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EXPANSIVE DYNAMICS ON PROFINITE GROUPS

MICHAEL WIBMER

ABSTRACT. A profinite group equipped with an expansive endomorphism is equivalent to a one-
sided group shift. We show that these groups have a very restricted structure. More precisely,
we show that any such group can be decomposed into a finite sequence of full one-sided group
shifts and two finite groups.

1. INTRODUCTION

An endomorphism o: G — G of a profinite group G is expansive if there exists an open
subgroup U of G with (.0 "(U) = 1. There are two obvious examples: A (discrete) finite
group with an arbitrary endomorphism (choose U = 1) and a full one-sided group shift on a
finite group G, i.e., G = G~ with (g0, 91,...) = (g1, 92,...) (choose U =1 x G x G x ...). Our
main result shows that any profinite group with an expansive endomorphism is build up from
these two examples. More precisely, we have (Theorem [4.6]):

Theorem A. Let G be a profinite group equipped with an expansive endomorphism o. Then
there exists a subnormal series

GO2GI2G22...0G,

of closed o-stable subgroups G; of G such that
e G;/Giy1 is isomorphic to a full one-sided group shift on a finite simple group G; for
i=1,...,n—1,
e G/Gq is a finite group and o: G/G1 — G /G is an automorphism,
o (5, is a finite group and some power of o: G, — G, is the trivial endomorphism g — 1.

Moreover, the length n of such a series, the group Gy and the isomorphism classes of the finite
simple groups G; are uniquely determined by G.

A continuous map o: X — X on a metric space (X,d) is expansive if there exists an € > 0
such that for any two distinct points z,y € X there is an n € N with d(o"(z),0"(y)) > e. In the
context of a continuous group homomorphism o: G — G on a topological group G, this condition
translates to the existence of a neighborhood U of 1 such that for any two distinct g, h € G there
is an n € N with 0"(g) ¢ o™ (h)U, or equivalently, h~1g ¢ o="(U). Thus, o is expansive if and
only if there is a neighborhood U of 1 with (oo "(U) = 1. Similarly, an automorphism o
of a topological group is an expansive automorphism if there exists a neighborhood U of 1 such
that (e 0 "(U) = 1.

Expansive automorphisms of topological groups have been studied extensively under varying
restrictions on the group (e.g., profinite, compact or locally compact). See [Kit87], [Fag96],

[KS89], [BS0S], [GR17], [Sha20], [Sch95, Chapter 3] and the references given there.
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A fundamental result, concerning expansive automorphisms of profinite groups, due to B.
Kitchens (see [Kit87] or [Kit98, Section 6.3]), is that any such group is topologically conjugate
to a direct product of a finite set equipped with a bijection and a full two-sided shift. See
for a discussion of higher dimensional analogs and [Sob07] for a generalization to quasi-groups.

In this article, we also establish a one-sided analog of Kitchens’ result (Theorem [5.2)): If G
is a profinite group equipped with an expansive endomorphism o: G — G, then there exists an
integer n > 0 such that o™ (G) is topologically conjugate to a finite set equipped with a bijection
and a full one-sided shift.

Despite its beautiful simplicity, Kitchens’ result is not fully satisfactory since the topological
conjugacy in general does not respect the group structure. In fact, it appears that the problem,
set forth by Kitchens in [Kit87], to classify all expansive automorphisms of profinite groups up
to isomorphism is still wide open.

We also establish a version of Theorem A for expansive automorphisms (Theorem [6.13]), i.e.,
a two-sided version. The statement is very similar. The only significant difference is that the
group G, does not occur in the two-sided version. One can think of our two-sided version
of Theorem A as a variant of Kitchens’ result that respects the group structure. It reduces
the problem of classifying all expansive automorphisms of profinite groups to the study of the
group extension problem for profinite groups with an expansive automorphism. This is somewhat
similar to how the Jordan-Ho6lder theorem reduces the study of finite groups to the study of finite
simple groups and the group extension problem for finite groups. Our proof of the uniqueness
part of Theorem A is actually modeled on the proof of the Jordan-Holder theorem.

There is no direct connection between profinite groups equipped with an expansive endo-
morphism and profinite groups equipped with an expansive automorphism. Indeed, if G is a
profinite group and o: G — G is a map that is simultaneously an expansive endomorphism and
an expansive automorphism, then G must be finite (Corollary [3.17). However, there is a univer-
sal construction G ~ G* that associates to any profinite group G equipped with an expansive
endomorphism, a profinite group G* equipped with an expansive automorphism. We use this
universal construction to deduce the two-sided version of Theorem A from Theorem A.

We also present an application of Theorem A to difference algebra. Babbitt’s decomposition
theorem (|Lev08, Theorem 5.4.13]) is an important classical theorem in difference algebra that
elucidates the structure of Galois extensions of difference fields. Here a difference field is a
field equipped with an endomorphism. The connection to expansive endomorphisms is that the
Galois group of an extension of difference fields is naturally a profinite group equipped with
an endomorphism. If the extension of difference fields is finitely generated, then the endomor-
phism on the Galois group is expansive. Indeed, one can think of Theorem A as a group version
of Babbitt’s decomposition theorem. Based on Theorem A, we present a new proof of Bab-
bitt’s decomposition theorem that yields additional information concerning the uniqueness of
the decomposition (Theorem [[H]).

A certain connection between difference algebra and symbolic dynamics, to be detailed in a
forthcoming paper, was discovered by Ivan Tomasi¢. While we do not use or even explain this
connection here, this paper would not have happened without it and the author is grateful to
Ivan Tomasi¢ for sharing his discovery. In the light of this connection, the results of this article
could also be interpreted as results about a certain class of affine difference algebraic groups.

We conclude this introduction with an overview of the article: In Section 2 we discuss one-
sided group shifts and show that they are always of finite type. In Section 3 we first explain
the equivalence of categories between the category of one-sided group shifts and the category of
profinite groups equipped with an expansive endomorphism. We then study the latter category
in more detail. In particular, we discuss quotients and analogs of the isomorphism theorems
and the Schreier refinement theorem. We also introduce the o-identity component that has
properties somewhat similar to the identity component of an algebraic group. Section 4 contains
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the technical heart of the paper and establishes Theorem A. In Section 5 the one-sided analog of
Kitchens’ result is proved. Then the two-sided version of Theorem A is established in Section 6.
Finally, Section 7 contains the application to Babbitt’s decomposition theorem.

2. ONE-SIDED GROUP SHIFTS

In this section we provide some basic results concerning one-sided group shifts. In particular,
we show that every one-sided group shift is of finite type. We begin by fixing the notation and
recalling some basic definitions from symbolic dynamics. See [Kit98] or [LM95]. As general
conventions, the set N of natural numbers contains zero and a subset Y of a set X equipped
with a map o: X — X is o-stable if (V) C Y.

Let A be a finite set. We consider AY as a topological space via the product topology
of the discrete topology on A. The topological space AN together with the continuous map
o: AN — AN given by o(ag,a1,...) = (a1, as,...) is the full one-sided shift on the alphabet A.
A one-sided shift space or one-sided shift on A is a closed subset X of AN such that o(X) C X. A
morphism between two one-sided shifts X and Y (possibly on different alphabets) is a continuous
map ¢: X — Y such that

¢

|l
X2y
commutes. A word or block of length i is a sequence of i elements from A. A one-sided shift X
on A is a (one-sided) subshift of finite type if there exists a finite set F of blocks such that X
consists of all elements of A" that do not contain any blocks from F.
An important class of subshifts of finite type is formed by those coming from directed graphs,
also called 1-step subshifts of finite type. Let I' be a directed graph with set of vertices equal to
A. Then the set Xp C AN of all sequences in A that trace out the vertices of an infinite directed

path in I', is a subshift of finite type.
The topological entropy of a one-sided shift X on A is

log(d;
B(X) = lim 28L%)
1—00 (3
where d; denotes the cardinality of the image of X — A’, (ag,a1,...) — (ag,a1,...,a;_1), i.e.,

the cardinality of all blocks of length ¢ that occur in elements of X.

In this article, we are mainly interested in the situation when the alphabet is a finite group. If
G is a finite group, then GV inherits a group structure via componentwise multiplication. Indeed
GN is a profinite group and o: G — G is a continuous group homomorphism. In this situation,
the pair (GV, o) is called the full one-sided group shift on G. A one-sided group shift G on G
is a one-sided shift on G such that G is a subgroup of G. A morphism between two one-sided
group shifts is a morphism between one-sided shifts that is a group homomorphism. We note
that (in the two-sided context) group shifts are called Markov subgroups in [Kit98] Section 6.3].
Here we follow the nomenclature from [LM95] and [BS0S].

Let G be a one-sided group shift on the finite group G. The following notation will be useful:
For i € N, let G[i] denote the image of the group homomorphism G — G'*!, (go,91,...)
(90,91, --.,9:). Then G[i] is the subgroup of G consisting of all blocks of length i + 1 that
occur in elements of G. For ¢ > 1, the map

T . G[’L] — G[Z — 1], (g(], A ,gi) — (g(], A 792‘—1)
is a surjective group homomorphism.

Every two-sided group shift is a subshift of finite type ([Kit98, Section 6.3]). As we now show,
a similar result holds for one-sided group shifts. The proof has some important consequences.
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Proposition 2.1. Every one-sided group shift is a subshift of finite type.

Proof. Let G be a finite group and G < GV a one-sided group shift on G. Set Gy = G[0] and
for i > 1, let G; C G denote the follower set of (1,...,1) € G¢, i.e., ker(m;) = {(1,...,1,9) €
Gt g € G;}. So G; is a subgroup of G. As @ is stable under the shift map o: G — GN,
we also have group homomorphisms o;: G[i| — G[i — 1], (90,--.,9i) — (g1,-..,9:i). Since o;
maps ker(7;) injectively into ker(m;_1), we see that G;—1 C G;. We thus have a descending chain
Go 2 G1 D Gy D ... of subgroups of G that must eventually stabilize. Let G’ = Nien Gi denote
the eventual value and let n € N be minimal with the property that G; = G’ for all ¢ > n.
Set H = G[n] and let G’ C G denote the subshift of finite type that avoids all blocks from
F = G[n] ~ H. In other words, G’ is the subgroup of GV consisting of all elements that have all
their blocks of length n + 1 inside H. By construction G C G’.

We claim that G = G'. We have G[i] < G'[i] for i € N. To show that G = G’ it suffices to
show that G[i] = G'[i] for i € N. This is clear for i = 0,...,n and we will prove the general
case by induction on i. So we assume that ¢ > n and that G[i| = G'[i]. We have to show that
Gli + 1] = G'[i + 1]. There is a commutative diagram

Gli+ 1]~ G'[i + 1]

7ri+1l/ l”gﬂ

Gli] =—— G'[i]

where the vertical maps 741 and 7, are the surjective group homomorphisms given by projec-
tion onto the first i 4 1 coordinates. It suffices to show that ker(m;;1) = ker(n, ;). Clearly
ker(m;1) C ker(ml, ;). Moreover, ker(mi11) = {1}'"' x ¢’ < G"*2 since i + 1 > n. Let
h=(1,...,1,9) € ker(rl ;) < G"*2. By definition of G’, the element (1,...,1,9) € G"™!
lies in H = G[n] and so it lies in the kernel of 7,: H = G[n] — G[n — 1]. We conclude that
g € G and h € ker(m;4+1) as desired. O

Corollary 2.2. Let G be a one-sided group shift. Then h(G) = log(d) for some integer d > 1.

Proof. We use the notation of the proof of Proposition 2] and furthermore set d = |G’|. For
i > 1 we have |G[i]| = |G[i — 1]| - |g;| and so inductively,

Gli]| = |Go| - |G1l- - -1Gil = |Gol - - - 1Gn-1] - [Gul "' = |Go] ... |Gr| - A" F!
for ¢ > n. Thus

. . Jn 7+1
h(@) = tim EIGL _ g, JogGol - [Gnal-d77) |y log(d™)

oo i+l b it 1 Jim == = log(d).
0

Definition 2.3. Let G < GN be a one-sided group shift on the finite group G and n > 1. Then G
is an n-step group shift of finite type if there exists a subgroup H of G such that G consists
of exactly those elements of G that have all blocks of length n + 1 inside H.

The following corollary is immediate from the proof of Proposition 211

Corollary 2.4. Every one-sided group shift is an n-step group shift of finite type for some
n>1. O

1-step subshifts of finite type are described by directed graphs. The following definition
provides a group version of this well-known fact.

Definition 2.5. Let G be a finite group. A directed group graph on G is a directed graph I" such
that the set of vertices of I' equals G and such that the set of directed edges of I" is a subgroup of
gxg.
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For a directed group graph I' on G let
Gpr = Xr C G"

denote the subshift of finite type defined by I'. Then Gt is a 1-step group shift of finite type.
Conversely, every 1-step group shift G C GV is of the form G = Gr for some directed group
graph I

In a directed group graph the set of directed edges is a group. The same is true for the
set of directed paths of a fixed length (finite or infinite): Two directed paths are multiplied
by multiplying the vertices and the directed edges. We will see later (Lemma B.16) that every
one-sided group shift is isomorphic to some Gr.

3. EXPANSIVE PROFINITE GROUPS

If G is a one-sided group shift, then G is a profinite group and o: G — G is an expansive
endomorphism. Conversely, we will see that every profinite group with an expansive endomor-
phism is isomorphic to a one-sided group shift. It is sometimes beneficial to work inside this
larger category of expansive profinite groups. For example, if G and N are one-sided group
shifts on a finite group G such that N is a normal subgroup of G, then the quotient G/N is
not a one-sided group shift on the nose as there is no canonical choice of the alphabet for G/N.
On the other hand, it is clear that G/N is a profinite group equipped with an endomorphism
(which can be shown to be expansive).

In this section we provide some basic definitions and results concerning expansive profinite
groups that will then be used in the next section to establish the main decomposition theorem
(Theorem .6). In particular, we define the o-identity component and the limit degree of an
expansive profinite group.

3.1. Expansive profinite groups versus one-sided group shifts. Let G be a profinite
group. A continuous group homomorphism o: G — G is called an ezpansive endomorphism if
there exists a neighborhood U of 1 € G such that (),.yo " (U) = 1. Since the open normal
subgroups of G are a neighborhood basis for 1 (JRZ10, Theorem 2.1.3]), we can assume that U
is an open normal subgroup of G.

Definition 3.1. An expansive profinite group is a profinite group G together with an expansive
endomorphism o: G — G.

We will usually omit o from the notation and simply refer to G as an expansive profinite group.
A morphism between expansive profinite groups G and H is a continuous group homomorphism
¢: G — H such that

G—¢>H
G—¢>H

commutes.

Example 3.2. Let G < GN be a one-sided group shift on the finite group G. Then G is an
expansive profinite group. Indeed, we can choose U = {(g9,91,...) € G| go = 1}.

See LemmalZ1l for an explanation how expansive profinite groups naturally occur in the study
of Galois extensions of difference fields. The following lemma provides a converse to Example[3.2.

Lemma 3.3. Every expansive profinite group is isomorphic to a one-sided group shift.
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Proof. Let G be an expansive profinite group and let U be an open normal subgroup of G such
that (),,ey 0 "(U) = 1. Then G = G/U is a finite group and

¢: G—G", g (g.0(9),0°(9).-..)

is a group homomorphism that commutes with o. It is injective because [, cnyo "(U) = 1.
The inverse image of a basic open subset

V:V(h(],...,hn):{(go,gl,...)GgN| gozho,,“’gn:hn}

of GN, where hy,...,h, € G are U-cosets in G, equals hg N o' (hy) N...N o~ "(h,), which is
open GG. Thus ¢ is continuous.

A continuous group homomorphism between profinite groups is closed ([FJ08) Remark 1.2.1 (e)]).
In particular, ¢(G) C GV is closed. As ¢(G) is stable under o, we see that ¢(G) is a one-sided
group shift. Because ¢ is closed it follows that ¢: G — ¢(G) is a homeomorphism and thus an
isomorphism. ]

From the above lemma and example we see that the concepts “expansive profinite group” and
“one-sided group shift” are interchangeable. More precisely we have:

Corollary 3.4. The category of one-sided group shifts is equivalent to the category of expansive
profinite groups.

Proof. Every one-sided group shift is an expansive profinite group (Example B.Z). Since in both
categories the morphisms are defined in the same fashion, it suffices to know that every expansive
profinite group is isomorphic to a one-sided group shift. This is exactly Lemma O

We can thus think of expansive profinite groups as a “coordinate free” version of one-sided
group shifts. One advantage of working with the larger category of expansive profinite groups
is that certain constructions, such as quotients by normal closed o-stable subgroups, are more
naturally performed in this category.

3.2. Group theory for expansive profinite groups. The isomorphism theorems for abstract
groups carry over without difficulty to the category of expansive profinite groups. The same
holds for the Schreier refinement theorem, which will be the key for establishing the uniqueness
in our main decomposition theorem (Theorem [6]).

The following lemma shows that subgroups and quotients of expansive profinite groups are
well-behaved.

Lemma 3.5. Let G be an expansive profinite group.

(i) If H is a closed o-stable subgroup of G, then H (with the induced topology and endo-
morphism) is an expansive profinite group.

(ii) If N is a normal closed o-stable subgroup of G, then G/N (with the quotient topology
and induced endomorphism) is an expansive profinite group and the canonical map G —
G/N is a morphism of expansive profinite groups.

Proof. A closed subgroup of a profinite group is a profinite group (JRZ10, Proposition 2.2.1]). If
U is an open subgroup of G such that (), .o "(U) = 1, then U’ = HNU is an open subgroup
of H and (), cyo’ "(U’) = 1, where o’: H — H is the restriction of : G — G. This proves (i).

The quotient of a profinite group by a closed normal subgroup is a profinite group (JRZ10,
Proposition 2.2.1]). Because 0(N) C N we have a well-defined continuous group homomorphism
o: G/N - G/N, gN — o(g)N.

To show that & is expansive, we may assume that G is a one-sided group shift on a finite
group G (Lemma [3.3). Then, it follows from Corollary 2.4l that N < GY is an n-step group
shift of finite type for some n > 1. Note that because N is normal in G, N[i] is normal
in G[i] for every i € N. In particular, N[n] is normal in G[n]. Set H = G[n]/N|[n] and



EXPANSIVE DYNAMICS ON PROFINITE GROUPS 7

é: G —HY, (90,91,...) = ((¢i,Git1,- - - Gitn))ien. Then ¢ is a morphism of expansive profinite
groups with kernel N. Set U = ¢~1(1 x H x H x ...) and Uf U/N C G/N. Then U is an

open subgroup of G/N and if g € G is such that § € [,y o (U), i.e., 0'(g) € U for all i € N,
then o'(¢(g)) € 1 x H x H x ... for all i and thus ¢(g) = (1,1...). Therefore ¢ € N and

nieN E_i(U) =L ]
Definition 3.6. An expansive subgroup of an expansive profinite group is a closed o-stable
subgroup.

By Lemmal3.5] (i) an expansive subgroup H of an expansive profinite group G is an expansive
group in its own right. If H is normal in G we will speak of a normal expansive subgroup.

Proposition 3.7 (Isomorphism theorems for expansive profinite groups).

(i) Let ¢: G — H be a morphism of expansive profinite groups. Then ¢(G) is an expansive
subgroup of H, ker(¢) is a normal expansive subgroup of G and the canonical map
G/ker(¢) — ¢(G) is an isomorphism of expansive profinite groups.

(ii) Let N be a normal expansive subgroup of an expansive group G and w: G — G /N the
canonical map. Then the map

{expansive subgroups of G containing N} — {expansive subgroups of G/N},

H s n(H) = H/N is a bijection with inverse H' s n=1(H'). Moreover H is normal
in G if and only if H/N is normal in G/N and in that case G/H ~ (G/N)/(H/N).

(iii) Let H and N be expansive subgroups of an expansive profinite group G such that H
normalizes N. Then HN is an expansive subgroup of G, H NN is a normal expansive
subgroup of H and HN/N ~ H/HN N.

Proof. The isomorphism theorems hold for profinite groups. See e.g., [FJ08| Section 1.2]. (The
key observation here is that any morphism of profinite groups is a closed map.) One immediately
verifies that the relevant constructions are compatible with the endomorphism o. O

Definition 3.8. A subnormal series of an expansive profinite G is a sequence
G=Gy2G 1 2GyD...0G, =1 (1)

of expansive subgroups G; of G such that Gi11 is a normal expansive subgroup of G; for i =
0,...,n— 1. Another subnormal series

G=HyDH DHyD..DH,=1 (2)

is a refinement of (1) if {Ho,...,Hn} € {Go,...,Gpn}.
Two subnormal series (1)) and (2) are equivalent if m = n and there exists a permutation m
such that G;/Giy1 is isomorphic to Hyy/Hr41 fori=0,...,n—1.

We will sometimes omit the first group G = Gy and the last group G,, = 1 in our notations
for a subnormal series for G.

Similarly to the isomorphism theorems, the Schreier refinement theorem carries over in a
straight forward fashion from the category of abstract groups to the category of expansive
profinite groups. For the sake of completeness we include a sketch of the proof (see e.g., [Rot95),
Theorem 5.11]).

Lemma 3.9. Let Ny, H1, Ny, Hy be expansive subgroups of an expansive profinite group such
that N; is a normal subgroup of H; for i = 1,2. Then Ni(Hy N N3) is a normal expansive
subgroup of N1(Hy N Hs), No(N1 N Hs) is a normal expansive subgroup of No(Hy N Hs) and
Nl(Hl N Hg) - NQ(Hl N Hg)
Nl(HlﬁNQ) Ng(NlﬂHg)'




EXPANSIVE DYNAMICS ON PROFINITE GROUPS 8

Proof. The statement about normality holds for abstract groups (JRot95, Lemma 5.10]), so it
also holds in our context. As Hj N Hy normalizes Ny(Hy N Ng) it follows from Proposition [3.7]
(iii) that
(HlﬂHQ)Nl(HlﬂNg) N HiN Hy (3)
Nl(HlﬂNQ) o (HlﬁHg)ﬂNl(HlﬂNg)

as expansive profinite groups. But (H; N He)Ny(Hy N No) = Ny(Hy N Hs) and (Hy N He) N
Nl(Hl N NQ) = (H1 N NQ)(Nl N HQ) Thus (BD simplifies to

Ni(HiNHy) H, N H,

Nl(Hl N Ng) - (Hl N NQ)(Nl N HQ)‘
By symmetry (exchanging the indices 1 and 2) also

NQ(HlﬂHg) - Hy N Hy

Ng(Nl N HQ) - (Hl N Ng)(Nl N Hg)

and the claim follows. O

Proposition 3.10. Any two subnormal series of an expansive profinite group have equivalent
refinements.

Proof. Let

G=GyoGD...0G, =1 (4)
and

G=HyDH{D...OH,=1 (5)
be subnormal series for an expansive profinite group G. Setting G; ; = G;11(G; N H;) for i =
0,...,n—1and j=0,...,m yields a refinement of (4). Similarly, setting H;;, = H;1(G; N H;)
for j = 0,....,m —1 and ¢ = 0,...,n yields a refinement of (5). By Lemma 8.9 we have
Gi;/Gij+1 ~ Hj;/H;it1 and so the two refinements are equivalent. O

3.3. The limit degree of an expansive profinite group. The limit degree of an expansive
profinite group is the topological entropy but conveniently transformed so that it always is an
integer. It is a rough measure for the “seize” of an expansive profinite group. In this section
we provide some basic properties of this numerical invariant. The main decomposition theorem
(Theorem [4.6)) will be proved by induction on the limit degree.

Definition 3.11. Let G be an expansive profinite group. As the topological entropy of subshifts
of finite type is invariant under isomorphism, we can define 1d(G), the limit degree of G as
exp(h(G")), where G’ is any one-sided group shift isomorphic to G.

Note that by Corollary [2.2 the limit degree is a positive integer. Moreover, it has the following
interpretation:

Lemma 3.12. Let G be a one-sided group shift on a finite group G. Then the sequence
(| ker(G[i] = G[i—1])|)i>1 is non-increasing and stabilizes with value 1d(G). If n is the smallest
integer such that | ker(G[i] =5 G[i — 1])| = 1d(G), then G is n-step.

Proof. This is clear from the proof of Proposition 2.1 and Corollary [2.2] O

Example 3.13. Let G = GY be the full one-sided group shift on a finite simple group, then
1d(G) = |G|.

Note that the limit degree of a one-sided group shift G can also be describes as 1d(G) =
|G
|Gli—1][
happens if and only if G is finite.

lim; o0 The smallest value 1d(G) can take is 1. The following lemma shows that this
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Lemma 3.14. Let G be an expansive profinite group. Then 1d(G) = 1 if and only if G is finite.

Proof. If G is finite, we can consider the underlying finite group G obtained from G by forgetting
o. Then ¢: G — GN, g+ (g9,0(9),0%(g),...) identifies G with a one-sided group shift of finite
type with limit degree 1.

Conversely, assume that G is an expansive profinite with 1d(G) = 1. We may assume that
G is a one-sided group shift on a finite group G. Then, using the notation of the proof of
Proposition [2.1 and Corollary 2.2] we have |G[i]| = |Go| - |G1|.-.|Gi| = |Go|- - |Gn-1] for i > n.
In particular, m := |G[i]| is independent of i for ¢ > 0. Since G is the projective limit of the
Gli]’s, it follows that |G| = m. O

The following lemma shows that the limit degree is multiplicative.

Lemma 3.15. Let G be an expansive profinite group and N a normal expansive subgroup. Then
1d(N) divides 1d(G) and 1d(G/N) = 1555

Proof. By Lemma [3.3] we may assume that G is a one-sided group shift on a finite group G. Let
n € N be such that N is an n-step group shift of finite type (Corollary [2.4]). The morphism

¢: G — (G]/NDY, (90,91.--.) = (gis Git1s- - -+ Gitn) )ien

of expansive profinite groups has kernel N and induces, for every i € N, an isomorphism G[n +
i]/N[n + i] ~ ¢(G)[i]. Therefore

. |Gln+i) G-+

_ @) Nl . Owmreq 1d(G)

(G/N) =14(0(G)) = im Zmr =3y = M8 T — A% el Q)
[N [n+i—1]] [N[n+i—1]]|

0

Every expansive profinite group is isomorphic to Gr for some directed group graph I' (Defi-
nition [2.5]). For later use, we record a slightly more precise statement.
Lemma 3.16. Let G be an expansive profinite group. Then there exists a finite group H and a
1-step group shift H C HN such that G is isomorphic to H, H[0] = H and 1d(G) = | ker(H[1] =
H[0])|. In particular, G ~ Gr, for some directed group graph T.

Proof. 1t is well-known ([Kit98, p. 27]) that every one-sided subshift of finite type is isomorphic
to a 1-step subshift of finite type (via a higher block representation). We follow a similar idea
here.

By Lemma 3.3 we can assume that G is a one-sided group shift on a finite group G. Let n
be the smallest integer such that |ker(G[n] =% G[n — 1])| = 1d(G). Then G < GN consists of
exactly those sequences in G that have all blocks of length n+1 inside # = G[n] (Lemmal3.12).
Define a map ¢: G — HY by ¢(9) = (¢, Gis1,- - - Gitn)ien for g = (go,91,...) € G. Then ¢ is
an injective morphism of group shifts. The image H = ¢(G) of ¢ is the 1-step group shift on H
defined by the directed group graph with directed edges F < H x H given by

E = {((9077.gn)7(9677g;)) S ><7_[| g1 296779n :g;—l}'

So ¢: G — H is an isomorphism. As the projection G — G[n] is surjective, we see that H[0] = H.
Moreover, the kernel of my: H[1] = E — H[0] = H, (ho,h1) = ho equals {1} x ker(G[n] ™
Gln — 1]) < H x H and thus has cardinality 1d(G).

The following corollary shows that an expansive endomorphism is rarely injective.

Corollary 3.17. Let G be an expansive profinite group with o: G — G injective. Then G is
finite.
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Proof. By Lemma [3.16 we can assume that G = Gt for some directed group graph I'. Without
loss of generality, we can assume that every vertex of I' is contained in an infinite directed path.
Then o is injective on G if and only if there is no vertex with more than one incoming directed
edge. This implies that I' is a disjoint union of directed cycles. But then G is finite. O

We will have use for a version of Lemma [3.16 that simultaneously works for an expansive
subgroup.

Lemma 3.18. Let G be an expansive profinite group and H < G an expansive subgroup. Then
there exists a finite group G and an injective morphism ¢: G — GV of expansive profinite groups
such that ¢(G) < GN and ¢(H) < GN are 1-step group shifts of finite type.

Proof. By Lemma [3.3] we can assume that G is a one-sided group shift on a finite group H. By
Corollary [2.4] there exists an ng € N such that G is ng-step. Similarly, there exists an ny € N
such that H is ng-step. Let n be the maximum of ng and ngy. Then G and H are both n-step.

Set G = G[n]. Then ¢: G — G~ (90,91,.-.) = ((gi,Gizx1,---,Gitn))ien has the desired
property (cf. proof of Lemma B.1G). O

3.4. The o-identity component. Since profinite groups are totally disconnected, the con-
nected component containing the identity is always trivial. However, requiring the closed sets of
an expansive profinite group to also be o-stable, leads to an interesting notion of identity compo-
nent with properties somewhat analogous to the identity component of an algebraic group. The
o-identity component is important for the main decomposition theorem (Theorem [4.6]) because
it yields the first group in the subnormal series.

Some considerations in this section have some similarity with [Kit98| Section 5.1] and |[LM95|
Section 4.4]. However, our approach is different and guided by topology.

Let X be a topological space equipped with a continuous map o: X — X. Then the closed
o-stable subsets of X satisfy the axioms for the closed sets of a topology. We call this topology
on X the o-topology.

Recall that a connected component of a topological space is a maximal connected subset.
The connected components are closed and the whole space is the disjoint union of its connected
components. A subset of X that is connected or irreducible with respect to the o-topology is
called o-connected or o-irreducible respectively. The connected components with respect to the
o-topology are called the o-connected components.

An infinite subshift of finite type has infinitely many connected components as the connected
components are in fact the singletons. However, the following lemma shows that it only has
finitely many o-connected components.

Lemma 3.19. Let X be a one-sided subshift of finite type. Then X has only finitely many
o-connected components.

Proof. Every one-sided subshift of finite type is isomorphic to a 1-step subshift of finite type (cf.
[LM95], Proposition 2.3.9]). We can thus assume that X = Xt for a directed graph I'. Without
loss of generality, we assume that every vertex of I' lies on an infinite directed path.

Let I'1,...,I', denote the strongly connected components of I' whose associated subshift Xr,
is non-empty. Note that the subshift associated to a strongly connected component is empty
only if the component has a unique vertex and no directed edge (from the vertex to itself), and
this only happens for vertices that do not lie on any directed circuit in I.

We define an undirected graph A with set of vertices {I'y,...,I',} and an edge between T';
and I'; if there exists a directed path in I' that connects a vertex in I'; to a vertex in I';. Let
Aq,...,A; denote the connected components of A. For i = 1,...,s let ©; denote the full
directed subgraph of I' whose vertices are all vertices of I' that can be connected with a directed
path to a vertex belonging to some I';, such that I'; is a vertex of A;.
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An infinite directed path in I' might traverse from one strongly connected component to
another. However, in that case, it can never return to this strongly connected component.
Therefore, every infinite directed path in I' eventually stays in one I';. This shows that every
infinite directed path in I" lives inside a unique ©;. Therefore X = Xg, ... Xg, . To complete
the proof it suffices to show that Xg, is o-connected for i =1,...,s.

The closure of a g-orbit is o-irreducible. It follows that Xr is o-irreducible if I' is strongly
connected because then Xt contains a point with dense o-orbit. To find such a point one
constructs a directed path in T" that traverses every finite directed path in T' (c¢f. [Kit98] Theorem
1.4.1 ())).

It follows that Xr; is o-irreducible and a fortiori o-connected for every j = 1,...,7. Note
that Xp, C Xg, for every I'; that is a vertex of A;. For every I'; that is a vertex of A; there
exists a unique o-connected component X; of X containing Xr; because Xr; is o-connected.
We will show that X; = X for any j,j" such that I'; and T'j: are vertices of A;. Because A; is
connected, it suffices to show this under the additional assumption that there exists a directed
path in I' from a vertex in I'j to a vertex in I';.

Note that if a point z € X is such that ¢ (z) € X, for some m € N, then « € X because the
o-connected component containing z also contains ¢”"(z). Using this, we see that a given point
Yy € ij, can be approximated arbitrarily well with a point in X;: Choose a directed path in
ij, that agrees with the directed path corresponding to y up to an arbitrary large index and
then continue this directed path to an infinite directed path in I' that eventually stays in I';.
Because X is closed, it follows that y € X;. Soy € X; N X} and therefore X; = X/ as desired.

Thus there exists a o-connected component Y of X such that Xp, CY for every j such that
I'; a vertex of A;. Since every infinite directed path in ©; eventually stays in some I';, with I'; a
vertex of A;, we see that for every = € Xg, there exists an m € N with ¢™(z) € Y. This shows
that Xeo, C Y. From X = Xg, W... W Xg, we deduce that Xg, =Y is o-connected. ]

We now return to groups:

Lemma 3.20. Let G be an expansive profinite group. Then:

(i) There are only finitely many o-connected components in G.
(ii) The o-connected component G°° of G that contains 1 is a normal expansive subgroup
of G such that G/G°° is finite and o: G/G7° — G/G?° is bijective.
(iii) If G = Gr for a directed group graph T, then the o-connected component containing 1
equals Gro, where I'° is the full directed subgraph of I' whose set of vertices consists of
all vertices of I' that can be connected to 1 with a directed path.

Proof. Since every expansive profinite group is isomorphic to a group shift of finite type, (i)
follows from Lemma [3.19. To establish (ii), by Lemma [3.16] we may assume that G = Gr for
some directed group graph I' on a finite group G. Without loss of generality we assume that
every vertex of I' is contained in an infinite directed path.

Let G° C G denote the set of all vertices g of I' such that there exists a directed path in I’
starting at g and ending at 1. If g1, g2 € G°, then a directed path from g; to 1 can be extended
by adding the vertex 1 at the end a certain number of times. The product of two such directed
paths then yields a directed path from g1go to 1. This shows that G° is a subgroup of G.

To show that G° is normal in G, let g € G° and fix a directed path v from g to 1. Let h € G
and choose a directed path § starting at h with the same length as 7. Then §v5~! is a directed
path in I from hgh~! to 1. Thus hgh™! € G° and G° is normal in G.

Let I'? denote the full directed subgraph of I' with vertex set G°. Because G° is a normal
subgroup of G, we see that Gro is a normal expansive subgroup of G = Gr. If g € G is
such that there exists a directed edge from g to an element of G° then g € G°. This shows
that 0~'(Gro) = Gro and therefore o: G/Gro — G/Gro is injective. It thus follows from
Corollary [3.17 that G/Gro is finite and so o: G/Gro — G/Gro is bijective. Thus G/Gro is
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the disjoint union of o-orbits o01,...,0,. If 7: G — G/G"° is the canonical map, then G is
the disjoint union of the closed o-stable subsets 77 !(0;1),..., 7 (0,). Note that the identity
element of G//G°° is a o-orbit, say o;. Then 7~ !(0;) = Gro. From the proof of Lemma [3.19]
it is clear that Gro is o-connected. From G = 7~ '(0o1) W ... w 771 (0,) it follows that Gro is
the o-connected component of G' containing 1, i.e., G?° = Gro. This completes the proof of (ii)
and (iii). O
Definition 3.21. Let G be an expansive profinite group. The o-connected component G°° of G
containing 1 is called the o-identity component of G.

By Lemma B:20] we know that G?° is a normal expansive subgroup of G such that G/G7° is
finite and o: G/G?° — G/G"° is bijective. Note that an expansive profinite group is o-connected
if and only if it equals its o-identity component.

Example 3.22. A full one-sided group shift is o-connected by Lemma B20 (iii).

Example 3.23. Let G be an expansive profinite group that is finite. We claim that G° = {g €
G| 3n e N: o"(g) = 1}. Let N denote the right hand side of this equation. Then N is a normal
o-connected expansive subgroup of G. Moreover, ¢ 1(N) = N, so o: G/N — G/N is injective
and therefore bijective. It follows that G is the disjoint union of the o-stable sets 7~1(0), where
o is an orbit of 0 on G/N and 7: G — G/N the canonical map. From this we deduce that N is
the o-connected component of G containing 1.

The following simple example shows that a o-connected expansive profinite group need not
be o-irreducible. However, it follows from Corollary [5.3] that a o-connected expansive profinite
group G with o: G — G surjective is o-irreducible.

Example 3.24. Let G = {1, h, h?} be the cyclic group with three elements and 0: G — G, g+
1 the trivial endomorphism. Then G is o-connected but not o-irreducible because G is the union
of the o-closed sets {1,h} and {1, h%}.

For the proof of the main decomposition theorem we need the following:

Lemma 3.25. Let G be an expansive profinite group and N a normal expansive subgroup of G.
Then N9° is normal in G.

Proof. By Lemma [3.18 we may assume that G < GN such that G and N are 1-step group shifts
of finite type. Let I' be the directed group graph on G such that G = Gr. Then there is a
directed subgraph I'" of T" such that N = Gps. The set N/ = NJ0] of vertices of I is a normal
subgroup of G[0] < G because N is normal in G. Moreover, N°° = Grp», where I is the full
directed subgraph of I whose set of vertices N/ consists of all elements of N’ that can be
connected with 1 through a directed path inside I (Lemma (iii)).

We will show that N is normal in G[0]. Let n € N and g € G[0]. Consider an infinite
directed path v in I' starting at g and an infinite directed path ¢ in I that starts at n, goes to
1 and then stabilizes at 1. Because N is normal in G, the directed path vdy~! lies inside I".
Moreover it starts at gng~' and ends at 1. Therefore gng=! € N and N is normal in G[0].
This implies that N°° = Gp» is normal in G = Gr. U

Lemma 3.26. Let ¢: G — H be a morphism of expansive profinite groups. If G is o-connected,
then ¢(G) is o-connected.

Proof. If V is a closed o-stable subset of H, then ¢~ '(V) is a closed o-stable subset of G.
Thus ¢ is o-continuous, i.e., continuous with respect to the o-topologies on G and H. So the
claim follows from the general fact that a continuous map sends connected subsets to connected
subsets. O

Lemma 3.27. Let G be an expansive profinite group. Then 1d(G7°) = 1d(G).
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Proof. Since G/G?° is finite (Lemma [3.20), we know that 1d(G/G?°) = 1 from Lemma [3.14
Thus the claim follows from Lemma [3.15! O

The following two lemmas are needed to prove the uniqueness of the group G in the theorem
stated in the introduction. The next lemma is a converse to Lemma [3.20] (ii).

Lemma 3.28. Let N be a normal expansive subgroup of an expansive profinite group G such that
G/N s finite and o: G/N — G/N 1is bijective. Then G°° C N. Moreover, if N is o-connected,
then N = G7°.

Proof. Consider the canonical map 7: G — G/N and let o1, ...,0, denote the orbits of o on
G/N. Because G/N is finite, these o-orbits are closed and because o is bijective on G/N the
orbits are disjoint. If follows that G is the disjoint union of the closed o-stable subsets 7=1(0;).
Since N = 7w~ !(01), where o; = {1} is the g-orbit of the identity of G /N, we see that G°° C N.
If N is o-connected, then 7~!(01) is a o-connected component. So N = G°°. 0

Lemma 3.29. Let G be an expansive profinite group with a normal expansive subgroup N such
that N and G/N are o-connected. Then G is o-connected.

Proof. As N is o-connected and contains 1, we have N C G?°. Thus G?°/N is a normal ex-
pansive subgroup of G/N with (G/N)/(G°°/N) ~ G/G°°. So (G/N)/(G?°/N) is finite and
o: (G/N)/(G°°/N) — (G/N)/(G?°/N) is bijective (Lemma [3.20). Because G?°/N is o-con-
nected (Lemma [3.26)) it follows from Lemma [3.28] that G?°/N = (G/N)°° = G/N. Therefore
G?° =@G. O

3.5. One-sided group shifts on finite simple groups. The results in this subsection are
needed for the uniqueness statement in the main decomposition theorem.

Lemma 3.30. Let G be a finite simple group and G = GV the full one-sided group shift on G. If
N is a proper normal expansive subgroup of G, then N is finite and G/N is isomorphic to G.

Proof. We have to distinguish two cases: First we assume that G is not abelian. This implies
that any normal subgroup A of G" is of the form ' = N} x ... x N, with A; € {1,G} for
i =1,...,n. To see this, note that if (hy,...,h,) € N with h; # 1 for some 1 < i < n, then
there exists g in G with gh; # h;g as otherwise the center of G would be non-trivial. Then

(1,...,1,0.1,...,1)(h1,... . ho)(1, ... 1,0, 1, ..., 1)y, .o hy) T =
=(1,...,1,ghig 'h; 11, 1)

is a non-trivial element of NN (1 x ... x1x G x 1x ... x 1). By the simplicity of G we find
1x...x1xGgx1x...x1CN.

As N is a proper subgroup of G, there exists an ¢ € N such that N[i] is a proper subgroup of
G, Let i be minimal with this property. Because N is normal in G, N[i] is normal in G/
By the minimality of i we have G' x {1} C NJ[i]. It follows that N[i] = G' x {1}. But then
necessarily N = G' x 1 x 1 x ... < GN. The surjective morphism

gN — gN, (907917' . ) = (gi7gi+17 .- )

induces an isomorphism G/N ~ GN.

We now treat the case that G is abelian. Then G is cyclic of prime order and does not have
any proper non-trivial subgroups. For 7 > 1 let ; denote the subgroup of G such that the kernel
of m;: N[i] — N[i —1] is of the form {1}’ x N; < G, We also set Ny = N[0]. Then the N; are
a decreasing chain of subgroups of G (cf. proof of Proposition [2.1]). We cannot have N; = G for
all 7+ € N because this would imply N = G.

Thus there exist an n € N such that A,...,N,_1 are all equal to G and N,,, N, 11,... are
all equal to the trivial group. So 1d(N) = 1 and N is n-step by Lemma [3.12] In particular,
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N is finite by Lemma [3.14] As G"*!/N[n] has the same (prime) cardinality as G we see that
G"t1/Nn] ~G.

The map G — (G /N[, (90,91,--.) = (90 g1+~~~ gin))ien is a surjective morphism
of expansive profinite groups with kernel N and therefore induces an isomorphism G/N ~
(G"*/N[n])N =~ G". O

Example 3.31. In the proof of Lemma[3.30/ we have seen that if G is a finite non-abelian simple
group, then every proper normal expansive subgroup N of GV is of the form N =G x1x1... <
GN for some i € N. If G is not abelian, this is not true anymore, for example, for G abelian, the
“diagonal” subgroup N = {(g,9,...)| g € G} is a proper normal expansive subgroup.

One can recover G from GN:

Lemma 3.32. Let G and H be finite groups. If the full one-sided group shifts GY and HY are
isomorphic, then G and H are isomorphic.

Proof. Tt suffices to note that G can be recovered from G = G" as the kernel of 6: G — G. O

3.6. o-Infinitesimal expansive profinite groups. In this short subsection we deal with the
groups that occur in the last position in the subnormal series in the main decomposition theorem

(Theorem [Z6]).

Definition 3.33. An expansive profinite group G is o-infinitesimal if for every g € G there
exists an n € N such that o™ (g) = 1.

Example 3.34. In the proof of Lemma [3.30] we have seen that every proper normal expansive
subgroup of a full one-sided shift on a finte non-abelian simple group is o-infinitesimal.

Lemma 3.35. Let G be an expansive profinite group. Then G is o-infinitesimal if and only if
G is finite and some power of o: G — G is the trivial endomorphism g — 1.

Proof. By Lemma [B.16] we may assume that G = Gr for some directed group graph I'. Suppose
I’ contains a cycle that is not equal to the cycle whose only edge is (1,1). Looping inside this
cycle yields a periodic point g € G. This contradicts the assumption that ¢™(g) = 1 for some
n € N. Thus the only circuit in I' is stationary at 1. This implies that G is finite and so
0"(g) =1 forall g € G for n > 1.

The reverse implication is clear. O

Note that a o-infinitesimal expansive profinite group is o-connected because every o-stable
subset contains 1. For finite groups there is a converse:

Lemma 3.36. A finite o-connected expansive profinite group is o-infinitesimal.

Proof. Let G be a finite o-connected expansive group. Then G is the disjoint union of the
o-closed sets {g € G| 3n € N: 6"(g) = 1} and {g € G| 0"(9) # 1 V n € N}. The former set is
non-empty because it contains 1 and must therefore equal G. ([l

4. THE DECOMPOSITION THEOREM

In this section we prove our main result: the decomposition theorem (Theorem [4.6). The
proof proceeds by induction on the limit degree. We first tackle the case where the induction
hypothesis cannot be applied. More precisely, we show that for an infinite expansive o-connected
profinite group G such that 1d(V) € {1,1d(G)} for any normal expansive subgroup N of G, there
exists an £ € N such that G/ ker(o?) is isomorphic to a full one-sided group shift on a finite simple

group.
Let G be an expansive profinite group. It will be useful to consider the set Emb(G) of all
morphisms ¢: G — G from G to a full one-sided group shift such that
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o ker(¢) agrees with the kernel of o‘: G — G for some ¢ € N, in particular, ker(¢) is
o-infinitesimal (for £ = 0, by definition, o = id and so ker(c?) = 1),

e ¢(G)[0] = G and

o 1d(G) = |ker(¢(G)[1] = ¢(G)[0])]-
Recall that m; and the notation G[i] was defined in Section 2l Note that by Lemma [3.16]
Emb(G) is non-empty. Moreover, for ¢ € Emb(G) we have 1d(¢(G)) = 1d(G) and ¢(G) is 1-step
(Lemmas [3.15/ [3.14} [3.35! and [3.12]).
Lemma 4.1. Let G be an expansive profinite group and let ¢: G — GN be an element of

Emb(G) such that |G| is minimal. Then, for every i € N, the map ¢(G) = G, (go,91,-..) — i
18 surjective.

Proof. Assume, for a contradiction, that there exists an i € N such that the image H < G of
o(G) = G, (90,91,--.) — g; is properly contained in G. The map

¢/: @(G) — HN? (907917 s ) = (glv Gi+1,-- )
is a morphism of expansive profinite groups and so is the composition ¢’ = ¢/¢: G — HN. We
will show that ¢” € Emb(QG).

Assume ker(¢) = ker(cf). We claim that ker(¢”) = ker(c**?). If g € ker(¢"), then ¢(g) €
ker(¢) and so o'(4(g)) = 1. Thus ¢(c'(g)) = o*(é(g)) = 1 and so o'(g) € ker(¢) = ker(c").
Therefore g € ker(o*+?).

Conversely, if g € ker(o/™?), then ¢?(g) € ker(c’) = ker(¢), and so o*(¢(g)) = ¢(c'(g)) = 1.
Thus ¢(g) € ker(¢') and g € ker(¢").

By construction ¢”(G)[0] = H. We have a commutative diagram

¢"(G)[1] —= ¢"(@)[0]

n| |

P(G)[1] —— ¢(G)[0]

where p1(ho,h1) = (ho,h1) and po(hg) = hg. As p1 maps the kernel of ¢"(G)[1] — ¢"(G)[0]
injectively into the kernel of ¢(G)[1] — ¢(G)[0], we see that
| ker(¢"(G)[1] — ¢"(G)[0])] < [ker(¢(G)[1] — &(G)[0])] = 1d(G),

where the latter equality follows from ¢ € Emb(G). By LemmalBI2the sequence | ker(¢” (G)[j] —
¢"(G)[j —1])|;>1 is non-increasing and stabilizes with value 1d(¢”(G)). But, using Lemmas B.I5]
and [B.14] we find

"G)) = my — 1d(G)
In summary, it follows that ¢” € Emb(G). Because |H| < |G|, this contradicts the choice
of ¢. O

Proposition 4.2. Let G be an infinite expansive profinite group and let ¢: G — GN be an
element of Emb(G) such that |G| is minimal. Then there exists a normal non-trivial subgroup

N of G such that NN C ¢(G).

Proof. We consider ¢(G)[1] < G x G and 71: ¢(G)[1] — ¢(G)[0] = G, (g0,91) — go. We
also have a group homomorphism o1: ¢(G)[1] = G, (go,91) — ¢g1. Let G < G be such that
ker(m;) = {1} x G;. Similarly, let G’ < G be such that ker(o;) = G’ x 1. Then G’ x G is a
normal subgroup of ¢(G)[1]. Moreover, since oy is surjective (Lemma [4.1)), G; is normal in G

and because m; maps onto G, G’ is normal in G. Thus /' = G; NG’ is normal in G.
Suppose N = 1. Define # = ¢(G)[1]/(G' x Gi) and consider the morphism

¢ G —HY, g (6(9)i, #(9)it1)ien

=1d(G).
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of expansive profinite groups. Note that ¢’ is the composition of ¢: G — ¢(G), the 2-block
presentation ¢(G) ~ (¢(G)[1])Y and the 1-block map (¢(G)[1]))N — HN.

We will show that ¢/ € Emb(G). Let £ € N be such that ker(¢) = ker(c?). We claim that
ker(¢') = ker(o1). If g € ker(¢'), then ¢(g) lies in the kernel of the map

¢(G) _>HN7 (907917"') = ((92792+1)> 3
1€eN

which equals G’ x 1 x 1... < GN because N' = 1. Thus ¢(c(g)) = a(¢(g)) = 1. So o(g) €
ker(¢) = ker(c*) and therefore g € ker(a**1).

Conversely, if g € ker(c**1), then o(g) € ker(of) = ker(¢) and so a(¢(g)) = ¢(a(g)) = 1.
Thus ¢(g) = (¢',1,1,...) with ¢’ € G’ and therefore g € ker(¢').

In particular, ker(¢') is o-infinitesimal and therefore finite (Lemma [B.35). So, using Lem-

mas [3.15] and B.14] we have

1d(¢/(G)) = 1d(G/ ker(¢)) = %

The surjective group homomorphism ¢(G)[1] — G/G’, (g0,91) — Go has kernel G’ x G; and
therefore induces an isomorphism 7n: H — G/G’. The group homomorphism

& (@)1 = H x H, (90,91) — ((90,90). 17 (77 )

= 1d(G).

has image ¢'(G)[1], because an element of ¢/'(G)[1] is of the form ((go, 1), (g1, gg)) = ((go, g1),n" 1 (q1)

with (go,91,92) € ¢(G)[2], i.e., (g0,91) € ¢(G)[1] and (g1,¢92) € ¢(G)[1] as ¢(G) is 1-step. The
kernel of € is G x (¢' NG1) = G’ x 1. Tt follows that |¢/(G)[1]| = A2 and so

, |¢(G?[1]|
(@' (G)l1] = (@] = ST - |¢(§)[1]|| — 61| = 1(G),
G'[-1G1

where the last equality above holds because ¢ € Emb(G). Since ¢'(G)[0] = H by construction,
we see that ¢/ € Emb(G).

By the minimality of |G| we have |H| > |G|. But H ~ G/G’" and so we must have G’ = 1. By
Lemma [LT] the map ¢(G)[1] = G, (g0, 91) — g1 is surjective. As G’ =1 it is an isomorphism.
So [¢(G)[1]] = |G]|. But also |¢(G)[0]| = |G| and therefore

[¢(G)[1]]
d(G) = |G| = —+—= = 1.
(D =191= @
By Lemmal3.14] this contradicts the assumption that G is infinite. Thus N' # 1. Since N'x N C
#(G)[1] and ¢(G) is 1-step, we see that NN C ¢(G)N. O

The following corollary is a key step in our proof of the decomposition theorem.

Corollary 4.3. Let G be an infinite o-connected expansive profinite group such that for every
normal expansive subgroup N of G we have Id(N) =1 or 1d(N) = 1d(G). Then there exists an
¢ € N such that G/ ker(c*) is isomorphic to a full one-sided group shift on a finite simple group.

Proof. We continue to use the notation of the proof of Proposition 4.2l In particular, ¢: G — GY
is an element of Emb(G) such that |G| is minimal. We will show that ¢ is surjective and that G
is simple.

In the proof of Proposition B2 we have seen that N'= G’ N Gy is non-trivial. As NN C ¢(G)
maps to 1 under

¢(G) - HN? (907917 e ) = ((givgi-‘rl))ieNv

)
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we deduce that ¢~ (NY) C ker(¢'). In particular, N = ker(¢') is infinite and therefore has limit
degree strictly greater than 1 (Lemma [3.14]). As N is a normal expansive subgroup of G we
have, by assumption, ld(N) = 1d(G).

Thus 1d(G/N) = 1 and therefore G/N ~ ¢'(G) is finite (Lemma [3.14). Because G is o-con-
nected, also G/N is o-connected (Lemmal3.26). So G//N is a finite o-connected expansive profi-
nite group and must therefore be o-infinitesimal by Lemma Thus there exists an n € N
such that o™ (¢'(G)) = 1, i.e., (¢(9)is #(9)i+1) € G' x Gy fori > n. So ¢(g); € G’ and ¢(g)i+1 € G1
for all ¢ € G and ¢ > n. On the other hand, by Lemma 1] we have {¢(g);| g € G} = G for
every i € N. This shows that ¢’ = G and G; = G. But then ¢(G)[1] = G x G and ¢(G) is the
full one-sided group shift on G. So G/ ker(¢) ~ GN.

It remains to see that G is a simple group. Suppose G has a non-trivial proper normal subgroup
N. Then NN is a normal expansive subgroup of GN and N = ¢ N N) is a normal expansive
subgroup of G. Since N/ker(¢) ~ NN we have

~ld(N)
~ Id(ker(¢))
by Lemma [B.15] and Example B I3l As 1 < |N| < |G| =1d(G) we arrive at a contradiction. [J

1d(N) =1dWVY) = |V

The following Corollary is a one-sided version of the Corollary to Theorem 2 in [Kit87].

Corollary 4.4. Let G be a o-connected expansive profinite group such that p =1d(G) is a prime
number. Then there exists an £ € N such that G/ ker(c*) is isomorphic to the full one-sided group
shift on the finite cyclic group of order p.

Proof. As the assumptions of Corollary @3 are met, there exists an £ € N such that G/ ker(o")
is isomorphic to the full one-sided group shift on a finite simple group G. Because p = 1d(G) =
1d(G/ ker(c*) = 1d(GN) = |G|, it follows that G is cyclic of order p. O

The following lemma will be useful for the induction step in the proof of the main decompo-
sition theorem. Roughly speaking, it allows us to remove the top o-infinitesimal quotient in a
subnormal series.

Lemma 4.5. Let G be an expansive profinite group with a subnormal series
GOGI 2G22 -2 Gt

such that G/G1 is o-infinitesimal, G;/Gi+1 is isomorphic to a full one-sided group shift on a
finite simple group for i =1,...n and Gpy1 is o-infinitesimal. Then there exists a subnormal
series

GDOH DHy2---2H,
such that G/Hy and H;/H; 11 (i =1,...,n—1) are isomorphic to full one-sided group shifts on
finite simple groups and H,, is o-infinitesimal.

Proof. Since G /G is o-infinitesimal, there exists an r € N such that ¢"(g) = 1 for all g € G/G,
(Lemma [3.35)). In other words, 07" (G1) = G. We claim that the subnormal series

G=0"(G1) 20 "(G2) D...20 "(Gps1)
has the required properties. As o is surjective on a full one-sided group shift we see that
o": 07 "(G;) = G;/Gizq is surjective and so 07 "(G;)/07"(G;41) is isomorphic to G;/G;y1 for
1=1,...,n.
Finally, if s € N is such that o%(g) = 1 for all ¢ € G,,11, then 0" 5(g) = 1 for all g €
0 "(Gp+1). Thus 07" (Gp41) is o-infinitesimal. O

Finally, we are prepared to prove our main result.
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Theorem 4.6. Let G be an expansive profinite group. Then there exists a subnormal series
G2G12G22---2G,

such that G1 = G?°, G;/Giy1 is isomorphic to a full one-sided group shift on a finite simple
group G; fori=1,...,n—1 and G, is o-infinitesimal. If

G2H 2Hy2 -2 Hy

is another subnormal series such that Hy = G?°, H;/H;+1 is isomorphic to a full one-sided
group shift on a finite simple group H; for i = 1,...,m — 1 and H,, is o-infinitesimal, then
m = n and there exists a permutation 7 such that G; is isomorphic to Hyy fori=1,...,n—1.

Proof. We first establish the existence of the decomposition by induction on 1d(G). If 1d(G) = 1,
then G is finite (Lemma [3.14) and the theorem holds with n = 1 by Example 3.23]

So we may assume that 1d(G) > 1. Replacing G with G?°, we may also assume that G is
o-connected. (Note that by Lemma [3.27] the limit degree remains unchanged.) If there does not
exist a normal expansive subgroup N of G such that 1 < 1d(N) < 1d(G), then there exists a
decomposition of the desired form with n = 2 by Corollary [4.3

So we may assume that there exists a normal expansive subgroup N of G such that 1 <
1d(N) < 1d(G). We know from Lemma[3.25/that also N°° is a normal expansive subgroup of G.
Moreover 1d(N) = 1d(N?°) by Lemma [3.27. Replacing N by N?° we may thus assume that N
is o-connected.

Because 1d(G/N) =1d(G)/1d(N) < 1d(G) we can apply the induction hypothesis to G/N. As
G is o-connected, also G/N is o-connected (Lemma B:26]). So, using Proposition 37 we obtain
a subnormal series

G/N2G{/N2---2G,/N
for G/N, where G 2 G; 2 --- 2 G, 2 N is a subnormal series for G such that G, /N is
o-infinitesimal and (G;/N)/(Gi+1/N) = G;/G;+1 is isomorphic to a full one-sided group shift
on a finite simple group for ¢ = 0,...,n — 1, where Gg := G.

As1d(N) < 1d(G), we can also apply the induction hypothesis to N. Since N is o-connected,

we obtain a subnormal series

N 2Ny 22 Ny,
with N, o-infinitesimal and N;/N;,1 isomorphic to a full one-sided group shift on a finite simple
group for i =0,...,m —1 (Ny := N). By Lemma 4.5 the subnormal series

can be replaced by a subnormal series
Gn2H1 2 QHma

with G,,/Hy and H;/H;4+1 (i = 1,...,m — 1) isomorphic to a full one-sided group shift on a
finite simple group and H,, o-infinitesimal. Then

G2G12--2G,2H, 22 Hp,
is a subnormal series for G of the required form.
We next address the uniqueness: Assume that
G°=G12G,2...2G,

and

G°°=H{D>HyD>...DOHy,
are subnormal series of G?° such that G;/G; 1 is isomorphic to a full one-sided group shift on
a simple group G; (i =1,...,n — 1), H;/H; 1 is isomorphic to a full one-sided group shift on a
finite simple group H; (i =1,...,m — 1) and the groups G,, and H,, are o-infinitesimal.
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By Proposition [3.10] these two subnormal series for G have equivalent refinements. Let
G12G112G122...2G1, =G22...2G,2G,12...2Gn, =1 (6)

and

HiODH 1 ODHi22...0Him =Hy2...0H, DO Hp12...2 Hypy,, =1 (7)
be such refinements. We may assume that all of the above inclusions are proper. Note that
Gi1/Gi41 is a proper normal expansive subgroup of G; /G4 fori =1,...,n—1. By Lemmal3.30]
the group Gj1/Giy1 is finite. It follows that all the factor groups G; ;/G;j+1 (j=1,...,n; —1)
are finite, whereas G;/G; 1 is infinite. Thus, the number of infinite factor groups of the subnormal
series (l6]) is exactly n — 1. Similarly, the number of infinite factor groups of the subnormal series
(7) is m — 1. Because the subnormal series (6) and (7)) are equivalent, we see that n = m.
Moreover, by Lemma [3.30/ the n — 1 infinite factor groups of (6) are isomorphic to full one-sided
group shifts on the finite simple groups Gi,...,G,_1. Similarly, the n — 1 = m — 1 infinite
factor groups of () are isomorphic to full one-sided group shifts on the finite simple groups
Hi,...,Hm-1. The equivalence of ([6) and (7)) together with Lemma shows that there
exists a permutation 7 such that G; ~ H ;) fori=1,...,n—1. O

Remark 4.7. For simplicity, Theorem |4.6] is stated in the introduction without reference to
the o-identitiy component and the claim concerning the uniqueness of the group G1 made there
needs some justification: Let G O Gp 2 ... D G, be a subnormal series for an expansive
profinite group G such that G;/Gi+1 is isomorphic to a full one-sided group shift on a finite
simple group fori=1,...,n—1, G/Gy is finite with o: G/G1 — G/G1 an automorphism and
G, is o-infinitesimal. Then G1 = G°°.

Proof. Full one-sided group shifts and o-infinitesimal expansive profinite groups are o-connected.
So it follows inductively, using Lemma B.29] that all the G; are o-connected. In particular Gy
is o-connected. Thus the claim follows from Lemma B.28 O

We next consider some examples that illustrate Theorem [4.6l The following example shows
that our decomposition theorem can be interpreted as a generalization of the classical Jordan-
Hoélder theorem.

Example 4.8. Let G be the full one-sided group shift on the finite group G and let G = G; D
Gs O ... DG, =1 be a decomposition series for G. Then

G=G'2Gy2...2G) =1

is a subnormal series of G with the properties of Theorem [4.6l Note that G is o-connected by
Example [3.22.

Example 4.9. Let G be a finite simple group and let G’ be any finite group containing G. Then
G = G'xGxGx...is an expansive profinite group under o: G — G, (¢, 91,92,-..) — (91,92, -.).
Moreover, G is o-connected (e.g., by Lemma [3.20] (iii)) and Go = G’ x 1 x 1... < G is a normal
o-infinitesimal expansive subgroup of G such that G/Gs is isomorphic to the full one-sided group
shift on G. Thus G = G 2D G4 is a decomposition as in Theorem [4.6]

Example 4.10. This example is taken from [Kit87] (Example 4). However, we use a multi-
plicative notation, so that subgroups can easily be described by equations (rather than by listing
elements). Let us write G, = C* = C~\ {0} for the multiplicative group of the complex numbers
and consider Gl,i as a group under componentwise multiplication. For g = (g0, g1,...) € Gﬁb we
set o(g) = (91,92, -..) as usual. Let

G = {(g, B e @)W gt =1, h2=1, o(h) = g2h} :

Then G is a subgroup of GV, where G = {a € C*| a* = 1} x {b € C*| b? = 1} is a product of
a cyclic group of order four and a cyclic group of order two. Indeed G is a 1-step group shift
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on G. Set Gy = {(9,h) € G| h =1} = {(g9,1) € G| ¢g*> = 1}. So G5 is a full one-sided group
shift on a cyclic group of order two. The map G — G., (g,h) — h has kernel G5 and image

{h € GN| h? = 1}. Thus G/G+ is isomorphic to a full one-sided group shift on a cyclic group of
order two. So there exists a short exact sequence

1-0CY =G -l —1, (8)

where Cj is the cyclic group of order two. By Lemma [3.29] and Example [3.22] the expansive
profinite group G is o-connected. So

G=G12G22Gz=1

is a subnormal series as in Theorem 4.6l We note that the exact sequence ({8)) is not split. Indeed,
G is not isomorphic to a full one-sided group shift ([Kit87, Example 4]).

Example 4.11. We use the same notation as in the previous example. Set

G = {(91792793) S (Gf’n)N’ gf‘ = 93 = g§ =1, o(g1) = g%a o(g3) = 93}-
Then G is a one-sided group shift on the finite group G, where G is a direct product of two cyclic
groups of order four and a cyclic group of order two. Let GG, G2 and G3 be the subgroups of G
given by

Gl = {(9179271) S (Gg’n)N| .ngl = gél = 17 0(91) = ggv }7

G2 = {(g1,02.1) € @) gf = B =1, o(g1) = 1.},
and
Gy ={(g1,1.1) € G| gt =1, o(g1) = 1.
We will show that
G2G12G22Gs

is a subnormal series as in Theorem

Clearly G3 is o-infinitesimal. The map G; — GY | (g1,92,1) +— g2 has kernel G35 and image
{g € GIV| g* = 1}, a full one-sided group shift on a cyclic group of order four. The full one-sided
group shift {g € G| g> = 1} contained in the image corresponds to G3. So G1/Go and Ga/G3
are both full one-sided group shifts on a cyclic group of order two.

So it only remains to show that Gi; = G?°. Asin Remark4.7]it follows that G is o-connected.
According to Lemmal[3.28]it suffices to show that G/G is finite with o: G/G1 — G/G1 bijective.
But G/G1 is a group of order two with o the identity map.

5. TOPOLOGICAL CONJUGACY

Recall that two topological spaces (X, o) and (Y, o) equipped with continuous endomorphisms
are topologically conjugate if there exists a homeomorphism X — Y such that

X —Y

commutes. In [Kit87] B. Kitchens showed that every profinite group equipped with an expansive
automorphism is topologically conjugate to A% x F, a full two-sided shift on a finite set A times
a finite (discrete) set F equipped with an automorphism.

We establish here a similar result for expansive endomorphisms: If G is an expansive profinite
group, then there exists an ¢ € N such that o/(G) is topologically conjugate to AN x F, a full
one-sided shift on a finite set A times a finite set F equipped with an automorphism. We will
need the following preparatory lemma.



EXPANSIVE DYNAMICS ON PROFINITE GROUPS 21

Lemma 5.1. Let G be an expansive profinite group and N a normal expansive subgroup of G
that is isomorphic to a full one-sided group shift. Then G is topologically conjugate to G/N x N.

Proof. To be clear, the topology on G/N x N is the product topology and the endomorphism o
on G/N x N sends (h,n) € G/N x N to (c(h),o(n)).

To begin with, choose a continuous section ¢ of the canonical map 7: G — G/N, i.e., a
continuous map ¢: G/N — G such that 7o = idg/y. Such a map always exists by [RZ10,
Proposition 2.2.2]. (Note that we do not require that ¢ commutes with o or is a group homo-
morphism.) The map n: G/N x N — G, (h,n) — @(h)n is a homeomorphism with inverse
n~': G — G/N x N, g (n(g),¢(r(9))"'g). For (h,n) € G/N x N we have

1o (n(h,n))) =0~ o (p(h)a(n)) = (o(x(p(h), p(r(a(p(h)a(n))) " o(p(h)o(n) =
= (o(h), (o (h)) " a(p(h))a(n)).
Thus G is topologically conjugate to (G/N x N,c¢') with ¢’: G/N x N — G/N x N given by
o'(h,n) = (o(h),(h)o(n)), where 1: G/N — N, b p(o(h)) " o(p(h)).

So it suffices to show that (G/N x N,¢’) and (G/N x N, o) are topologically conjugate. We
may assume that N = AN for some finite group N. So for h € G/N the element ¥(h) =
(¢(h);)ien is a sequence in . Define a continuous map a: G/N — N = NN by a(h)y = 1
and a(h); = Y(h); L (o(h); Yy .. (e () ! for i > 1. Then ¢ (h);a(h)ir1 = alo(h)); for
all i € N, i.e., ¥(h)o(a(h)) = a(o(h)) for all h € G/N.

The map £: G/N x N — G/N x N, (h,n) — (h,a(h)n) is a homeomorphism and

§(a(h,n)) = (o(h), a(o(h))o(n)) = (o(h), ¥ (h)o(a(h))o(n)) = o' (h, a(h)n) = o' (§(h, n))
for all (h,n) € G/N x N. Thus ¢ is a conjugacy between (G/N x N,o) and (G/N x N,o¢’). O

Let G be an expansive profinite group. Note that for ¢ € N, the kernel ker(c) of o: G — G
is a o-infinitesimal expansive subgroup of G. In particular, ker(c) is finite. Moreover o/(G) is
an expansive subgroup of G' and o induces an isomorphism G/ ker(c*) — o*(G) of expansive
profinite groups.

Theorem 5.2. Let G be an expansive profinite group. Then there exists an £ € N such that
o(@) is topologically conjugate to AN x F, where A is a finite set and F is a finite set equipped
with a bijective map o: F — F having a fized point.

Proof. We will prove the theorem by induction on 1d(G). If 1d(G) = 1, then G is finite
(Lemma [3:14) and for large enough ¢, the map o: 0*(G) — ¢*(G) is bijective. Thus the theorem
holds with A a one-element set and F = o(G). (The identity element 1 € F is a fixed point.)
Assume that 1d(G) > 1. By Proposition there exists an ¢ € N and a normal expansive
subgroup N of ¢/(G) such that N is isomorphic to a full one-sided group shift on a non-trivial
finite group. From Lemmal5.1 we obtain that o/(G) is topologically conjugate to ¢/(G)/N x N.
We have 1d(c?(G)/N) = 1d1(§—(‘3 ](VC);)) < 1d(G) and so we can apply the induction hypothesis to

G' = ¢'(G)/N: There exists an ¢ € N, a finite set A’ and a finite set F' equipped with an
automorphism having a fixed point such that O’Z,(G/ ) is topologically conjugate to AN x F'.
Since ot (@) is topologically conjugate to G’ x N, we see that o+ (G) is topologically conjugate
to o' (G’ x N) = o (G") x o' (N) ~ ANx F' x N. So, if N ~ NN, then o/ (@) is topologically
conjugate to (A’ x N)N x F'. O

Note that a full one-sided group shift is o-connected and has a surjective o. The following
corollary provides a converse for expansive profinite groups:

Corollary 5.3. Let G be a o-connected expansive profinite group with o: G — G surjective.
Then G is topologically conjugate to a full one-sided shift.
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Proof. Since o: G — G is surjective, it follows from Theorem [5.2] that G is topologically conju-
gate to AN x F. Let f € F be a fixed point. Then A x F is the disjoint union of the o-closed
sets A x {f} and A x (F < {f}). As G is o-connected, we must have F = {f}. Thus G is
topologically conjugate to AN, ([l

Because full one-sided shifts are o-irreducible, Corollary 5.3 implies that a o-connected ex-
pansive profinite group G with o: G — G surjective is o-irreducible.

6. EXPANSIVE AUTOMORPHISMS

In this section we establish an analog of Theorem for expansive automorphisms in place of
expansive endomorphisms. There are no immediate implications between results about profinite
groups equipped with an expansive endomorphism and results about profinite groups equipped
with an expansive automorphism. Indeed, if G is a profinite group and o: G — G is a map that
is simultaneously an expansive endomorphism and an expansive automorphism, then G is finite
by Corollary 3.17] However, it seems possible to obtain a proof of an analog of Theorem [4.6] for
expansive automorphisms by carefully going through all the steps of the proof of Theorem [4.6]
and performing some minor modifications here and there. Indeed, the situation is simpler in the
automorphism setting because there are no o-infinitesimal groups in this context.

There is, however, a slightly more elegant path that we will follow here. There is a universal
construction G ~~» G* that associates to any profinite group G equipped with an expansive
endomorphism, a profinite group G* equipped with an expansive automorphism. Moreover, any
profinite group equipped with an expansive automorphism is of the form G* for some G. In
this fashion, results about profinite groups with expansive endomorphisms can be transformed
to results about profinite groups with expansive automorphisms. This way we are able to avoid
having to enter into the details of the proof of the existence part of Theorem [4.6] again.

We begin by recalling the two-sided setup in symbolic dynamics. See [Kit98] or [LM95]. Let
A be a finite set. We consider A% as a topological space via the product topology of the discrete
topology on A. The topological space A% together with the homeomorphism o: A% — A%, given
by o(anez) = (ant1)nez is the full two-sided shift on the alphabet A. A two-sided shift on A
is a closed subset X of A% such that o(X) = X. A word or block of length i is a sequence of i
elements from A. A two-sided shift X on A is a (two-sided) subshift of finite type if there exists
a finite set F of blocks such that X consists of all elements of A% that do not contain any blocks
from F. If I is a directed graph with set of vertices equal to A, then the set X[\ C AZ consisting
of all biinfinite sequences in A that trace out a biinfinite directed path in I' is a subshift of finite
type.

In case the alphabet A = G is a finite group, GZ inherits a group structure. In fact, GZ is a
profinite group and ¢: G — GZ is an automorphism (of profinite groups). A two-sided group
shift G on G is a two-sided shift on G that is a subgroup of GZ. In particular, G is a profinite
group and o: G — G is an autmorphism. It is shown in [Kit87] that every two-sided group shift
is a subshift of finite type. If I' is a directed group graph on a finite group G, then G} = X[\ is
a two-sided group shift.

In this section we consider expansive endomorphisms and expansive automorphisms of profi-
nite groups. To have a clear notational distinction between the two, we add a “x” to the notation
whenever we are dealing with expansive automorphisms. We continue to use the notation of the
previous sections. In particular, an expansive profinite group is a profinite group together with
an expansive endomorphism (Definition B.T]).

Definition 6.1. An automorphism o: G — G of a profinite group G is an expansive automor-
phism if there exists a neighborhood U of 1 such that Npezo™(U) = 1. A xexpansive profinite
group is a profinite group G together with an expansive automorphism o: G — G.
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As for expansive profinite groups, once can assume that U is an open normal subgroup of G.
The study of xexpansive profinite groups was initiated by B. Kitchens in [Kit87].

A topological o-group is a topological group G equipped with an endomorphism (i.e., a con-
tinuous group homomorphism) o: G — G. A morphism G — H of topological o-groups is a
continuous group homomorphism such that

G——H

commutes. A morphism of kexpansive profinite groups is a morphism of topological o-groups.
We will need the x-analogs of the elementary results from Section [3.2l The proofs are very
similar to Section [3.2l We therefore omit the details.

Lemma 6.2. Let G be a xexpansive profinite group.

(i) If H is a closed subgroup of G such that o(H) = H, then H (with the induced topology
and automorphism) is a xexpansive profinite group. In this case, we call H a xexpansive
subgroup of G.

(ii) If N is a normal xexpansive subgroup of G, then G/N (with the quotient topology and
induced automorphism) is a xexpansive profinite group and the canonical map G — G /N
is a morphism of xexpansive profinite groups.

We note that point (ii) of Lemma[6.2 is proved in far greater generality in [GR1T].

Proposition 6.3 (Isomorphism theorems for xexpansive profinite groups).

(i) Let ¢: G — H be a morphism of xexpansive profinite groups. Then ¢(G) is a xexpansive
subgroup of H, ker(¢) is a normal xexpansive subgroup of G and the canonical map
G/ker(¢) — ¢(G) is an isomorphism of xexpansive profinite groups.

(ii) Let N be a normal xexpansive subgroup of a xexpansive group G and w: G — G/N the
canonical map. Then the map

{*expansive subgroups of G containing N} — {xexpansive subgroups of G/N},

H s n(H) = H/N is a bijection with inverse H' +— n~1(H'"). Moreover H is normal
in G if and only if H/N is normal in G/N and in that case G/H ~ (G/N)/(H/N).

(iii) Let H and N be xexpansive subgroups of a xexpansive profinite group G such that H
normalizes N. Then HN is an xexpansive subgroup of G, HNN is a normal xexpansive
subgroup of H and HN/N ~ H/HN N.

Subnormal series, their refinements and equivalence of subnormal series for xexpansive profi-
nite groups are defined as for expansive profinite groups.

Proposition 6.4. Any two subnormal series of a xexpansive profinite group have equivalent
refinements.

The following proposition allows us to associate a xexpansive profinite group G* to any ex-
pansive profinite group G.

Proposition 6.5. Let G be an expansive profinite group. There exists a *expansive profinite
group G* together with a morphism G* — G of topological o-groups satisfying the following
universal property: If H is a xexpansive profinite group and H — G is a morphism of topological
o-groups, then there exists a unique morphism H — G* such that

H G

G*
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commutes.

Proof. For i € N let G; be a copy of G and consider the projective system (G;, ¢it1)ien, where
the connection maps ¢;41: G;+1 — G; are all equal to o: G — G. Let G* be the projective limit
of this projective system. Explicitly, we have

G* = {(907917927 .. ) € GN| U(gi+1) =0 Vie N} .

Define o: G* — G* by o(g90,91--..) = (0(g0),0(g91),...). Then o: G* — G* is continuous
because the maps G* — G, (90,01,-..) — o(g;) are continuous for every i € N. If ¢g* =
(90,91, ---) lies in the kernel of o: G* — G*, then o(g;) = 1 for all i € N. But o(g;) = gi—1
for i > 1. So ¢* = 1 and o is injective. On the other hand, if ¢* = (go,91,...) € G¥,
then o((g1,92,-..)) = g%, so o: G* — G* is surjective. A bijective morphism of profinite
groups is an automorphism because any surjective morphism of profinite groups is open ([F.J0S8|,
Remark 1.2.1 (f)]). Thus o: G* — G* is an automorphism.

The projection 7: G* — G, (g0,91,---) — go is a morphism of topological o-groups. Let
U be an open subgroup of G such that N,eno™™(U) = 1. Set U* = 7=} (U). We claim that
Nnezo™(U*) = 1. Assume that ¢* = (g0, g1,...) € Nnezo™(U*). Let n,i € N. As g* € o*~"(U*),
we see that '

" (g") = 0"(9is 9it1, - --) = (6"(9i), 0" (git1)s - - )
lies in U™, i.e., 0™(g;) € U. So g; € 0~ "(U) for all n € N. Thus g; =1 for all : € N and ¢g* =1
as desired. Therefore G* is a xexpansive profinite group.

Let H be a xexpansive profinite group and ¢: H — G a morphism of profinite o-groups.
Define ¢: H — G* by ¥(h) = (é(h),¢(c=(h)),p(c2(h)),...). Then 1 is a morphism of
topological o-group such that

H—2 G
%
G*
commutes. Indeed, ¢ is the only such morphism, because any other morphism V' H — G*
with this property satisfies w(c=*(¢'(h))) = w(¥'(c7*(h))) = ¢(c7*(h)) for all i € N. O

Example 6.6. If G = G is the full one-sided group shift on a finite group G, then G* = GZ is
the full two-sided group shift on G and G* — G, (gn)nez — (gn)nen is the projection.

The following example generalizes Example [6.6.

Example 6.7. Let I' be a directed group graph on the finite group G. Then (Gr)* = Gfy.
(Recall that Gr is defined after Definition [2.5] and G7. is defined before Definition [6.1])

Proof. We have a natural map 7: G- — Gr that associates to the vertices of a biinfinite directed
path the vertices of the infinite directed subpath starting at the vertex in position zero. Let H
be a xexpansive profinite group and ¢: H — Gr a morphism of topological o-groups. For every
h € H, the first vertex of the path corresponding to ¢(oc~1(h)) extends the path corresponding
to ¢(h) one step further to the left, similarly for =" in place of 0~!. So we see that there exists
a unique g = ¢(h) € G} such that ¢(o~"(h)) = (0" "(g)) for all n € N. O

Corollary 6.8. FEvery xexpansive profinite group H is of the form H = G* for some expansive
profinite group G.

Proof. By [Kit87, Theorem 1, (i)] every xexpansive profinite group H is isomorphic to G} for
some directed group graph I'. By Example [6.7] we can thus take G = Gr. g

Example 6.9. Let G be a o-infinitesimal expansive profinite group. Then G* = 1. Indeed, any
morphism ¢: H — G with H a xexpansive profinite group satisfies ¢(H) = 1.
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Proof. By Lemma [3.35] there exists an n € N such that ¢"(g) =1 for all ¢ € G. If h € H then
we can write h = ¢™(h’) for some h' € H and then ¢(h) = o™ (¢(h')) = 1. O

Example 6.10. If G is a finite (discrete) group with an endomorphism o: G — G, then G* =
Nneno™(G). In particular, if o: G — G is an automorphism, then G* = G.

Lemma 6.11. If H is an expansive subgroup of an expansive profinite group G, then H* is
a xexpansive subgroup of G*. Moreover, if H is normal in G, then H* is normal in G* and

G/ H* ~ (G/H)*.

Proof. Clearly H* = {(ho,h1,...) € HY| o(hiy1) = h; ¥ i € N} is a *expansive subgroup of
G* ={(90,91,---) € G| 0(gir1) = g; Vi € N}. If H is normal in G, then H* is normal in G*.
The map G*/H* — (G/H)*, (90,91,---) — (90,01, --.) is an isomorphism. O

We will also need a sversion of Lemma [3.30]

Lemma 6.12. Let G be a finite simple group and G = GZ the full two-sided group shift on G.
Let N be a proper xexpansive subgroup of G.

(i) If G is non-commutative, then N is trivial.
(ii) If G is commutative, then N is finite and G /N 1is isomorphic to G.

So, in either case, N is finite and G/N is isomorphic to G.

Proof. For i € N let N[i] denote the image of N under the projection GZ — G'*1, (g,)nen —
(g0, .-, 9:). In other words, N[i] is the subgroup of G"*! consisting of all blocks of length i + 1
that occur in elements of N. As N is normal in G, we see that N[i] is normal in Gi*1. Moreover,
since N is a proper subgroup of G, there must exist an ¢ € N such that N[i] is a proper subgroup
of gi—i—l.

We first treat the case that G is non-commutative. Then, as explained in the proof of
Lemma [3.30, the group NJi] is an i + 1-fold product, where each factor is either 1 or G. In
particular, one of the factors, say, the j-th factor, has to be 1. This means that every block of
length 7 4+ 1 that occurs in an element of NV has a 1 in its j-th position. But every entry of an
element of NV is the j-th entry of some block of length 7 + 1, so N = 1.

We next treat the commutative case. So G is cyclic of prime order. For every i > 1 the
kernel of the projection N[i] = N[i — 1], (go,..., ) — (go,.-.,gi—1) is of the form {1} x A
for some subgroup N; of G, i.e., N; = 1 ore N; = G. Set Ny = N|[0]. There exists an n € N
such that Ny, ..., N,_1 are all equal to G and N, N;,11,... are all trivial. So N[i| = |G|™ for
all i > n — 1. It follows that |[N| = |G|, in particular, N is finite. The group G"*!'/N|n]
is isomorphic to G because it has the same order. The map G — (G"T1/N[n))%, (gm)mez
((gms Gm+1s - -+ s Gm+n))mez has kernel N and thus induces an isomorphism G/N ~ GZ. ]

We are now prepared to establish the sxversion of Theorem

Theorem 6.13. Let G be a xexpansive profinite group. Then there exists a subnormal series
GDOG12GD...0G, =1

of xexpansive subgroups G; of G such that G/G1 is a finite group and G;/G;y1 is isomorphic
to a full two-sided group shift on a finite simple group G; for i = 1,...,n — 1. Moreover, the
length n of such a series and the isomorphism classes of the finite simple groups G; are uniquely
determined by G.

Proof. We know from Corollary that G is of the form G = H* for some expansive profinite
group H. Let

HDODH, DO...OH,
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be a subnormal series for H as in Theorem [4.6l For i =1,...,n set G; = Hf. By Lemma[6.11]
we have a subnormal series

G2G12...0G, (9)

of xexpansive subgroup for G = H*. As H/H; is finite and o: H/Hy — H/H; is bijective
(Lemma [3.20] (ii)) we see, using Lemma [6.11] and Example [6.10, that G/G; = H*/H} =
(H/Hy)* = H/H, is finite. It follows from Examplel6.6lthat G;/G;11 = H/H} | = (H;/H;y1)*
is isomorphic to a full two-sided group shift on a finite simple group G; fort =1,...,n—1. More-
over, by Example [6.9] we have G,, = H) = 1. So the subnormal series (9) has all the required
properties.

The proof of the uniqueness claim is similar to the proof in Theorem [4.6. Assume we have
another subnormal series

GDH,D...DH, =1

as in the theorem and let H;. ..., H,,—1 denote the corresponding finite simple groups. According
to Proposition [6.4], we can find equivalent refinements. Using Lemma [6.12] we see that the
number of infinite factor groups in a refinement equals n — 1 respectively m — 1. Because
the refinements are equivalent, we must have m = n. Using Lemma [6.12 again, we see that
there exists a permutation 7 such that giZ is isomorphic to Hf(i). But then G; ~ H; ([Kit8&7,

Proposition 7]). O

7. BABBITT’S DECOMPOSITION

Babbitt’s decomposition theorem is an important classical theorem in difference algebra that
elucidates the structure of algebraic difference field extensions. See |[Coh65, Chapter 7, Theo-
rem 7], [LevO8, Theorem 5.4.13] or [Bab62, Theorem 2.3| for the original reference.

In this section we explain how our main result (Theorem [A.6]) implies Babbitt’s decomposition
theorem and indeed yields additional information concerning the uniqueness of the decomposi-
tion.

To state Babbitt’s decomposition theorem we need to recall some basic notation from differ-
ence algebra. See [Coh65] or [Lev08]. A difference field, or o-field for short, is a field K equipped
with an endomorphism o: K — K. An extension L/K of difference fields is an extension of
fields such that o: L — L extends o: K — K. An intermediate o-field of a o-field extension
L/K is a subfield M of L containing K such that o(M) C M. If L/K is an extension of o-fields
and A a subset of L, then K(A) C L denotes the smallest intermediate o-field of L/K that
contains A. Note that K(A) = K(A,a(A),0?(A)...), the field extension of K generated by
A,o(A),.... If L =K(A) for a finite set A, then L/K is called finitely o-generated.

A o-field extension L/K is Galois if the underlying field extension is Galois, i.e., normal and
separable. (So the field extension is algebraic but not necessarily finite.) The following lemma
explains the connection between extensions of difference fields and expansive profinite groups.
See [Lev08], Section 8.1] for related results in a slightly different context. (In [Lev08, Section 8.1]
it is always assumed that o: K — K is an automorphism.)

Lemma 7.1. Let L/K be a Galois extension of o-fields and let G = G(L/K) be the Galois
group (of the underlying field extension).

(i) For every g € G there exists a unique g° € G such that 0g° = go as maps from L to L.
(ii) The map o: G — G, g+ ¢° is a continuous group homomorphism.
(iii) The extension L/K is finitely o-generated if and only if G is an expansive profinite
group.

Proof. In [TW18|, Lemma 1.23] it is shown that for any two extensions o1,09: L — Lofo: K —
K, there exists a unique element 7 € G such that oo = o17. Applying this with oy =o: L — L
and o9 = go: L — L yields (i).
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A basis for the topology of G is given by the open subgroups
Us={9€G|gla)=aV¥ac A},

where A is a finite subset of L. For @ € L and g € G we have o(g)(a) = a if and only if
o(o(g)(a)) = o(a) because o: L — L is injective. But o(o(g)(a)) = g(o(a)) by definition of
o: G — G. It follows that o~ 1(U,) = Us(a)- Therefore o: G — G is continuous. A straight
forward calculations shows that o: G — G is a group homomorphism.

To establish (iii), assume first that A is a finite subset of L such that L = K(A4). We claim
that Npeno™"(Ua) = 1. Indeed, if g € Npeno™™(Ua), then g € 07" (Ua) = Uyn(a) for all n € N.
So g fixes all elements in A,o(A),02(A),.... Since these generate L as a field extension of K,
we see that g fixes all elements of L. Thus ¢ = 1 and G is an expansive profinite group.

Conversely, assume that U is an open subgroup of G such that N,cno~™(U) = 1. Then LY is
a finite field extension of K and therefore of the form LY = K (A) for a finite subset A of L. In
other words, U = Uy. As L/K(A,0(A),...) has Galois group Npeno "(U) = 1, we must have
L= K(A). O

To state Babbitt’s decomposition theorem we need some more notation from difference alge-
bra. An extension L/K of o-fields is o-separable if 0: L&xg K' — LRg K', a®b— o(a) @c(b)
is injective for any o-field extension K’/K. For other equivalent characterizations of this notion
see [TW18| Section 1.1].

Let L/K be a finitely o-generated Galois extension of o-fields and let 7§ (L/K) denote the
union of all intermediate o-fields M of L/K such that M is a finite field extension of K and
M/K is o-separable. Then 7n§(L/K)/K is a finite field extension ([TW18, Remarkark 1.27])
and Galois ([TW18, Corollary 1.35]). It follows that 7§ (L/K) is the largest intermediate o-field
of L/K with the property that n§(L/K)/K is finite Galois and o-separable.

A Galois extension L/K of o-fields is benign if there exists an intermediate field K C M C L
such that

e M/K is a finite Galois extension with L = K (M),

e the degree of K(o™(M)) over K equals the degree of M over K for all n € N and

e the fields (K (0" (M)))nen are linearly disjoint over K.
An extension L/K of o-fields is o-radicial if for every a € L there exists an n € N such that
o"(a) € K.

Now we are prepared to state Babbitt’s decomposition theorem. The version we state here
is from [TW18, Theorem 2.9] and in contrast to the references given at the beginning of this
section does not require o: K — K to be an automorphism.

Theorem 7.2 (Babbitt’s decomposition theorem). Let L/K be a finitely o-generated Galois
extension of o-fields. Then there exists a chain

KClLi1Cl,C...CL,CL

of intermediate o-fields such that Ly = n§(L/K), Liy1/L; is benign for i = 1,...,n —1 and
L/L, is o-radicial.

To deduce Theorem [7.2] from Theorem [4.6] we need to know how properties of expansive
profinite groups correspond to properties of o-field extensions. This is explained in the following
lemma.

Lemma 7.3. Let L/K be a finitely o-generated Galois extension of o-fields and let G be the
Galois group of L/ K, considered as an expansive profinite group as in Lemma|7.1]
(i) L/K is o-separable if and only if o: G — G is surjective.
(ii) L/K 1is finite and o-separable if and only if G is finite and o: G — G is bijective.
(iii) L/K 1is benign if and only if G is isomorphic to a full one-sided group shift.



EXPANSIVE DYNAMICS ON PROFINITE GROUPS 28

(iv) L/K is o-radicial if and only if G is o-infinitesimal.

Proof. We begin with (i). By [TW18| Proposition 1.2] the o-field extension L/K is o-separable
if and only if whenever fi,..., f, € L are K-linearly independent then also o(f1),...,0(f,) are
K-linearly independent.

Assume that L/K is o-separable. To show that o: G — G is surjective, it suffices to show
that G & G — G/U is surjective for every normal open subgroup U of G. With notation as
in the proof of Lemma [7.1l we have U = U, for some finite subset A of L. So G/U can be
identified with the Galois group of K(A)/K. As 071 (Ua) = U,(a), we see that G/o~(U) can
be identified with the Galois group of K(o(A))/K. Because L/K is o-separable, we see that
K(A) and K(o(A)) have the same degree over K. Since the map G/o~}(U) — G/U induced
by o: G — G is injective it must then be surjective. Therefore o: G — G is surjective.

Conversely, assume that o: G — G is surjective. By the primitive element theorem it suffices
to show that for any element a € L such that K(a)/K is Galois, the fields K(a) and K(o(a))
have the same degree over K. Let n be the degree of K(a)/K. Then a has n conjugates
gi(a),...,gn(a) € L. We have to show that o(gi(a)),...,0(gn(a)) € L are also conjugate
over K. Because 0: G — G is surjective we may write g; = o(h;) for some h; € G. Then
o(gi(a)) = o(o(h;)(a)) = hi(c(a)) and therefore these elements are conjugate over K.

Point (ii) follows from (i), because for G finite, o: G — G is surjective if and only if it is
bijective.

We next prove (iii). Assume that L/K is benign and let K C M C L be a finite Galois
extension of K such that L = K (M), the degree of K(c"(M)) over K equals the degree of M
over K for all n € N and the fields (K (0" (M)))nen are linearly disjoint over K. Let A C M be
finite such that M = K(A). Set U = Uy. Then G/U can be identified with the Galois group of
M/K. More generally, as =" (Ua) = U,n(a), we see that G /o~"(U) can be identified with the
Galois group of K (0"(A)) = K(c™(M)) over K. As L = K(M) and the fields (K(c"(M)))nen
are linearly disjoint over K, the canonical map G — [[,cyG/07™(U) is an isomorphism of
profinite groups. As M and K(c"(M)) have the same degree over K for all n € N, the map
Oni1: G/o~H)(U) - G/o~"(U) induced by o: G — G is an isomorphism. If we define

o [1G/e7 W) = T] G/o™(U), (gn)nen = (Tns1(gns1)nens

neN neN

then G — [],,cy G/07"(U) becomes an isomorphism of expansive profinite groups. But [[, . G/o~"(U)
is isomorphic to the full one-sided group shift on G/U.

Conversely, assume that G is isomorphic to the full one-sided group shift on a finite group G.
Let U be the open normal subgroup of G corresponding to 1 x G x G x ... < G~ and define M
as LY, so M/K has Galois group G/U = G. Then M has all the required properties.

Finally, we prove (iv). Assume that L/K is o-radicial. Let A be finite subset of L such
that L = K(A). As L/K is o-radicial there exists an n € N such that ¢"(A) € K. But then
in fact 0™(L) C K. For a € L and g € G we have o(o(g)(a)) = g(o(a)) and so inductively
o"(0™(g)(a)) = g(c™(a) = 0™(a) because ¢"(a) € K. The injectivity of o: L — L implies
o"(g)(a) =aforall a € L, ie., oc"(g) = 1.

Conversely, assume that G is o-infinitesimal. By Lemma B35 there exists an integer n € N
such that 0"(g) = 1 for all g € G. Then g(c¢"(a)) = 0" (c"(g)(a)) = 0™(a) for all g € G and
a € L. Thus 0c™(a) € K. O

The following lemma is a “one-sided” version of [Lev08, Theorem 8.1.1].

Lemma 7.4. Let L/K be a finitely o-generated Galois extension of o-fields and consider the
Galois group G = G(L/K) of L/K as an expansive profinite group as in Lemma |71
(i) The maps M + G(L/M) and H +— LY define a bijection between the intermediate
o-fields of L/K and the expansive subgroups of G.
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(ii) If M and H correspond to each other in (i), then M /K is Galois if and only if H is
normal in G and in that case, G(M/K) and G/H are isomorphic as expansive profinite
groups.

(iii) The expansive subgroup G°° of G corresponds to the intermediate o-field n§(L/K).

Proof. By the Galois correspondence, the map M — G(L/M) is a bijection between the set of
all intermediate fields of L/K and the set of closed subgroups of G with inverse H ~ L. So, if
M corresponds to H, it suffices to show that o(M) C M if and only if o(H) C H. First assume
that o(M) C M. Then, for a € M and h € H we have o(o(h)(a)) = h(c(a)) = o(a) because
o(a) € M. From the injectivity of o: L — L it follows that o(h)(a) = a for all a € M, i.e.,
o(h) € H. Conversely, assume that o(H) C H and a € M. Then o(h)(a) = a and therefore
o(a) = o(o(h)(a)) = h(o(a)) for all h € H. Thus o(a) € M.

Part (ii) is clear from Galois theory. The only aspect that needs to be checked is that the
restriction map G — G(M/K) commutes with o, but this follows directly from the definition of
the action of o.

We know from Lemma that G°° is the smallest normal expansive subgroup of G such
that G/G7° is finite and o: G/G?° — G/G° is bijective. Thus, by Lemmas [[.3 and [, LE°
is the largest Galois extension of K such that L& /K is finite and o-separable. But this is
exactly 7§ (L/K). O

With these preparations at hand, it is now a straight forward matter to deduce Babbitt’s
decomposition theorem from Theorem 4.6l

Theorem 7.5. Let L/K be a finitely o-generated Galois extension of o-fields. Then there exists
a chain

KCLiClL,C...CL,CL
of intermediate o-fields such that Ly = n§(L/K), Lit1/L; is benign with Galois group isomorphic
to a full one-sided group shift on a finite simple group G; for i = 1,...,n — 1 and L/L, 1is
o-radicial. Moreover, the length n of such a chain and the isomorphism classes of the finite
simple groups G; are uniquely determined by L/K.

Proof. Let G = G(L/K) denote the Galois group of L/K, considered as an expansive profinite
group as in Lemma [Z.1] Let

be a subnormal series as in Theorem 6. For i = 1,...,n set L; = L% . Then
KCcIlC...CL,CL

is an ascending chain of intermediate o-field that has the required properties by Lemmas [7.4]
and [7.3]

If we have another chain
Kcric...cL,CL
as in the theorem, then setting G} = G(L/L}) for i =1,...,n’ yields a subnormal series
G2G,2...0G,

as in Theorem The uniqueness part of Theorem thus implies the claimed uniqueness
statement. O
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