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Abstract

We introduce a notion of dimension for the solution set of a system of algebraic
difference equations that measures the degrees of freedom when determining a solution
in the ring of sequences. This number need not be an integer, but, as we show, it
satisfies properties suitable for a notion of dimension. We also show that the dimension
of a difference monomial is given by the covering density of its set of exponents.

Introduction

In the algebraic theory of difference equations there has long been a focus on fields, but
in the last decade the importance of studying solutions of systems of algebraic difference
equations in more general difference rings has more and more been recognized. See e.g.,
[vdPS97, Hru04, Tom14, [Tom16, MS11l DVHW14| (Wib20| [Tom]. In particular, the so-
lution sets of systems of algebraic difference equations in the ring of sequences, which
are of utmost importance from an applied perspective, have been studied in [OPS20] and
[PSW2(0]. Classical difference algebra ([Coh65] [Lev08]) provides a notion of dimension for
a system of algebraic difference equations via the difference transcendence degree of an
extension of difference fields. However, this approach is wholly inadequate for measuring
the size of the solution set in the ring of sequences.

In respect to a system F' of algebraic difference equations, this shortcoming can be
explained via difference ideals and difference Nullstellensatze. In terms of difference ideals,
the solution set of F' in difference fields corresponds to {F'}, the smallest perfect difference
ideal containing F', while the solution set of F' in the ring of sequences, corresponds to
V/[FJ, the smallest radical difference ideal containing . One has \/[F] C {F} but often
this inclusion is strict. Classical difference algebra assigns a dimension to {F'}, it does not
provide a sensible notion of dimension for \/[F].

Let us illustrate the situation with the concrete example F' = {yo(y), yz — zo(z)}. In
a difference field, i.e., in a field equipped with an endomorphism o, the equation yo(y) = 0
implies y = 0. But then the second equation yz — zo(z) = 0 implies that also z = 0. Thus,
in difference fields, the only solution of F'is (y, z) = (0,0) and the corresponding difference
dimension is 0. On the other hand, F' has plenty solutions in the ring of sequences.
Rewriting the system in sequence notation we obtain

YiYir1 =0, Yz — 2izig1 =0 Vi>0. (1)
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For an arbitrary choice of yg,y9,... € C and 21, z3,... € C we have a sequence solution

Yy v 0 y2 0 ... Ny2
<z>_<0 21 0 23 ...>€(C )"
According to our definition, the difference dimension of F'is 1 and this number is obtained
by counting the degrees of freedom when determining a solution to (I): For i > 0, the
maximal number of values of yo,y1,-..,¥:, 20,21, ---,% that can be chosen freely in a
solution (y,z) of () is ¢ + 1. Being able to choose all of these 2(i + 1) values freely
should correspond to difference dimension 2, thus being able to choose i + 1 values freely
corresponds to difference dimension 1.

For a general system F’ of algebraic difference equations, our definition of the difference
dimension of F is

d;
o-dim(F) = lim ===,

where d; is the number of degrees of freedom available when determining a sequence
solution of F' up to order 7. Implicit in the above definition is the important and non-
trivial fact that this limit exists.

The above definition of the difference dimension can be seen as an algebraic version of
the mean dimension, an important numerical invariant of discrete dynamical systems first
introduced by M. Gromov in [Gro99]. Our definition is also in line with the description of
the transformal dimension given by E. Hrushovski in Section 4.1]: “If one thinks
of sequences (a;) with o(a;) = a;+1, the transformal dimension measures, intuitively, the
eventual number of degrees of freedom in choosing a;y1, given the previous elements of
the sequence.”

In case F' is a perfect difference ideal, the above definition agrees with the standard
definition via the difference transcendence degree. Thus, our definition of the difference
dimension provides a meaningful generalization of the standard definition to situations
where the approach via the difference transcendence degree cannot be applied.

For a system I of algebraic difference equations in n difference variables, the difference
dimension of F' takes a value between 0 and n. However, it does not need to be an
integer. For example, the difference dimension of the difference monomial yo(y)...o™(y)
is mLH This corresponds to the fact that when determining a solution to ;441 - .- Yitm =
0, @ > 0, in essence, every (m + 1)-st entry of y has to be zero, whereas all the other
entries can be chosen freely. It is non-trivial to determine the difference dimension of a
general univariate difference monomial. In fact, we will show that the difference dimension
of e (y)Pr... 0% (y)Pm equals 1 — c({a1,...,am}), where c({ay,...,an}) denotes the
covering density of {aq,...,an} C Z, a classical invariant in additive number theory.

Our notion of difference dimension can very conveniently be expressed in terms of dif-
ference algebras. In fact we assign a difference dimension to an arbitrary finitely difference
generated difference algebra over a difference field. Even though this number need not
be an integer, we are able to show that the difference dimension of a finitely difference
generated difference algebra satisfies all the properties one might expect by way of analogy
with the familiar case of finitely generated algebras over a field.

As our difference dimension need not be an integer, it is natural to ask: When is
it an integer and what values can occur? We isolate several cases in which the differ-
ence dimension is an integer. For example, we show that the difference dimension of a
finitely difference generated difference algebra is an integer if the difference algebra can be
equipped with the structure of a Hopf-algebra in such a way that the Hopf-algebra struc-
ture maps commute with 0. We do not fully answer the question which numbers occur as
difference dimensions, but we reduce this question to a purely combinatorial problem.



In this article we are only concerned with ordinary difference equations. That is, we
only consider a single endomorphism o. We think it would be interesting to extend the
definitions and results to the more general case of several commuting endomorphisms
O1y...,0n.

We conclude the introduction with an overview of the article. In Section [1] we make
precise how to count the degrees of freedom when determining sequence solutions and
we define the difference dimension of a system of algebraic difference equations based on
this. In Section 2] we define the difference dimension of a finitely difference generated
difference algebra and show that it has several nice properties, e.g., it is compatible with
base change and additive over tensor products. In Section B we then compare our notion of
difference dimension with two other notions in the literature: The classical one defined via
the difference transcendence degree and the difference Krull dimension defined via chains
of prime difference ideals. In Section |4/ we establish the connection between the difference
dimension and the covering density. Finally, in the last section we discuss which numbers
occur as difference dimension.

The author is grateful to Marc Technau, Lei Fu and the anonymous referees for helpful
comments and suggestions.

1 Counting degrees of freedom in the ring of sequences

In this section we define the difference dimension of a system of algebraic difference equa-
tions by counting the degrees of freedom encountered, when writing down a solution in
the ring of sequences. The reader mainly interested in difference algebras could in prin-
ciple skip this section and be content with the definition of the difference dimension of a
difference algebra given in Section 2l On the other hand, the reader with a more applied
background, mainly interested in solutions in the ring of sequences, might find the defi-
nition of the difference dimension given in this section much more illuminating than the
more abstract approach of Section [2.

1.1 Notation

We start by recalling some basic definitions from difference algebra ([Coh65) [Lev08]) and
by fixing notation that will be used throughout the text. All rings are assumed to be
commutative and unital. N denotes the natural numbers including zero.
A difference ring, or o-ring for short, is a ring R together with a ring endomorphism

o: R — R. A morphism between o-rings R and S is a morphism of rings R — S such
that

R—— S

R——S

commutes. In this situation S is also called an R-o-algebra. A morphism of R-o-algebras
is a morphism of R-algebras that is a morphism of o-rings. The tensor product S1 ®pg S
of two R-o-algebras is an R-c-algebra via o(s1 ® s2) = 0(s1) ® o(s2).

An ideal I in a o-ring R is a o-ideal if o(I) C I. In that case R/I naturally inherits
the structure of a o-ring such that R — R/I is a morphism of o-rings. For a subset F' of
R, the smallest o-ideal of R containing F' is denoted by [F], so [F] = (F,o(F),...).

The o-polynomial ring R{y} = R{y1,...,yn} over a o-ring R in the o-variables
Y1, ., Yy is the polynomial ring over R in the variables o’(y;) (i € N,1 < j < n) with
action of o extended from R as suggested by the names of the variables. The order



ord(f) of a o-polynomial f is the maximal i such that o%(y;) occurs in f for some j.
For f € R{y1,...,yn}, S an R-o-algebra and a = (ay,...,a,) € S™, the expression f(a)
denotes the element of S obtained by substituting o?(y;) with o%(a;) in f.

An R-subalgebra of an R-c-algebra is an R-o-subalgebra if it is stable under o. Let S
be an R-c-algebra and A C S. The smallest R-o-subalgebra of S containing A is denoted
with R{A}. Explicitly, R{A} = R[A,c(A),...]. If there exists a finite subset A of S such
that S = R{A}, then S is called finitely o-generated (over R).

A difference ring R is a o-field if R is a field. An R-c-algebra S with R and S fields
is a o-field extension.

Throughout this article & will denote a o-field and k denotes an algebraic clo-
sure of k. (It is possible to extend o from k to k but we have no need to choose such
an extension.) The Krull-dimension of a finitely generated k-algebra R is denoted with
dim(R).

Let Y be a (not necessarily finite) set of variables over k and let F' C k[Y]. We denote

the set of solutions of F in k' with V(F). Affine space of dimension n over k is denoted
with A" = %"

1.2 Affine sequence solutions

. —N .7 . . . o
We consider the set & of sequences in k as a o-ring with componentwise addition and
multiplication and o given by the left-shift o((a;);en) = (ai+1)ien. Moreover, we consider

E asa k-o-algebra via k — EN, A+ (0%(N))ien. For asubset F of k{y1,...,y,} we define
the set of affine sequence solutions of F' as

Sol*(F) = {a e (k)" fla)=0V f e F}.
Note that (EN)N can be identified with (A™)N. For

—N\n n
a= (aivj)(i,j)eNx{l,...m} € (k ) = (AN

and f € k{y1,...,yn} one has f(a) =0 ¢ E ' if and only if 0*(f)(a) = 0 € k for all i € N.
Thus
Sol*(F) = Sol*([F]) = V([F]) C (A")".

For a finite subset 7' of N x {1,...,n} we set yr = {o'(y;)| (i,5) € T} and
Sol (F) = V([F) N klyr]) € AT,
where AT is an affine space of dimension |T|. The projection maps

(An)N - AT’ (ai,j)(i,j)eNx{l,...,n} = (ai’j)(i,j)GT

induce maps
77 Sol*(F) — Soly(F).

As a first approximation to counting the degrees of freedom encountered, when writ-
ing down an affine sequence solution of F', one may feel tempted to say that T is free
with respect to F if every ar € AT extends to an affine sequence solution of F, i.e., if
77 (Sol®(F)) = AT. Or, in other words, if the initial value problem

fla)y=0V feF, nr(a)=ar

has a solution a € (EN)TL for all ap € AT. However, as illustrated in the following simple
example, such a definition would be too stringent.



Example 1.1. Let us consider the affine sequence solutions of the o-polynomial f =
y10(y1) — 1 over (k,0) = (C,id). A sequence a = (a;)ieny € CV is a solution if and only if
a;a;+1 = 1. Thus

Sol®(f) = {(ao,ag*,a0,ag’,...) | ap € C~ {0}}.

Intuitively, we should count one degree of freedom here because ag can be chosen more or
less arbitrarily and then all the other coefficients are determined, i.e., 7' = {0} should be
considered to be free. However, ag = 0 does not extend to an affine sequence solution.

The above example also shows that in general the projection maps mr: SOlA(F ) —
Sol4(F) are not surjective. Moreover, as illustrated in the following example, the image
of 7 is in general not a constructible subset of the algebraic variety Solf(F).

Example 1.2. We consider the system F' = {o(y1)—y1—1, y1y2—1} over (k,o0) = (C,id),
which we may rewrite more succinctly as

Y1i+1 = Y1 + 1,
Y1,iY2: = 1.

Clearly y2; is determined by y1,; and y;; is determined by w1 ;—1, so the only freedom
available when determining an affine sequence solution of F' is the choice of y; g. But not
all choices of y1 o yield a solution. Indeed, y; o € C extends to an affine sequence solution of
F if and only if y1 o # —n, for n € N. In other words, the image of w7 : Sol®(F) — Sol4(F)
for T'={(0,1)} is C ~. {—n| n € N}, which is not a constructible subset of C.

Even worse, as explained in the following example, the image of mp: SolA(F ) —
Sol4(F) need not be Zariski dense in Sol%(F). We will see in Subsection [L.5 that such a
pathology cannot happen if k& is uncountable.

Example 1.3. We will not explicitly write down such an example but rather give an
abstract argument why such an example exists. Using ideas and methods from
it would in principle be possible to write down an explicit example but that would be
extremely tedious.

It is shown in Theorem 3.2] that there exists an integer n > 1, a finite set F' C
E{y1,...,yn} of o-polynomials over (k,o) = (Q,id) and a o-polynomial g € k{y1,...,yn}
such that g vanishes on every element of Sol®(F) but g ¢ VIF]. Let T C N x {1,...,n}
be such that g € k[yr]. We claim that the image of 77: Sol®(F) — Sol%(F) is not Zariski
dense in Sol%(F). As g vanishes on Sol*(F), we see that the image of 77 is contained in

V(g) € AT. On the other hand, as g ¢ \/[F], we also have g ¢ \/[F] N k[yr]. So g does
not vanish on Sol4(F). We conclude

7 (Sol*(F)) € V(g) & Sol&(F).

Thus 77(Sol*(F)) is not Zariski dense in Sol(F).

1.3 Projective sequence solutions

We have seen above that for a finite subset 7' of N x {1,...,n}, the set of elements of
Sol4(F) that extends to an affine sequence solution of F, is in general not Zariski dense
and not constructible. In this section we show that the situation can be improved by
allowing projective sequence solutions instead of just affine sequence solutions: The set
of all elements of SOIJAw(F ) that extend to a projective sequence solution of F' contains an
open Zariski dense subset of Sol%:(F) (Lemma [L9).

We write P" = P"(k) for n-dimensional projective space over k.



Remark 1.4 (Multiprojective space). Let n,r > 1. The closed subsets of the algebraic
k-variety P* x ... x P" = (P")" are exactly the solution sets of systems of multiho-
mogeneous polynomials (cf. [Shal3, Chapter 1, Section 5.1]). Here a polynomial f €
E[Y1.05- s YLy« -3 Yr0s - - - Yrm] 18 called multihomogeneous of multidegree (di,...,d,)
if f is homogeneous of degree d; in the variables y; o, ...,Yin fori=1,...,r. For a set I/
of multihomogeneous polynomials we write V(F) for the closed subset of (P™)" defined by
F. We consider A" x ... x A" = (A™)" = A™ as an open subset of (P")" via the embedding

(((J,l,l,... ,al,n),...,(ar,l,... ,ann)) — ((1 tapy .. Cle),...,(l BN B ann)).

Then (P™)" is the union of (A"™)" and the points at infinity Vi (y1.0---Yro)-
Let f € klyi1,--- Yins-->Yrls---Yrn] and for i =1,...,r let d; denote the degree
of f in Vi1, Yin. The multihomogenization f* € k[y1.0,-- Y1y sUr0s--rYrn] of f

1s defined as
h _ ,di dy Y11 Yi,n Yr,1 Yrn
f - yl,OyT’,O (yl,()7...7 yl,O””’yr,()’.”7 yT,O)'

For a closed subset X of (A™)", the closure X of X in (P™)" equals V*(I(X)"), where
I(X) Ch[Yias - s YlmseeesYrlsesYrn] is the defining ideal of X and I(X)" = {f"| f €
I(X)}.

Let N[o] denote the set of polynomials in the variable o with natural number coeffi-
cients. We consider N[o| as an abelian monoid under addition. The o-polynomial ring
kE{yo,-..,yn} has a natural N[o]-grading that we shall now describe. We define the o-degree
of a o-monomial as

T n ) T n )
o-deg HHal(yj)ai’j :Z Zam o'.

i=07=0 i=0 \ j=0

A o-polynomial f € k{yo,...,yn} is o-homogeneous of o-degree o-deg(f) = d € N[o]
if all o-monomials of f have o-degree d. Thus f is o-homogeneous if and only if f is
homogeneous in o(yg),...,0 (y,) for every i € N. Note that every o-polynomial f €
k{yo,...,yn} can uniquely be written as a sum of o-homogeneous o-polynomials.

Let f € k{y1,...,yn} be of order 7, (so f = f(y1,---+Yn,---,0"(¥1),...,0"(yn)) and
for i = 0,...,r, let d; denote the degree of f in the variables ¢'(y1),...,0'(y,). The
o-homogenization f" € k{yo,...,yn} of f is defined as

h d, r dr n a” o (yn
=y ...0" () f(Z—é,...,z—O,...,orgég,...,UT.((ZO))).

For a subset F of k{y1,...,yn} we set F" = {f""| f € F}.
Example 1.5. We have (y10(y1) — 1)" = y10(y1) — voo(yo)

For i € N, the grading on k[yo, ..., Yn,---,0(%0), -+, (yn)] € k{v0,--.,yn} induced
by the Nlo]-grading on k{yo,...,yn}, exactly corresponds to the multidegree as in Re-
mark [[L4l Thus, a set of o-homogeneous o-polynomials of k{yo,...,y,} of order at most
i, defines a closed subset of (P7)*+1.

We note that if f € k{yo,...,yn} is o-homogeneous of degree d = d,o" + ... + dy
and a = (ag,...,a,) € k"L, then f(Aa) = A0 ...0"(\)% f(a) for all A\ € k. Thus the
expression f(b) = 0 is well-defined for b € P (k). On the other hand, we can also consider
f as a multihomogeneous polynomial in the variables Ji(yj) (rather than as a difference
polynomial) and in this context the expression f(a) = 0 is well-defined for any a € (]P’")N.



Let, as in Subsection[L.2] F' be a subset of k{y1,...,yn}. The set of projective sequence
solutions of F is

Sol?(F) = {a € (IP’")N\ fla)=0V f e [F]h}
For i€ Nlet T; ={0,...,i} x {1,...,n} and

Sol (F) = V*(([F] nklyr))") € (B")"+.

Thus, Solf(F) is the closure of Solewi(F ) in (P*)**! (Remark [L4). Since [F] N klyrn] C
[F] N klyr,,,], the maps (P™)"2 — (P™)"F!, (bg,...,bit1) = (bo, ... ,b;) induce maps

Ti41,i- SOIIZ-[:_l(F) — SOIIZP(F)
The standard embedding A" — P" (ay,...,a,) — (1 : a1 : ... : ap) yields an
inclusion (A™)N C (P™)N, which, in turn, induces an inclusion Sol®(F) C Sol”(F). Also,
the projection maps

(]Pm)N — (Pn)i+1, (bo, bl, .. ) —> (bo, e ,bl)

induce maps 7;: Sol® (F) — Sol; (F)). We have commutative diagrams

Sol#(F)—— Sol” (F) and Solf, ,, (F)——Sol},; (F) (2)
N e
Soly, (F)—— Sol; (F) Solf, (F)—— Sol! (F).

However, note that for an arbitrary finite subset 7" of N x {1,...,n}, there may not be

a projective version of the map 7p: Sol®(F) — Sol4(F), because there are no projective
analogs of the coordinate projections on A™.

Lemma 1.6. The projection maps m;: Sol® (F) — Sol} (F) are surjective.

Proof. Note that b € (P™)N lies in Sol”(F) if and only if 7;(b) € (P")™! lies in Sol} (F)
for every i € N. In other words, Sol”(F) can be identified with the inverse limit of
the Sol; (F)’s. It thus suffices to show that the maps m;41,;: Soli,;(F) — Sol}(F), are
surjective. The inclusion

klyr]/(klyr] 0 [F]) < klyz o]/ (Klyra, ] 0 [F)

of finitely generated k-algebras, corresponds to a dominant morphism of affine k-schemes.
Therefore, also the morphism Sol%_+ L(F) — SOI%_(F ) of affine k-varieties is dominant. As
Solf (F) is the closure of Solewi(F ), this and the commutativity of (2), implies that also
Ti+1,; is dominant. Projective space is complete and so are products and closed subvarieties
of complete varieties. Thus Sol]irl(F ) is complete. Since the image of a complete variety
under a morphism is closed, it follows that ;11 ; has a dense and closed image. Therefore
Ti+1, 18 surjective. O

As discussed in Section [1.2] for a finite subset 7" of N x {1,...,n}, the set of elements
of AT that extend to an affine sequence solution of F' is not so well-behaved. In particular,
it need not contain a non-empty open subset of SOIJA«(F ). To remedy this situation (see
Lemma [L.9] below), we consider the possibility of extending elements of AT to projective
sequence solutions of F.



Definition 1.7. Let F C k{y1,...,yn} and let T be a finite subset of N x {1,...,n}. An
element a = (a; ;) jer € AT extends to a projective sequence solution of F, if there
exists b= (bio: ... : bin)ien € Sol' (F) C (P")N such that a; j = b; j for all (i,7) € T and
bio =1 for all i € N with (i,j) € T for some j.

Clearly, if a € AT extends to an affine sequence solution of F, then a also extends
to a projective sequence solution of F. On the other hand, an a € AT that extends to
a projective sequence solution of F' need not extend to an affine sequence solution of F,
since projective sequence solutions allow the possibility of b; o = 0 as long as (i,j) ¢ T for
all j € {1,...,n}.

Lemma 1.8. Ifa € AT extends to a projective sequence solution of F, then a € SOIJA«(F).

Proof. Assume that a = (a; ;)i jer € AT extends to a projective sequence solution of
F and let f € [F] N klyr]. Moreover, let b = (big : ... : bin)ien € Sol'(F) be as in
Definition [L.7l Let I be the smallest subset of N such that T C I x {1,...,n}, ie,
I={ieN|3je{l,...,n}suchthat (i,5) € T}. Since every element of [F]"* vanishes
on b, we see that f" € klo®(y;)| (i,7) € I x {0,...,n}] vanishes on ((big : ... : b;in))ier €
(P, Since f € k[yr], the polynomial f” only involves the variables o (yo), (i € I) and
a'(y;), ((i,j) € T). Since a;; = b;; for (i,5) € T and b;g = 1 for i € I, we see that
f(b) = 0 implies f(a) = 0. So a € Sol4(F). O

Lemma 1.9. Let F C k{y1,...,yn} and let T be a finite subset of N x {1,...,n}. Then
there exists an open Zariski dense subset U of Sol%(F) such that every a € U extends to
a projective sequence solution of F.

Proof. Let i € N be such that T C T; = {0,...,i} x {1,...,n}. The inclusion

klyr]/(klyr] N [F]) < klyr,]/(klyr,] 0 [F])

of finitely generated k-algebras, corresponds to dominant morphism of affine k-schemes.
Therefore, also the morphism 77, 7 SOIJA«Z_ (F) — Solf(F) of affine k-varieties is dominant.
By Chevalley’s theorem (see e.g., [Gec03, Theorem 2.2.11]) the image of a morphism of
varieties is constructible. So the image of 7, 7 is a Zariski dense, constructible subset
of Sol4:(F). Tt therefore contains a subset U that is open and Zariski dense in Sol4(F).
Thus, every a € U extends to some a € Sol%_ (F). Via the embedding SOIJA«Z_ (F) — Sol’ (F)

we obtain an element b € Sol} (F) from @ € Sol% (F'). By Lemma [1.6] there exists a
b € Sol®(F) mapping to b € Sol} (F'). This b has the required property of Definition[L.7l O

1.4 Free sets and difference dimension

We are now prepared to specify precisely how to count the degrees of freedom when
determining sequence solutions.

Proposition 1.10. Let F C k{yi,...,yn}. For a finite subset T of N x {1,...,n} the
following conditions are equivalent:

(i) There exists a Zariski dense open subset U of AT such that every a € U extends to
a projective sequence solution of F'.

(i) Sol%(F) = AT,

(iii) k[yr] N [F] = {0}.



(iv) The image of yr in k{y1,...,yn}/[F] is algebraically independent over k.

Proof. Let U be as in (i). By Lemma [L8 we have U C Sol4:(F) € AT, Since U is Zariski
dense in AT and Sol%(F) is closed in AT, we see that Solf(F) = AT. So (i)=(ii). On
the other hand, (ii)=(i) by Lemma[1.9. Clearly, (iv) and (iii) are equivalent. Moreover,
(i) < (i) by definition of Sol4:(F). O

Definition 1.11. Let F C k{y1,...,yn}. A finite subset T of N x {1,...,n} is free with
respect to F if it satisfies the equivalent properties of Proposition [L.10.

In Section below we will obtain yet another characterization of free sets. We next
look at a couple of examples to familiarize ourselves with the definitions introduced above.

Example 1.12. Let us return to Example [LL1l So F' = {y10(y1) — 1}. We have already
seen that for T = {0} every non-zero ag € C = AT extends to an affine sequence solution.
Thus T = {0} is free with respect to F. The element ag = 0 € AT does not extend to an
affine sequence solution but it extends to the projective sequence solution

((1:0),(0:1),(1:0),(0:1),...) e (PHN.
Indeed, for ¢ > 1 and T; = {0, ...,i} we have
SOI%_(F) = {(ag,a5",...,af")| ap € C~ {0}} C AT

and Sol} (F) is obtained from Solewi(F) ~ Al < {0} by adding two points, ((1 : 0),(0 :
1),...) € (PY)™*! corresponding to the missing origin of Al ~ {0} and ((0 : 1),(1 :
0),...) € (P1)"™! corresponding to the missing point at infinity of Al \ {0}. This shows
that Sol”(F) ~ P! is obtained from Sol®(F) ~ A' ~ {0} by adding two points, namely

((1:0),(0:1),...)and ((0:1),(1:0),...) e (PHN.

Note that Sol”(F) C (P1)N can also be described as the solution set of the multihomo-
geneous polynomials

o' (y1o(y1) — yoo(yo)) = o (1) (y1) — o* (yo)o" ' (wo), (i > 0).

Every one-element subset T" of N is free with respect to F' but no subset of N with two
or more elements is free. So, clearly, there is only one degree of freedom that should be
counted in this example.

Example 1.13. Let us also revisit Example[1.2l So F' = {o(y1) —y1 — 1, y1y2 — 1}. For
T, ={0,...,i} x {1,2} we have

Solls (F) = {<a?1 (a‘fl)l_l - (afz.;_l) laccy {0,—1,...,—2'}} C (A2)itL,

So Sol%_ (F) ~ A~ {0,...,—i} and Sol} (F) ~ P! is obtained from Solf[Avi(F) by adding
i+ 2 points at infinity. These are

((a:a®:1), (a+1:(a+1)*:1),..., (a+i:(a+1i)?:1)) € (BT
where a =0, ..., —i, corresponding to the missing points {0, ..., —i} and the point

((0:1:0),(0:1:0),...,(0:1:0)) € (P>,



corresponding to the missing point at infinity. To explicitly describe Sol} (F) C (P?)i+!
set X = Vh(y1y2 — 42) = VA((y1y2 — 1)) € P2. Note that X is isomorphic to P! (via
P! — X, (a:b)+ (ab:b?:a?)) and that

N

commutes, where A! < P!, a + (1 : a) is the standard embedding and A' < X, a + (a :
a? : 1) extends Al < {0} ~ V(y1y2 — 1) = X. The automorphism p: Al = Al a+sa+1
extends to an automorphism p: X — X. We claim that

X

Sol]f(F) = {(:E,p(x), e ,pi(:n)) S (P2)i+1| T € X}. (3)

The right-hand side of (3) is closed in (P?)"*! and, by construction, it contains the image of
Solf, (F) in (P2)i*1. In fact, {(z,p(z),...,p'(z)) € (P?)"*!| z € X} ~ X ~ P! is obtained
from Solewi(F ) =~ A1~ {0,...,—i} by adding the i+ 2 points described above. This implies
(3). Similarly,

Sol®(F) = {(a‘fl (aa—|—+1)1_1 o > € (AQ)N\ aeC~{-n|ne N}} C (AHN

is in bijection with A! \ {—n| n € N} and
Sol*(F) = { (@,p(x),p*(2),...) € (P w € X} € ()"

is in bijection with P!. So we obtain Sol®(F) from SOIA(F ) by adding infinitely many
points, namely, ((0:1:0),(0:1:0),...) € (P*)N and

((a:a®:1), (a+1:(a+1)%:1),..., )€ (P,

where a = 0,—-1,-2,....
Note that, in general, for F' C k{yi,...,y,} we have an inclusion

SolP(F) = {a e (PN fla)=0V fe [F]h} c {a e (PN o' (f)(a) =0V fe F", ic N} .
However, this inclusion can be strict. Indeed, in the present example, the point
a=((0:1:0),(0:0:1),(0:0:1),...) € (PN

is a solution to o' (y1y2 — y3) and o' (o (y1)yo — y10(yo) — Yoo (yo)) for all i € N but a does
not belong to Sol” (F) because p(0:1:0) = (0:1:0)# (0:0:1). Of course, this can
also be seen in terms of the equations: From o(y1)o(y2) —1 € [F] and o(y1) —y1 — 1 € [F]
we obtain (y; + 1)o(y2) — 1 € [F]. Therefore f = o(yo)ys + o(y2) — 1 € [F] but f* =
o(y2)y1 + o(y2)yo — yoo(yo) does not vanish on a.

For T = {(1,0)}, the set of all a € AT = C that extend to an affine sequence solution
of F'is C \ {—n| n € N}, which does not contain a non-empty Zariski open subset. The
set of all a € AT = C that extend to a projective sequence solution of F is C~ {0}, which
is Zariski open: Indeed, for a € C ~ {0} the point

b=by=((a:a*:1), (a+1:(a+1)?*:1),..., )€ P

10



is a projective sequence solution of F' that extends a because (a :a’:1) = (1:a:a™').
The point a = 0 € AT does not extend to a projective sequence solution of F' because the
equation y1y2 — y% = 0 does not have a solution with yg = 1 and y; = 0. This shows that
in Lemma one cannot choose U = Sol%:(F) in general. So T = {(0,1)} is free with
respect to F. More generally, every one-element subset of N x {1,2} is free with respect
to F' but no subset with two or more elements is free with respect to F. To see this,
note that for a one-element subset 7' of N x {1,2}, all elements of AT \. {0} extend to a
projective sequence solution of F: For T = {(i,1)}, b,_; extends a € AT ~ {0} and for
T = {(i,2)}, by-1_; extends a € AT \ {0}. No subset with two or more elements can be
free because Sol; (F) ~ P! is one dimensional for every i € N. Alternatively, for any two
distinct elements in {y1,y2,0(y1),0(y2),...} we can always find a non-zero polynomial in
[o(y1) —y1 — 1, y1y2 — 1] that only contains those two elements. So condition (iii) of
Proposition [L.10! is violated.

Example 1.14. Let f = 0™ (y1) + Am_10™"(y1) + ... + Agy1 be a homogeneous linear
difference polynomial over k. Then every a = (ag,...,am-1) € k" extends to an affine
sequence solution via the recursive formula a,,1; = Ji(/\m_l)am_1+i +...+ ai(/\o)ai for
i >0. Thus T = {0,...,m — 1} is free with respect to F' = {f}. On the other hand, no
subset of N containing more than m elements is free with respect to f. So, overall, we
count m degrees of freedom.

The same reasoning applies to any order m difference polynomial of the form f =
o™ (y1) + 91, .-, o™ (y1)).

Example 1.15. Let f = yi0(y;1) over (k,0) = (C,id). A sequence a = (ag,a1,...) € CN
is an affine sequence solution if and only if a;a;,.1 = 0 for ¢ > 0, i.e., if every second entry
is zero. For m > 0 the sets T'={0,2,4,...,2m} and T'={1,3,...,2m + 1} are free with
respect to f but no subset of N containing two consecutive integers is free with respect to

f.

As in the above example, for a general system F' C k{yj,...,yy} of algebraic difference
equations one expects to encounter infinitely many degrees of freedom, when writing down
a solution in the ring of sequences. Thus, to count them in a reasonable fashion, we need
to count them asymptotically. For ¢ > 0,

di(F) =max {|T| | T €{0,...,i} x {1,...,n} is free wr.t. F}

counts the degrees of freedom up to order i. To obtain a value between 0 and n we

normalize d;(F') appropriately, i.e., we consider 0 < di"ﬁ) <n.

Definition 1.16. Let F C k{y1,...,yn}. In Corollary[Z9 below it is shown that

o-dim(F) = lim i(F)

i—oo 1+ 1

exists (inside R). We call this limit the o-dimension of F.

Note that by construction o-dim(F') = o-dim([F]) and 0 < o-dim(F) < n for F' C
E{y1,...,yn}. In Section Bl we will compare o-dim(F") with other notions of dimensions in
difference algebra. In particular, we will show that our definition agrees with the standard
definition via o-transcendence bases whenever the latter notion applies.

Example 1.17. For the sets F' in Examples [1.12] and [1.13] we have d;(F) = 1 for all
i > 0 and so o-dim(F) = 0. Also for F' as in Example [L.14] d;(F") is bounded and so
o-dim(F) = 0. For F' = {0} C k{y1,...,yn} one has d;(F') = n(i+1) and so o- dim(F) = n
as expected.

11



The following example shows that o-dim(F') does not need to be an integer.

Example 1.18. As in Example[l.15/]let F' = {y10(y1)}. For i > 0 even we have d;(F) =

and for i odd we have d;(F) = %2, So o- dim(F) = lim;_, % =1

DN

In Section € we will determine the o-dimension of a general univariate o-monomial.
Moreover, since the o-dimension is not necessarily an integer it is natural to wonder which
numbers occur. This question will be addressed in Section [5l

1.5 A characterization of free sets in terms of affine sequence solutions

To complement Definition [LL11] we deduce in this subsection a characterization of free
sets that avoids projective sequence solutions. In fact, we show that, at least over an
uncountable o-field k, T C N x {1,...,n} is free with respect to F' C k{y1,...,y,} if and
only if the set of all @ € AT that extend to an affine sequence solution of F is Zariski dense
in AT,

To also have a statement available for arbitrary o-fields k, we fix an uncountable
algebraically closed field K containing k as a subfield and we consider all solutions sets over
K. For example, if k is uncountable, we could choose K = k. Similarly to Subsection 2]
we consider K™ as a k-o-algebra via o ((a;)ien) = (@is1)ieny and & — KN, X (6°(N))sen.
We set A = K™ and for F C k{yi,...,yn} we set

Sol*¥(F) = {a € (K")"| f(a) =0V f € F} = V([F]) C (A})".
For a finite subset 7' of N x {1,...,n} we define
Soly (F) = V([F] N klyr]) € Ak
Lemma 1.19. The image of Sol* (F) in SOI&%K(F) is Zariski dense.

Proof. Let g € K[yr] be a polynomial that vanishes on Sol*% (F). We have to show that
g also vanishes on Sol?” (F).

There is a (strong) Nullstellensatz for polynomials in an arbitrary set of variables Y’
([Lan52]). It states that for an algebraically closed field K with |K| > |Y], a polynomial
h € K[Y] vanishes on all solutions of H C K[Y]in K if and only if h € \/(H). Therefore
g € (F,0(F),...) C K[o'(y;)| (4,57) € Nx{1,...,n}]. Thus ¢" € (F,o(F),...) =
[F]or K C k{y1,...,yn} ® K for some m > 1. Since g € K|yr] = klyr| ®; K, it follows
that

9" € ([Fl @y K) N (klyr] @x K) = (F] 0 k[yr]) ©x K S k{yr, . yn} Ok K.
Thus g™ vanishes on Sol?K (F) and therefore also g vanishes on SOIE,AWK (F). O

In [Lan52] it is shown that the cardinality assumption |K| > |Y| in the above proof
is necessary for the Nullstellensatz in infinitely many variables. In fact, Lemma [1.19] does
not hold without the assumption that K is uncountable (Example [1.3]).

Corollary 1.20. Let F C k{yi,...,yn} and let T be a finite subset of N x {1,...,n}.
Then T is free with respect to F if and only if the image of SOIAK(F) n A%} 18 Zariski
dense.

Proof. A polynomial in [F]N k[yr] vanishes on the image of Sol*% (F)) in AT Thus, if the
latter is Zariski dense in A%, then [F] N k[yr] = {0} and so T is free with respect to F
(Proposition [1L.10]).

On the other hand, if T is free with respect to F, then [F] N klyr] = {0} and so
Sol‘%K (F) = A%. Thus the image of Sol*% (F) in AL is Zariski dense by Lemma[L19l O
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2 The difference dimension of a difference algebra

In this section we introduce the o-dimension o-dim(R) of a finitely o-generated k-o-
algebra. We then show that, despite the fact that o-dim(R) need not be an integer, it
satisfies many properties similar to the familiar case of finitely generated algebras over a
field. For example, the difference dimension is compatible with tensor products and base
change. For F' C k{yi,...,yn} we have o-dim(F) = o-dim(k{yi,...,yn}/[F]) and so
results about the o-dimension of o-algebras have immediate corollaries for the o-dimension
of systems of algebraic difference equations.

2.1 Recollection: Dimension of algebras

Before defining the o-dimension, we recall some well-known properties of the Krull dimen-
sion for finitely generated algebras over a field. (See, e.g., Sections 8 and 13 in [Eis04]).
This will be helpful for two reasons. Firstly, we will use these results in our later poofs
and secondly, some of our results are difference analogs of these classical results about the
Krull dimension.

Recall that the Krull dimension dim(R) of a ring R is defined as the supremum over
the lengths n of all chains po S p1 G ... S pp of prime ideals in R. For finitely generated
algebras over a field, this supremum is finite and can be described through algebraically
independent elements:

Proposition 2.1. Let R be an algebra over a field k and let A be a finite subset of R such
that R = k[A]. Then

dim(R) = max{|B| | B C A, B is algebraically independent over k}. (4)

In particular, if R is an integral domain, then dim(R) equals the transcendence degree
of the field of fractions of R over k.

Proof. See [Sta20, Tag 00P0] for a proof that dim(R) equals the transcendence degree of
the field of fractions of R over k in case R is an integral domain. In general, let d denote
the value on the right hand side of equation (4). From the definition of dim(R), it follows
that dim(R) = dim(R/p) for some minimal prime ideal p of R. Since the image of A in R/p
generates the field of fractions of R/p as a field extensions of k, it contains a transcendence
basis. So we may choose B C A such that the image of B is a transcendence basis of the
field of fractions of R/p over k. Then |B| = dim(R/p) = dim(R). Since the image of B in
R/p is algebraically independent over k, also B itself is algebraically independent over k.
Therefore, dim(R) < d.

Conversely, assume that B C A is algebraically independent over k and |B| = d. Then
k[B] is a polynomial ring in d variables. In particular, it is an integral domain. For any
inclusion of rings 57 C S5, any minimal prime ideal p; of S is of the form p; = po N 5
for some prime ideal ps of Sy ([Bou72, Chapter II, §2.6, Prop. 16]). Applying this to
k[B] C R with p; the zero ideal of k[B], we find a prime ideal p of R with p N k[B] = {0}.
So k[B] embeds into R/p and it follows that the transcendence degree of the field of
fractions of R/p over k is at least |B|. So, using [Sta20, Tag 00P0] again, we obtain
d = |B| < dim(R/p) < dim(R). Altogether, we obtain dim(R) = d as desired. O

The following lemma explains the behavior of Krull dimension under morphisms.
Lemma 2.2. Let R and S be finitely generated k-algebras.

(i) If there exists an injective morphism R — S of k-algebras, then dim(R) < dim(S).
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(ii) If there exists a surjective morphism R — S of rings, then dim(R) > dim(.5).

Proof. For (i), note that a finite generating set A of R can be extended to a finite generating
set of S. An algebraically independent subset of A remains algebraically independent in
S by the injectivity of R — S. Thus the claim follows from Proposition [2.1]

Claim (ii) follows from the fact that prime ideals in S are in bijection with prime ideals
in R containing the kernel of R — S. U

The Krull dimension is additive with respect to the tensor product:

Lemma 2.3. Let R and S be finitely generated k-algebras. Then dim(R®y S) = dim(R)+
dim(S).

Proof. Let A C R and B C S be finite such that R = k[A] and S = k[B]. Set C =
{a®1la e A}U{1®b| be B}. Then k[C] = R®y; S and a subset C’ of C' is algebraically
independent over k if and only if A’ ={a € Ala®1€ C'} and B ={be B|1®be C'}
are algebraically independent over k. Therefore |C’| is maximal if and only if |A’| and | B’|
is maximal. So the claim follows from Proposition [2.1. U

The Krull dimension is invariant under base change:

Lemma 2.4 ([Sta20, Tag 00P3]). Let k' /k be a field extension and R a finitely generated
k-algebra. Then dim(R ®j k') = dim(R).

Taking the quotient by the nilradical does not affect the Krull dimension:

Lemma 2.5. Let R be a finitely generated k-algebra and Ryeq = R/\/0 the quotient of R
by the nilradical /O of R. Then dim(Ryeq) = dim(R).

Proof. The nilradical v/0 is contained in every prime ideal of R. ]

2.2 Difference dimension of difference algebras

We first show that the limit from Definition [L.16] exists. To achieve this we will use the
following well-known elementary lemma. See, e.g., [DGS76l Prop. 10.7].

Lemma 2.6 (Fekete’s Subadditive Lemma). If (e;)i>1 s a sequence of non-negative real
numbers that is subadditve, i.e., e;1; < e;+e; for alli,j > 1, then lim; e—; exists (inside
R) and is equal to inf <.

The following theorem allows us to define a meaningful notion of o-dimension for any
finitely o-generated k-o-algebra.

Theorem 2.7. Let R be a finitely o-generated k-o-algebra. Choose a finite subset A of R
such that R = k{A} and set d; = dim(k[A, ... ,0'(A)]) for i > 0. Then the limit

d= lim ,di

i—oo 1+ 1
exists (inside R) and does not depend on the choice of A.

Proof. As the first step, we will show that we can assume without loss of generality that k is
inversive. Let k* denote the inversive closure of k ([Lev08| Def. 2.1.6]) and set R’ = R®yk*.
Then A’ = {a ® 1| a € A} o-generates R’ over k*. Set d; = dim(k*[A/,...,d"(A")]) for
i>0. As K*[A,... 0" (A")] = k[4,...,0"(A)] @ k* we have d; = d. for i > 0. So, we can

assume that k is inversive.
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To show that lim;_,o ii—il exists, it suffices to show that the sequence (¢;);en = (di—1)ien
is subadditive, because then

lim - -
i—oo 1 + i—oo 1—00 1

exists by Lemma [2.6l Let 7,5 > 1. Since k is inversive, the map
o k[A, ..., 07T A)] = k[ot(A),..., 0TI (A)]

is surjective. Thus dim(k[o?(A),...,0c"771(A)]) < dj—1 = e; by Lemma [2.2] (ii). The
canonical map

E[A, ..., 0" Y A)] @k ko' (A),..., " T HA)] — k[A, ..., o1 (A)]

is also surjective. Therefore, using Lemma [2.2] (ii) and Lemma [2.3] we find

eir; < e +dim(k[o"(A),...,c T A)]) < e + ey

It remains to show that d = lim;_ Z.i—il does not depend on the choice of the o-
generating set A. This is similar to Prop. A.24] but we include the argument
for the sake of completeness. So let A’ C R be another finite set such that R = k{A’} and
set d; = dim(k[A',...,0%(A")]) for i > 0. Then A’ C k[A,...,07(A)] for some j > 0 and
therefore k[4',...,0%(A")] C k[A,...,0"™(A)]. Thus d; < d;+; by Lemma 22(i).

If B is an algebraically independent subset of AU ...U o™ (A) such that |B| = d;4;,
then BN (AU...Ud%(A)) is an algebraically independent subset of AU ... U c%(A) and
therefore [BN (AU...Ud%(A))| < d; by Proposition 2.1l Thus

dir; =Bl < [BN(AU...UG'(A)] +|B N (0™ (A)U...Uo™ ()] < d; + |Alj.
So : )
‘di < divj _ ‘dz' ’A\J'
1+1 —4+1 " ¢+1 i+1

|Alj

Since lim;_, 71 =0, 1t follows that lim;_, Z.i—il < limy_y o 2 O

Definition 2.8. Let R be a finitely o-generated k-o-algebra. The real number d > 0
defined in Theorem|2.7 above is called the o-dimension of R. We denote it by o-dim(R).

We note that the idea to consider the sequence Zi"l already appears in [DVHW14

A 7). There, the o-dimension is defined as |limsup;_, . Zi—llj and it is shown ([DVHW14]
Prop. A.24]) that limsup,_, ., ii—il does not depend on the choice of the finite o-generating
set. Here |x] is the floor of z, i.e., the largest integer not greater than x. Theorem [2.7
shows that there is no need to consider the limes superior since indeed the limit exists.

The floor of the limes superior was taken in simply to obtain an integer
value. The dimension of an algebraic variety is always an integer and so it may seem
natural to also only allow integer values for the dimension in difference algebraic geometry.
However, omitting the floor function makes the invariant stronger: Two difference algebras
with distinct difference dimensions cannot be isomorphic and not using the floor allows us
to recognize more difference algebras as non-isomorphic.

Moreover, while non-integer values for the dimension may look unusual to the alge-
braist, in discrete dynamics, it is very common to consider numerical invariants that are
not necessarily integers, for example, the topological entropy and the mean dimension
need not be integers. In fact, our notion of difference dimension can be seen as an al-
gebraic version of mean dimension. Mean dimension was first introduced by M. Gromov
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in [Gro99] and curiously enough, in Section 0.7 he writes: “The present notion of mean
dimension(s) arose from my attempts to geometrize the algebraic and model theoretic con-
ceptions of dimensions over difference fields.” We note that [Gro99] is mainly concerned
with compact metric spaces but as pointed out in Section 1.9.3 and remark On extension
of Prodim to Nontoplogical Categories right before Section 1.9.7 in [Gro99], some defini-
tions and constructions there, also make sense in some algebraic categories. Our definition
of difference dimension is more or less the same as the definition of projective dimension
in |Gro99, Section 1.9], a quantity closely related to the mean dimension. To make the
connection between the two definitions, note that in [Gro99] the base difference field k
is assumed to be constant, i.e., o: k — k is the identity map. To match the notation in
the beginning of [Gro99, Section 1.9] replace the group I' there with the monoid N and
set Q; = {0,...,i} for i € N. Moreover, choose X = A" so that X = X' = (A")N. For
F C k{y1,...,yn} (as in Section [I) set Y = Sol*(F) C X and Y|Q; = Solqui(F), where
T, ={0,...,i} x {1,...,n}. Then

prodim(Y : {Q;}) = liminf dim(Y'[€2;) /|€2|
11— 00

from [Gro99] becomes the limit in our Definition [LT6.

In Section [3 below we will compare Definition [2.8] with other notions of dimension
in difference algebra. In particular, we will show (Proposition [3.1]) that o-dim(R) agrees
with the o-transcendence degree over k of the field of fractions of R in case R is an integral
domain with o: R — R injective.

We can now justify Definition [1.16]

Corollary 2.9. Let F C k{y1,...,yn} and fori >0 set
d;i(F)=max {|T| | T C{0,...,i} x {1,...,n} is free w.r.t. F}.

Then d = lim;_, % exists.
Proof. Set R = k{yi,...,yn}/[F]andlet A = {aq,...,a,} denote the image of {y1,...,yn}
in R. Recall (Proposition [LT0) that 77 C N x {1,...,n} is free with respect to F' if and
only if {o%(a;)| (i,7) € T} is algebraically independent over k.

Therefore, Proposition [L.10 implies d;(F) = dim(k[A,...,0'(A)]) for i > 0 and the
claim follows from Theorem [2.7] O

Note that in Theorem [2.7l and Corollary [2.9] the limit of the sequence is in fact the
infimum of the sequence. This follows from Lemma 2.6l and the proofs of Theorem 2.7 and
Corollary 2.9. From the proof of Corollary we also obtain:

Remark 2.10. For i > 0 set k{y}[i] = k[y1,---,¥ns---,0(¥1),-..,0(yn)] and for a
o-ideal T of k{y1,...,yn} set I[i]| = I Nk{y}[i]. We have

o-dim(I) = o-dim(k{y1,...,yn}/I) = lim ,di ,
i—oof + 1

where d; = dim(k{y}[7]/I]7]).

Example 2.11. Let R be a k-o-algebra that is finitely generated as a k-algebra. Then
o-dim(R) = 0. To see this, note that if A generates R as a k-algebra, then also k{A} = R
and so d; = dim(R) for ¢ > 0.

The following proposition shows that our notion of o-dimension generalizes the usual
notion of dimension in algebraic geometry.
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Proposition 2.12. Let F C k[y1,...,yn] C k{y1,-..,yn} be a system of algebraic equa-
tions. Then o-dim(F) equals the dimension of the algebraic variety defined by F.

Proof. Let X be the algebraic variety defined by F' and d = dim(X). For i > 0, the
algebraic variety defined by o*(F) C k[o%(y1),...,0 (yn)] is the base change of X via
o': k — k. In particular, it also has dimension d (cf. Lemma [2.4]). So

(F,U(F),... 70i(F)) - k[yly--- yYns - - - 70i(y1)7"' 70i(yn)]

defines an (i 4+ 1)-fold product of varieties of dimension d, i.e., a variety of dimension
d(i+1) (cf. Lemma 23).
We next show that, with the notation of Remark .10, we have

[F]li] = (F,o(F),...,o'(F)) C k{y}[i] (5)

for all i € N. Clearly, (F,o(F),...,0'(F)) C [F][i]. So let us establish the reverse
inclusion. To this end, note that for a k-algebra S, a set of indeterminates Y over S
and an ideal I of k[Y] one has (I) N k[Y] = I, where (I) C S[Y] denotes the ideal of
S[Y] generated by I. (This follows from S[Y] = S ®; k[Y] and the fact that the tensor

product has this property. See, e.g., Lemma 1.4.5 ]). We will apply this with S =
ko (y1), 0™ (), o2 (1), /(0T E), 0 P2 (F), ), Y =y, Y5 0 (1),
and I = (F,...,0"(F)) C k[Y] = k{y}[{]]. The image of any h € [F] in S[Y] lies in
(I) C S[Y], because an element in ¢/(F) (j > i + 1) becomes zero in S. If, moreover,
h € [F][i], then h € k[Y], and so h € (I) Nk[Y] = I. This proves (45).

Thus, if A denotes the image of {y1,...,yn} in k{y1,...,yn}/[F], then

KA, ... o' (A)] = k{y}al /P[] = k{y} [/ (F, ... o' (F))

has dimension d; = d(i + 1). Therefore

. . . di
o-dim(F) = o-dim(k{A}) = zliglo i1 d.

O

We will next establish some elementary properties of the o-dimension which show that
it behaves as one may expect from a notion of dimension. Most of these properties follow
rather directly from the corresponding property of finitely generated algebras.

Proposition 2.13. Let R and S be finitely o-generated k-o-algebras.

(i) If there exists an injective morphism R — S of k-o-algebras, then o-dim(R) <
o-dim(S).

(ii) If there exists a surjective morphism R — S of k-o-algebras, then o-dim(R) >
o-dim(S).

Proof. (i): We may assume that R is a k-o-subalgebra of S. Let A be a finite o-generating
set for R. Then we can extend A to a finite o-generating set B of S. For i > 0 we have
k[A,...,0%(A)] Ck[B,...,0!(B)] and therefore, using Lemma 2.2l (i),

dim(k[A4,...,0"(A)]) < dim(k[B,...,o"(B)]).
Thus o-dim(R) < o-dim(S).
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(ii): Let A C R be finite such that R = k{A} and let A denote the image of A in
S under a surjective morphism. Then k{A} = S. Since k[A4,...,0"(A)] surjects onto
k[A,...,0(A)] for i > 0, we see, using Lemma 22 (ii), that

dim(k[A, ..., 0" (A)]) > dim(k[4, ..., o' (A))),
and therefore o- dim(R) > o-dim(S5). O

In terms of systems of algebraic difference equations Proposition [2.13] has the following
interpretation:

Corollary 2.14. (i) If F C k{y1,...,yn}t and G C k{y1,...,Yn,21,.-.,2m} are such
that [G] N E{y1,...,yn} = [F], then o-dim(F) < o-dim(G).

(i) If F,G C k{y1,...,yn} are such that [F| C [G] (e.g., F C G), then o-dim(F') >
o-dim(G).
U

Like the Krull dimension of finitely generated algebras our o-dimension is additive
with respect to the tensor product.

Proposition 2.15. Let R and S be finitely o-generated k-o-algebras. Then
o-dim(R ®j S) = o-dim(R) + o-dim(S).

Proof. Let A and B be finite o-generating sets for R and S respectively. Then C' =
{a®1lae€ A} U{l1®b| b € B} is a finite o-generating set for R ®j S. Moreover, for
i > 0 we have k[C,...,0%(C)] = k[A,...,0%(A)] @ k[B,...,0'(B)] and therefore, using
Lemma [2.3]

dim(k[C, ..., 0" (C)]) = dim(k[A, ... ,o"(A)]) + dim(k[B, ..., " (B)]).
O

In terms of systems of algebraic difference equations, Proposition [2.15/has the following
interpretation:

Corollary 2.16. If F' C k{y1,...,yn} and G C k{z1,...,2m}, then FUG C k{y1,.. ., Uns 215+ 2m}
has o-dimension o-dim(F) + o-dim(G). O

The following proposition shows that our notion of o-dimension is well-behaved under
extension of the base o-field (cf. [DVHW14] Lemma A.27]).

Proposition 2.17. Let R be a finitely o-generated k-o-algebra. Let k' be a o-field exten-
sion of k and consider R' = R®y k' as a k'-0-algebra. Then

o-dim(R) = o-dim(R).

Proof. If A C R is a finite o-generating set for the k-o-algebra R, then A’ = {a®1|a € A}
is a finite o-generating set for the k’-g-algebra R'. Moreover, dim(k[A,...,d"(A)]) =
dim(K'[4, ... ,0%(A")]) for i > 0 by LemmaR.4lsince ¥'[A’, ..., 0" (A")] = k[A, ..., 0 (A)]®y
K. O

In terms of systems of algebraic difference equations, Proposition 2T7 has the following
interpretation:
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Corollary 2.18. Let k' be a o-field extension k and F C k{iyi,...,yn}. Then the o-
dimension of F considered as a subset of k{y1,...,yn} agrees with the o-dimensions of F
considered as a subset of kK'{y1,...,yn}- O

For a o-ring R, the nilradical v/0 C R of R is a o-ideal. Therefore Ryeq := R/ V0 has
naturally the structure of a o-ring. As in commutative algebra, passing from R to Ry.q
does not affect the dimension:

Proposition 2.19. Let R be a finitely o-generated k-o-algebra. Then
o-dim(Ryeq) = o-dim(R).

Proof. Let A C R be a finite o-generating set for R and let A denote the image of A in
Rieq. Then A is a finite o-generating set for Ryeq and k[A, ..., 0" (A)] = k[A,...,0"(A)]red

for i > 0. Therefore dim(k[A, ..., o (A)]) = dim(k[4,...,o"(A)]) by Lemma 2.5 O

In terms of systems of algebraic difference equations Proposition [Z.19] can be reinter-
preted as:

Corollary 2.20. Let FF C k{y1,...,yn}. Then

o-dim(F) = o-dim([F]) = o-dim(y/[F)).

3 Comparison with other notions of dimension

In this section we compare our notion of o-dimension with two other notions in the
literature. Firstly, we show that our notion generalizes the standard definition via o-
transcendence bases. Secondly, we show that our o-dimension is an upper bound for the
difference Krull dimension.

Let us first recall some basic facts about the o-transcendence degree ([Lev08, Sec-
tion 4.1]). Let R be a k-o-algebra. A subset A of R is o-algebraically independent (over
k) if the family (0%(a))acA ien is algebraically independent over k. If K is a o-field exten-
sion of k, a maximal o-algebraically independent subset is called a o-transcendence basis
of K/k. Any two o-transcendence bases have the same cardinality, which is called the
o-transcendence degree of K/k.

Also recall that a o-ideal I of a o-ring R is reflexive if o~'(I) = I. (This implies
that o: R/I — R/I is injective.) In [Lev08, Definition 4.2.21] the difference dimension
of a prime reflexive o-ideal I of k{y1,...,y,} is defined as the o-transcendence degree of
the fraction field of k{y1,...,yn}/I over k. (We will see in a moment that our o-dim(I)
agrees with this definition, so there is no ambiguity with the naming.)

The following proposition shows that our definition of o-dimension agrees with the
classical definition whenever the latter applies, i.e., when R is an integral domain with

o: R — R injective (cf. [DVHWI14, Lemma A.26]).

Proposition 3.1. Let R be a finitely o-generated k-o-algebra. Assume that R is an
integral domain. Then o-dim(R) equals the largest integer n such that there exist n
o-algebraically independent elements inside R. Moreover, if o: R — R is injective,
o-dim(R) equals the o-transcendence degree of the field of fractions of R over k.
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Proof. Let A be a finite subset of R such that R = k{A} and set d; = dim(k[A4, ..., o (A)])
for 4 > 0. In [Hru04, Lemma and Definition 4.21] (cf. [Wibal Theorem 5.1.1]) it is shown
that there exist d,e € N such that d; = d(i + 1) + e for ¢ > 0. Moreover, d is the
o-transcendence degree over k of the field of fractions K of R/(0)*, where

0)*={reRlIm=>1:0"(r) =0}

*

Note that because R is an integral domain, (0)* is a (reflexive) prime ideal and K is a

o-field extension of k. We have
oo dim(R) = lim —% = qpn 20D Fe

If aj,...,a, € R are o-algebraically independent over k, then k{ai,...,a,} N (0)* =

{0}, because o is injective on k{ai,...,a,}. Thus k{aq,...,a,} embeds into K and it
follows that n < d.
On the other hand, we can choose a o-transcendence basis by, ...,bg of K/k that is

contained in R/(0)*. If ay,...,aq € R are such that they are mapped onto by, ..., by, then
ai,...,aq € R are o-algebraically independent over k. It follows that d = o-dim(R) is the
largest integer such that there exist d o-algebraically independent elements in R.

If o: R — R is injective, then (0)* = {0} and K equals the field of fractions of R. O

Recall that a o-ideal I of a o-ring R is perfect if fo(f) € I implies f € I for all
f € R. Perfect o-ideals are important in classical difference algebra because they feature
prominently in a difference Nullstellensatz (|[Lev08, Theorem 2.6.4]). In fact, there is a
bijection between the difference subvarieties of A} and the perfect o-ideals of k{y1,...,yn}.
Note however, that in this setup solutions are restricted to be solutions in o-field extensions
of k. Allowing solutions in more general k-o-algebras, such as rings of sequences, leads to
a different kind of Nullstellensatz. (See [PSW20].) Any perfect o-ideal I of k{y1,...,yn}
can be written uniquely as an irredundant intersection I = p; N...Np,, of prime reflexive
o-ideals ([Lev08, Theorem 2.5.7]).

Corollary 3.2. Let I C k{y1,...,yn} be a perfect o-ideal, written as an irredundant inter-
section I = p1N...0py of prime reflexive o-ideals. Then o-dim(I) is the maximum (over
1 < j < m) of the o-transcendence degrees of the fields of fractions of k{yi,...,yn}/p;.
In particular, for a reflexive prime o-ideal p, o-dim(p) equals the o-transcendence degree

of the field of fractions of k{y1,...,yn}/p.

Proof. With notation as in Remark 210l we have I[i] = p1[i] N ... N py,[i] for i > 0 and it
follows that

d; = dim(k{y}[i]/ 1)) = max{dim(k{y}[il/p; )] 1 < j < m}.

As in the proof of Proposition [3.1], for every 1 < j < m, there exist d(p;),e(p;) € N such
that

di(p;) = dim(k{y}[d]/p;[i]) = dlp;) (i + 1) + e(p;)
for ¢ > 0. Thus, if jo € {1,...,m} is such that d(p;,) is maximal and e(p;,) is maximal

among all e(p;) with d(p;) maximal, then d; = d(p;,)(i + 1) + e(pj,) for ¢ > 0. It follows
that

) ) d;
o-dim(1) = Jim =9~ afp,,).

Since d(p;) agrees with the o-transcendence degree of the field of fractions of k{y1, ..., yn}/p;
over k the claim follows. O
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We next compare our notion of o-dimension with a difference analog of the Krull
dimension. Let us first explain how the idea of the definition of the Krull dimension can
be adapted to difference algebra. (Cf. [Lev08| Definition 4.6.1] or [KLMP99, Section 7.2].)
Since the o-polynomial ring k{y;} in one o-variable contains infinite descending chains
of prime o-ideals one cannot simply take the maximal length of chains of prime o-ideals
as the definition. Instead one has to work with chains of chains: Let R be a finitely o-
generated k-o-algebra. The largest integer d > 0 such that there exists a chain of infinite
chains of prime o-ideals of R of the form

1 2 1 2 1 2
PO2Pe 2P0 2 - 2P 2P 2072 2P22 ... 2 Pa1 2 PG 2 P51 2 .- 2 0a (6)

is called the difference Krull dimension of R and denoted by dimy(R). By definition
dimy(R) = 0 if R has no (or only finitely many) prime o-ideals. The existence of a
maximal d follows from the proof of Proposition B.3] below.

Proposition 3.3. Let R be a finitely o-generated k-o-algebra. Then
dimy(R) < o-dim(R).

Proof. Let A C R be finite such that R = k{A}. For a prime o-ideal p of R let A denote the
image of A in R/p and consider the sequence (d;);>o defined by d; = dim(k[A, ..., o (A)]).
According to Lemma and Definition 4.21] (cf. [Wibal, Theorem 5.1.1]) there
exist d(p),e(p) € N such that d; = d(p)(i + 1) + e(p) for ¢ > 0. So the polynomial
wp(t) = d(p)(t + 1) + e(p) satisfies wy (i) = d; for ¢ > 0.

We define a total order on the set of polynomials of the form d(t+ 1)+ e with d,e € N
by d(t+1)+e<d(t+1)+¢ ifd(i+1)+e <d(i+1)+¢€ fori> 0. This is a well-order
since it corresponds to the lexicographic order on pairs (d,e). If p O g are prime o-ideals
of R, then wy(t) < wqy(t). Moreover, wy(t) < wq(t) if p 2 g. So an infinite descending chain
p 2 pl D p? D -~ D q of prime o-ideals in R gives rise to an infinite ascending chain
wp(t) < wpi(t) <wpe(t) < ... < wg(t) of polynomials. But in such a chain we necessarily
have d(p) < d(q). Thus for a descending chain of infinite chains of prime o-ideals as in
equation (6) we have d(pg) > d. So d(pg) > dimy (R).

As o-dim(R) > o-dim(R/pg) = d(pq) by Proposition[2.13](ii), it follows that o- dim(R) >
dimg(R) as desired. O

Remark 3.4. In the definition of the difference Krull dimension above we have used prime
o-ideals. A similar invariant dimgy«(R) could be obtained by modifying the definition by
only allowing reflexive prime o-ideals. Then clearly, dimy-(R) < dimy(R) and therefore
also dimy«(R) < o-dim(R).

The following example shows that the inequality from Proposition can be strict,
even if o-dim(R) is an integer.

Example 3.5. Consider S = k x k as a k-o-algebra via o(a,b) = (0(b),0(a)) and k —
S, A= (A A). Let R = S{y} denote the univariate o-polynomial ring over S. We first
show that R has no prime o-ideals and so dimy (R) = 0.

Suppose p is a prime o-ideal of R. Let e; = (1,0) € S and es = (0,1) € S. Since
ereg = 0 € p, we have e; € p or ey € p. Assume (without loss of generality) that e; € p.
Since p is a o-ideal, also o(e1) = eg € p. But then 1 = e1 + e + 2 € p; a contradiction.

To see that o-dim(R) = 1, we choose A = {e1,eq,y}. Then dim(k[4,...,0"(A)]) =
i+ 1 for all i € N because {y1,...,0%(y)} € AU...0%(A) is an algebraically independent
subset of maximal cardinality (Proposition [2.1).
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4 Covering density and the dimension of difference mono-
mials

In this section we determine the o-dimension of a univariate o-monomial ¢ ()7t . .. g% (y)Pn.
It turns out that this o-dimension is essentially given by the covering density of {1, ..., ay}.
There is a vast body of literature on covering, packing and tiling problems. We refer
the interested reader to [BJR11] and the references given there. In rather general terms the
covering problem can be formulated as follows: Given an additive group G and a subset
E of G, find a “minimal” subset E' of G such that E+ E' = {e+¢€|e € E, ¢ € E'}
equals G. Such an E’ is often called a complement of E. It is instructive to think of
E + E’ as a union of translates F + ¢’ of E. The question then becomes, “how many”
translates of E are needed to cover G7 To give a precise meaning to “minimal” and
“how many” one usually assumes that G is equipped with some measure or density. A
well studied special case is G = R”™ and E a ball or convex body. For our purpose we
are interested in the case G = Z and F a finite set, studied e.g., in [BJR11, Section 5],

For a finite subset E of Z, the covering density ¢(E) of E can be defined as

c(F) = iglfd(E'),

where d(E') = lim;_, W is the density of £/ and the infimum is taken over all
complements of F for which the density exists. We note that the covering density is called

the codensity in [New67] and the minimal covering frequency in [STO8| [ST10]. We are
using the nomenclature from [BJR11]. As pointed out in [BJRI11, Section 5], there is an

equivalent definition of ¢(F), which we will use: For i > 1 let 7(E,i) be the smallest
number of translates of E that cover {1,...,i}, i.e.,

7(E,i) =min{|E'| | E+ E' D {1,...,i}}.
Then ¢(F) = lim;_, @

Theorem 4.1. The o-dimension of a univariate o-monomial o® (y)' ... o% (y)P» with
0<ay<ay<...<ayandfi,...,0n > 1is1—c(E), where ¢(E) is the covering density
of E={ay,...,an}.

Proof. We first observe that o-dim(c® ()% ...0% (y)%) = o-dim(c™ (y) ... o (y)) by
Corollary [2.14] (ii) and Corollary [2.20] where we use that

0“1 )P ..o ()] € [0 (y)... 0™ ()] € /01 (1) ..o (y)n].

So it remains to show that o-dim(f) =1 —c(E) for f =o“ (y)...0%(y).

As in Remark [2.10, we set k{y}[i] = k[y,...,c'(y)] and [f][i] = [f] N k{y}[i] for i > 0.
Then o-dim(f) = lim;_ 0 ii—il, where d; = dim(k{y}[i]/[f][7])-

For an arbitrary F' C k{y}, it is non-trivial to determine [F][i]. However, in our
situation, since we are only dealing with monomial ideals, we see that

Al = [f.0(f), ..., a" =" ()] S k{y} ]

for i > ;. To determine the dimension of this monomial ideal, let us recall ([CLOOQT,
Chapter 9, §1, Prop. 3|) how to determine the dimension of a monomial ideal M =

(fi,---o fr) € E[y1,...,ym] in general, where f; = Hlesj yy and S1,...,S, C{1l,...,m}.
The solution set of M is a finite union of coordinate subspaces and to find the dimension
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of kly1,...,ym|/M, it suffices to find the coordinate subspace of the largest dimension,
which is given by

m—min{|T| | T C{L,...,m}, TNS;#0for j=1,...,r}
Therefore
dim(k{y}[d])/[f][{]) = i+1—min{|T| | T C{0,...,i}, TN(E+j) #Dfor j =0,...,i—ap}.

But for T C {0,...,i}, we have TN (E + j) # O for j = 0,...,i — , if and only if
{0,...,i—an} CUer(—E +t), where —FE = {—e¢| e € E}. Thus

min{|T| | T C{0,...,i}, TN(E+j)#0for j=0,...,i—ay}
=min{|T| | T C{0,...,i}, {0,...,i —a,} C —E+T}
=min{|T| | T CZ, {0,...,i —ap} C—E+T}
=min{|T| | T<Z, {1,...,i—a,+1} C—-E+T}

— 7 (—E,i—an+1)

and so, d; =i+ 1 —7(—E,i — a,, + 1). Consequently,

o-dim(f) = Hm == =1 - lim i+ 1 -
T(—E,i— op +1) (z’—an+1>

1+ 1

=1— lim .
i—00 1 —a,+1

=1—-c(—FE)- L

Since ¢(—F) = ¢(E) ([Tul02, Lemma 2.8]) the claim follows. O

Example 4.2. The covering density of a one-element set is 1 and the covering density

c(E) of a finite subset E of Z with at least two elements satisfies |T13| < ¢(E) < 5 ([Tul02,

Lemma 2.9]). Moreover, ¢(FE) is rational ([Tul02, Theorem 2.13] or [BJR11, Theorem 5.1]).
Thus the o-dimension of a o-monomial o1 (y)% ... % (y)%» is 0 if n = 1 and otherwise
it is a rational number between % and 1 — %

5 Values of the difference dimension

As seen in Exampleld.2 above, the o-dimension of a system of algebraic difference equations
need not be an integer. This raises two questions:

e When is the o-dimension an integer?
e What values can the o-dimension take?

Concerning the first question, we add to the already known cases, the case of a finitely
o-generated k-o-Hopf algebra. We do not fully answer the second question but we reduce
it to a purely combinatorial problem. This reduction shows in particular, that the answer
does not depend on the base o-field k.

We have already seen that the o-dimension of R = k{yi,...,y,}/I is an integer in all
of the following cases:

e R is an integral domain, i.e., I is a prime o-ideal (Proposition [3.1).

o [ = [F] for some F C k[yi,...,yn] (Proposition [2.12]).
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e [ is a perfect o-ideal (Corollary [3.2)).

The following theorem shows that the o-dimension of a finitely o-generated k-o-Hopf
algebra is also always an integer. This result was already alluded to in Re-
mark A.30]. Hopf algebras are important in algebraic geometry because they are the
coordinate rings of affine group schemes ([Wat79, Section 1.4]). Hopf algebras over a field
k that are finitely generated as k-algebras correspond to affine group schemes of finite type
over k, i.e., affine (sometimes also called linear) algebraic groups. A similar duality exists
in difference algebraic geometry: k-o-Hopf algebras that are finitely o-generated as k-o-
algebras correspond to affine difference algebraic groups. See Appendix A],
[Wib20] and [Wibb] for more background of affine difference algebraic groups.

Theorem 5.1 ([Wib20, Theorem 3.7]). Let R be a finitely o-generated k-o-algebra. As-
sume that R can be equipped with the structure of a k-o-Hopf algebra, i.e., there ewist
morphisms of k-o-algebras A: R — R®, R, S: R — R and ¢: R — k that turn R into a
Hopf algebra. Then o-dim(R) is an integer.

Proof. In [Wib20, Theorem 3.7] it is shown that there exists a finite subset A of R such
that k{A} = R, k[A] is a Hopf-subalgebra of R and dim(k[A4,...,0"(A)]) =d(i + 1) +e
for some d,e € N and i > 0. So o-dim(R) =d € N. O

We next address the question, which non-negative real numbers d are of the form
d = o-dim(F) for some F C k{y1,...,yn}? As a first step, we show that one can reduce
to the case that F' consists of o-monomials. Then, we will further reduce to the case of
monomial o-ideals generated by squarefree o-monomials.

A o-monomial in the o-variables y1, ...,y is a monomial in the variables o*(y;), i € N,
je{l,....,n}. A o-ideal M of k{y1,...,yn} is a monomial o-ideal if it is of the form
M = [F] for some set F' C k{y1,...,yn} of c-monomials.

Lemma 5.2. For any F C k{y1,...,yn} there exists a monomial o-ideal M of k{y1,...,yn}
with o-dim(F) = o-dim(M).

Proof. For the proof we will use some notions (orderings and leading monomials) from the
theory of difference Grobner bases ([LS15) [GLS15]). We fix a total order < on the set of
all o-monomials in yq,...,y,. Indeed, let us be concrete and choose < as the lexicographic
order with

Y1 <y2<...<yn<o(y) <olya) <...<0olyn) <o’(y1) <
Then < satisfies the following properties:
(i) < is a well-order, i.e., every descending chain of o-monomials is finite.

(i

i) 1 < f for every o-monomial f.

(iii) If f < g, then hf < hg for o-monomials f, g, h

(iv) If f < g, then o(f) < o(g) for o-monomials f,g.

(v) If ord(f) < ord(g), then f < g for o-monomials f, g.

Recall that the order ord(f) of a o-polynomial f is the largest power of o that occurs in f.
Let us write a non-zero o-polynomial f € k{y1,...,yn} as f = Z;”:l c; f; for coeflicients
¢; € k~ {0} and distinct o-monomials f;. The leading monomial Im(f) of f is the largest
fj. For f =0, we set Im(f) = 0. For a o-ideal I of k{yi,...,yn}, we set

Im(I) = (m(f)| f € I) € k{y1,- .., yn}-
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Thanks to (iv) above, we see that Im(I) is a o-ideal.

Define I = [F] and M = lm(I). Then M is a monomial o-ideal and we claim that
o-dim(I) = o-dim(M).

With notation as in Remark 2.10] we have for i > 0, thanks to (v), that Im(I[i]) =

Im(I)[i], where Im(I[4]) is the ideal of leading monomials of I[i] C k[y1,. .., Yn,---, 0 (y1), ..., 0 (yn)]

with respect to the lexicographic order with 31 < y2 < ... < ¢%(y,). The dimension of
an ideal in a polynomial ring over a field agrees with the dimension of its ideal of leading
monomials (JGP08, Corollary 7.5.5]). Thus

dim(k{y}[i]/11i]) = dim(k{y}[i]/Im(I[i])) = dim(k{y}[i]/ T (D)[i]) = dim(k{y}[i]/MTi])
and o-dim(/) = o-dim(M) as desired. O

It remains to determine the possible o-dimensions of monomial o-ideals. As we will
see, this can be reduced to a purely combinatorial problem, which we now describe.

Define o: Nx {1,...,n} - Nx{1,...,n} by o(i,j) = (i + 1, 7). For a finite subset S
of N x {1,...,n} we set ord(S) = max{i| 3 j: (i,5) € S}. Let S be a set of non-empty
finite subsets of N x {1,...,n}. For i > 0 we define

7(S,i) =min{|T| | TCNx {1,...,n}, TNo"(S)#0, VSeS, 0<l<i—ord(S)}.
In other words, if [S] = {0%(S)| S € S, ¢ € N} and
[S][i] ={S € [S]] S C{0,...,i} x{1,...,n}},
then
7(8,4) =min{|T| | TCNx{l,...,n}, TNS#0, VS e[S][i}
It follows from the proof of the following lemma (and Theorem [2.7]) that C'(S) =

lim; o0 Tz(s’i) exists. Since T'={0,...,i} x {1,...,n} intersects every non-empty subset

of {0,... ,eri x {1,...,n}, we have 7(S,i) < (i + 1)n and therefore 0 < C(S) < n. We set
o-dim(S) =n — C(S).

For a finite subset S of N x {1,...,n} we set y° = H(i’j)es o'(y;). Furthermore
we define M(S) = [{y°| S € S} € k{y1,...,yn}. The proof of the following lemma,
generalizes some aspects of the proof of Theorem H.T.

Lemma 5.3. Let S be a set of non-empty finite subsets of Nx{1,...,n}. Theno-dim(M(S)) =
o-dim(S).

Proof. Using the notation of Remark [2.10, we have
MES)i] = ('S S €S, 0< L <i—ord(8)) C Ky}

for every i > 0. Using the description of the dimension of monomial ideals in a polynomial

ring as in the proof of Theorem ET] (cf. [CLOO7, Chapter 9, §1, Prop. 3]), we see that

dim(k{y}[:]/M(S)[i]) = n(i + 1) — e; where

e; =minf{|T| | T C{0,...,i} x{1,....n}, TNo*(S)#0,VSeS, 0<l<i—ord(S)}
=min{|T| | TCNx{1,...,n}, TNo"(S)#0, ¥SecS, 0<¢<i—ord(S)}
=7(8,1).

Hence

o-dim(M(S)) = Z12(1010 dim(k{y}[i]/M(S)[i]) = n — lim T(L’i) = o-dim(S).

i—oo 1+
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The following theorem gives a combinatorial description of all numbers that occur as
the o-dimension of a finitely o-generated k-o-algebra (equivalently of a system of algebraic
difference equations).

Theorem 5.4. Let d > 0 be a real number. Then d = o-dim(F) for some F C
E{y1,...,yn} if and only if d = o-dim(S) for some set S of non-empty finite subsets
of Nx{1,...,n}.

Proof. If d = 0-dim(S), then d = o-dim(F) for F' = M(S) by Lemma

Conversely, assume that d = o-dim(F) for some F C k{y1,...,yn}. By Lemma 5.2
we can assume without loss of generality that F' = M is a monomial o-ideal. Let F C
k{y1,...,yn} be a set of o-monomials such that M = [E] C k{y1,...,yn}

Let us refer to a o-monomial as square-free if it is square-free as a monomial in the
variables o'(y;). The square-free part of a o-monomial is defined in a similar spirit, i.e.,
by replacing all non-zero exponents with 1’s. Let E' C k{yi,...,yn} be the set of all
square-free parts of all c-monomials in £. Then

[E] € [E'] € VIE].

It thus follows from Corollary [2.14] (i) and Corollary [2.20/ that o- dim([E]) = o- dim([E]).
To specify a (non-constant) square-free o-monomial is equivalent to specifying a (non-
empty) finite subset S of N x {1,...,n}. Thus [E'] = M(S) for some set S of finite
non-empty subsets of N x {1,...,n}. In summary,

o-dim(F) = o-dim([E]) = o-dim([E']) = o-dim(M(S)) = o-dim(S),

by Lemma [5.3] O
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