, depending on the cluster.   

Next, the relaxation energy, Erel, was determined for each 
cluster. The contribution of each monomer was calculated as the 
energy difference between the monomer’s structure within the 
cluster and its relaxed geometry. The overall relaxation energies 
(summed over all building blocks) for (gl)n

 and (ba)n
, n = 2-4 

are summarised in Table 3. The smaller Erel values for n = 3, 
compared to n = 2 and 4 confirms the significant contributions 
of the XXX character to the trimer structures. As expected, the 
relaxation energy is larger in the presence of covalent IM forces, 
as in the n = 2 cases. Subtracting Erel from VSE gives CSE (Fig. 
5). Note that the CSE(a) values determined as CSE = VSE  Erel 
without the BSSE correction are identical to those obtained by 
the conventional method of subtracting the (X)n

 energy from the 
relaxed X + (n  1)X limit, with all species examined using their 
respective differently-sized basis sets. In the following discus-
sion, we will use the corrected VSE and CSE values (b). 

5.2  How solvation obstructs polymerisation 

In Sec. 5.1, we concluded that IM interactions in a cluster are 
generally admixtures of covalent and noncovalent forces. This is 
not to say that some moieties may be bound to each other by 
covalent bonds, while others by solvation (this is a given). What 
it means is that each IM interaction may include covalent and 
non-covalent components. The [X-X-X]  XXX resonance 
mentioned in Sec. 5.1 is one example. In contrast, the CMMO 
model (Sec. 4) categorises each interaction as either covalent 

(described by 𝛽୆୓) or non-covalent (𝜎௞,௡ି௞). It thus describes 

benchmark structures for constructing the coherent combinations 
to describe the true, mixed interactions. Our next step is to evalu-
ate the relative stabilities of the benchmark CMMO structures. 
In this section, we enumerate the CMMO results, summarised in 
Table 1, using the reasonable values of the bond integrals and 
solvation factors, determined using the DFT results in Sec. 5.1. 

The CMMO parameter values assumed in the following ana-
lysis are summarised in Table 4. They were determined as 
described below, using the energetics in Table 3. First, based on 
the (gl)2

 and (ba)2
 VSE values, 1.0-1.1 eV is assumed to be the 

strength of a 1/2-IM bond in such systems, corresponding to 
|𝛽ଵ/ଶ|. Recall also that the 1/4-bond and 1/6-bond integrals 
should be smaller in magnitude: |𝛽ଵ/ଶ| > |𝛽ଵ/ସ| > |𝛽ଵ/଺|. As 

discussed in Sec. 4.2, this trend is due to the larger separations 
between the monomers bound by weaker bonds, rather than a 
direct consequence of reduced bond orders. A quantitative in-
sight into this trend is glimpsed from the DFT results. First, 
comparing the (gl)2

 and (ba)2
 structures (with similar  inter-

actions), the slight difference between VSE = 1.088 eV for (gl)2
 

and VSE = 1.020 eV for (ba)2
 (Table 3) is attributed to the dif-

ferent IM separations: 2.61 vs. 2.89 Å (Fig. 4). This corresponds 
to a 0.068 eV drop in |𝛽୆୓| per 0.28 Å separation increase. Since 
the IM distance in (gl)3

 is 0.19 Å larger than in (gl)2
 (Fig. 4), 

we project a 0.046 eV decrease in |𝛽୆୓| for BO = 1/4 from BO 
= 1/2. Alternatively, we also calculated the (gl)2

 energy with the 
IM separation increased to 2.80 Å (which corresponds to a 1/4-
IM bond), while freezing all other geometric parameters. This 
resulted in a 0.034 eV decrease in VSE. Averaging these results, 
we will assume a 0.04 eV drop in |𝛽୆୓| from BO = 1/2 to 1/4, 
and similar from 1/4 to 1/6. In order not to repeat the same analy-
sis for (gl)n

 and (ba)n
 and to make the discussion more general 

and easily amendable to other systems, we opt to express the 
model energetics in arbitrary units (a.u.), instead of electron-
volts. Bringing it together, we set 𝛽ଵ/ଶ = 1.09 a.u. 𝛽ଵ/ସ = 1.05 
a.u. and 𝛽ଵ/଺ = 1.01 a.u. (Table 4).   

There is more ambiguity about the solvation factors 𝜎௞,௡ି௞, 

but a combination of the DFT results and experimental values for 

Table 4. CMMO model parameters used in Fig. 6, expressed in arbitrary energy units (intended to correspond approximately to electron-volts).  

 
𝛽ଵ/ଶ 𝛽ଵ/ସ 𝛽ଵ/଺ 𝜎ଵ,ଵ 𝜎ଵ,ଶ 𝜎ଵ,ଷ 𝜎ଶ,ଵ 𝜎ଶ,ଶ 𝜎ଷ,ଵ 

Set I (weaker solvation)         

Set II (stronger solvation)         
 

Table 3. Stacked cluster energetics from the M06-2X/aug-cc-pVDZ calculations. All values are in electron-volts.*,§ 

 X = Glyoxal X = Biacetyl 

Cluster 
VSE 

(a) / (b) Relaxation CSE 
(a) / (b)

VSE 
(a) / (b) Relaxation 

CSE 
(a) / (b) 

X2
 1.137 / 1.088 0.296 0.842 / 0.792 1.109 / 1.020 0.157 0.952 / 0.863 

X3
 1.404 / 1.324 0.151 1.253 / 1.173 1.758 / 1.583 0.088 1.670 / 1.495 

X4
 1.976 / 1.800 0.385 1.591 / 1.415 2.432 / 2.159 0.428 2.005 / 1.731 

* The stacked double- triple-, and tetra-decker structures shown in Fig. 4 are assumed for the n = 2, 3 and 4 anions, respectively. 
§ The (a) values of VSE and CSE were determined from the Xn

, X, and X energies calculated in the respective basis sets, with n times as 
many basis functions for Xn

 than for X or X. Therefore, these results suffer from the basis set superposition error. The (b) values correct 
for the BSSE by calculating the Xn

, X, and X energies in the same (Xn
) basis, as described in the text. 
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many cluster systems1,2 allows us to consider two solvation regi-
mes, represented by sets I and II (Table 4). The two sets differ in 
solvation factors only. Set I is defined by a 0.4 a.u. stabilisation 
of the XX complex. Set II represents 50% stronger solvation, 
with a 0.6 a.u. XX stabilisation energy. All other solvation 
factors are scaled the same way. In each set, for the same core 
size (k), 𝜎௞,௡ି௞ increase in magnitude with the number of solva-

ting monomers, (𝑛 − 𝑘). The increase is monotonic, but slower 
than linear, e.g., |𝜎ଵ,ଵ| < |𝜎ଵ,ଶ| < |𝜎ଵ,ଷ|, but ห𝜎ଵ,ଷ − 𝜎ଵ,ଶห <

ห𝜎ଵ,ଶ − 𝜎ଵ,ଵห < ห𝜎ଵ,ଵห, as expected in stepwise solvation. On the 

other hand, increasing the core size k, while keeping the number 
of solvent molecules (n  k) constant, decreases the solvation 
energy, as discussed in Sec. 2: |𝜎ଵ,ଵห> |𝜎ଶ,ଵห > |𝜎ଷ,ଵ|.  

Using these parameters, we enumerate the IM interactions in 
the benchmark Xk

Xnk clusters described by the CMMO model. 
The results are presented in Fig. 6, which displays the vertical 
and adiabatic stabilisation trends in the two regimes, plotted ver-
sus the number of solvent monomers, (n  k). (a) and (c) show 
the VSE values, calculated using the expressions from Table 1, 
with parameter sets I and II, respectively, from Table 4. Graphs 
(b) and (d) include the relaxation energies, with one more simp-
lifying assumption: they neglect the relaxation of the neutral 
(solvent) moieties, accounting for the core anion contributions 
only. Guided by the DFT results in Table 3, the following core 
relaxation energies are assumed: 0.25 a.u. for the dimer, 0.30 a.u. 
for the trimer, and 0.35 a.u. for the tetramer. Note that the inclu-
sion of core relaxation does not change the qualitative trends.  

The structural formulas of the clusters are indicated next to 
each data point in Fig. 6. Note that the increase in the VSE/CSE 
values for the purely covalent X1-4

 structures saturates quickly, 
as mentioned in Sec. 4. To help identify the observed trends, two 
types of trend lines are included in Fig. 6. Solid lines track clus-
ters of the same size (n = const), but with varying core anions 
(k), e.g. X3

, X2
X, and XX2. Dashed lines represent stepwise 

solvation of a given core anion (k = const), e.g. X, XX, XX2, 
and XX3. The maximum of each solid curve represents the most 
stable form for that size n. In the relatively weak solvation regi-
me (top half of Fig. 6), the most stable form of n = 2 clusters is 
the covalent dimer, X2

. For n = 3, it is the covalent trimer, X3
, 

while for n = 4, it is the mono-solvated trimer X3
X. Thus, in 

this regime, the formation of covalently bound dimer and trimer 
anions is energetically feasible, but tetramer anions is not. In the 
case of stronger solvation (bottom half of Fig. 6), the picture 
changes. X2

, X2
X, and X2

X2 are the most stable forms of the 
respective n = 2, 3, and 4 cluster anions. That is, of the covalent 
cluster cores, only the dimer, X2

, is favoured by the energetics, 
while trimer and larger polymer anions are not expected to form. 

Summarising the findings, the charge-sharing polymerisation 
beyond dimerisation is favourable energetically only if solvation 
is significantly weaker than IM covalent bonding. With stronger 
solvation, the polymerisation trend is truncated at the dimer 
stage. Extrapolating this trend, we predict that if the IM covalent 
interactions are weak relative to solvation, the monomer anion is 
expected to be the core for all cluster sizes. Again, the trends 

 

Fig. 6. Vertical (left) and adiabatic (right) stabilisation trends for various Xk
Xnk clusters, predicted by the CMMO model with parameter sets I and II in Table 

4, corresponding to relatively weak (top) and relatively strong (bottom) solvation regimes. The VSE and CSE values are plotted versus the number of neutral 
solvent monomers, (n  k). Solid lines n = 2 – 4 represent clusters of the same size (n = const) with varying sizes of the core anion (k). Dashed lines k = 1 – 3 
describe stepwise solvation of a given core anion.  
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shown in Fig. 6 are the CMMO model predictions for the cases 
of pure covalent or pure solvation interactions within each pair 
of monomers. The real clusters may involve admixtures of these 
basic bonding types. As for any resonance, the weights of the 
contributions are dependent on the relative stabilities of the ideal 
structures. We discussed these stabilities using the CMMO 
framework, with the results are summarised in Table 1. Figure 6 
gives two examples of enumeration of these analytic results. 

We should also consider the entropic contributions to cluster 
free energy. Entropy favours less-rigid structures and, therefore, 
smaller-sized cluster cores, creating an additional hurdle for an-
ionic polymerisation. In cases when the stabilisation energies of, 
say, X3

 and X2
X are similar, as in both solvation regimes in 

Fig. 6, entropy will favour the solvated form of the cluster, 
because it corresponds to a larger accessible volume of the con-
figuration space, compared to the more rigid and constrained 
covalent-anion structure. In a similar vein, the limits of electronic 
coherence due to vibronic couplings in large enough systems also 
favour charge localisation and smaller-sized cluster cores. 

Conclusions 
We discussed the formation of weak covalent bonds, responsible 
for anionic dimerisation and polymerisation in cluster environ-
ments. We outlined a new perspective on this problem, by intro-
ducing the coupled-monomers MO model, which relies on the 
first-order separability of inter- and intra-monomer interactions. 
The model offers an approximate description of the inter-mono-
mer covalent bonding in terms of coherent charge sharing. A 
Hückel-style formalism, adapted specifically to weak covalent 
and solvation interactions in clusters, offers insight into the 
competition between these types of interactions. A quantitative 
analysis of the results suggests that under typical conditions in 
common cluster anions, the cumulative effect of solvation tends 
to limit the size of covalently bound cluster cores to monomer, 
dimer, and, in some cases, trimer anions. The stronger the solva-
tion relative to covalent forces, the smaller the sizes of the core 
anions favoured by equilibrium thermodynamics. 
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