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On the dimension of systems of algebraic difference equations
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Abstract

We introduce a notion of dimension for the solution set of a system of algebraic
difference equations that measures the degrees of freedom when determining a solution
in the ring of sequences. This number need not be an integer, but, as we show, it
satisfies properties suitable for a notion of dimension. We also show that the dimension
of a difference monomial is given by the covering density of its set of exponents.

Introduction

In the algebraic theory of difference equations there has long been a focus on fields, but
in the last decade the importance of studying solutions of systems of algebraic difference
equations in more general difference rings has more and more been recognized. See e.g.,
[vdPS97, Hru04, Tom14, Tom16, MS11, DVHW14, Wib20, Tom]. In particular, the so-
lution sets of systems of algebraic difference equations in the ring of sequences, which
are of utmost importance from an applied perspective, have been studied in [OPS20] and
[PSW20]. Classical difference algebra ([Coh65, Lev08]) provides a notion of dimension for
a system of algebraic difference equations via the difference transcendence degree of an
extension of difference fields. However, this approach is wholly inadequate for measuring
the size of the solution set in the ring of sequences.

In respect to a system F of algebraic difference equations, this shortcoming can be
explained via difference ideals and difference Nullstellensätze. In terms of difference ideals,
the solution set of F in difference fields corresponds to {F}, the smallest perfect difference
ideal containing F , while the solution set of F in the ring of sequences, corresponds to√

[F ], the smallest radical difference ideal containing F . One has
√

[F ] ⊆ {F} but often
this inclusion is strict. Classical difference algebra assigns a dimension to {F}, it does not
provide a sensible notion of dimension for

√
[F ].

Let us illustrate the situation with the concrete example F = {yσ(y), yz− zσ(z)}. In
a difference field, i.e., in a field equipped with an endomorphism σ, the equation yσ(y) = 0
implies y = 0. But then the second equation yz−zσ(z) = 0 implies that also z = 0. Thus,
in difference fields, the only solution of F is (y, z) = (0, 0) and the corresponding difference
dimension is 0. On the other hand, F has plenty solutions in the ring of sequences.
Rewriting the system in sequence notation we obtain

yiyi+1 = 0, yizi − zizi+1 = 0 ∀ i ≥ 0. (1)
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For an arbitrary choice of y0, y2, . . . ∈ C and z1, z3, . . . ∈ C we have a sequence solution

(
y
z

)
=

(
y0 0 y2 0 . . .
0 z1 0 z3 . . .

)
∈ (CN)2.

According to our definition, the difference dimension of F is 1 and this number is obtained
by counting the degrees of freedom when determining a solution to (1): For i ≥ 0, the
maximal number of values of y0, y1, . . . , yi, z0, z1, . . . , zi that can be chosen freely in a
solution (y, z) of (1) is i + 1. Being able to choose all of these 2(i + 1) values freely
should correspond to difference dimension 2, thus being able to choose i+ 1 values freely
corresponds to difference dimension 1.

For a general system F of algebraic difference equations, our definition of the difference
dimension of F is

σ- dim(F ) = lim
i→∞

di
i+ 1

,

where di is the number of degrees of freedom available when determining a sequence
solution of F up to order i. Implicit in the above definition is the important and non-
trivial fact that this limit exists.

The above definition of the difference dimension can be seen as an algebraic version of
the mean dimension, an important numerical invariant of discrete dynamical systems first
introduced by M. Gromov in [Gro99]. Our definition is also in line with the description of
the transformal dimension given by E. Hrushovski in [Hru04, Section 4.1]: “If one thinks
of sequences (ai) with σ(ai) = ai+1, the transformal dimension measures, intuitively, the
eventual number of degrees of freedom in choosing ai+1, given the previous elements of
the sequence.”

In case F is a perfect difference ideal, the above definition agrees with the standard
definition via the difference transcendence degree. Thus, our definition of the difference
dimension provides a meaningful generalization of the standard definition to situations
where the approach via the difference transcendence degree cannot be applied.

For a system F of algebraic difference equations in n difference variables, the difference
dimension of F takes a value between 0 and n. However, it does not need to be an
integer. For example, the difference dimension of the difference monomial yσ(y) . . . σm(y)
is m

m+1 . This corresponds to the fact that when determining a solution to yiyi+1 . . . yi+m =
0, i ≥ 0, in essence, every (m + 1)-st entry of y has to be zero, whereas all the other
entries can be chosen freely. It is non-trivial to determine the difference dimension of a
general univariate difference monomial. In fact, we will show that the difference dimension
of σα1(y)β1 . . . σαm(y)βm equals 1 − c({α1, . . . ,αm}), where c({α1, . . . ,αm}) denotes the
covering density of {α1, . . . ,αm} ⊆ Z, a classical invariant in additive number theory.

Our notion of difference dimension can very conveniently be expressed in terms of dif-
ference algebras. In fact we assign a difference dimension to an arbitrary finitely difference
generated difference algebra over a difference field. Even though this number need not
be an integer, we are able to show that the difference dimension of a finitely difference
generated difference algebra satisfies all the properties one might expect by way of analogy
with the familiar case of finitely generated algebras over a field.

As our difference dimension need not be an integer, it is natural to ask: When is
it an integer and what values can occur? We isolate several cases in which the differ-
ence dimension is an integer. For example, we show that the difference dimension of a
finitely difference generated difference algebra is an integer if the difference algebra can be
equipped with the structure of a Hopf-algebra in such a way that the Hopf-algebra struc-
ture maps commute with σ. We do not fully answer the question which numbers occur as
difference dimensions, but we reduce this question to a purely combinatorial problem.
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In this article we are only concerned with ordinary difference equations. That is, we
only consider a single endomorphism σ. We think it would be interesting to extend the
definitions and results to the more general case of several commuting endomorphisms
σ1, . . . ,σn.

We conclude the introduction with an overview of the article. In Section 1 we make
precise how to count the degrees of freedom when determining sequence solutions and
we define the difference dimension of a system of algebraic difference equations based on
this. In Section 2 we define the difference dimension of a finitely difference generated
difference algebra and show that it has several nice properties, e.g., it is compatible with
base change and additive over tensor products. In Section 3 we then compare our notion of
difference dimension with two other notions in the literature: The classical one defined via
the difference transcendence degree and the difference Krull dimension defined via chains
of prime difference ideals. In Section 4 we establish the connection between the difference
dimension and the covering density. Finally, in the last section we discuss which numbers
occur as difference dimension.

The author is grateful to Marc Technau, Lei Fu and the anonymous referees for helpful
comments and suggestions.

1 Counting degrees of freedom in the ring of sequences

In this section we define the difference dimension of a system of algebraic difference equa-
tions by counting the degrees of freedom encountered, when writing down a solution in
the ring of sequences. The reader mainly interested in difference algebras could in prin-
ciple skip this section and be content with the definition of the difference dimension of a
difference algebra given in Section 2. On the other hand, the reader with a more applied
background, mainly interested in solutions in the ring of sequences, might find the defi-
nition of the difference dimension given in this section much more illuminating than the
more abstract approach of Section 2.

1.1 Notation

We start by recalling some basic definitions from difference algebra ([Coh65, Lev08]) and
by fixing notation that will be used throughout the text. All rings are assumed to be
commutative and unital. N denotes the natural numbers including zero.

A difference ring, or σ-ring for short, is a ring R together with a ring endomorphism
σ : R → R. A morphism between σ-rings R and S is a morphism of rings R → S such
that

R !!

σ
""

S

σ
""

R !! S

commutes. In this situation S is also called an R-σ-algebra. A morphism of R-σ-algebras
is a morphism of R-algebras that is a morphism of σ-rings. The tensor product S1 ⊗R S2

of two R-σ-algebras is an R-σ-algebra via σ(s1 ⊗ s2) = σ(s1)⊗ σ(s2).
An ideal I in a σ-ring R is a σ-ideal if σ(I) ⊆ I. In that case R/I naturally inherits

the structure of a σ-ring such that R → R/I is a morphism of σ-rings. For a subset F of
R, the smallest σ-ideal of R containing F is denoted by [F ], so [F ] = (F,σ(F ), . . .).

The σ-polynomial ring R{y} = R{y1, . . . , yn} over a σ-ring R in the σ-variables
y1, . . . , yn is the polynomial ring over R in the variables σi(yj) (i ∈ N, 1 ≤ j ≤ n) with
action of σ extended from R as suggested by the names of the variables. The order
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ord(f) of a σ-polynomial f is the maximal i such that σi(yj) occurs in f for some j.
For f ∈ R{y1, . . . , yn}, S an R-σ-algebra and a = (a1, . . . , an) ∈ Sn, the expression f(a)
denotes the element of S obtained by substituting σi(yj) with σi(aj) in f .

An R-subalgebra of an R-σ-algebra is an R-σ-subalgebra if it is stable under σ. Let S
be an R-σ-algebra and A ⊆ S. The smallest R-σ-subalgebra of S containing A is denoted
with R{A}. Explicitly, R{A} = R[A,σ(A), . . .]. If there exists a finite subset A of S such
that S = R{A}, then S is called finitely σ-generated (over R).

A difference ring R is a σ-field if R is a field. An R-σ-algebra S with R and S fields
is a σ-field extension.

Throughout this article k will denote a σ-field and k denotes an algebraic clo-
sure of k. (It is possible to extend σ from k to k but we have no need to choose such
an extension.) The Krull-dimension of a finitely generated k-algebra R is denoted with
dim(R).

Let Y be a (not necessarily finite) set of variables over k and let F ⊆ k[Y ]. We denote

the set of solutions of F in k
Y

with V(F ). Affine space of dimension n over k is denoted
with An = k

n
.

1.2 Affine sequence solutions

We consider the set k
N
of sequences in k as a σ-ring with componentwise addition and

multiplication and σ given by the left-shift σ((ai)i∈N) = (ai+1)i∈N. Moreover, we consider

k
N
as a k-σ-algebra via k → k

N
, λ )→ (σi(λ))i∈N. For a subset F of k{y1, . . . , yn} we define

the set of affine sequence solutions of F as

SolA(F ) =
{
a ∈

(
k
N)n| f(a) = 0 ∀ f ∈ F

}
.

Note that
(
k
N)n

can be identified with (An)N. For

a =
(
ai,j

)
(i,j)∈N×{1,...,n}

∈
(
k
N)n

= (An)N

and f ∈ k{y1, . . . , yn} one has f(a) = 0 ∈ k
N
if and only if σi(f)(a) = 0 ∈ k for all i ∈ N.

Thus
SolA(F ) = SolA([F ]) = V([F ]) ⊆ (An)N.

For a finite subset T of N× {1, . . . , n} we set yT = {σi(yj)| (i, j) ∈ T} and

SolAT (F ) = V([F ] ∩ k[yT ]) ⊆ AT ,

where AT is an affine space of dimension |T |. The projection maps

(An)N → AT ,
(
ai,j

)
(i,j)∈N×{1,...,n}

)→
(
ai,j

)
(i,j)∈T

induce maps
πT : SolA(F ) → SolAT (F ).

As a first approximation to counting the degrees of freedom encountered, when writ-
ing down an affine sequence solution of F , one may feel tempted to say that T is free
with respect to F if every aT ∈ AT extends to an affine sequence solution of F , i.e., if
πT (Sol

A(F )) = AT . Or, in other words, if the initial value problem

f(a) = 0 ∀ f ∈ F, πT (a) = aT

has a solution a ∈
(
k
N)n

for all aT ∈ AT . However, as illustrated in the following simple
example, such a definition would be too stringent.
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Example 1.1. Let us consider the affine sequence solutions of the σ-polynomial f =
y1σ(y1)− 1 over (k,σ) = (C, id). A sequence a = (ai)i∈N ∈ CN is a solution if and only if
aiai+1 = 1. Thus

SolA(f) = {(a0, a−1
0 , a0, a

−1
0 , . . .) | a0 ∈ C! {0}}.

Intuitively, we should count one degree of freedom here because a0 can be chosen more or
less arbitrarily and then all the other coefficients are determined, i.e., T = {0} should be
considered to be free. However, a0 = 0 does not extend to an affine sequence solution.

The above example also shows that in general the projection maps πT : SolA(F ) →
SolAT (F ) are not surjective. Moreover, as illustrated in the following example, the image
of πT is in general not a constructible subset of the algebraic variety SolAT (F ).

Example 1.2. We consider the system F = {σ(y1)−y1−1, y1y2−1} over (k,σ) = (C, id),
which we may rewrite more succinctly as

y1,i+1 = y1,i + 1,

y1,iy2,i = 1.

Clearly y2,i is determined by y1,i and y1,i is determined by y1,i−1, so the only freedom
available when determining an affine sequence solution of F is the choice of y1,0. But not
all choices of y1,0 yield a solution. Indeed, y1,0 ∈ C extends to an affine sequence solution of
F if and only if y1,0 ,= −n, for n ∈ N. In other words, the image of πT : SolA(F ) → SolAT (F )
for T = {(0, 1)} is C! {−n| n ∈ N}, which is not a constructible subset of C.

Even worse, as explained in the following example, the image of πT : SolA(F ) →
SolAT (F ) need not be Zariski dense in SolAT (F ). We will see in Subsection 1.5 that such a
pathology cannot happen if k is uncountable.

Example 1.3. We will not explicitly write down such an example but rather give an
abstract argument why such an example exists. Using ideas and methods from [PSW20]
it would in principle be possible to write down an explicit example but that would be
extremely tedious.

It is shown in [PSW20, Theorem 3.2] that there exists an integer n ≥ 1, a finite set F ⊆
k{y1, . . . , yn} of σ-polynomials over (k,σ) = (Q, id) and a σ-polynomial g ∈ k{y1, . . . , yn}
such that g vanishes on every element of SolA(F ) but g /∈

√
[F ]. Let T ⊆ N × {1, . . . , n}

be such that g ∈ k[yT ]. We claim that the image of πT : SolA(F ) → SolAT (F ) is not Zariski
dense in SolAT (F ). As g vanishes on SolA(F ), we see that the image of πT is contained in
V(g) ⊆ AT . On the other hand, as g /∈

√
[F ], we also have g /∈

√
[F ] ∩ k[yT ]. So g does

not vanish on SolAT (F ). We conclude

πT (Sol
A(F )) ⊆ V(g) " SolAT (F ).

Thus πT (Sol
A(F )) is not Zariski dense in SolAT (F ).

1.3 Projective sequence solutions

We have seen above that for a finite subset T of N × {1, . . . , n}, the set of elements of
SolAT (F ) that extends to an affine sequence solution of F , is in general not Zariski dense
and not constructible. In this section we show that the situation can be improved by
allowing projective sequence solutions instead of just affine sequence solutions: The set
of all elements of SolAT (F ) that extend to a projective sequence solution of F contains an
open Zariski dense subset of SolAT (F ) (Lemma 1.9).

We write Pn = Pn(k) for n-dimensional projective space over k.
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Remark 1.4 (Multiprojective space). Let n, r ≥ 1. The closed subsets of the algebraic
k-variety Pn × . . . × Pn = (Pn)r are exactly the solution sets of systems of multiho-
mogeneous polynomials (cf. [Sha13, Chapter 1, Section 5.1]). Here a polynomial f ∈
k[y1,0, . . . , y1,n, . . . , yr,0, . . . , yr,n] is called multihomogeneous of multidegree (d1, . . . , dr)
if f is homogeneous of degree di in the variables yi,0, . . . , yi,n for i = 1, . . . , r. For a set F
of multihomogeneous polynomials we write Vh(F ) for the closed subset of (Pn)r defined by
F . We consider An× . . .×An = (An)r = Anr as an open subset of (Pn)r via the embedding

(
(a1,1, . . . , a1,n), . . . , (ar,1, . . . , ar,n)

)
)→

(
(1 : a1,1 : . . . : a1,n), . . . , (1 : ar,1 : . . . : ar,n)

)
.

Then (Pn)r is the union of (An)r and the points at infinity Vh(y1,0 . . . yr,0).
Let f ∈ k[y1,1, . . . , y1,n, . . . , yr,1, . . . , yr,n] and for i = 1, . . . , r let di denote the degree

of f in yi,1, . . . , yi,n. The multihomogenization fh ∈ k[y1,0, . . . , y1,n, . . . , yr,0, . . . , yr,n] of f
is defined as

fh = yd11,0 . . . y
dr
r,0f

(y1,1
y1,0

, . . . , y1,ny1,0
, . . . , yr,1yr,0

, . . . , yr,nyr,0

)
.

For a closed subset X of (An)r, the closure X of X in (Pn)r equals Vh(I(X)h), where
I(X) ⊆ k[y1,1, . . . , y1,n, . . . , yr,1, . . . , yr,n] is the defining ideal of X and I(X)h = {fh| f ∈
I(X)}.

Let N[σ] denote the set of polynomials in the variable σ with natural number coeffi-
cients. We consider N[σ] as an abelian monoid under addition. The σ-polynomial ring
k{y0, . . . , yn} has a natural N[σ]-grading that we shall now describe. We define the σ-degree
of a σ-monomial as

σ- deg




r∏

i=0

n∏

j=0

σi(yj)
αi,j



 =
r∑

i=0




n∑

j=0

αi,j



σi.

A σ-polynomial f ∈ k{y0, . . . , yn} is σ-homogeneous of σ-degree σ- deg(f) = d ∈ N[σ]
if all σ-monomials of f have σ-degree d. Thus f is σ-homogeneous if and only if f is
homogeneous in σi(y0), . . . ,σi(yn) for every i ∈ N. Note that every σ-polynomial f ∈
k{y0, . . . , yn} can uniquely be written as a sum of σ-homogeneous σ-polynomials.

Let f ∈ k{y1, . . . , yn} be of order r, (so f = f(y1, . . . , yn, . . . ,σr(y1), . . . ,σr(yn)) and
for i = 0, . . . , r, let di denote the degree of f in the variables σi(y1), . . . ,σi(yn). The
σ-homogenization fh ∈ k{y0, . . . , yn} of f is defined as

fh = yd00 . . . σr(y0)
drf

(y1
y0
, . . . , yny0 , . . . ,

σr(y1)
σr(y0)

, . . . , σ
r(yn)

σr(y0)

)
.

For a subset F of k{y1, . . . , yn} we set F h = {fh| f ∈ F}.

Example 1.5. We have (y1σ(y1)− 1)h = y1σ(y1)− y0σ(y0)

For i ∈ N, the grading on k[y0, . . . , yn, . . . ,σi(y0), . . . ,σi(yn)] ⊆ k{y0, . . . , yn} induced
by the N[σ]-grading on k{y0, . . . , yn}, exactly corresponds to the multidegree as in Re-
mark 1.4. Thus, a set of σ-homogeneous σ-polynomials of k{y0, . . . , yn} of order at most
i, defines a closed subset of (Pn)i+1.

We note that if f ∈ k{y0, . . . , yn} is σ-homogeneous of degree d = drσr + . . . + d0
and a = (a0, . . . , an) ∈ kn+1, then f(λa) = λd0 . . . σr(λ)drf(a) for all λ ∈ k. Thus the
expression f(b) = 0 is well-defined for b ∈ Pn(k). On the other hand, we can also consider
f as a multihomogeneous polynomial in the variables σi(yj) (rather than as a difference

polynomial) and in this context the expression f(a) = 0 is well-defined for any a ∈
(
Pn

)N
.
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Let, as in Subsection 1.2, F be a subset of k{y1, . . . , yn}. The set of projective sequence
solutions of F is

SolP(F ) =
{
a ∈

(
Pn)N| f(a) = 0 ∀ f ∈ [F ]h

}
.

For i ∈ N let Ti = {0, . . . , i} × {1, . . . , n} and

SolPi (F ) = Vh(([F ] ∩ k[yTi
])h) ⊆ (Pn)i+1.

Thus, SolPi (F ) is the closure of SolATi
(F ) in (Pn)i+1 (Remark 1.4). Since [F ] ∩ k[yTi

] ⊆
[F ] ∩ k[yTi+1

], the maps (Pn)i+2 → (Pn)i+1, (b0, . . . , bi+1) )→ (b0, . . . , bi) induce maps

πi+1,i : SolPi+1(F ) → SolPi (F ).

The standard embedding An ↪→ Pn, (a1, . . . , an) )→ (1 : a1 : . . . : an) yields an
inclusion (An)N ⊆ (Pn)N, which, in turn, induces an inclusion SolA(F ) ⊆ SolP(F ). Also,
the projection maps

(Pn)N → (Pn)i+1, (b0, b1, . . .) )→ (b0, . . . , bi)

induce maps πi : SolP(F ) → SolPi (F ). We have commutative diagrams

SolA(F ) !
"

!!

πTi

""

SolP(F )

πi

""

SolATi
(F ) !

"
!! SolPi (F )

and SolATi+1
(F )

""

! " !! SolPi+1(F )

πi+1,i

""

SolATi
(F ) !

"
!! SolPi (F ).

(2)

However, note that for an arbitrary finite subset T of N × {1, . . . , n}, there may not be
a projective version of the map πT : SolA(F ) → SolAT (F ), because there are no projective
analogs of the coordinate projections on An.

Lemma 1.6. The projection maps πi : SolP(F ) → SolPi (F ) are surjective.

Proof. Note that b ∈ (Pn)N lies in SolP(F ) if and only if πi(b) ∈ (Pn)i+1 lies in SolPi (F )
for every i ∈ N. In other words, SolP(F ) can be identified with the inverse limit of
the SolPi (F )’s. It thus suffices to show that the maps πi+1,i : SolPi+1(F ) → SolPi (F ), are
surjective. The inclusion

k[yTi
]/(k[yTi

] ∩ [F ]) ↪→ k[yTi+1
]/(k[yTi+1

] ∩ [F ])

of finitely generated k-algebras, corresponds to a dominant morphism of affine k-schemes.
Therefore, also the morphism SolATi+1

(F ) → SolATi
(F ) of affine k-varieties is dominant. As

SolPi (F ) is the closure of SolATi
(F ), this and the commutativity of (2), implies that also

πi+1,i is dominant. Projective space is complete and so are products and closed subvarieties
of complete varieties. Thus SolPi+1(F ) is complete. Since the image of a complete variety
under a morphism is closed, it follows that πi+1,i has a dense and closed image. Therefore
πi+1,i is surjective.

As discussed in Section 1.2, for a finite subset T of N× {1, . . . , n}, the set of elements
of AT that extend to an affine sequence solution of F is not so well-behaved. In particular,
it need not contain a non-empty open subset of SolAT (F ). To remedy this situation (see
Lemma 1.9 below), we consider the possibility of extending elements of AT to projective
sequence solutions of F .
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Definition 1.7. Let F ⊆ k{y1, . . . , yn} and let T be a finite subset of N× {1, . . . , n}. An
element a = (ai,j)(i,j)∈T ∈ AT extends to a projective sequence solution of F , if there

exists b = (bi,0 : . . . : bi,n)i∈N ∈ SolP(F ) ⊆ (Pn)N such that ai,j = bi,j for all (i, j) ∈ T and
bi0 = 1 for all i ∈ N with (i, j) ∈ T for some j.

Clearly, if a ∈ AT extends to an affine sequence solution of F , then a also extends
to a projective sequence solution of F . On the other hand, an a ∈ AT that extends to
a projective sequence solution of F need not extend to an affine sequence solution of F ,
since projective sequence solutions allow the possibility of bi,0 = 0 as long as (i, j) /∈ T for
all j ∈ {1, . . . , n}.

Lemma 1.8. If a ∈ AT extends to a projective sequence solution of F , then a ∈ SolAT (F ).

Proof. Assume that a = (ai,j)(i,j)∈T ∈ AT extends to a projective sequence solution of

F and let f ∈ [F ] ∩ k[yT ]. Moreover, let b = (bi,0 : . . . : bi,n)i∈N ∈ SolP(F ) be as in
Definition 1.7. Let I be the smallest subset of N such that T ⊆ I × {1, . . . , n}, i.e.,
I = {i ∈ N| ∃ j ∈ {1, . . . , n} such that (i, j) ∈ T}. Since every element of [F ]h vanishes
on b, we see that fh ∈ k[σi(yj)| (i, j) ∈ I × {0, . . . , n}] vanishes on ((bi,0 : . . . : bi,n))i∈I ∈
(Pn)|I|. Since f ∈ k[yT ], the polynomial fh only involves the variables σi(y0), (i ∈ I) and
σi(yj), ((i, j) ∈ T ). Since ai,j = bi,j for (i, j) ∈ T and bi,0 = 1 for i ∈ I, we see that
fh(b) = 0 implies f(a) = 0. So a ∈ SolAT (F ).

Lemma 1.9. Let F ⊆ k{y1, . . . , yn} and let T be a finite subset of N × {1, . . . , n}. Then
there exists an open Zariski dense subset U of SolAT (F ) such that every a ∈ U extends to
a projective sequence solution of F .

Proof. Let i ∈ N be such that T ⊆ Ti = {0, . . . , i} × {1, . . . , n}. The inclusion

k[yT ]/(k[yT ] ∩ [F ]) ↪→ k[yTi
]/(k[yTi

] ∩ [F ])

of finitely generated k-algebras, corresponds to dominant morphism of affine k-schemes.
Therefore, also the morphism πTi,T : SolATi

(F ) → SolAT (F ) of affine k-varieties is dominant.
By Chevalley’s theorem (see e.g., [Gec03, Theorem 2.2.11]) the image of a morphism of
varieties is constructible. So the image of πTi,T is a Zariski dense, constructible subset
of SolAT (F ). It therefore contains a subset U that is open and Zariski dense in SolAT (F ).
Thus, every a ∈ U extends to some ã ∈ SolATi

(F ). Via the embedding SolATi
(F ) → SolPi (F )

we obtain an element b̃ ∈ SolPi (F ) from ã ∈ SolATi
(F ). By Lemma 1.6, there exists a

b ∈ SolP(F ) mapping to b̃ ∈ SolPi (F ). This b has the required property of Definition 1.7.

1.4 Free sets and difference dimension

We are now prepared to specify precisely how to count the degrees of freedom when
determining sequence solutions.

Proposition 1.10. Let F ⊆ k{y1, . . . , yn}. For a finite subset T of N × {1, . . . , n} the
following conditions are equivalent:

(i) There exists a Zariski dense open subset U of AT such that every a ∈ U extends to
a projective sequence solution of F .

(ii) SolAT (F ) = AT .

(iii) k[yT ] ∩ [F ] = {0}.
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(iv) The image of yT in k{y1, . . . , yn}/[F ] is algebraically independent over k.

Proof. Let U be as in (i). By Lemma 1.8 we have U ⊆ SolAT (F ) ⊆ AT . Since U is Zariski
dense in AT and SolAT (F ) is closed in AT , we see that SolAT (F ) = AT . So (i)⇒(ii). On
the other hand, (ii)⇒(i) by Lemma 1.9. Clearly, (iv) and (iii) are equivalent. Moreover,
(iii)⇔(ii) by definition of SolAT (F ).

Definition 1.11. Let F ⊆ k{y1, . . . , yn}. A finite subset T of N× {1, . . . , n} is free with
respect to F if it satisfies the equivalent properties of Proposition 1.10.

In Section 1.5 below we will obtain yet another characterization of free sets. We next
look at a couple of examples to familiarize ourselves with the definitions introduced above.

Example 1.12. Let us return to Example 1.1. So F = {y1σ(y1) − 1}. We have already
seen that for T = {0} every non-zero a0 ∈ C = AT extends to an affine sequence solution.
Thus T = {0} is free with respect to F . The element a0 = 0 ∈ AT does not extend to an
affine sequence solution but it extends to the projective sequence solution

((1 : 0), (0 : 1), (1 : 0), (0 : 1), . . .) ∈ (P1)N.

Indeed, for i ≥ 1 and Ti = {0, . . . , i} we have

SolATi
(F ) = {(a0, a−1

0 , . . . , a±1
0 )| a0 ∈ C! {0}} ⊆ ATi

and SolPi (F ) is obtained from SolATi
(F ) 0 A1 ! {0} by adding two points, ((1 : 0), (0 :

1), . . .) ∈ (P1)i+1 corresponding to the missing origin of A1 ! {0} and ((0 : 1), (1 :
0), . . .) ∈ (P1)i+1 corresponding to the missing point at infinity of A1 ! {0}. This shows
that SolP(F ) 0 P1 is obtained from SolA(F ) 0 A1 ! {0} by adding two points, namely

((1 : 0), (0 : 1), . . .) and ((0 : 1), (1 : 0), . . .) ∈ (P1)N.

Note that SolP(F ) ⊆ (P1)N can also be described as the solution set of the multihomo-
geneous polynomials

σi(y1σ(y1)− y0σ(y0)) = σi(y1)σ
i+1(y1)− σi(y0)σ

i+1(y0), (i ≥ 0).

Every one-element subset T of N is free with respect to F but no subset of N with two
or more elements is free. So, clearly, there is only one degree of freedom that should be
counted in this example.

Example 1.13. Let us also revisit Example 1.2. So F = {σ(y1)− y1 − 1, y1y2 − 1}. For
Ti = {0, . . . , i} × {1, 2} we have

SolATi
(F ) =

{(
a a+ 1 · · · a+ i

a−1 (a+ 1)−1 · · · (a+ i)−1

) ∣∣∣ a ∈ C! {0,−1, . . . ,−i}
}

⊆ (A2)i+1.

So SolATi
(F ) 0 A1 ! {0, . . . ,−i} and SolPi (F ) 0 P1 is obtained from SolATi

(F ) by adding
i+ 2 points at infinity. These are

(
(a : a2 : 1), (a+ 1 : (a+ 1)2 : 1), . . . , (a+ i : (a+ i)2 : 1)

)
∈ (P2)i+1,

where a = 0, . . . ,−i, corresponding to the missing points {0, . . . ,−i} and the point

((0 : 1 : 0), (0 : 1 : 0), . . . , (0 : 1 : 0)) ∈ (P2)i+1,
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corresponding to the missing point at infinity. To explicitly describe SolPi (F ) ⊆ (P2)i+1

set X = Vh(y1y2 − y20) = Vh((y1y2 − 1)h) ⊆ P2. Note that X is isomorphic to P1 (via
P1 → X, (a : b) )→ (ab : b2 : a2)) and that

X & !! P1

A1
# $

##!!!!!!!!
%
&

$$
""""""""

commutes, where A1 ↪→ P1, a )→ (1 : a) is the standard embedding and A1 ↪→ X, a )→ (a :
a2 : 1) extends A1 ! {0} 0 V(y1y2 − 1) ↪→ X. The automorphism p : A1 → A1, a )→ a+ 1
extends to an automorphism p : X → X. We claim that

SolPi (F ) =
{
(x, p(x), . . . , pi(x)) ∈ (P2)i+1| x ∈ X

}
. (3)

The right-hand side of (3) is closed in (P2)i+1 and, by construction, it contains the image of
SolATi

(F ) in (P2)i+1. In fact, {(x, p(x), . . . , pi(x)) ∈ (P2)i+1| x ∈ X} 0 X 0 P1 is obtained

from SolATi
(F ) 0 A1!{0, . . . ,−i} by adding the i+2 points described above. This implies

(3). Similarly,

SolA(F ) =

{(
a a+ 1 · · ·

a−1 (a+ 1)−1 · · ·

)
∈ (A2)N

∣∣∣ a ∈ C! {−n| n ∈ N}
}

⊆ (A2)N

is in bijection with A1 ! {−n| n ∈ N} and

SolP(F ) =
{
(x, p(x), p2(x), . . .) ∈ (P2)N| x ∈ X

}
⊆ (P2)N

is in bijection with P1. So we obtain SolP(F ) from SolA(F ) by adding infinitely many
points, namely, ((0 : 1 : 0), (0 : 1 : 0), . . .) ∈ (P2)N and

(
(a : a2 : 1), (a+ 1 : (a+ 1)2 : 1), . . . ,

)
∈ (P2)N,

where a = 0,−1,−2, . . ..
Note that, in general, for F ⊆ k{y1, . . . , yn} we have an inclusion

SolP(F ) =
{
a ∈ (Pn)N

∣∣ f(a) = 0 ∀ f ∈ [F ]h
}
⊆

{
a ∈ (Pn)N

∣∣ σi(f)(a) = 0 ∀ f ∈ F h, i ∈ N
}
.

However, this inclusion can be strict. Indeed, in the present example, the point

a = ((0 : 1 : 0), (0 : 0 : 1), (0 : 0 : 1), . . .) ∈ (P2)N

is a solution to σi(y1y2 − y20) and σi(σ(y1)y0 − y1σ(y0)− y0σ(y0)) for all i ∈ N but a does
not belong to SolP(F ) because p(0 : 1 : 0) = (0 : 1 : 0) ,= (0 : 0 : 1). Of course, this can
also be seen in terms of the equations: From σ(y1)σ(y2)− 1 ∈ [F ] and σ(y1)− y1− 1 ∈ [F ]
we obtain (y1 + 1)σ(y2) − 1 ∈ [F ]. Therefore f = σ(y2)y1 + σ(y2) − 1 ∈ [F ] but fh =
σ(y2)y1 + σ(y2)y0 − y0σ(y0) does not vanish on a.

For T = {(1, 0)}, the set of all a ∈ AT = C that extend to an affine sequence solution
of F is C ! {−n| n ∈ N}, which does not contain a non-empty Zariski open subset. The
set of all a ∈ AT = C that extend to a projective sequence solution of F is C! {0}, which
is Zariski open: Indeed, for a ∈ C! {0} the point

b = ba =
(
(a : a2 : 1), (a+ 1 : (a+ 1)2 : 1), . . . ,

)
∈ (P2)N
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is a projective sequence solution of F that extends a because (a : a2 : 1) = (1 : a : a−1).
The point a = 0 ∈ AT does not extend to a projective sequence solution of F because the
equation y1y2 − y20 = 0 does not have a solution with y0 = 1 and y1 = 0. This shows that
in Lemma 1.9 one cannot choose U = SolAT (F ) in general. So T = {(0, 1)} is free with
respect to F . More generally, every one-element subset of N × {1, 2} is free with respect
to F but no subset with two or more elements is free with respect to F . To see this,
note that for a one-element subset T of N × {1, 2}, all elements of AT ! {0} extend to a
projective sequence solution of F : For T = {(i, 1)}, ba−i extends a ∈ AT ! {0} and for
T = {(i, 2)}, ba−1−i extends a ∈ AT ! {0}. No subset with two or more elements can be
free because SolPi (F ) 0 P1 is one dimensional for every i ∈ N. Alternatively, for any two
distinct elements in {y1, y2,σ(y1),σ(y2), . . .} we can always find a non-zero polynomial in
[σ(y1) − y1 − 1, y1y2 − 1] that only contains those two elements. So condition (iii) of
Proposition 1.10 is violated.

Example 1.14. Let f = σm(y1) + λm−1σm−1(y1) + . . . + λ0y1 be a homogeneous linear
difference polynomial over k. Then every a = (a0, . . . , am−1) ∈ k

m
extends to an affine

sequence solution via the recursive formula am+i = σi(λm−1)am−1+i + . . . + σi(λ0)ai for
i ≥ 0. Thus T = {0, . . . ,m − 1} is free with respect to F = {f}. On the other hand, no
subset of N containing more than m elements is free with respect to f . So, overall, we
count m degrees of freedom.

The same reasoning applies to any order m difference polynomial of the form f =
σm(y1) + g(y1, . . . ,σm(y1)).

Example 1.15. Let f = y1σ(y1) over (k,σ) = (C, id). A sequence a = (a0, a1, . . .) ∈ CN

is an affine sequence solution if and only if aiai+1 = 0 for i ≥ 0, i.e., if every second entry
is zero. For m ≥ 0 the sets T = {0, 2, 4, . . . , 2m} and T = {1, 3, . . . , 2m+ 1} are free with
respect to f but no subset of N containing two consecutive integers is free with respect to
f .

As in the above example, for a general system F ⊆ k{y1, . . . , yn} of algebraic difference
equations one expects to encounter infinitely many degrees of freedom, when writing down
a solution in the ring of sequences. Thus, to count them in a reasonable fashion, we need
to count them asymptotically. For i ≥ 0,

di(F ) = max
{
|T | | T ⊆ {0, . . . , i}× {1, . . . , n} is free w.r.t. F

}

counts the degrees of freedom up to order i. To obtain a value between 0 and n we
normalize di(F ) appropriately, i.e., we consider 0 ≤ di(F )

i+1 ≤ n.

Definition 1.16. Let F ⊆ k{y1, . . . , yn}. In Corollary 2.9 below it is shown that

σ-dim(F ) = lim
i→∞

di(F )

i+ 1

exists (inside R). We call this limit the σ-dimension of F .

Note that by construction σ- dim(F ) = σ- dim([F ]) and 0 ≤ σ- dim(F ) ≤ n for F ⊆
k{y1, . . . , yn}. In Section 3 we will compare σ- dim(F ) with other notions of dimensions in
difference algebra. In particular, we will show that our definition agrees with the standard
definition via σ-transcendence bases whenever the latter notion applies.

Example 1.17. For the sets F in Examples 1.12 and 1.13 we have di(F ) = 1 for all
i ≥ 0 and so σ- dim(F ) = 0. Also for F as in Example 1.14 di(F ) is bounded and so
σ- dim(F ) = 0. For F = {0} ⊆ k{y1, . . . , yn} one has di(F ) = n(i+1) and so σ- dim(F ) = n
as expected.
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The following example shows that σ- dim(F ) does not need to be an integer.

Example 1.18. As in Example 1.15 let F = {y1σ(y1)}. For i ≥ 0 even we have di(F ) = i
2

and for i odd we have di(F ) = i+1
2 . So σ- dim(F ) = limi→∞

di(F )
i+1 = 1

2 .

In Section 4 we will determine the σ-dimension of a general univariate σ-monomial.
Moreover, since the σ-dimension is not necessarily an integer it is natural to wonder which
numbers occur. This question will be addressed in Section 5.

1.5 A characterization of free sets in terms of affine sequence solutions

To complement Definition 1.11, we deduce in this subsection a characterization of free
sets that avoids projective sequence solutions. In fact, we show that, at least over an
uncountable σ-field k, T ⊆ N× {1, . . . , n} is free with respect to F ⊆ k{y1, . . . , yn} if and
only if the set of all a ∈ AT that extend to an affine sequence solution of F is Zariski dense
in AT .

To also have a statement available for arbitrary σ-fields k, we fix an uncountable
algebraically closed fieldK containing k as a subfield and we consider all solutions sets over
K. For example, if k is uncountable, we could choose K = k. Similarly to Subsection 1.2,
we consider KN as a k-σ-algebra via σ((ai)i∈N) = (ai+1)i∈N and k → KN, λ )→ (σi(λ))i∈N.
We set An

K = Kn and for F ⊆ k{y1, . . . , yn} we set

SolAK (F ) = {a ∈ (KN)n| f(a) = 0 ∀ f ∈ F} = V([F ]) ⊆ (An
K)N.

For a finite subset T of N× {1, . . . , n} we define

SolAK

T (F ) = V([F ] ∩ k[yT ]) ⊆ AT
K .

Lemma 1.19. The image of SolAK (F ) in SolAK

T (F ) is Zariski dense.

Proof. Let g ∈ K[yT ] be a polynomial that vanishes on SolAK (F ). We have to show that
g also vanishes on SolAK

T (F ).
There is a (strong) Nullstellensatz for polynomials in an arbitrary set of variables Y

([Lan52]). It states that for an algebraically closed field K with |K| > |Y |, a polynomial
h ∈ K[Y ] vanishes on all solutions of H ⊆ K[Y ] in KY if and only if h ∈

√
(H). Therefore

g ∈
√

(F,σ(F ), . . .) ⊆ K[σi(yj)| (i, j) ∈ N × {1, . . . , n}]. Thus gm ∈ (F,σ(F ), . . .) =
[F ]⊗k K ⊆ k{y1, . . . , yn}⊗k K for some m ≥ 1. Since g ∈ K[yT ] = k[yT ]⊗k K, it follows
that

gm ∈ ([F ]⊗k K) ∩ (k[yT ]⊗k K) = ([F ] ∩ k[yT ])⊗k K ⊆ k{y1, . . . , yn}⊗k K.

Thus gm vanishes on SolAK

T (F ) and therefore also g vanishes on SolAK

T (F ).

In [Lan52] it is shown that the cardinality assumption |K| > |Y | in the above proof
is necessary for the Nullstellensatz in infinitely many variables. In fact, Lemma 1.19 does
not hold without the assumption that K is uncountable (Example 1.3).

Corollary 1.20. Let F ⊆ k{y1, . . . , yn} and let T be a finite subset of N × {1, . . . , n}.
Then T is free with respect to F if and only if the image of SolAK (F ) in AT

K is Zariski
dense.

Proof. A polynomial in [F ]∩ k[yT ] vanishes on the image of SolAK (F ) in AT
K . Thus, if the

latter is Zariski dense in AT
K , then [F ] ∩ k[yT ] = {0} and so T is free with respect to F

(Proposition 1.10).
On the other hand, if T is free with respect to F , then [F ] ∩ k[yT ] = {0} and so

SolAK

T (F ) = AT
K . Thus the image of SolAK (F ) in AT

K is Zariski dense by Lemma 1.19.
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2 The difference dimension of a difference algebra

In this section we introduce the σ-dimension σ- dim(R) of a finitely σ-generated k-σ-
algebra. We then show that, despite the fact that σ- dim(R) need not be an integer, it
satisfies many properties similar to the familiar case of finitely generated algebras over a
field. For example, the difference dimension is compatible with tensor products and base
change. For F ⊆ k{y1, . . . , yn} we have σ- dim(F ) = σ- dim(k{y1, . . . , yn}/[F ]) and so
results about the σ-dimension of σ-algebras have immediate corollaries for the σ-dimension
of systems of algebraic difference equations.

2.1 Recollection: Dimension of algebras

Before defining the σ-dimension, we recall some well-known properties of the Krull dimen-
sion for finitely generated algebras over a field. (See, e.g., Sections 8 and 13 in [Eis04]).
This will be helpful for two reasons. Firstly, we will use these results in our later poofs
and secondly, some of our results are difference analogs of these classical results about the
Krull dimension.

Recall that the Krull dimension dim(R) of a ring R is defined as the supremum over
the lengths n of all chains p0 # p1 # . . . # pn of prime ideals in R. For finitely generated
algebras over a field, this supremum is finite and can be described through algebraically
independent elements:

Proposition 2.1. Let R be an algebra over a field k and let A be a finite subset of R such
that R = k[A]. Then

dim(R) = max{|B| | B ⊆ A, B is algebraically independent over k}. (4)

In particular, if R is an integral domain, then dim(R) equals the transcendence degree
of the field of fractions of R over k.

Proof. See [Sta20, Tag 00P0] for a proof that dim(R) equals the transcendence degree of
the field of fractions of R over k in case R is an integral domain. In general, let d denote
the value on the right hand side of equation (4). From the definition of dim(R), it follows
that dim(R) = dim(R/p) for some minimal prime ideal p of R. Since the image of A in R/p
generates the field of fractions of R/p as a field extensions of k, it contains a transcendence
basis. So we may choose B ⊆ A such that the image of B is a transcendence basis of the
field of fractions of R/p over k. Then |B| = dim(R/p) = dim(R). Since the image of B in
R/p is algebraically independent over k, also B itself is algebraically independent over k.
Therefore, dim(R) ≤ d.

Conversely, assume that B ⊆ A is algebraically independent over k and |B| = d. Then
k[B] is a polynomial ring in d variables. In particular, it is an integral domain. For any
inclusion of rings S1 ⊆ S2, any minimal prime ideal p1 of S1 is of the form p1 = p2 ∩ S1

for some prime ideal p2 of S2 ([Bou72, Chapter II, §2.6, Prop. 16]). Applying this to
k[B] ⊆ R with p1 the zero ideal of k[B], we find a prime ideal p of R with p∩ k[B] = {0}.
So k[B] embeds into R/p and it follows that the transcendence degree of the field of
fractions of R/p over k is at least |B|. So, using [Sta20, Tag 00P0] again, we obtain
d = |B| ≤ dim(R/p) ≤ dim(R). Altogether, we obtain dim(R) = d as desired.

The following lemma explains the behavior of Krull dimension under morphisms.

Lemma 2.2. Let R and S be finitely generated k-algebras.

(i) If there exists an injective morphism R → S of k-algebras, then dim(R) ≤ dim(S).
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(ii) If there exists a surjective morphism R → S of rings, then dim(R) ≥ dim(S).

Proof. For (i), note that a finite generating set A of R can be extended to a finite generating
set of S. An algebraically independent subset of A remains algebraically independent in
S by the injectivity of R → S. Thus the claim follows from Proposition 2.1.

Claim (ii) follows from the fact that prime ideals in S are in bijection with prime ideals
in R containing the kernel of R → S.

The Krull dimension is additive with respect to the tensor product:

Lemma 2.3. Let R and S be finitely generated k-algebras. Then dim(R⊗kS) = dim(R)+
dim(S).

Proof. Let A ⊆ R and B ⊆ S be finite such that R = k[A] and S = k[B]. Set C =
{a⊗ 1| a ∈ A}∪ {1⊗ b| b ∈ B}. Then k[C] = R⊗k S and a subset C ′ of C is algebraically
independent over k if and only if A′ = {a ∈ A| a⊗ 1 ∈ C ′} and B′ = {b ∈ B| 1⊗ b ∈ C ′}
are algebraically independent over k. Therefore |C ′| is maximal if and only if |A′| and |B′|
is maximal. So the claim follows from Proposition 2.1.

The Krull dimension is invariant under base change:

Lemma 2.4 ([Sta20, Tag 00P3]). Let k′/k be a field extension and R a finitely generated
k-algebra. Then dim(R⊗k k′) = dim(R).

Taking the quotient by the nilradical does not affect the Krull dimension:

Lemma 2.5. Let R be a finitely generated k-algebra and Rred = R/
√
0 the quotient of R

by the nilradical
√
0 of R. Then dim(Rred) = dim(R).

Proof. The nilradical
√
0 is contained in every prime ideal of R.

2.2 Difference dimension of difference algebras

We first show that the limit from Definition 1.16 exists. To achieve this we will use the
following well-known elementary lemma. See, e.g., [DGS76, Prop. 10.7].

Lemma 2.6 (Fekete’s Subadditive Lemma). If (ei)i≥1 is a sequence of non-negative real
numbers that is subadditve, i.e., ei+j ≤ ei+ej for all i, j ≥ 1, then limi→∞

ei
i exists (inside

R) and is equal to inf ei
i .

The following theorem allows us to define a meaningful notion of σ-dimension for any
finitely σ-generated k-σ-algebra.

Theorem 2.7. Let R be a finitely σ-generated k-σ-algebra. Choose a finite subset A of R
such that R = k{A} and set di = dim(k[A, . . . ,σi(A)]) for i ≥ 0. Then the limit

d = lim
i→∞

di
i+ 1

exists (inside R) and does not depend on the choice of A.

Proof. As the first step, we will show that we can assume without loss of generality that k is
inversive. Let k∗ denote the inversive closure of k ([Lev08, Def. 2.1.6]) and set R′ = R⊗kk∗.
Then A′ = {a ⊗ 1| a ∈ A} σ-generates R′ over k∗. Set d′i = dim(k∗[A′, . . . ,σi(A′)]) for
i ≥ 0. As k∗[A′, . . . ,σi(A′)] = k[A, . . . ,σi(A)]⊗k k∗ we have di = d′i for i ≥ 0. So, we can
assume that k is inversive.
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To show that limi→∞
di
i+1 exists, it suffices to show that the sequence (ei)i∈N = (di−1)i∈N

is subadditive, because then

lim
i→∞

di
i+ 1

= lim
i→∞

di−1

i
= lim

i→∞

ei
i

exists by Lemma 2.6. Let i, j ≥ 1. Since k is inversive, the map

σi : k[A, . . . ,σj−1(A)] → k[σi(A), . . . ,σi+j−1(A)]

is surjective. Thus dim(k[σi(A), . . . ,σi+j−1(A)]) ≤ dj−1 = ej by Lemma 2.2 (ii). The
canonical map

k[A, . . . ,σi−1(A)]⊗k k[σ
i(A), . . . ,σi+j−1(A)] −→ k[A, . . . ,σi+j−1(A)]

is also surjective. Therefore, using Lemma 2.2 (ii) and Lemma 2.3, we find

ei+j ≤ ei + dim(k[σi(A), . . . ,σi+j−1(A)]) ≤ ei + ej .

It remains to show that d = limi→∞
di
i+1 does not depend on the choice of the σ-

generating set A. This is similar to [DVHW14, Prop. A.24] but we include the argument
for the sake of completeness. So let A′ ⊆ R be another finite set such that R = k{A′} and
set d′i = dim(k[A′, . . . ,σi(A′)]) for i ≥ 0. Then A′ ⊆ k[A, . . . ,σj(A)] for some j ≥ 0 and
therefore k[A′, . . . ,σi(A′)] ⊆ k[A, . . . ,σi+j(A)]. Thus d′i ≤ di+j by Lemma 2.2(i).

If B is an algebraically independent subset of A ∪ . . . ∪ σi+j(A) such that |B| = di+j,
then B ∩ (A ∪ . . . ∪ σi(A)) is an algebraically independent subset of A ∪ . . . ∪ σi(A) and
therefore |B ∩ (A ∪ . . . ∪ σi(A))| ≤ di by Proposition 2.1. Thus

di+j = |B| ≤ |B ∩ (A ∪ . . . ∪ σi(A))| + |B ∩ (σi+1(A) ∪ . . . ∪ σi+j(A))| ≤ di + |A|j.

So
d′i

i+ 1
≤ di+j

i+ 1
≤ di

i+ 1
+

|A|j
i+ 1

.

Since limi→∞
|A|j
i+1 = 0, it follows that limi→∞

d′i
i+1 ≤ limi→∞

di
i+1 .

Definition 2.8. Let R be a finitely σ-generated k-σ-algebra. The real number d ≥ 0
defined in Theorem 2.7 above is called the σ-dimension of R. We denote it by σ-dim(R).

We note that the idea to consider the sequence di
i+1 already appears in [DVHW14,

A 7]. There, the σ-dimension is defined as 3lim supi→∞
di
i+14 and it is shown ([DVHW14,

Prop. A.24]) that lim supi→∞
di
i+1 does not depend on the choice of the finite σ-generating

set. Here 3x4 is the floor of x, i.e., the largest integer not greater than x. Theorem 2.7
shows that there is no need to consider the limes superior since indeed the limit exists.

The floor of the limes superior was taken in [DVHW14] simply to obtain an integer
value. The dimension of an algebraic variety is always an integer and so it may seem
natural to also only allow integer values for the dimension in difference algebraic geometry.
However, omitting the floor function makes the invariant stronger: Two difference algebras
with distinct difference dimensions cannot be isomorphic and not using the floor allows us
to recognize more difference algebras as non-isomorphic.

Moreover, while non-integer values for the dimension may look unusual to the alge-
braist, in discrete dynamics, it is very common to consider numerical invariants that are
not necessarily integers, for example, the topological entropy and the mean dimension
need not be integers. In fact, our notion of difference dimension can be seen as an al-
gebraic version of mean dimension. Mean dimension was first introduced by M. Gromov
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in [Gro99] and curiously enough, in Section 0.7 he writes: “The present notion of mean
dimension(s) arose from my attempts to geometrize the algebraic and model theoretic con-
ceptions of dimensions over difference fields.” We note that [Gro99] is mainly concerned
with compact metric spaces but as pointed out in Section 1.9.3 and remark On extension
of Prodim to Nontoplogical Categories right before Section 1.9.7 in [Gro99], some defini-
tions and constructions there, also make sense in some algebraic categories. Our definition
of difference dimension is more or less the same as the definition of projective dimension
in [Gro99, Section 1.9], a quantity closely related to the mean dimension. To make the
connection between the two definitions, note that in [Gro99] the base difference field k
is assumed to be constant, i.e., σ : k → k is the identity map. To match the notation in
the beginning of [Gro99, Section 1.9] replace the group Γ there with the monoid N and
set Ωi = {0, . . . , i} for i ∈ N. Moreover, choose X = An so that X = XΓ = (An)N. For
F ⊆ k{y1, . . . , yn} (as in Section 1) set Y = SolA(F ) ⊆ X and Y |Ωi = SolATi

(F ), where
Ti = {0, . . . , i} × {1, . . . , n}. Then

prodim(Y : {Ωi}) = lim inf
i→∞

dim(Y |Ωi)/|Ωi|

from [Gro99] becomes the limit in our Definition 1.16.
In Section 3 below we will compare Definition 2.8 with other notions of dimension

in difference algebra. In particular, we will show (Proposition 3.1) that σ- dim(R) agrees
with the σ-transcendence degree over k of the field of fractions of R in case R is an integral
domain with σ : R → R injective.

We can now justify Definition 1.16.

Corollary 2.9. Let F ⊆ k{y1, . . . , yn} and for i ≥ 0 set

di(F ) = max
{
|T | | T ⊆ {0, . . . , i}× {1, . . . , n} is free w.r.t. F

}
.

Then d = limi→∞
di(F )
i+1 exists.

Proof. Set R = k{y1, . . . , yn}/[F ] and let A = {a1, . . . , an} denote the image of {y1, . . . , yn}
in R. Recall (Proposition 1.10) that T ⊆ N × {1, . . . , n} is free with respect to F if and
only if {σi(aj)| (i, j) ∈ T} is algebraically independent over k.

Therefore, Proposition 1.10 implies di(F ) = dim(k[A, . . . ,σi(A)]) for i ≥ 0 and the
claim follows from Theorem 2.7.

Note that in Theorem 2.7 and Corollary 2.9 the limit of the sequence is in fact the
infimum of the sequence. This follows from Lemma 2.6 and the proofs of Theorem 2.7 and
Corollary 2.9. From the proof of Corollary 2.9 we also obtain:

Remark 2.10. For i ≥ 0 set k{y}[i] = k[y1, . . . , yn, . . . ,σi(y1), . . . ,σi(yn)] and for a
σ-ideal I of k{y1, . . . , yn} set I[i] = I ∩ k{y}[i]. We have

σ- dim(I) = σ- dim(k{y1, . . . , yn}/I) = lim
i→∞

di
i+ 1

,

where di = dim(k{y}[i]/I[i]).

Example 2.11. Let R be a k-σ-algebra that is finitely generated as a k-algebra. Then
σ- dim(R) = 0. To see this, note that if A generates R as a k-algebra, then also k{A} = R
and so di = dim(R) for i ≥ 0.

The following proposition shows that our notion of σ-dimension generalizes the usual
notion of dimension in algebraic geometry.
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Proposition 2.12. Let F ⊆ k[y1, . . . , yn] ⊆ k{y1, . . . , yn} be a system of algebraic equa-
tions. Then σ- dim(F ) equals the dimension of the algebraic variety defined by F .

Proof. Let X be the algebraic variety defined by F and d = dim(X). For i ≥ 0, the
algebraic variety defined by σi(F ) ⊆ k[σi(y1), . . . ,σi(yn)] is the base change of X via
σi : k → k. In particular, it also has dimension d (cf. Lemma 2.4). So

(F,σ(F ), . . . ,σi(F )) ⊆ k[y1, . . . , yn, . . . ,σ
i(y1), . . . ,σ

i(yn)]

defines an (i + 1)-fold product of varieties of dimension d, i.e., a variety of dimension
d(i + 1) (cf. Lemma 2.3).

We next show that, with the notation of Remark 2.10, we have

[F ][i] = (F,σ(F ), . . . ,σi(F )) ⊆ k{y}[i] (5)

for all i ∈ N. Clearly, (F,σ(F ), . . . ,σi(F )) ⊆ [F ][i]. So let us establish the reverse
inclusion. To this end, note that for a k-algebra S, a set of indeterminates Y over S
and an ideal I of k[Y ] one has (I) ∩ k[Y ] = I, where (I) ⊆ S[Y ] denotes the ideal of
S[Y ] generated by I. (This follows from S[Y ] = S ⊗k k[Y ] and the fact that the tensor
product has this property. See, e.g., [DNR01, Lemma 1.4.5 ]). We will apply this with S =
k[σi+1(y1), . . . ,σi+1(yn),σi+2(y1), . . .]/(σi+1(F ),σi+2(F ), . . .), Y = {y1, . . . , yn, . . . ,σi(y1), . . . ,σi(yn)}
and I = (F, . . . ,σi(F )) ⊆ k[Y ] = k{y}[i]. The image of any h ∈ [F ] in S[Y ] lies in
(I) ⊆ S[Y ], because an element in σj(F ) (j ≥ i + 1) becomes zero in S. If, moreover,
h ∈ [F ][i], then h ∈ k[Y ], and so h ∈ (I) ∩ k[Y ] = I. This proves (5).

Thus, if A denotes the image of {y1, . . . , yn} in k{y1, . . . , yn}/[F ], then

k[A, . . . ,σi(A)] = k{y}[i]/[F ][i] = k{y}[i]/(F, . . . ,σi(F ))

has dimension di = d(i+ 1). Therefore

σ- dim(F ) = σ- dim(k{A}) = lim
i→∞

di
i+ 1

= d.

We will next establish some elementary properties of the σ-dimension which show that
it behaves as one may expect from a notion of dimension. Most of these properties follow
rather directly from the corresponding property of finitely generated algebras.

Proposition 2.13. Let R and S be finitely σ-generated k-σ-algebras.

(i) If there exists an injective morphism R → S of k-σ-algebras, then σ- dim(R) ≤
σ- dim(S).

(ii) If there exists a surjective morphism R → S of k-σ-algebras, then σ- dim(R) ≥
σ- dim(S).

Proof. (i): We may assume that R is a k-σ-subalgebra of S. Let A be a finite σ-generating
set for R. Then we can extend A to a finite σ-generating set B of S. For i ≥ 0 we have
k[A, . . . ,σi(A)] ⊆ k[B, . . . ,σi(B)] and therefore, using Lemma 2.2 (i),

dim(k[A, . . . ,σi(A)]) ≤ dim(k[B, . . . ,σi(B)]).

Thus σ- dim(R) ≤ σ- dim(S).
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(ii): Let A ⊆ R be finite such that R = k{A} and let A denote the image of A in
S under a surjective morphism. Then k{A} = S. Since k[A, . . . ,σi(A)] surjects onto
k[A, . . . ,σi(A)] for i ≥ 0, we see, using Lemma 2.2 (ii), that

dim(k[A, . . . ,σi(A)]) ≥ dim(k[A, . . . ,σi(A)]),

and therefore σ- dim(R) ≥ σ- dim(S).

In terms of systems of algebraic difference equations Proposition 2.13 has the following
interpretation:

Corollary 2.14. (i) If F ⊆ k{y1, . . . , yn} and G ⊆ k{y1, . . . , yn, z1, . . . , zm} are such
that [G] ∩ k{y1, . . . , yn} = [F ], then σ- dim(F ) ≤ σ- dim(G).

(ii) If F,G ⊆ k{y1, . . . , yn} are such that [F ] ⊆ [G] (e.g., F ⊆ G), then σ- dim(F ) ≥
σ- dim(G).

Like the Krull dimension of finitely generated algebras our σ-dimension is additive
with respect to the tensor product.

Proposition 2.15. Let R and S be finitely σ-generated k-σ-algebras. Then

σ- dim(R ⊗k S) = σ- dim(R) + σ- dim(S).

Proof. Let A and B be finite σ-generating sets for R and S respectively. Then C =
{a ⊗ 1| a ∈ A} ∪ {1 ⊗ b| b ∈ B} is a finite σ-generating set for R ⊗k S. Moreover, for
i ≥ 0 we have k[C, . . . ,σi(C)] = k[A, . . . ,σi(A)] ⊗k k[B, . . . ,σi(B)] and therefore, using
Lemma 2.3,

dim(k[C, . . . ,σi(C)]) = dim(k[A, . . . ,σi(A)]) + dim(k[B, . . . ,σi(B)]).

In terms of systems of algebraic difference equations, Proposition 2.15 has the following
interpretation:

Corollary 2.16. If F ⊆ k{y1, . . . , yn} and G ⊆ k{z1, . . . , zm}, then F∪G ⊆ k{y1, . . . , yn, z1, . . . , zm}
has σ-dimension σ- dim(F ) + σ- dim(G).

The following proposition shows that our notion of σ-dimension is well-behaved under
extension of the base σ-field (cf. [DVHW14, Lemma A.27]).

Proposition 2.17. Let R be a finitely σ-generated k-σ-algebra. Let k′ be a σ-field exten-
sion of k and consider R′ = R⊗k k′ as a k′-σ-algebra. Then

σ- dim(R′) = σ- dim(R).

Proof. If A ⊆ R is a finite σ-generating set for the k-σ-algebra R, then A′ = {a⊗1| a ∈ A}
is a finite σ-generating set for the k′-σ-algebra R′. Moreover, dim(k[A, . . . ,σi(A)]) =
dim(k′[A′, . . . ,σi(A′)]) for i ≥ 0 by Lemma 2.4 since k′[A′, . . . ,σi(A′)] = k[A, . . . ,σi(A)]⊗k

k′ .

In terms of systems of algebraic difference equations, Proposition 2.17 has the following
interpretation:
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Corollary 2.18. Let k′ be a σ-field extension k and F ⊆ k{y1, . . . , yn}. Then the σ-
dimension of F considered as a subset of k{y1, . . . , yn} agrees with the σ-dimensions of F
considered as a subset of k′{y1, . . . , yn}.

For a σ-ring R, the nilradical
√
0 ⊆ R of R is a σ-ideal. Therefore Rred := R/

√
0 has

naturally the structure of a σ-ring. As in commutative algebra, passing from R to Rred

does not affect the dimension:

Proposition 2.19. Let R be a finitely σ-generated k-σ-algebra. Then

σ- dim(Rred) = σ- dim(R).

Proof. Let A ⊆ R be a finite σ-generating set for R and let A denote the image of A in
Rred. Then A is a finite σ-generating set for Rred and k[A, . . . ,σi(A)] = k[A, . . . ,σi(A)]red
for i ≥ 0. Therefore dim(k[A, . . . ,σi(A)]) = dim(k[A, . . . ,σi(A)]) by Lemma 2.5.

In terms of systems of algebraic difference equations Proposition 2.19 can be reinter-
preted as:

Corollary 2.20. Let F ⊆ k{y1, . . . , yn}. Then

σ- dim(F ) = σ- dim([F ]) = σ- dim(
√

[F ]).

3 Comparison with other notions of dimension

In this section we compare our notion of σ-dimension with two other notions in the
literature. Firstly, we show that our notion generalizes the standard definition via σ-
transcendence bases. Secondly, we show that our σ-dimension is an upper bound for the
difference Krull dimension.

Let us first recall some basic facts about the σ-transcendence degree ([Lev08, Sec-
tion 4.1]). Let R be a k-σ-algebra. A subset A of R is σ-algebraically independent (over
k) if the family (σi(a))a∈A,i∈N is algebraically independent over k. If K is a σ-field exten-
sion of k, a maximal σ-algebraically independent subset is called a σ-transcendence basis
of K/k. Any two σ-transcendence bases have the same cardinality, which is called the
σ-transcendence degree of K/k.

Also recall that a σ-ideal I of a σ-ring R is reflexive if σ−1(I) = I. (This implies
that σ : R/I → R/I is injective.) In [Lev08, Definition 4.2.21] the difference dimension
of a prime reflexive σ-ideal I of k{y1, . . . , yn} is defined as the σ-transcendence degree of
the fraction field of k{y1, . . . , yn}/I over k. (We will see in a moment that our σ- dim(I)
agrees with this definition, so there is no ambiguity with the naming.)

The following proposition shows that our definition of σ-dimension agrees with the
classical definition whenever the latter applies, i.e., when R is an integral domain with
σ : R → R injective (cf. [DVHW14, Lemma A.26]).

Proposition 3.1. Let R be a finitely σ-generated k-σ-algebra. Assume that R is an
integral domain. Then σ- dim(R) equals the largest integer n such that there exist n
σ-algebraically independent elements inside R. Moreover, if σ : R → R is injective,
σ- dim(R) equals the σ-transcendence degree of the field of fractions of R over k.

19



Proof. Let A be a finite subset of R such that R = k{A} and set di = dim(k[A, . . . ,σi(A)])
for i ≥ 0. In [Hru04, Lemma and Definition 4.21] (cf. [Wiba, Theorem 5.1.1]) it is shown
that there exist d, e ∈ N such that di = d(i + 1) + e for i 5 0. Moreover, d is the
σ-transcendence degree over k of the field of fractions K of R/(0)∗, where

(0)∗ = {r ∈ R| ∃ m ≥ 1 : σm(r) = 0}.

Note that because R is an integral domain, (0)∗ is a (reflexive) prime ideal and K is a
σ-field extension of k. We have

σ- dim(R) = lim
i→∞

di
i+ 1

= lim
i→∞

d(i+ 1) + e

i+ 1
= d.

If a1, . . . , an ∈ R are σ-algebraically independent over k, then k{a1, . . . , an} ∩ (0)∗ =
{0}, because σ is injective on k{a1, . . . , an}. Thus k{a1, . . . , an} embeds into K and it
follows that n ≤ d.

On the other hand, we can choose a σ-transcendence basis b1, . . . , bd of K/k that is
contained in R/(0)∗. If a1, . . . , ad ∈ R are such that they are mapped onto b1, . . . , bd, then
a1, . . . , ad ∈ R are σ-algebraically independent over k. It follows that d = σ- dim(R) is the
largest integer such that there exist d σ-algebraically independent elements in R.

If σ : R → R is injective, then (0)∗ = {0} and K equals the field of fractions of R.

Recall that a σ-ideal I of a σ-ring R is perfect if fσ(f) ∈ I implies f ∈ I for all
f ∈ R. Perfect σ-ideals are important in classical difference algebra because they feature
prominently in a difference Nullstellensatz ([Lev08, Theorem 2.6.4]). In fact, there is a
bijection between the difference subvarieties of An

k and the perfect σ-ideals of k{y1, . . . , yn}.
Note however, that in this setup solutions are restricted to be solutions in σ-field extensions
of k. Allowing solutions in more general k-σ-algebras, such as rings of sequences, leads to
a different kind of Nullstellensatz. (See [PSW20].) Any perfect σ-ideal I of k{y1, . . . , yn}
can be written uniquely as an irredundant intersection I = p1 ∩ . . .∩ pm of prime reflexive
σ-ideals ([Lev08, Theorem 2.5.7]).

Corollary 3.2. Let I ⊆ k{y1, . . . , yn} be a perfect σ-ideal, written as an irredundant inter-
section I = p1∩ . . .∩pm of prime reflexive σ-ideals. Then σ- dim(I) is the maximum (over
1 ≤ j ≤ m) of the σ-transcendence degrees of the fields of fractions of k{y1, . . . , yn}/pj .
In particular, for a reflexive prime σ-ideal p, σ-dim(p) equals the σ-transcendence degree
of the field of fractions of k{y1, . . . , yn}/p.

Proof. With notation as in Remark 2.10 we have I[i] = p1[i] ∩ . . . ∩ pm[i] for i ≥ 0 and it
follows that

di = dim(k{y}[i]/I[i]) = max{dim(k{y}[i]/pj [i])| 1 ≤ j ≤ m}.

As in the proof of Proposition 3.1, for every 1 ≤ j ≤ m, there exist d(pj), e(pj) ∈ N such
that

di(pj) = dim(k{y}[i]/pj [i]) = d(pj)(i+ 1) + e(pj)

for i 5 0. Thus, if j0 ∈ {1, . . . ,m} is such that d(pj0) is maximal and e(pj0) is maximal
among all e(pj) with d(pj) maximal, then di = d(pj0)(i + 1) + e(pj0) for i 5 0. It follows
that

σ- dim(I) = lim
i→∞

di
i+ 1

= d(pj0).

Since d(pj) agrees with the σ-transcendence degree of the field of fractions of k{y1, . . . , yn}/pj
over k the claim follows.
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We next compare our notion of σ-dimension with a difference analog of the Krull
dimension. Let us first explain how the idea of the definition of the Krull dimension can
be adapted to difference algebra. (Cf. [Lev08, Definition 4.6.1] or [KLMP99, Section 7.2].)
Since the σ-polynomial ring k{y1} in one σ-variable contains infinite descending chains
of prime σ-ideals one cannot simply take the maximal length of chains of prime σ-ideals
as the definition. Instead one has to work with chains of chains: Let R be a finitely σ-
generated k-σ-algebra. The largest integer d ≥ 0 such that there exists a chain of infinite
chains of prime σ-ideals of R of the form

p0 $ p10 $ p20 $ . . . $ p1 $ p11 $ p21 $ . . . $ p2 $ . . . $ pd−1 $ p1d−1 $ p2d−1 $ . . . $ pd (6)

is called the difference Krull dimension of R and denoted by dimU (R). By definition
dimU (R) = 0 if R has no (or only finitely many) prime σ-ideals. The existence of a
maximal d follows from the proof of Proposition 3.3 below.

Proposition 3.3. Let R be a finitely σ-generated k-σ-algebra. Then

dimU (R) ≤ σ- dim(R).

Proof. Let A ⊆ R be finite such that R = k{A}. For a prime σ-ideal p of R let A denote the
image of A in R/p and consider the sequence (di)i≥0 defined by di = dim(k[A, . . . ,σi(A)]).
According to [Hru04, Lemma and Definition 4.21] (cf. [Wiba, Theorem 5.1.1]) there
exist d(p), e(p) ∈ N such that di = d(p)(i + 1) + e(p) for i 5 0. So the polynomial
ωp(t) = d(p)(t + 1) + e(p) satisfies ωp(i) = di for i 5 0.

We define a total order on the set of polynomials of the form d(t+1)+ e with d, e ∈ N
by d(t+1)+ e ≤ d′(t+1)+ e′ if d(i+1)+ e ≤ d′(i+1)+ e′ for i 5 0. This is a well-order
since it corresponds to the lexicographic order on pairs (d, e). If p ⊇ q are prime σ-ideals
of R, then ωp(t) ≤ ωq(t). Moreover, ωp(t) < ωq(t) if p $ q. So an infinite descending chain
p $ p1 $ p2 $ · · · $ q of prime σ-ideals in R gives rise to an infinite ascending chain
ωp(t) < ωp1(t) < ωp2(t) < . . . < ωq(t) of polynomials. But in such a chain we necessarily
have d(p) < d(q). Thus for a descending chain of infinite chains of prime σ-ideals as in
equation (6) we have d(pd) ≥ d. So d(pd) ≥ dimU (R).

As σ- dim(R) ≥ σ- dim(R/pd) = d(pd) by Proposition 2.13 (ii), it follows that σ- dim(R) ≥
dimU (R) as desired.

Remark 3.4. In the definition of the difference Krull dimension above we have used prime
σ-ideals. A similar invariant dimU∗(R) could be obtained by modifying the definition by
only allowing reflexive prime σ-ideals. Then clearly, dimU∗(R) ≤ dimU (R) and therefore
also dimU∗(R) ≤ σ- dim(R).

The following example shows that the inequality from Proposition 3.3 can be strict,
even if σ- dim(R) is an integer.

Example 3.5. Consider S = k × k as a k-σ-algebra via σ(a, b) = (σ(b),σ(a)) and k →
S, λ )→ (λ,λ). Let R = S{y} denote the univariate σ-polynomial ring over S. We first
show that R has no prime σ-ideals and so dimU (R) = 0.

Suppose p is a prime σ-ideal of R. Let e1 = (1, 0) ∈ S and e2 = (0, 1) ∈ S. Since
e1e2 = 0 ∈ p, we have e1 ∈ p or e2 ∈ p. Assume (without loss of generality) that e1 ∈ p.
Since p is a σ-ideal, also σ(e1) = e2 ∈ p. But then 1 = e1 + e+ 2 ∈ p; a contradiction.

To see that σ- dim(R) = 1, we choose A = {e1, e2, y}. Then dim(k[A, . . . ,σi(A)]) =
i+ 1 for all i ∈ N because {y1, . . . ,σi(y)} ⊆ A ∪ . . . σi(A) is an algebraically independent
subset of maximal cardinality (Proposition 2.1).
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4 Covering density and the dimension of difference mono-

mials

In this section we determine the σ-dimension of a univariate σ-monomial σα1(y)β1 . . . σαn(y)βn .
It turns out that this σ-dimension is essentially given by the covering density of {α1, . . . ,αn}.

There is a vast body of literature on covering, packing and tiling problems. We refer
the interested reader to [BJR11] and the references given there. In rather general terms the
covering problem can be formulated as follows: Given an additive group G and a subset
E of G, find a “minimal” subset E′ of G such that E + E′ = {e + e′| e ∈ E, e′ ∈ E′}
equals G. Such an E′ is often called a complement of E. It is instructive to think of
E + E′ as a union of translates E + e′ of E. The question then becomes, “how many”
translates of E are needed to cover G? To give a precise meaning to “minimal” and
“how many” one usually assumes that G is equipped with some measure or density. A
well studied special case is G = Rn and E a ball or convex body. For our purpose we
are interested in the case G = Z and E a finite set, studied e.g., in [BJR11, Section 5],
[New67],[Wei76],[Tul02],[Sch03],[ST08],[ST10].

For a finite subset E of Z, the covering density c(E) of E can be defined as

c(E) = inf
E′

d(E′),

where d(E′) = limi→∞
|E′∩[−i,i]|

2i is the density of E′ and the infimum is taken over all
complements of E for which the density exists. We note that the covering density is called
the codensity in [New67] and the minimal covering frequency in [ST08, ST10]. We are
using the nomenclature from [BJR11]. As pointed out in [BJR11, Section 5], there is an
equivalent definition of c(E), which we will use: For i ≥ 1 let τ(E, i) be the smallest
number of translates of E that cover {1, . . . , i}, i.e.,

τ(E, i) = min{|E′| | E + E′ ⊇ {1, . . . , i}}.

Then c(E) = limi→∞
τ(E,i)

i .

Theorem 4.1. The σ-dimension of a univariate σ-monomial σα1(y)β1 . . . σαn(y)βn with
0 ≤ α1 < α2 < . . . < αn and β1, . . . ,βn ≥ 1 is 1− c(E), where c(E) is the covering density
of E = {α1, . . . ,αn}.

Proof. We first observe that σ- dim(σα1(y)β1 . . . σαn(y)βn) = σ- dim(σα1(y) . . . σαn(y)) by
Corollary 2.14 (ii) and Corollary 2.20, where we use that

[σα1(y)β1 . . . σαn(y)βn ] ⊆ [σα1(y) . . . σαn(y)] ⊆
√

[σα1(y)β1 . . . σαn(y)βn ].

So it remains to show that σ- dim(f) = 1− c(E) for f = σα1(y) . . . σαn(y).
As in Remark 2.10, we set k{y}[i] = k[y, . . . ,σi(y)] and [f ][i] = [f ] ∩ k{y}[i] for i ≥ 0.

Then σ- dim(f) = limi→∞
di
i+1 , where di = dim(k{y}[i]/[f ][i]).

For an arbitrary F ⊆ k{y}, it is non-trivial to determine [F ][i]. However, in our
situation, since we are only dealing with monomial ideals, we see that

[f ][i] = [f,σ(f), . . . ,σi−αn(f)] ⊆ k{y}[i]

for i ≥ αn. To determine the dimension of this monomial ideal, let us recall ([CLO07,
Chapter 9, §1, Prop. 3]) how to determine the dimension of a monomial ideal M =
(f1, . . . , fr) ⊆ k[y1, . . . , ym] in general, where fj =

∏
l∈Sj

yl and S1, . . . , Sr ⊆ {1, . . . ,m}.
The solution set of M is a finite union of coordinate subspaces and to find the dimension
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of k[y1, . . . , ym]/M , it suffices to find the coordinate subspace of the largest dimension,
which is given by

m−min{|T | | T ⊆ {1, . . . ,m}, T ∩ Sj ,= ∅ for j = 1, . . . , r}.

Therefore

dim(k{y}[i]/[f ][i]) = i+1−min{|T | | T ⊆ {0, . . . , i}, T ∩(E+j) ,= ∅ for j = 0, . . . , i−αn}.

But for T ⊆ {0, . . . , i}, we have T ∩ (E + j) ,= ∅ for j = 0, . . . , i − αn if and only if
{0, . . . , i− αn} ⊆ ∪t∈T (−E + t), where −E = {−e| e ∈ E}. Thus

min{|T | | T ⊆ {0, . . . , i}, T ∩ (E + j) ,= ∅ for j = 0, . . . , i− αn}
= min{|T | | T ⊆ {0, . . . , i}, {0, . . . , i− αn} ⊆ −E + T}
= min{|T | | T ⊆ Z, {0, . . . , i− αn} ⊆ −E + T}
= min{|T | | T ⊆ Z, {1, . . . , i− αn + 1} ⊆ −E + T}
= τ(−E, i − αn + 1)

and so, di = i+ 1− τ(−E, i− αn + 1). Consequently,

σ- dim(f) = lim
i→∞

di
i+ 1

= 1− lim
i→∞

τ(−E, i − αn + 1)

i+ 1
=

= 1− lim
i→∞

τ(−E, i− αn + 1)

i− αn + 1

(
i− αn + 1

i+ 1

)
=

= 1− c(−E) · 1.

Since c(−E) = c(E) ([Tul02, Lemma 2.8]) the claim follows.

Example 4.2. The covering density of a one-element set is 1 and the covering density
c(E) of a finite subset E of Z with at least two elements satisfies 1

|E| ≤ c(E) ≤ 1
2 ([Tul02,

Lemma 2.9]). Moreover, c(E) is rational ([Tul02, Theorem 2.13] or [BJR11, Theorem 5.1]).
Thus the σ-dimension of a σ-monomial σα1(y)β1 . . . σαn(y)βn is 0 if n = 1 and otherwise

it is a rational number between 1
2 and 1− 1

n .

5 Values of the difference dimension

As seen in Example 4.2 above, the σ-dimension of a system of algebraic difference equations
need not be an integer. This raises two questions:

• When is the σ-dimension an integer?

• What values can the σ-dimension take?

Concerning the first question, we add to the already known cases, the case of a finitely
σ-generated k-σ-Hopf algebra. We do not fully answer the second question but we reduce
it to a purely combinatorial problem. This reduction shows in particular, that the answer
does not depend on the base σ-field k.

We have already seen that the σ-dimension of R = k{y1, . . . , yn}/I is an integer in all
of the following cases:

• R is an integral domain, i.e., I is a prime σ-ideal (Proposition 3.1).

• I = [F ] for some F ⊆ k[y1, . . . , yn] (Proposition 2.12).
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• I is a perfect σ-ideal (Corollary 3.2).

The following theorem shows that the σ-dimension of a finitely σ-generated k-σ-Hopf
algebra is also always an integer. This result was already alluded to in [DVHW14, Re-
mark A.30]. Hopf algebras are important in algebraic geometry because they are the
coordinate rings of affine group schemes ([Wat79, Section 1.4]). Hopf algebras over a field
k that are finitely generated as k-algebras correspond to affine group schemes of finite type
over k, i.e., affine (sometimes also called linear) algebraic groups. A similar duality exists
in difference algebraic geometry: k-σ-Hopf algebras that are finitely σ-generated as k-σ-
algebras correspond to affine difference algebraic groups. See [DVHW14, Appendix A],
[Wib20] and [Wibb] for more background of affine difference algebraic groups.

Theorem 5.1 ([Wib20, Theorem 3.7]). Let R be a finitely σ-generated k-σ-algebra. As-
sume that R can be equipped with the structure of a k-σ-Hopf algebra, i.e., there exist
morphisms of k-σ-algebras ∆ : R → R⊗k R, S : R → R and ε : R → k that turn R into a
Hopf algebra. Then σ- dim(R) is an integer.

Proof. In [Wib20, Theorem 3.7] it is shown that there exists a finite subset A of R such
that k{A} = R, k[A] is a Hopf-subalgebra of R and dim(k[A, . . . ,σi(A)]) = d(i + 1) + e
for some d, e ∈ N and i 5 0. So σ- dim(R) = d ∈ N.

We next address the question, which non-negative real numbers d are of the form
d = σ- dim(F ) for some F ⊆ k{y1, . . . , yn}? As a first step, we show that one can reduce
to the case that F consists of σ-monomials. Then, we will further reduce to the case of
monomial σ-ideals generated by squarefree σ-monomials.

A σ-monomial in the σ-variables y1, . . . , yn is a monomial in the variables σi(yj), i ∈ N,
j ∈ {1, . . . , n}. A σ-ideal M of k{y1, . . . , yn} is a monomial σ-ideal if it is of the form
M = [F ] for some set F ⊆ k{y1, . . . , yn} of σ-monomials.

Lemma 5.2. For any F ⊆ k{y1, . . . , yn} there exists a monomial σ-ideal M of k{y1, . . . , yn}
with σ- dim(F ) = σ- dim(M).

Proof. For the proof we will use some notions (orderings and leading monomials) from the
theory of difference Gröbner bases ([LS15, GLS15]). We fix a total order ≤ on the set of
all σ-monomials in y1, . . . , yn. Indeed, let us be concrete and choose ≤ as the lexicographic
order with

y1 < y2 < . . . < yn < σ(y1) < σ(y2) < . . . < σ(yn) < σ2(y1) < . . . .

Then ≤ satisfies the following properties:

(i) ≤ is a well-order, i.e., every descending chain of σ-monomials is finite.

(ii) 1 ≤ f for every σ-monomial f .

(iii) If f ≤ g, then hf ≤ hg for σ-monomials f, g, h.

(iv) If f ≤ g, then σ(f) ≤ σ(g) for σ-monomials f, g.

(v) If ord(f) < ord(g), then f < g for σ-monomials f, g.

Recall that the order ord(f) of a σ-polynomial f is the largest power of σ that occurs in f .
Let us write a non-zero σ-polynomial f ∈ k{y1, . . . , yn} as f =

∑m
j=1 cjfj for coefficients

cj ∈ k! {0} and distinct σ-monomials fj. The leading monomial lm(f) of f is the largest
fj. For f = 0, we set lm(f) = 0. For a σ-ideal I of k{y1, . . . , yn}, we set

lm(I) = (lm(f)| f ∈ I) ⊆ k{y1, . . . , yn}.
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Thanks to (iv) above, we see that lm(I) is a σ-ideal.
Define I = [F ] and M = lm(I). Then M is a monomial σ-ideal and we claim that

σ- dim(I) = σ- dim(M).
With notation as in Remark 2.10, we have for i ≥ 0, thanks to (v), that lm(I[i]) =

lm(I)[i], where lm(I[i]) is the ideal of leading monomials of I[i] ⊆ k[y1, . . . , yn, . . . ,σi(y1), . . . ,σi(yn)]
with respect to the lexicographic order with y1 < y2 < . . . < σi(yn). The dimension of
an ideal in a polynomial ring over a field agrees with the dimension of its ideal of leading
monomials ([GP08, Corollary 7.5.5]). Thus

dim(k{y}[i]/I[i]) = dim(k{y}[i]/ lm(I[i])) = dim(k{y}[i]/ lm(I)[i]) = dim(k{y}[i]/M [i])

and σ- dim(I) = σ- dim(M) as desired.

It remains to determine the possible σ-dimensions of monomial σ-ideals. As we will
see, this can be reduced to a purely combinatorial problem, which we now describe.

Define σ : N× {1, . . . , n} → N× {1, . . . , n} by σ(i, j) = (i+ 1, j). For a finite subset S
of N × {1, . . . , n} we set ord(S) = max{i| ∃ j : (i, j) ∈ S}. Let S be a set of non-empty
finite subsets of N× {1, . . . , n}. For i ≥ 0 we define

τ(S, i) = min{|T | | T ⊆ N× {1, . . . , n}, T ∩ σ&(S) ,= ∅, ∀ S ∈ S, 0 ≤ * ≤ i− ord(S)}.

In other words, if [S] = {σ&(S)| S ∈ S, * ∈ N} and

[S][i] = {S ∈ [S]| S ⊆ {0, . . . , i}× {1, . . . , n}},

then
τ(S, i) = min{|T | | T ⊆ N× {1, . . . , n}, T ∩ S ,= ∅, ∀ S ∈ [S][i]}.

It follows from the proof of the following lemma (and Theorem 2.7) that C(S) =

limi→∞
τ(S,i)
i+1 exists. Since T = {0, . . . , i} × {1, . . . , n} intersects every non-empty subset

of {0, . . . , i}× {1, . . . , n}, we have τ(S, i) ≤ (i+ 1)n and therefore 0 ≤ C(S) ≤ n. We set
σ- dim(S) = n− C(S).

For a finite subset S of N × {1, . . . , n} we set yS =
∏

(i,j)∈S σi(yj). Furthermore

we define M(S) = [{yS | S ∈ S}] ⊆ k{y1, . . . , yn}. The proof of the following lemma,
generalizes some aspects of the proof of Theorem 4.1.

Lemma 5.3. Let S be a set of non-empty finite subsets of N×{1, . . . , n}. Then σ- dim(M(S)) =
σ- dim(S).

Proof. Using the notation of Remark 2.10, we have

M(S)[i] =
(
σ&(yS)| S ∈ S, 0 ≤ * ≤ i− ord(S)

)
⊆ k{y}[i]

for every i ≥ 0. Using the description of the dimension of monomial ideals in a polynomial
ring as in the proof of Theorem 4.1 (cf. [CLO07, Chapter 9, §1, Prop. 3]), we see that
dim(k{y}[i]/M(S)[i]) = n(i+ 1)− ei where

ei = min{|T | | T ⊆ {0, . . . , i}× {1, . . . , n}, T ∩ σ&(S) ,= ∅, ∀ S ∈ S, 0 ≤ * ≤ i− ord(S)}
= min{|T | | T ⊆ N× {1, . . . , n}, T ∩ σ&(S) ,= ∅, ∀ S ∈ S, 0 ≤ * ≤ i− ord(S)}
= τ(S, i).

Hence

σ- dim(M(S)) = lim
i→∞

dim(k{y}[i]/M(S)[i]) = n− lim
i→∞

τ(S, i)
i+ 1

= σ- dim(S).
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The following theorem gives a combinatorial description of all numbers that occur as
the σ-dimension of a finitely σ-generated k-σ-algebra (equivalently of a system of algebraic
difference equations).

Theorem 5.4. Let d ≥ 0 be a real number. Then d = σ- dim(F ) for some F ⊆
k{y1, . . . , yn} if and only if d = σ- dim(S) for some set S of non-empty finite subsets
of N× {1, . . . , n}.

Proof. If d = σ- dim(S), then d = σ- dim(F ) for F = M(S) by Lemma 5.3.
Conversely, assume that d = σ- dim(F ) for some F ⊆ k{y1, . . . , yn}. By Lemma 5.2

we can assume without loss of generality that F = M is a monomial σ-ideal. Let E ⊆
k{y1, . . . , yn} be a set of σ-monomials such that M = [E] ⊆ k{y1, . . . , yn}.

Let us refer to a σ-monomial as square-free if it is square-free as a monomial in the
variables σi(yj). The square-free part of a σ-monomial is defined in a similar spirit, i.e.,
by replacing all non-zero exponents with 1’s. Let E′ ⊆ k{y1, . . . , yn} be the set of all
square-free parts of all σ-monomials in E. Then

[E] ⊆ [E′] ⊆
√

[E].

It thus follows from Corollary 2.14 (ii) and Corollary 2.20 that σ- dim([E]) = σ- dim([E′]).
To specify a (non-constant) square-free σ-monomial is equivalent to specifying a (non-
empty) finite subset S of N × {1, . . . , n}. Thus [E′] = M(S) for some set S of finite
non-empty subsets of N× {1, . . . , n}. In summary,

σ- dim(F ) = σ- dim([E]) = σ- dim([E′]) = σ- dim(M(S)) = σ- dim(S),

by Lemma 5.3.
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