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Parameter identifiability and input-output equations

Alexey Ovchinnikov* Gleb Pogudin' Peter Thompson*

Abstract

Structural parameter identifiability is a property of a differential model with parameters that allows
for the parameters to be determined from the model equations in the absence of noise. One of the standard
approaches to assessing this problem is via input-output equations and, in particular, characteristic sets of
differential ideals. The precise relation between identifiability and input-output identifiability is subtle.
The goal of this note is to clarify this relation. The main results are:

* identifiability implies input-output identifiability;
* these notions coincide if the model does not have rational first integrals;

* the field of input-output identifiable functions is generated by the coefficients of a “minimal”
characteristic set of the corresponding differential ideal.

We expect that some of these facts may be known to the experts in the area, but we are not aware of any
articles in which these facts are stated precisely and rigorously proved.

1 Introduction

Structural identifiability is a property of an ODE model with parameters that allows for the parameters
to be uniquely determined from the model equations in the absence of noise. Performing identifiablity
analysis is an important first step in evaluating and, if needed, adjusting the model before a reliable practical
parameter identification (determining the numerical values of the parameters) is performed. Details on
different approaches to assessing identifiability can be found, for example, in [5, 11, 35], which also contain
additional references showing practical relevance of studying structural identifiabilty in biological models,
from animal sciences to oncology.

In more detail but still roughly speaking, a function of parameters in an ODE model is identifiable if,
generically, two different values of the function result in two different values of the output of the model.
A preciese formulation of this concept is given in Definition 2.2. These functions of parameters could be
just the parameters themselves, in which case we consider the more standard notion of identifiability of
individual parameters. However, it could happen that all of the parameters are not identifiable but some
non-trivial functions of the parameters are. Since identifiability is a desirable property to have, finding
identifiable functions of non-identifiable parameters could be helpful in reparametrizing the model so that
the new model has fewer non-identifiable parameters (see an intentionally simple Example 2.6 to illustrate
this issue).
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Input-output equations have been used to assess structural identifiability for three decades already going
back to [25], and several prominent software packages are based on this approach [1, 31, 20, 8, 2, 3, 30,
32, 19, 13, 21]. However, it has been known that input-output identifiability is not always the same as
identifiability ([11, Example 2.16], [26, Section 5.2 and 5.3]). The goal of this note is to state and prove
basic facts about these relations, some of which seem to be implicitly assumed in the current literature. The
main results are

* identifiability implies input-output identifiability (Theorem 4.2);
* these notions coincide if the model does not have rational first integrals (Theorem 4.7);

* the field of input-output identifiable functions is generated by the coefficients of a “minimal” char-
acteristic set of the corresponding differential ideal (Corollary 5.7).

The paper is organized as follows. We begin by stating an analytic definition of identifiabily and al-
gebraic definition of input-output identifiability and show a few simple examples comparing these two not
equivalent notions in Section 2. In Section 3, we prove a technical result, an algebraic criterion for iden-
tifiability of functions in terms of field extensions, which is typically much easier to use than the analytic
Definition 2.2. In Section 4, we establish theoretical connections between identifiability and input-output
identifiability. We finish with Section 5, in which we prove that input-output identifiability can be computed
with characteristic sets from differential algebra, introducing the corresponding mathematical background
and notation there.

2 General definition of identifiability

2.1 Identifiability

Fix positive integers A, n, m, and « for the remainder of the paper. Let g = (uy,...,m), X = (x1,...,%,),
y=01,..-,¥m), and u = (uy,...,uy). These are called the parameters, the state variables, the outputs, and
the inputs, respectively. Consider a system of ODEs

, f(x,pu)
B Q(X7#7u)’
T=q._ gxpmu) (1)
O(x,p,u)’
x(0) =x*,

where f = (f1,...,f,) and g = (g1,...,8m) are tuples of elements of C[u,x,u] and Q € C[u,x,u]\{0}.
Notation 2.1 (Auxiliary analytic notation).
(a) Let C*(0) denote the set of all functions that are complex analytic in some neighborhood of # = 0.

(b) A subset U C C=(0) is called Zariski open if there exist h € Z=op and a non-zero polyno-
mial P(ug,uy,...,uy) € Clug,...,up| such that

U={aeC0)|P@@aa",....a")—#0}.

(c) Let T(C*) denote the set of all Zariski open non-empty subsets of C* and T(C*(0)) denote the set of all
Zariski open non-empty subsets of C*(0).



(@ Let @ = {(&,4,8) € C" x T x (C=(0))* | Q(%",1,8(0)) # 0} and
Q=N ({]", ) € C"* | A(R" 1) well-defined) x (C=(0))")
for every given h € C(x*, u).

(e) For (X*,1,0) € Q, let X (X*, f1,@) and Y (X*, f1, @) denote the unique solution over C*(0) of the instance
of ¥ with x* =X*, y=f1, and u = 1 (see [9, Theorem 2.2.2]).

Definition 2.2 given below, being a generalization from individual parameters to functions of parameters,
is a precise (and unambiguous) way of expressing the following widely used analytic understanding of the
identifiability concept: a parameter in (1) is identifiable if generically two different parameter values result
in two different values of the output [7, 36, 37, 33, 34, 16, 38, 39, 17, 3, 31, 23]. A discussion on the
comparison can be found in [11, Remark 2.6]. The complexity of the presentation of Definition 2.2 is the
price to pay for being precise.

Definition 2.2 (Identifiability, see [1 1, Definition 2.5]). We say that h(x*,u) € C(x*,u) is identifiable if

30 € 7(C" x CY) JU € 1((C=(0))¥)
V(&) e (OxU)NQ, [Si(REpa) =1,

where
Sp(X*,f,0) :={h(X",p) | (X", p1,0) € Qy and Y (X", f1,0) =Y (X", f1,0)}.

In this paper, we are interested in comparing identifiability and 10-identifiability (Definition 2.5), and the
latter is defined for functions in g, not in g and x*. Thus, just for the purpose of comparison, we will restrict
ourselves to the field

{h € C(u) | h is identifiable },

which we will call the field of identifiable functions.

Remark 2.3. The above definition can be extended to functions h(x*,u) € C(x*,u) (see Definition 2.2).
There are software tools that can assess identifiability of initial conditions (e.g., STAN [10]). Any such tool
can be used to assess identifiability of a given function h(x*,u) € C(x*,u) by means of the transformation
described in (2) in the proof of Proposition 3.1.

2.2 10-identifiability

Notation 2.4 (Differential algebra). (a) A differential ring (R,d) is a commutative ring with a derivation
'R — R, that is, a map such that, for all a,b € R, (a+b)' =d' + b’ and (ab) =d'b+ab'.

(b) The ring of differential polynomials in the variables xi,...,x, over a field K is the ring K [xy) |i>
0, 1 < j < n] with a derivation defined on the ring by (xS-i))’ = xyﬂ)

by K{x1,...,x,}.

(c) An ideal I of a differential ring (R, d) is called a differential ideal if, for alla € I, 8(a) € I. For F C R,
the smallest differential ideal containing set F is denoted by [F].

. This differential ring is denoted

(d) For an ideal I and element a in a ring R, we denote /: a® = {r € R | 3¢: a'r € I'}. This set is also an
ideal in R.

(e) Given X as in (1), we define the differential ideal of £ as Iy, = [Ox' —f,Qy — g] : 0 C C(u){x,y,u}.



The following definition of IO-identifiability captures the most probable, in our opinion, actual intent
of prior attempts of defining and computing it via a characteristic set of the prime differential ideal of Iy
[19, 3, 32, 30].

For a subclass of models, called linear compartment models, for each output variable, an explicit linear
algebra-based formula was proposed in [20] to find IO-equations to determine 10-identifiability. In general,
using these equations instead of the just mentioned characteristic set-based approach would give incorrect
results (see [8, Remark 3.11]). However, [28, Theorem 3] shows that such an approach is valid for a large
class of linear compartment models.

We will see in Corollary 5.7 that characteristic sets (more precisely, characteristic presentations) pro-
vide a tool of computing I0-identifiability. However, for the purposes of mathematical elegance and a more
explicit connection with other branches of mathematics, e.g., with model theory (which was recently discov-
ered to be useful for identifiability [27]), we present a definition that is short and avoids notationally heavy
definitions leading to characteristic sets:

Definition 2.5 (IO-identifiability). The smallest field k such that C C k C C(u) and I+ N C(u){y,u} is
generated (as an ideal or as a differential ideal) by Ix Nk{y,u} is called the field of 10-identifiable functions.
We call h € C(u) 10-identifiable if h € k.

We will now briefly compare Definitions 2.2 and 2.5 by considering intentionally simple examples.

ZZ{X'Z(Hb)x
y=x.

So, A=2,n=m=1, and x = 0. Let us check the identifiability of hi(x{,a,b) = a. As there are no
denominators, Q = 1, and so ;, = C3. Let ® € t(C?) and (£},4,b) € ©. Then

Example 2.6. Consider the system

A

Y(£},4,b) = £e

Hence,
Sw (£7,a,b) = {hi (¥,a,b) | (¥,a,b) € C* and Y(%,4,b) =Y (¥,a,b)
= {a e C|3(#},b) € C* such that Y (&},4,0) =Y (%
> {aeC|3(x},b) € C? such that £ =&} and 4
={aeC|3beC suchthat a+b—-a=b} =C,

—l_ —
S

=a+b}

therefore, by Definition 2.2, #; = a is not identifiable. We will now check the identifiability of h, (x],a,b) =
a+b. Let
® = {(x},a,b) € C* |x] #£0} € t(C%)

and consider any ()2’1‘,& b) € ©. We have

Si, (1,4, {h2 (%,a,b) | (¥,4,b) € C* and Y (%},4,b) =Y (%,a,b)}
i

)
d,b) € C* such that 35} € C such that Y (#},4,b) = Y (&
= {d—H}] (a,b) € C? such that 3x%] € C such that £} = X} and di+b=a —H}}

Il
—~
DN
+
S
A
%‘l

Therefore, by Definition 2.2, hp = a+ b is identifiable. With this conclusion, it is now natural to consider
the following reparametrization of X:



in which the only parameter c is identifiable. This shows how considering identifiable functions of parame-
ters rather than just the parameters could be helpful for improving the model.
We will now investigate the [0-identifiability of X. We have

Iy =¥ —(a+b)x,y—x] = [y — (a+b)y,x—y] C C(a,b){x,y}.

Hence Iy NC(a+ b){y} generates Iy N C(a,b){y} = [y — (a+b)y]. So k C C(a+ b). On the other hand,
Iz N C(a,b)[y,y'] is the principal ideal generated by f :=y — (a+ b)y because, for instance, the non-zero
solution of X being an exponential function, is not algebraic over the constants. Hence, since f has one of
the coefficients equal 1, k must contain a + b, so k = C(a+ b). We will later see in Corollary 5.7 how one
can avoid considering actual solutions to find input-output identifiable functions.

We will now consider an example in which the identifiability and IO-identifiability do not coincide.
Example 2.7. Consider an example of a twisted harmonic oscillator:

x) = (04 a)x;
x’2 = —@x]

<

:x2

in which o can be measured separately, so is assumed to be known. This can be reflected as follows:

(¥ = (0+x3)x2

Xp = —@x)
L=qx,=0

y1=x2

(Y2 = X3.

So,A=1,n=3,m=2, and x = 0. Let h(x],x},x3,®) = ®, so we are checking the identifiability of .
As there are no denominators, Q = 1, and so Q;, = C*. Let ® € t(C*) and (£],#%5,£;,®) € © be such that
oO(£; + ®) # 0 and £ # —20. Then, denoting the frequency by @ := /®(%£} + ®), we have

©ley

Y (&5 8,55,8) = <—)€T sin (1) + &5 cos (t@)) .

ox
X3

Note that Y (£},£5,£5,0)(0) = <;ﬁ> Therefore,
3

S(£1, %, %3, )
= {h(x},%,55,0) | (¥],5,%,0) € C* and Y (£],%,55,0) =Y (&}, %5,5,0) }
= {®e C|3(&,x3,x5) € C* such that Y (£,%5,%5,®) =Y (&, %,5,0)}
= {0 € C| 3%, € C such that Y (£,£,%5,®) =Y (5,%,8,0)}
5 {(T)e C(ax’{ €C st £B=5® and B +0) = a)()e;m)},
which has cardinality 2 because the second conjunct has distinct solutions ® € {®, —(£; + ®)} and by the

first conjunct &} is uniquely determined by the choice of ®. Therefore, by Definition 2.2, @ is not identifiable.
On the other hand,

Iy = [} — (0 +x3)x2, %, + @x1, X5, y1 —x2,¥2 — x3] C C(®){x1,%2,%3,y1,)2}-



One can verify that Iy NC()[y1,y},y2] = {0}. Indeed, if there were a polynomial p(®,y;,y},y2) # 0 in
this intersection, then, for every solution of X, the evaluation at # = 0 would imply that p(®, £}, —®%£},£5) =0

Ak Ak

yielding that £, £5, %5, and ® always satisfy such a polynomial relation. But this is not the case because they
can be chosen to be any complex numbers. Therefore, Iy N C(®)[y1,y},y],y2] is a principal ideal generated
by f:=y{+ ®’y; +®y;y;. Since f has one of its coefficients equal to 1, the field k from Definition 2.5
must contain ®, so k = C(®). In particular, ® is input-output identifiable (but is not identifiable). A more
systematic way of computing this field using characteristic sets, as described in Corollary 5.7 and shown in
Example 5.8.

3 Technical result: algebraic criterion for identifiability

Proposition 3.1 extends the algebraic criterion for identifiability [11, Proposition 3.4] to identifiability of
functions of parameters rather than identifiability of just specific parameters themselves.

Proposition 3.1. For every h € C(x*,u), the following are equivalent:
e his identifiable;

o the image of h in Frac(C(u){x,y,u}/Iy) lies in the field generated by the image of C{y,u} in
FVGC((C(‘U){X,y,U}/IE).

Example 3.2. For X from Example 2.6, we have Iy = [x' — (a+ b)x,y — x|, and see that

L :=Frac(C(a,b){x,y}/Is) = Frac(C(a,b){x,y}/[x¥ — (a+b)x,y — x]
= Frac(C(a,b){x,y}/' — (a+b)y,y —x].

Hence, the field of fractions of the image of C(a,b){y} in L is
M := Frac (C(a,b){y}/¥ — (a+ b))
Since a+b =y'/y, we have hy =a+b € M, and so h; is identifiable by Proposition 3.1.

Proof. Write h = hy /hy, where hy,hy € C[x*,p|. Let F = Frac(C(u){x,y,u}/Iz) and ‘£ the subfield gener-
ated by the image of C{y,u} in 7. Let X; be the system of equations obtained by adding

" oh
Aoy =Y fies,
n+l =~ "Ox;

Ym+1 = Xn+1 —h,

Xn+1(0) = Xyl

2

to 2, where x,, 11 is a new state variable and y,, | is a new output. Note that x;l = K and yfn +1=0. We
define

F1 = Frac(C(u){X, % 41,¥ Ym+1,0}/I5,),

and let Z; be the subfield generated by the image of C{y,y,+1,u} in ;. We will talk about X-identifiability

of & and X;-identifiability of x; , ;. The proof will proceed in the following three steps.

Step 1. his X-identifiable <= x| is X,-identifiable. Assume that & is X-identifiable. Let ©® and U be the
corresponding open subsets from Definition 2.2. We set

@1 = {(8", &, 1.0) | (}",}1) € © & hy(R ) # O}




We will show that x; ; is identifiable with the open sets from Definition 2.2 being ©; and U. Let Q; be
the set Q for the model X, and consider (%*,£7 |, i, @) € (©; x U) N €. Since, for a fixed known value of
Ym+1, the values of x| and h(x*,u) uniquely determine each other, we have

|SX;+1(ﬁ*a)eZ+1vﬁ7ﬁ)| = |Sh(ﬁ*7ﬁ>ﬁ)| =1L
Thus, x; ,  is Xi-identifiable.
For the other direction, assume that x*, , is X;-identifiable, and ®; and U, are the corresponding open sets
n+1 p g op

from Definition 2.2. Let © be the projection of ® onto all of the coordinates except for x, ;. We will show

that 4 is X-identifiable with the open sets being ® and U,. Consider (X*,f1,0) € (@ x U;) Ny, Let £, € C
be such that (X*, %, ,,f1) € ©;. Then, using the fact that y,, | is constant so is equal to its initial condition,
we have

1= ‘SXZH (ﬁ*7£:+1 7ﬁ7ﬁ)‘

= |{sz+1 | (i*nﬂaﬁ) € 'Q‘h> X~Z+1 € Cand Yl (ﬁ*>)€:+1>ﬁvﬁ) = Yl (i*>f;kz+1>.ﬂaﬁ)}|

ok~ Y ﬁ*“ﬁ,ﬁ =Y *7ﬂ7ﬁ

W& ) PR =T A,
Xnr1 —h(X 7.“) = X1l —h(X 7”)

= [Sy(R", p,0)].

P

(X*,m,0) € Qy,%,,, € Cand {

Step2. h€ E <= x,.1 € E;. Observe that we have natural embeddings ¥ < ¥, and E — E,. If h € ‘E,
then x,11 = yn+1 +h € E.

Assume that x,, | € E;. Then h = x, 11 — 11 € Ey. Observe that F; = F (x,11), and x,,+ is transcendental
over ¥. Since none of the right-hand sides of the equations for the state variables involves x,, there is
a differential automorphism o: F; — F; such that o(x,41) = x,+1 + 1 and o|# = id. Since a(y+1) =
Ym+1+ 1, we have o(‘E;) C ‘E;. Since ‘E; = E(yu+1) and 0(yu+1) = Ym+1 + 1, every a-invariant element of
1 belongs to E. Since o(h) = h, we have h € E.

Step 3. From Step 1., his identifiable if and only if x; | is Xi-identifiable. By [11, Proposition 3.4 (a) <=
(c); Remark 2.2], x; ., is X;-identifiable if and only if x,, 1 € Z;. Finally, Step 2. implies that x, | € E if
and only if & € E.

O

4 Identifiability and I10-identifiability

4.1 Identifiability —> 10-identifiability but not the other way around

Remark 4.1. We have already seen an ODE model in which all parameters are IO-identifiable but are not
identifiable (Example 2.7). Real-life examples of “slow-fast ambiguity” in chemical reactions and of a
Lotka-Volterra model with the same conclusion can be found in [26, Sections 5.2 and 5.3].

Theorem 4.2. For all ¥ and h € C(u),
h is identifiable —> h is 10-identifiable

Proof. Let h € C(p) be identifiable. By Proposition 3.1, there exist g € C{y,u}\/x and w € C{y,u} such
that gh + w € Iy. Therefore, there exist my,...,m, € C(u){y,u} and py,...,p, € Iy Nk{y,u} such that

gh+w=mp+...+mp,. 3)



Suppose i & k. By [24, Theorem 9.29, p. 117], there exists an automorphism 6 on C(u) that fixes k pointwise

and such that 6(h) # h. Let Ry := C(u){x,y,u}. We extend o to R; by letting G fix X, y, and u. Applying G
to (3) and subtracting the two equations yields

g(h—o(h)) = (m —o(m))p1 +...+ (m,—oc(m,))p, 4)

in Ry. Let P denote the differential ideal generated by X in R;. Since P is a prime differential ideal and
the right-hand side of (4) belongs to P, it follows that either g € P or h — G(h) € P. But since h —c(h) is a
non-zero element of C(u) and P is a proper ideal, it cannot be that i1 — (k) € P. Therefore, g € P. Hence,
g € PNR = Iy, contradicting our assumption on g. U

4.2 Sufficient condition for “identifiable <—— 10-identifiable”

The aim of this section is Theorem 4.7, which gives a sufficient condition for the fields of identifiable and
IO-identifiable functions to coincide.

Notation 4.3.
* For a differential ring (R,d), its ring of constants is C(R) := {r € R | (r) = 0}.

* For elements ay,...,ay of a differential ring, let Wrys(ay,...,ay) denote the M x N Wronskian matrix
of aj,...,ay, that is,

WrM(al,...,aN),-J:aﬁi_l), 1<J<N,1<l<M

Definition 4.4 (Field of definition). Let L C K be fields and let X be a (possibly infinite) set of variables.
Let  be an ideal of K[X]. We say the field of definition of I over L is the smallest (with respect to inclusion)
field k, L C k C K, such that [ is generated by I Nk[X].

Remark 4.5. For a given X and I, the field of definition of K over Q is what is called the field of definition
of K (with no reference to a subfield) in [18, Definition and Theorem 3.4, p. 55]. By [18, Theorem 3.4], for
every K and I, there is a smallest field ky C K such that [ is generated by I Nko[X]. The smallest intermediate
field k, L C k C K, such that [ is generated by I Nk[X] is equal to the smallest subfield of K containing L and
ko. Therefore, for every L, K, and I, the field of definition of / over L is well defined.

Lemma 4.6 (cf. [6, Section 4.1], [22, Section 3.4], and [40, Section V.]). Let g € Iz be such that we can write
g= Zﬁvzl a;zi, where N > 2, a; € C(u)\{0}, a1 = 1, and z1,...,zy are distinct monomials in C{y,u}. If for
someZ C {z1,...,2v} of size N — 1 it holds that det Wry_ | (Z) & I, then a; is identifiable for alli=1,... N.

Proof. Suppose detWry_1(z1,...,2—1,2+1,---,2v) € Is. Modulo Iy, we have

Y in=—z 5)

Since Iy, is a differential ideal, the derivatives of (5) are also true. Differentiating (5) N — 2 times, we obtain
the following linear system:

T

ap ar—1 Qi1 ay (N=2)\T

M|—,..., , yees— | =—(z,-- 17 ),
az a; a a;

where M = Wry_1(z1,--+2—1,2+1,---,2n)- Since M is nonsingular modulo Iy, in Frac(C(u){x,y}/L), we

have

ap ar—1 dr+1 an (N-2) —INT

— ., , eers— | = (=2, 1,7 J(M)'.
az az az az

8



Since the entries of the right-hand side belong to the subfield generated by C{y,u}, the entries of the left-
hand side are identifiable by Proposition 3.1. Since a; = 1, a, is identifiable and it follows that as,...,ay
are identifiable. O

Theorem 4.7. Assume that model ¥ does not have rational first integrals (i.e., first integrals that are rational
functions in the parameters and state variables), that is, the constants of Frac(C(u){x,y,u}/Iz) coincide
with C(u). Then, for every h € C(p),

h is identifiable <= h is 10-identifiable.

Proof. Proposition 4.2 implies that the field of all identifiable functions is contained in the field of all 10-
identifiable functions.

Let J := Is NC(u){y,u}. We fix an indexing of differential monomials in y and u by N, it defines an
N-indexed basis B of C(u){y,u}. Consider an infinite matrix with each row being an element of a C(u)-
basis of J written as a vector in basis B. Let M be the reduced row echelon form of the matrix. Notice that,
since the original matrix has only finitely many nonzero entries in each row, M also has only finitely many
nonzero entries in each row. The field of definition of J over C is contained in the field generated by the
entries of M. Therefore, it is sufficient to prove that the entries of M are identifiable. Consider any row of
M. It corresponds to a differential polynomial p € J. Assume that a proper subset of monomials of p is
linearly dependent modulo J over C(u). This dependence yields a polynomial ¢ € J. The representation
of ¢ in basis B must be reducible to zero by the rows of M. However, the reduction of ¢ with respect to p
is not zero (as they are not proportional), and the result of this reduction is not reducible by any other row
of M by the definition of reduced row echelon form. Thus, there is no such g. Hence, the image of every
proper subset of monomials of p in Frac(C(u){x,y,u}/Iz) is linearly independent over the constants of
Frac(C(u){x,y,u}/Iy). Thus, [14, Theorem 3.7, p. 21] implies that the Wronskian of every proper subset
of monomials of p does not belong to Is. Lemma 4.6 implies that the coefficients of p are identifiable. [

Example 4.8. System ¥ from Example 2.7 has x3 as a rational first integral, and, in this example, function
h = o is I0-identifiable and is not identifiable.

5 1O-identifiability via characterstic sets

5.1 Differential algebra preliminaries

We will use the following notation and definitions standard in differential algebra (see, e.g., [15, Chapter I],
[29, Chapter I], and [4, Section 2]):

Definition 5.1. A differential ranking on K{xy,...,x,} is a total order > on X := {&/x; |i > 0,1 < j < n}
satisfying:

e forallx € X, §(x) > x and
* forall x,y € X, if x >y, then 8(x) > &(y).
It can be shown that a differential ranking on K{xj,...,x,} is always a well order.
Notation 5.2. For f € K{xi,...,x,}\K and differential ranking >,
* lead(f) is the element of {&x; | i > 0,1 < j < n} appearing in f that is maximal with respect to >.

* The leading coefficient of f considered as a polynomial in lead(f) is denoted by in(f) and called the
initial of f.



* The separant of f is ﬁ&f), the partial derivative of f with respect to lead(f).

The rank of f is rank(f) = lead( f)%weur)/
* For S C K{x1,...,x,}\K, the set of initials and separants of S is denoted by Hs.

* for g € K{x1,...,x; }\K, say that f < g if lead(f) < lead(g) or lead(f) = lead(g) and degjcq(y)f <
degieaq(g) 8-

Definition 5.3 (Characteristic sets).  * For f,g € K{xy,...,x,}\K, f is said to be reduced w.r.t. g if no
proper derivative of lead(g) appears in f and degjeyq(q) f < degjead ) &-

* Asubset 4 C K{xi,...,x,}\K is called autoreduced if, for all p € 4, p is reduced w.r.t. every element
of 4\ {p}. One can show that every autoreduced set has at most n elements (like a triangular set but
unlike a Grobner basis in a polynomial ring).

e Let 2={Ay,...,A,} and B={Bj,...,B,} be autoreduced sets such that A} < ... <A,and B <...<
B;. We say that 4 < B if

- r> s and rank(A;) =rank(B;), 1 <i<s,or
— there exists ¢ such that rank(A,) < rank(B,) and, for all i, 1 <i < g, rank(A;) = rank(B;).

* An autoreduced subset of the smallest rank of a differential ideal I C K{xy,...,x,} is called a charac-
teristic set of I. One can show that every non-zero differential ideal in K{x,...,x,} has a characteristic
set. Note that a characteristic set does not necessarily generate the ideal.

Definition 5.4 (Characteristic presentation). * A polynomial is said to be monic if at least one of its
coefficients is 1. Note that this is how monic is typically used in identifiability analysis and not how it
is used in [4]. A set of polynomials is said to be monic if each polynomial in the set is monic.

* Let C be a characteristic set of a prime differential ideal P C K{z1,...,z,}. Let N(C) denote the set
of non-leading variables of C. Then ( is called a characteristic presentation of P if all initials of C
belong to K[N(C)] and none of the elements of C has a factor in K[N(C)]\K. It follows from [4] that
P has a characteristic presentation.

Definition 5.5 (Monomial). Let K be a differential field and let X be a set of variables. An element of the
differential polynomial ring K{X} is said to be a monomial if it belongs to the smallest multiplicatively
closed set containing 1, X, and the derivatives of X. An element of the polynomial ring K[X] is said to be a
monomial if it belongs to the smallest multiplicatively closed set containing 1 and X.

5.2 1O-identifiable functions via characteristic presentations

Corollary 5.7 shows how the field of I0-identifiable functions can be computed via input-output equations.

Proposition 5.6. Let L C K be differential fields and let X be a finite set of variables. Let P be a prime
non-zero differential ideal of K{X} such that the ideal generated by P in K{X} is prime. If C is a
monic characteristic presentation of P, then the field of definition of P over L is the field extension of L
generated by the coefficients of C.

Proof. Let A be the set of coefficients of C and let k be the field of definition of P over L.
Suppose A ¢ k. Let P; be the ideal generated by the image of P in K{X}. We show that C is a monic
characteristic presentation for P;. We have that C is a characteristic set for P;. Since the initials of C lie

10



in K[N(C)], they also lie in K[N(C)]. The property of not having a factor in the nonleading variables does
not depend on the coefficient field as well. By [12, Definition 2.6] and the paragraph thereafter, we have
that P = [C] : HZ in K{X}, and therefore [C] : H C Py, where the differential ideal operation is taken over
K{X}. Since C is a characteristic set of Pj, the paragraph following [12, Definition 2.4] implies that P;
is contained in [C]: HZ, so Py = [C]: H}. Hence, [4, Corollary 1, p. 42], we conclude that C is a monic
characteristic presentation for Pj.

By [24, Theorem 9.29, p. 117], there is an automorphism o of K that fixes k but moves some element
of A. Extend o to a differential ring automorphism on K{X} that fixes X. We show that o(C) is a monic
characteristic presentation of P;. Since the initials of C lie in K[N(C)] and no element of C has a factor in
K[N(C)]\K, it follows that the initials of o(C) lie in K[N(0.(C))] and no element of o(C) has a factor in
K[N(o(C))]\K. Since the rank of o(() is the same as that of C, it remains to show that a(C) C P;. Let
f € C. Since P is defined over £, it follows that P; is defined over k. Therefore, there exist a; € k{X} N P;
and b; € K{X} such that f = ¥, a;b;. Thus,

Ot(f) = Zdia(bi) € Py

We conclude that ol(C) C Py and thus is a characteristic set of P;.

We have shown that C and o(C) are monic characteristic presentations of P;. By [4, Theorem 3, p. 42],
o(C) = C. However, since oe moves some coefficient appearing in C, we have a contradiction. We conclude
that our assumption that A ¢ k is false.

It remains to show that k C L(A). Let {h; };cp be a monic generating set of P; as an ideal such that, for
all i € B and for all g € P;\{h;}, the support of h; — g is not a proper subset of the support of 4;. We argue
that such a generating set exists. We describe a map ¢: P; — P(P;), where P(P;) denotes the power set of
Py, such that Vb € P,

* b belongs to the ideal generated by ¢(b) and
* Ya € ¢§(b) Vd € P;\{0} the support of d is not a proper subset of the support of a.

Let b € P;. Construct ¢(b) recursively as follows. If there is no element of P;\ {0} whose support is a proper
subset of the support of b, let ¢(b) = {b}. If there is an a € P;\{0} whose support is a proper subset of the
support of b, let ¢(b) = ¢(a) Ud(b — ca), where ¢ € C is such that b — ca has smaller support than b. This
completes the construction of ¢. Note that the procedure terminates since for each non-terminal step, the
support of each element of the output is smaller than the support of the input. Let {b;},cp, be a generating
set for Py as an ideal. Now U;cp, 0(b;), after normalization so that each element is monic, has the desired
properties.

Fix i and suppose that some coefficient of 4; does not belong to L(A). Then by [24, Theorem 9.29, p.
117], there is an automorphism o of K such that o fixes L(A) and ou(h;) # h;. Since h; is monic, we have
that i; — au(h;) has smaller support than ;. Now we show that h; — o(h;) € Py. Since h; € Py, we have that
h; € [C]:H /™. Therefore, since o fixes the coefficients of C, we have

alhy) € [C] : HE.

Hence,
h; —oc(hi) € [C] IHEQ =Py

This contradicts the definition of {h;},cp. Since the coefficients of h; belong to L(A), {h;}icp is also a
generating set for P. Therefore, P is generated by PN L(A){X}. By the definition of k, it follows that
kC L(A). O
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The following result reduces the problem of finding the field of IO-identifiable functions of (1) to the
problem of finding a monic characteristic presentation of the corresponding prime differential ideal. The
latter problem has been solved (see e.g., [4]), and there is an implementation of the corresponding algorithm,
Rosenfeld-Grobner, in MAPLE.

Corollary 5.7. If C is a monic characteristic presentation of Iy NC(u){y,u}, then the field of 10-identifiable
functions (as in Definition 2.5) is generated over C by the coefficients of the elements of C.

Proof. The proof of [11, Lemma 3.2] shows that both Iy and the ideal generated by the image of Iy

in C(u){x,y,u} are prime, since the argument does not depend on the coefficient field. Therefore
I N C(u){y,u} and the ideal generated by Iy NC(u){y,u} in C(u){y,u} are prime. By Proposition 5.6
with L =C, K = C(u), and P = Iy NC(u){y,u}, we have that the field of definition of P over C is equal
to the field extension of C generated by the coefficients of C. This is exactly the field of 10-identifiable

functions. O

Example 5.8. Consider the following ODE model

x;=0
L= q Xy =x1x0 4+ pix1 + 1o
y=x

As shown in [27, Lemma 5.1], neither u; nor u; are identifiable (which can be seen by observing that adding
1 to yy and subtracting x; from w; at the same time changes the parameters but does not change the output)
and, moreover, the field of identifiable functions is just C.

On the other hand, let us use Corollary 5.7 to compute the field of 10-identifiable functions. We enter
these equations in MAPLE and set the elimination differential ranking on the differential variables with
X1 > xp > y. Within a second, we receive the following characteristic presentation of /Iy:

C={yx+mxi—y +, x2—y, w +wy" —y*+my'}.

Hence,
C=CNCu,m){y} =y +my’ —y* +umy'}.

By Corollary 5.7, the field of I0-identifiable functions is C(u;,u2), which is also not equal to the field of
identifiable functions.
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