
Mathematical Programming
https://doi.org/10.1007/s10107-020-01614-x

FULL LENGTH PAPER

Series B

Electrical flows over spanning trees

Swati Gupta1 · Ali Khodabakhsh2 · Hassan Mortagy1 · Evdokia Nikolova2

Received: 31 March 2020 / Accepted: 31 December 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021

Abstract
The network reconfiguration problem seeks to find a rooted tree T such that the energy
of the (unique) feasible electrical flow over T is minimized. The tree requirement on
the support of the flow is motivated by operational constraints in electricity distribu-
tion networks. The bulk of existing results on convex optimization over vertices of
polytopes and on the structure of electrical flows do not easily give guarantees for
this problem, while many heuristic methods have been developed in the power sys-
tems community as early as 1989. Our main contribution is to give the first provable
approximation guarantees for the network reconfiguration problem. We provide novel
lower bounds and corresponding approximation factors for various settings ranging
from min{O(m − n),O(n)} for general graphs, to O(

√
n) over grids with uniform

resistances on edges, and O(1) for grids with uniform edge resistances and demands.
To obtain the result for general graphs, we propose a new method for (approximate)
spectral graph sparsification, which may be of independent interest. Using insights
from our theoretical results, we propose a general heuristic for the network reconfigu-
ration problem that is orders ofmagnitude faster than existingmethods in the literature,
while obtaining comparable performance.
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1 Introduction

Electricity distribution and transmission networks have been a rich source of non-
convex problems with combinatorial structure that have helped discover limitations
of, as well as advance, the theory of discrete and continuous optimization [13,24,49].
In this paper, we consider the network reconfiguration problem which seeks to find a
rooted tree such that the energy of the electrical flow over the tree is minimized. This
problem is motivated by the operational requirements of electricity distribution net-
works. Distribution networks contain low-voltage power lines connecting substations
to end consumers. They are typically built as mesh networks, i.e., containing cycles,
but operated as radial networks, i.e., power is sent along a tree rooted at a substation,
with leaves corresponding to end consumers. A real-world example of such radial
configuration is shown in Fig. 4.

The tree structure is achieved by turning switches on or off so that there are no cycles
(i.e., by adding or deleting edges to configure a specific tree). This tree structure is
desirable for the security of an electricity distribution network: a fault can be more
easily isolated in practice when the downstream edge from any fault gets disconnected
from the root, while cycles in the operational network might result in compromising
large parts of the network. Distribution network reconfiguration is a key tool used by
operators to balance the electric load across power lines and mitigate power losses.1

Minimizing power loss becomes a major concern in distribution networks as they
operate with low voltage power lines, and hence can admit fairly big energy losses [55]
(around 10%, in contrast with the much lower losses at the high-voltage transmission
level of about 1–3%). We give a formal description of the network reconfiguration
problem next.

1.1 Problem formulation

Let G = (V , E) be an undirected graph (|V | = n, |E | = m), with root r ∈ V ,
resistances re > 0 for each edge2 e ∈ E and demands di ≥ 0 for each node i ∈ V \{r}
supplied by the root node (thus dr = −∑

i∈V \{r} di ). Let δ+(v) and δ−(v) denote the
sets of incoming and outgoing edges of v, after fixing an arbitrary orientation on the
edges. Then, the network reconfiguration problem is to minimize the energy of the
feasible flow (also, referred to as the power loss) such that the support of the flow is
acyclic:

minE( f ) :=
∑

e∈E
re f

2
e (P0)

1 Throughout the paper we use energy and loss interchangeably.
2 Edges are referred to as lines, root is the location of the substation, and demands are often referred to as
loads in the power systems community.
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subject to
∑

e∈δ+(i)

fe −
∑

e∈δ−(i)

fe = di , ∀i ∈ V , (1)

support( f ) is acyclic, (2)

where f is any feasible flowsatisfying the demands (1)3, the support of f is constrained
to be acyclic (and therefore, a tree rooted at r ) (2), and the objective (P0) is tominimize
the energy of the flow. While there may be more than one feasible flow satisfying the
demands in general, an electrical flow minimizes the energy subject to meeting the
demands. Moreover, given an r -rooted tree, there is a unique flow f on the tree that
satisfies the demands: fe = ∑

i∈succ(e) di , where succ(e) is the set of nodes that
connect to the root through e. Also, note that any r -rooted tree can be augmented
to be a spanning tree in the graph at no additional cost.4 Therefore, the network
reconfiguration problem (P0) is equivalent to:5

min
T∈T

∑

e∈T
re

⎛

⎝
∑

i∈succ(e)
di

⎞

⎠

2

, (P1)

where T is the set of all spanning trees of G.
Although distribution grid practitioners and power systems researchers have used

a broad range of heuristics to get reasonable solutions in practice (see e.g., [8,12,
38]), little is known about provable bounds for the network reconfiguration problem.
Khodabakhsh et al. [31] provided an integer programming formulation (with a cubic
objective) for (P1) involvingO(n3) constraints and variables using Martin’s extended
formulation for spanning trees [48]. Note that the network reconfiguration problem
requires minimizing a quadratic function over the vertices of the general flow polytope
(Theorem 7.4 in [9])6. We use the term ‘polytope’ instead of ‘polyhedron’ because we
assume re > 0 for all edges e ∈ E . In particular, if all the resistances are uniform, then
the problem is equivalent to finding a vertex with the smallest Euclidean norm, which
is known to be NP-hard (see for example Lemma 4.1.4 in [28]). We next present an
overview of the related work on this problem.

3 Here we use a simplified linear flow model, similar to [10]. In reality, power flow equations are nonlinear
and result in non-convex optimization problems [44,46,50,52]. We refer the reader to a recent survey on
relaxations and approximations of power flow equations [49]. In contrast, here we aim to relax the non-
linearity of the power flowmodel, and instead focus on the combinatorial aspect of the optimization problem
in (P0).
4 Contract the support of the flow and add edges with 0 flow to construct a spanning tree.
5 We assume that the demands are real numbers, while in energy systems, demands are usually complex
numbers d = p+ iq, capturing the active (p) and reactive (q) parts of the demand. In this case, the objective
function can be decomposed into two additive parts, in which one is only a function of real demands (p),
and the other is only a function of the reactive part (q). All our approximation guarantees hold for this more
realistic objective as well, because the proposed solutions would guarantee the same approximation factor
for both parts of the objective.
6 The support of the vertices of the general flow polytope is a tree.
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1.2 Related work

Khodabakhsh et al. [31] showed that (P1) is NP-hard even for the uniform case where
all the resistances and demands are equal to one, i.e., re = 1 for all e ∈ E and di = 1
for all i ∈ V \{r}. They showed that (P1) can be cast as a supermodular minimization
problem subject to a matroid base constraint. Inspired by submodular maximization,
a local search algorithm was also proposed in [31]. Their local search algorithm is
equivalent to a well-known heuristic called branch exchange, which moves locally
by swapping edges starting with a spanning tree. The best known guarantees for this
local search come from the generic result on constrained submodular maximization
[39], however the approximation factor depends on an upper bound of the objective
function (and thus can be arbitrarily bad). A brute-force method was proposed by
Morton and Mareels [51], via enumerating all spanning trees and calculating the
losses by adjusting the losses of the previous spanning tree. Khodr and Martinez [32]
used Benders decomposition to study the joint problem of network reconfiguration
and optimal power flow. Using this decomposition, they decomposed the problem into
master and slave subproblems, where they used a mixed-integer non-linear solver for
themaster problem. Thesemethods are computationally intractable for large networks.
For general polytopes, the best approximation one can hope to get in polynomial time,
for minimizing a general strongly convex function over integral points in a polytope
is O(n2 − n) where n is the dimension of the polytope [7]. Moreover, for minimizing
quadratic functions (like our objective), Hildebrand et al. [29] give an FPTAS for
rounding to an integer point in the flow polytope; see Appendix 3 for more details.
However, different techniques are required for the network reconfiguration problem,
since we need to minimize the quadratic function over vertices of the flow polytope,
and not over feasible integral points.

Besides distribution networks, switching problems have also been studied in elec-
tricity transmission networks, such as optimal transmission switching [20,23,35]
and maximum transmission switching [25]. Despite the hardness of these problems
[36,40], Grastien et al. [25] show how to achieve a 2-approximation for maximum
transmission switching on cacti graphs. However, for transmission networks there is
no requirement on the support to be acyclic, thus making our problem structurally
very different from those above.

In the network reconfiguration problem, relaxing the tree constraint (2) results in
the well-studied problem of computing electrical flows as they uniquely minimize
energy [14,15,30]. However, existing results in spectral sparsification [60,61], that
sparsify a graph without changing the energy much, do not extend to our setting since
they change the resistances on the remaining edges to compensate for edge deletions.
Many existing heuristics involve iterative edge-deletion (e.g., [58]) using the electrical
flow values in the resultant graph, but offer no provable guarantees. It is also known
that the total stretch of a tree can bound the ratio between the energy of that tree with
the original graph [30]; however, using low-stretch trees would only provide an Õ(m)

approximation [2,3]. We give a more detailed review of related work in Appendix 1
and a summary of contributions next.
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1.3 Summary of contributions

Ours is the first paper to provide a provable approximation guarantee for the net-
work reconfiguration problem, to the best of our knowledge. We delve deeper into the
problem structure to construct novel lower bounds and give new ways of graph spar-
sification while maintaining original edge-resistances. Our theoretical insights also
lead to a significant improvement in computations. We summarize our contributions
below:

(a) Flow Relaxation and new RIDe algorithm:We relax the spanning tree constraint,
reducing the problem to finding a minimum energy electrical flow; we call this
the flow relaxation. In Sect. 3, we construct instances that have a gap between
the energy of the optimal tree and the flow relaxation of the order Θ(

√
n/ log n)

over grid graphs and Θ(Δ) in general graphs, where n and Δ are the number of
nodes and maximum degree in the graph (which can be linear in n) respectively.
Further, we propose a randomized iterative edge-deletion algorithm, RIDe, that
sparsifies the graph by deleting edges sampled according to a specific probability
distribution dependent on the effective resistances of remaining edges. We show
that this method can guarantee O(m − n) approximation with respect to the flow
relaxation. This technique of sparsifying graphs may be of independent interest.

(b) New Lower Bounds: We next exploit the combinatorial structure of the graph
to obtain novel lower bounds in Sect. 4. We first show that any shortest-path
tree, with respect to resistances, gives an O(n) approximation. Though a simple
argument, this is already better than the O(m2 − m) bound using [7] and the
approximation usingRIDe for dense graphs. Second, we show that we can improve
this approximation factor by finding a laminar family of cuts. In particular, for
certain grid instances that have uniform edge resistances, a selection of laminar
cuts gives an O(

√
n)-approximation. These results serve as preliminaries for our

Min- Min algorithm.
(c) Constant-factor approximation using newMin- Min algorithm:Real-life distribu-

tion networks often resemble subgraphs ofmesh-like networks. For such networks,
like grid graphs with n nodes and uniform demands, the above mentioned tech-
niques, are able to provide only anΩ(

√
n/log n) approximation.Motivated by this,

we construct a purely combinatorial algorithm Min- Min in Sect. 5, that finds a
specific shortest path tree over an n×n grid with uniform resistances and a root at
one of the corners of the grid.We show thatMin- Min gives a (2+O( 1

ln(n)
))( dmax

dmin
)2

approximation when the demands are in [dmin, dmax]. In particular, for uniform
demands Min- Min gives an asymptotic 2-approximation.

(d) Layered Matching Heuristic and Computational Results: Inspired by the algorith-
mic ideas inMin- Min, we propose a layered matching heuristic called LM. This
heuristic can be used to find approximate solutions in the most general setting,
without assumptions on the structure of network, resistances or demands. Using
computational experiments over randomly sparsified grid networks, we find that
LM performs very well in practice. In addition, the algorithms proposed in this
paper take orders ofmagnitude less time than the best knownheuristic for this prob-
lem, the branch exchange heuristic, while obtaining comparable performance. For
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example, on 25 × 25 grid instances with sparsification probability p = 0.2, the
mean time taken by LM is 1.35 seconds, whereas the mean time it takes the Branch
Exchange heuristic to attain the same cost as LM is around 10 hours. We believe
this improvement will be crucial in enabling system operators to reconfigure dis-
tribution networks more frequently in practice.

2 Preliminaries for electrical flows

Relaxing the support constraints in the network reconfiguration problem reduces the
problem to computing an electrical flow, that we refer to as the flow relaxation.
Electrical flows have been shown to be efficiently computable in near-linear time
[10,14,15,47], used to speed up the computation of maximum flow [47], and even
bound the integrality gap of the asymmetric traveling salesman problem (ATSP) [4].
We briefly review preliminaries on electrical flows in this section, and defer details to
Appendix 2.

Let G = (V , E) be a connected and undirected graph with |V | = n, |E | = m.
Let B ∈ R

n×m be the vertex-edge incidence matrix upon orienting each edge in E
arbitrarily. Let R be an m × m diagonal resistance matrix where Re,e = re. A key
matrix thatwill play a fundamental role in the analysis of our algorithms is theweighted
Laplacian L := BCBT , where C = R−1. It is well known that if G is connected, the
only vector in the nullspace of the Laplacian L is the all-ones vector 1.

In what follows, we will invert the Laplacian matrix using the Moore-Penrose
pseudoinverse denoted by L†; in which case LL† is a projection matrix that projects
onto the span of the columns of L , which we denote by im(L). Let b ∈ R

n be
the feasible node-demand vector. The optimality conditions of the flow relaxation
problem imply the existence of a vector of potentials on the nodes (dual variables)
φ ∈ R

n such that φ = L†b (this is well-defined since 1T b = 0) and the optimal
electrical flow f = CBTφ. Using these facts, one can show that the optimal energy
E( f ) = RT f R = φT Lφ = bTφ = bT L†b. For any pair of vertices u, v the effective
resistance Reff(u, v) is the energy of sending one unit of electrical flow from u to v.
In particular, for any vertex u ∈ V , if we let 1u ∈ R

n be the characteristic vector of
u, then Reff(u, v) = χT

uvL
†χuv , where χuv = 1v − 1u and can be thought of as the

demand vector in this case. While the above notation suffices for our purposes, for
more background on electrical flows, we refer the reader to [62] and [45]. We next
discuss our novel randomized iterative edge-deletion algorithm, RIDe, that rounds a
fractional point (i.e., minimum energy flow, relaxing the support constraint in (P1)) in
the flow polytope, while maintaining a provable increase in the energy.

3 A randomized iterative edge-deletion algorithm

The key idea of RIDe is to delete edges iteratively following a specific probability
distribution, while maintaining the graph connectivity, until the resultant graph is a
spanning tree. This is done as follows: sample an edge e at random to delete from
the graph with probability pe proportional to 1 − ceReff(e), where ce = 1/re is the
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conductance of an edge. The normalization constant of this probability distribution is
known to be

∑
e∈E (1− ceReff(e)) = m − (n − 1) (since

(
ceReff(e)

)
e is in Edmonds’

spanning tree polytope) [17] (see Appendix 3). Intuitively, the quantity ceReff(e) fully
characterizes the graph’s ability to reconfigure the flow upon deleting edge e (as we
show later in Lemma 3). The smaller the ceReff(e) (thus, the larger probability of
deleting the edge), the better the graph’s ability to re-route the flow of edge e upon
deleting the edge, without significantly increasing the energy.Moreover, this sampling
procedure ensures that connectivity is maintained, since pe = 0 for any bridge edge
e, as in such a case we have Reff(e) = re. To implement this algorithm efficiently,
we show that the resultant graph Laplacian and effective resistances can be efficiently
updated after every deletion, included in Algorithm 1.

Wewill also show thatRIDe gives anO(m−n) approximation factor in expectation
with respect to the cost of the flow relaxation. This is the first approximation guarantee
for randomized edge deletion heuristics (such as [58]), to the best of our knowledge.

Theorem 1 The randomized iterative edge-deletion algorithm,RIDe, gives anO(m−
n) approximation in expectation with respect to the cost of the flow relaxation E( fG)

on the given graph G as E[E( fT )] ≤ E( fG)(m − n + 2).

Note that the above theorem implies that for planar graphs, RIDe gives an O(n)

approximation (since number of edges is linear in the number of nodes). In general,
it seems one cannot obtain better than Ω(n) performance using rounding of electrical
flows, unless the flow relaxation is strengthened using new inequalities. For instances
with maximum degree Δ, the gap from the flow relaxation can be Ω(Δ). Consider a
graph with two nodes r , t (r is the root, and t is the only node with positive demand,
say 1 unit) with n − 2 edge-disjoint paths between them; see Fig. 1 (left). In this case,
the electrical flow sends 1/Δ units of flow along each of the Δ disjoint r -t paths.
The energy of the electric flow is then Θ(1/Δ), however, the energy of the optimal
spanning tree is 2. Therefore, the gap from flow relaxation can be as large as Ω(n),
since Δ can be as large as Θ(n).

Moreover, the gap of the optimal tree compared to the flow relaxation can be large
even for graphs with small Δ. Consider a

√
n × √

n grid (with n nodes) where the
root r is in the top left corner, all edges have unit resistances, the node in the bottom
right corner, call it t , has a demand of one, and all other nodes (excluding the root)
have zero demand; see Fig. 1 (middle) for an example (here Δ = 4). Recall that the
potential drop between r and t on sending one unit of current from r to t is equal to the
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Fig. 1 The electrical flow on three graph instances, where all edges have unit resistance, the root is node r ,
node t has unit demand and all other nodes (excluding r ) have zero demand

effective resistance Reff(r , t) between r and t . Hence, using Ohm’s Law this implies
that the energy of the electrical flow is equal to Reff(r , t). In this instance, it is known
that (see Proposition 10.11 in [41])

1

2
log

√
n ≤ Reff(r , t) ≤ 2 log

√
n.

Furthermore, the cost of any optimal tree is 2(
√
n − 1), since any r -t path has hop-

length 2(
√
n − 1) and the path from r -t can be grown into a spanning tree without

incurring any additional cost. Combining these two facts, we get the gap for grid
instances is Θ(

√
n/ log

√
n) = Θ(

√
n/ log n).7

Even existing work on analyzing the stretch8 of trees that has been used to bound
the energy of a tree with respect to the flow relaxation [30], does not give compelling
approximation bounds, since there exist instances with stretch Ω(m log n) [3]; we
refer the reader to Appendix 1 for more details. We next present our sparsification
approach followed by the analysis of RIDe.

3.1 Iterative edge deletions and updates

Before we delve into the proof for the performance of RIDe, we discuss one of the
main components in designing and analyzing the algorithm: determination of how
the energy of the electrical flow changes after deleting an edge from the graph. As
mentioned in preliminaries, electrical flows are fully determined by the Laplacian and
its pseudoinverse. Thus, to determine how electrical flows change upon edge deletions,
we first obtain a closed form expression for how the Laplacian pseudoinverse changes
from one iteration to the next, using the following extension of the Sherman–Morrison
formula:

Lemma 1 (TheoremA.70 in [53]) Suppose that A ∈ R
n×n is symmetric matrix, u, v ∈

R
n are vectors in im(A), and 1 − vT A†u �= 0. Then, we have that (A − uvT )† =

A† + A†uvT A†

1−vT A†u
.

7 We will improve upon this factor in Sect. 5.2.
8 The stretch of a tree is a metric used to analyze how well a tree preserves distances between the endpoints
of edges in the original graph.
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We are now ready to prove the following result about updating the pesudoinverse
of the Laplacian after an edge is deleted:

Lemma 2 Let L be the weighted Laplacian (weighted by conductances) of a connected
graph G = (V , E) and L† be theMoore-Penrose pseudoinverse of L. Let G ′ = G\{e}
be the graph obtained by deleting an edge e ∈ E that does not disconnect G. Then,
the Moore-Penrose pseudoinverse of the weighted Laplacian of G ′ is:

(L ′)† = L† + L†χeceχT
e L†

1 − ceχT
e L†χe

. (3)

Proof Let e be the edge chosen for deletion. Observe that deleting e from G results in
a rank-one update to L:

L ′ = L − χeceχ
T
e = L − (

√
ceχe)(

√
ceχe)

T ,

since L = BCBT . Using Lemma 1, it suffices to show that
√
ceχe ∈ im(L) and 1 −

ceχT
e L†χe �= 0 (as L ∈ R

n×n is symmetric). First, sinceC is a positive definite matrix
we can write L = BCBT = (BC1/2)(BC1/2)T . Let U = BC1/2 and u = √

ceχe.
By construction u is a column of U , which implies that u ∈ im(U ). Furthermore,
since9 im(U ) = im(UUT ), it follows that u is also in im(UUT ) = im(L). We further
claim that 1− ceχT

e L†χe �= 0. To see this, suppose 1− ceχT
e L†χe = 0. This implies

χT
e L†χe = 1/ce or Reff(e) = re. In other words, when we send one unit of electrical

flow between the endpoints of e, all the flow goes through edge e. But this happens
if and only if e is a bridge (see Appendix 2 for more details), which contradicts the
assumption that G ′ was connected. Now, applying the pseudoinverse update formula
given in Lemma 1 yields the result. 	


We can now use Lemma 2 to obtain a closed form expression for how the energy
increases from one iteration to the next. Suppose that we have performed k iterations
and deleted k edges from the original graph G to get a modified connected graph
Gk = (V , Ek) with m − k edges. Let Bk , and Lk respectively be the incidence and
Laplacian matrices of Gk . Also, Let fk(e) and R(k)

eff (e) respectively be the electrical
flow and effective resistance for edge e in iteration Gk . Now, in the (k + 1)th iteration
we wish to delete another edge e from Gk to obtain a connected graph Gk+1. We want
to determine how much E( fk+1) changes compared to E( fk).

Lemma 3 Assume Gk is connected and Gk+1 = Gk\{e} is obtained by deleting an
edge e from Gk such that Gk+1 is also connected. Then E( fk+1) can be recursively
obtained from E( fk) using:

E( fk+1) = E( fk) + re fk(e)2

1 − ceR
(k)
eff (e)

. (4)

9 For any matrix A ∈ R
m×n , we have im(A) = im(AAT ) (see e.g., Thm A.25 (iv) in [53]).
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Proof Since Gk and Gk+1 are connected, using Lemma 2 we get:

(Lk+1)
† = L†

k + L†
kχeceχT

e L†
k

1 − ceχT
e L†

kχe

.

Therefore, the new potentials are given by

φk+1 = L†
k+1b

= L†
kb + L†

kχeceχT
e L†

kb

1 − ceχT
e L†

kχe

= φk + L†
kχeceχT

e φk

1 − ceχT
e L†

kχe

= φk + L†
kχe fk(e)

1 − ceχT
e L†

kχe

,

whereweused the fact that fk = Ck BT
k φk (i.e. fk(e) = ceχT

e φk) in the last equality.By
connectivity and feasibility assumptions we know that b ∈ im(Lk) and χe ∈ im(Lk).
This implies that Lkφk = b and similarly, Lk L

†
kχe = χe. Then, using E( fk+1) =

bTφk+1, we have

E( fk+1) = bTφk+1 = E( fk) + bT L†
kχe fk(e)

1 − ceχT
e L†

kχe

(a)= E( fk) + (Lkφk)
T L†

kχe fk(e)

1 − ceR
(k)
eff (e)

(b)= E( fk) + φT
k χe fk(e)

1 − ceR
(k)
eff (e)

,

where (a) follows from the fact that Lkφk = b and (b) from Lk L
†
kχe = χe. The result

then follows from the optimality conditions χT
e φk = fk(e)/ce = re fk(e). 	


We would like to remark that the expression above holds for any edge e ∈ E
we delete from the graph as long as e does not disconnect the graph as previously
mentioned. We next discuss the performance of RIDe, where an edge e is deleted by
randomly sampling it proportional to 1 − ceReff(e).

3.2 Performance ofRIDe algorithm

We are now ready to present the proof for Theorem 1.

Proof Let Gk = (V , Ek) be the resultant graph in iteration k after k edges have been
deleted, and let E( fk) be the energy of the electrical flow in Gk . In particular, E( f0)
denotes the cost of the flow relaxation. We will first show

E[E( fk)] ≤ E( f0)

(
m − n + 2

m − k − n + 2

)

, (5)
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and that Gk remains connected throughout the iterations of the algorithm by induction
on k (0 ≤ k ≤ m−n+1). The base case when k = 0 holds trivially. For the inductive
step assume the result holds true for all iterations k < m−n+1.Now consider iteration
k + 1 of the RIDe algorithm applied to the graph Gk . Recall that we sample an edge

e ∈ Ek at random to delete from the graph with probability p(k)
e = 1−ce R

(k)
eff (e)

(m−k)−(n−1) . Since
by the induction hypothesis Gk is connected, and this sampling procedure does not
disconnect the graph, Gk+1 is also connected. Moreover, using Lemma 3 to compute
the expected increase in energy upon deleting edge e (which does not disconnect the
graph), we get

E( fk+1) = E( fk) + re fk(e)2

1 − ceR
(k)
eff (e)

.

Let Z (k) be a random variable denoting the increase in the energy from iteration
k to k + 1. Upon deleting an edge e ∈ Ek that does not disconnect Gk , we have
Z (k)
e = re fk(e)2/(1 − ceR

(k)
eff (e)). Also, let E

′
k = {e ∈ Ek | p(k)

e > 0} be the set of
edges that are not bridges. Then, since E ′

k ⊆ Ek , we have

E[Z (k) | Ek] =
∑

e∈E ′
k

Z (k)
e p(k)

e =
∑

e∈E ′
k

re fk(e)2

1 − ceR
(k)
eff (e)

1 − ceR
(k)
eff (e)

(m − k) − (n − 1)

≤ E( fk)

m − k − n + 1
,

which in turn gives, using iterated expectations:

E[Z (k)] = E[E[Z (k) | Ek]] ≤ E[E( fk)]
m − k − n + 1

.

Therefore,

E[E( fk+1)] = E[E( fk) + Z (k)] ≤ E[E( fk)]
(

1 + 1

m − k − n + 1

)

≤ E( f0)

(
m − n + 2

m − k − n + 2

) (
m − k − n + 2

m − k − n + 1

)

= E( f0)

(
m − n + 2

m − (k + 1) − n + 2

)

,

where we used the induction hypothesis in the second inequality. This concludes
the induction and proves the correctness of the algorithm. Lastly, to obtain the
final expected cost of the algorithm, we use (5) with k = m − n + 1 to obtain
E[E( fm−n+1)] ≤ E( f0)(m − n + 2), as claimed. Since the cost of the optimal span-
ning tree is lower bounded by the cost of the flow relaxation, E( f0), the result follows.
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The approximation factor for RIDe proved above is in fact tight, as can be seen
from the following simple example. Consider a cycle of n nodes, where n is even,
fix a root r arbitrarily and assume all the resistances are one. Now assign the node of
hop-length m/2 from the root, call it t , a unit demand and all other nodes (excluding
the root) zero demand. Then, it is easy to see that the flow relaxation will send a flow
of 0.5 from r to t along the two disjoint r -t paths of hop-length m/2 in the cycle; see
Fig. 1 (right) for an example. Thus, the cost of the flow relaxation is m/4. Moreover,
the optimal tree will just send a flow of 1 from r to t along on a path of hop-lengthm/2,
which implies the cost of the optimal tree is m/2. On the other hand, since each edge
in the cycle has the same effective resistance, using the RIDe algorithm, each edge
is equally likely to be deleted. Using Theorem 1 and noting that m = n in this case,
we obtain a spanning tree whose cost is a 2-approximation from the flow relaxation
in expectation. This matches the gap between the optimal spanning tree and the flow
relaxation.

In light of this discussion, it is imperative to note that our approximation factor is
with respect to the flow relaxation, which is a loose lower bound as discussed previ-
ously. For planar graphs in particular, the gap of optimal from the flow relaxation can
beΩ(n) (e.g., when themaximumdegree is linear), thus in some senseRIDe is optimal
up to a constant factor for the planar case. However, this does not preclude the possi-
bility of obtaining a better lower bound and approximation using electrical flows and
this remains an open question. To strengthen the lower bound and consequently obtain
better approximation factors, we proceed by exploiting the combinatorial structure in
certain graphs as well as demand scenarios.

4 New lower bounds

As discussed in Sect. 3, relaxing the spanning tree constraint can lead to a weak lower
bound, mainly because we allow the demand of a single node v to be delivered via
multiple paths from root r to node v. A natural question at this point is if we can
strengthen the flow relaxation by exploiting the tree constraints. We first answer this
question by accounting for the minimum loss each node v creates to get connected
to the root, in the absence of all other nodes, and show how to use this lower bound
to achieve an n-approximation algorithm. Next, we consider cuts in a graph to lower
bound the energy of an optimal tree by considering the demand it separates. We show
that by constructing a laminar family of cuts, one can derive a new lower bound by
accounting for the loss of a spanning tree which is balanced over all these cuts. We
then use this lower bound to get a

√
n-approximation for grid graphs.

4.1 Shortest-path trees

The major source of hardness in (P1) is the quadratic loss function, which introduces
a cross-term for any two nodes that share an edge on their path to the root. If the loss
was a linear function of the flow, and in the absence of cross-terms, the problemwould
decompose into n disjoint problems, which could be solved via shortest path trees.
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Fig. 2 Lower-bound example on the performance of the shortest-path tree: (Left) shortest-path tree, versus
(Right) optimal spanning tree

Note that, however, we can relate the quadratic loss to the linear case as follows:

∑

i∈succ(e)
d2i ≤

⎛

⎝
∑

i∈succ(e)
di

⎞

⎠

2

≤ n ×
∑

i∈succ(e)
d2i , (6)

where the first inequality is by the non-negativity assumption, and the second one is
due to the Cauchy-Schwarz inequality. Now looking at d2i as the new demand of each
node i , our quadratic loss lies between the two linear objectives, for which we have to

solve the following optimization problem: minT∈T
∑

e∈T
[
re × ∑

i∈succ(e) d2i
]
. It is

easy to show that the shortest-path tree (SPT) rooted at node r (with respect to edge
resistances, re) solves this optimization problem10, which immediately implies the
following result.

Theorem 2 The shortest-path tree (with respect to resistances) rooted at r is an n-
approximation solution for problem (P1). Moreover, there exist graph instances for
which the cost of a shortest-path tree (or BFS tree) is at least Ω(n) times the cost of
an optimal tree.

Proof The approximation factor follows from summing up Eq. (6) across all edges,
and the fact that the shortest-path tree simultaneously minimizes both the costs in the
left and right-hand side of the resulting inequality. For the lower bound, consider the
graph shown in Fig. 2. There are n triplets of nodes in parallel, node r as the root, and
a final node labeled 3n + 1. All nodes (except the root) have demand of di = 1, and
all resistances are equal. On the left, we have the shortest-path tree (BFS tree) whose
cost can be calculated as: APX = n × (12 + 22) + (n + 1)2 + n × 12 = n2 + 8n + 1.
On the right, we have the optimal tree which does not change the first 3 triplets, but
re-configures the rest as shown. The cost of this tree is OPT = (n − 3) × (12 + 22 +
32) + 3 × (12 + 22) + 42 + 3 × 12 = 14n − 8. Comparing the two costs proves a
lower bound of Ω(n) on the performance of SPTs. 	


10 See the problem SymT in [26] for example.
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Fig. 3 n × n grid with root at the top-left

4.2 Cut-based lower bounds

For the rest of this section, we assume that all the edges of the graph have the same
resistances, and without loss of generality we set re = 1 for all e ∈ E , and consider
approximations using sets of cuts.

Theorem 3 Consider a graph G = (V , E) with root r ∈ V , and re = 1,∀e ∈ E.
Assume that G has a family of cuts S1, S2, ..., S� ⊂ V (with r ∈ Si ,∀i ) s.t.:
(a) each edge e ∈ E appears in at most M cuts, i.e., |{i : e ∈ δ(Si )}| ≤ M for all

e ∈ E,
(b) the union of the cuts ∪iδ(Si ) supports a spanning arborescence11 A rooted at r

such that (directed) edge (u, v) ∈ A only if u ∈ Si , v /∈ Si for all i ∈ [�] such that
e ∈ δ(Si ).

Then, the approximation factor of the arborescence A is at most M × maxi |δ(Si )|.
Proof Let K = maxi |δ(Si )| be the size of the biggest cut. We can use assumption
(b) of the theorem statement, to map any edge (u, v) of the arborescence to a cut
Si (if there is more than one cut, we can pick one arbitrarily). In this way, we split
the cost of arborescence A among different cuts, while ensuring that the edges are
carrying flows directed out of the cuts. Considering any of these cuts, we show that
the costs of the trees A and OPT restricted to that cut are within a factor K , i.e.,∑

e∈δ(Si ) EA(e) ≤ K
∑

e∈δ(Si ) EOPT (e) for all i .
Let S be one of the cuts with r ∈ S, and let k = |δ(S)| be the size of the cut. Let

a1, ..., ak be the flow on the edges crossing the cut (calculated based on tree A), where
ai > 0 if the flow is going out of the cut and ai < 0 if it is flowing inwards. With
this choice of directions, the arborescence A has only non-negative ai values. We also
know that the total flow going across this cut is equal to the total demand below the
cut, i.e.,

∑k
i=1 ai = ∑

v /∈S dv .

11 An r -arborescence is a directed spanning tree such that for any vertex v, there is exactly one directed
path from r to v (see [56] for more details).
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Let b1, ..., bk be the flow of the edges crossing this cut in the optimal tree, where
some of these variables may be zero if the optimal tree is not using that edge, or even
negative if they are being used in the opposite direction. However, we still know that∑k

i=1 bi = ∑
v /∈S dv , and also the cost of this cut in the optimal tree is

∑k
i=1 b

2
i .

This cost is minimized when all the bi ’s are equal (bi = 1
k

∑
v /∈S dv gives a lower

bound on the cost even if it is not attainable by any spanning tree.) Therefore we
get:

∑

e∈δ(S)

EOPT (e) =
k∑

i=1

b2i ≥ k

(
1

k

∑

v /∈S
dv

)2

= 1

k

(
k∑

i=1

ai

)2

≥ 1

K

k∑

i=1

a2i = 1

K

∑

e∈δ(S)

EA(e),

(7)

where in the last inequality we dropped the (non-negative) cross-terms aia j , and used
the fact that the cut size k ≤ K . If the cuts were disjoint, the K -approximation would
directly extend to the entire objective function as well, as the cuts would divide the
objective into separate additive objectives. However, we may double count what the
optimal tree is paying since the cuts are not disjoint, but we know that each edge
will be counted at most M times. This gives the approximation ratio of M × K in
total.

	

Weuse Theorem3 for an n×m grid (wherewe let the number of nodes be N = mn),

and consider diagonal cuts as shown in Fig. 3. Note that these cuts partition the edges
of the grid, and their size is less than 2

√
N . Any spanning tree that has edges only

going to the right or the bottom, satisfies the second requirement of Theorem 3, and
thus has cost at most 2

√
N times the optimal spanning tree.

Corollary 1 There exists anO(
√
N )-approximation algorithm for minimizing the loss

on an n × m grid with N nodes, when all the edges have the same resistance and the
root is located at the corner of the grid.

Constructing the above described set of cuts for general graphs remains an open
question; planar graphs would be a natural candidate. By the planar separator theorem
[42], we know that any N -node planar graph has a vertex separator of size O(

√
N )

that splits the graph into two (almost) equal parts. However, it is not clear how to
find the desired family of cuts by using the planar separator oracle. This is due to the
second requirement of the cuts in Theorem 3 which fixes a natural direction on any
edge once it appears in a cut. This direction should be respected in future cuts that
include this edge; however, the separator oracle is oblivious to edge directions. See
Appendix 4 for a discussion of the challenges of generalizing these results to planar
graphs.

5 A 2-Approximation for uniform grid viaMIN-MIN algorithm

We now propose a constant-factor approximation algorithm for an n×m uniform grid
(n ≤ m) with the root at a corner of the grid (see Fig. 3), in which all demands are
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Fig. 4 Left: Snapshot of an anonymized real distribution network from a utility company in the US. These
networks typically look like sparse subgraphs of grids, thus motivating our exploration of approximations
in Sect. 5 and computational experiments in Sect. 6. Right: An abstraction of a real-life distribution network
as a sparsified grid used in the computations, with sparsification probability p = 0.2

equal (di = 1 for all i ∈ V \{r}) and all resistances are equal (re = 1 for all e ∈ E).
The key idea of considering this case is to help us better understand the structure
of optimal solutions through combinatorial techniques, that can be generalized for
real-life distribution networks (Fig. 4). Even though the demands and resistances are
uniform in the n × n grid, it is non-trivial to connect the loads together in a way
that avoids big flow values close to the root. For example, Fig. 3 demonstrates an
example tree on an n × n grid, that satisfies the properties of both Theorem 2 and
Theorem 3 solutions, and yet fails to provide a constant-factor approximation. The
horizontal edges in this tree have flows of n, 2n, ..., (n − 1)n, and therefore the cost
of the tree is in the order of

∑n−1
i=1 (i × n)2 = Θ(n5) (vertical edges have a total

cost of O(n4)). On the other hand, the optimal cost in this grid is Θ(n4 log n), as
we will show an Ω(n4 log n) lower bound in Lemma 4 and prove a constant-factor
approximation (with respect to the same lower bound) in the rest of this section.
For the sake of brevity, we will present our novel Min- Min algorithm for a square
n × n grid, while the results hold for rectangular grids as well and more general
demands.

Notation:We let n×n be the size of the grid and the total number of nodes be N = n2.
We consider the diagonal cuts as shown in Fig. 3 and we name them (u, i), i =
1, ..., n − 1 for the upper triangle, and (�, i) for the lower triangle. Note that the
diagonal cuts cover all the edges and each edge appears in only one cut. Therefore,
we can divide the cost of any spanning tree (either optimal or approximate tree) into
the costs from each cut. Let OPT (u,i) and Alg(u,i) denote the cost of edges that cross
cut (u, i) in the optimal and approximate solution, respectively. Similarly we define
OPT (�,i) and Alg(�,i) for the lower triangle. Finally, let OPT u = ∑n−1

i=1 OPT (u,i)

and OPT � = ∑n−1
i=1 OPT (�,i). Then, we have OPT = OPT u + OPT �. Similarly,

we define Algu and Alg�.
In Sect. 5.1, we will use these diagonal cuts to find a lower bound for the cost

of any spanning tree, explain our Min- Min algorithm in Sect. 5.2 followed by its
performance guarantee in Sect. 5.3.
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5.1 Lower bounds

Let Su,i and S�,i be the number of nodes below cuts (u, i) and (�, i), respectively.
Then, Su,i = n2 − ∑i

j=1 j = n2 − i(i+1)
2 , and S�,i = ∑i

j=1 j = i(i+1)
2 .

Upper triangle cuts: By a quick look at the structure of the grid, we can observe that
there are 2i edges that cross the cut (u, i). These edges are connected to i nodes on
the root side of the cut, and i + 1 nodes on the other side. Call these nodes u1, ..., ui
on the root side and v1, ..., vi+1 below the cut. We call an edge (u j , vk) of the tree
outgoing, if u j is the parent of vk in the tree. We claim that the tree can have at most
i+1 outgoing edges over this cut, although it can have all the 2i edges. This is because
if we have more than i + 1 outgoing edges, then by the pigeonhole principle, a node
vk will have two parents and this creates a loop in the tree.

In addition, all the Su,i nodes below the cut are connected to the root through (at
least) one of these outgoing edges over this cut. This is true because we can traverse
the path from the root to that node, and at some point we must cross the cut through
an outgoing edge. It is possible to have multiple outgoing edges on that path if we
cross the same cut multiple times, but all we need is that each node below the cut is
counted as a successor for at least one of the outgoing edges. So the aggregate number
of successors for the outgoing edges of cut (u, i) is at least Su,i , while there are at
most i + 1 such edges. Recall that when the summation of a number of variables is
fixed, their sum of squares is minimized when all of them are equal. Hence, in the
most balanced way any tree (including the optimal tree) has to pay the following cost
over this cut:

OPT (u,i) ≥ (i + 1) ×
(

Su,i

i + 1

)2

= S2u,i

i + 1
. (8)

By summing (8) over different cuts, we get the following lower bound on the energy
of any spanning tree over the entire upper triangle.

Lemma 4 The cost of the optimal tree over the upper triangle part of the grid is lower
bounded by: OPT u ∈ Ω(n4 log n).

Proof To obtain a lower bound for OPT u , we just plug the value of Su,i in (8) and
sum over i :

OPT u ≥
n−1∑

i=1

S2u,i

i + 1
=

n−1∑

i=1

(
n2 − i(i + 1)/2

)2

i + 1

=
n−1∑

i=1

n4

i + 1
+ 1

4

n−1∑

i=1

i2(i + 1) −
n−1∑

i=1

n2i

≥ n4
(
ln(n + 1) − 1

) + (n − 1)2n2

16
+ (n − 1)n(2n − 1)

24
− n3(n − 1)

2

= n4 ln(n + 1) − 23

16
n4 + 11

24
n3 − 1

16
n2 + 1

24
n.
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Fig. 5 Example of Lemma 5. In each step we decrease the number of successors desired by one and put
them on the next diagonal (red nodes), except 1 which is already satisfied

	

Lower triangle cuts: The argument here is exactly the same as in the upper triangle
except that there are i + 1 nodes on the root side and i nodes on the other side.
Therefore, in the most balanced case when all the outgoing edges carry the same flow,
we have i outgoing edges with flows S�,i/i = (i + 1)/2, paying the total cost of:

OPT (�,i) ≥ i ×
(
S�,i

i

)2

= i(i + 1)2

4
. (9)

5.2 Min- Min algorithm

The Min- Min algorithm builds a spanning tree which contains n disjoint paths with
different lengths over the lower triangle; see the blue paths in Fig. 6 (right). Then,
in each cut of the upper triangle, exactly one pair of subtrees merge together. As the
name suggests, we merge the two subtrees with the minimum number of successors
in each step, and call it the merging step. However, this requires those two subtrees to
be next to each other.

Therefore, we need to order our disjoint paths in the lower triangle in a way that
allowsmergingminimum load subtrees in the upper triangle;we call this theuncrossing
step. In the following lemma, we show that the number of successors of edges on the
main diagonal can be any permutation of the numbers 1, 2, ..., n.

Lemma 5 (Disjoint paths) We can obtain a disjoint path decomposition of the lower
triangle of the grid (i.e., a set of n paths from the n points on the diagonal that are
shortest between the end-points and cover all the vertices in the lower triangle) for
any ordering of numbers 1, 2, ..., n, specifying the number of successors of edges on
the left diagonal of the grid.

Proof We give a recursive construction which also proves the existence of such paths.
Let (a1, a2, ..., an) be a permutation of (1, 2, ..., n). Put these numbers on the main
diagonal. Except ai = 1 which is already satisfied, connect the rest of the nodes to
the nodes of the next diagonal, which has n − 1 nodes, in the same order. Now we
have to construct a permutation of (1, 2, ..., n − 1) on this new diagonal, because the
previous numbers should be decreased by one. We can repeat the process. An example
is performed in Fig. 5. 	


Note that Lemma 5 ensures the adjacency of minimum subtrees in all upper triangle
cuts. To get the right permutation, we can start from any permutation (say 1, 2, ..., n)
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Fig. 6 Example of theMin- Min algorithm. Left: Merging the two smallest numbers in each layer, starting
from the 1, 2, ..., n sequence. Middle: Same tree re-ordered from top to bottom to avoid crossings. Right:
The corresponding grid where the lower triangle is constructed by Lemma 5, and the numbers in the upper
triangle are merged in each diagonal layer according to the middle tree

and do theMin- Minmerging as shown in Fig. 6 (left). Then we can do the uncrossing
from top to bottom as shown in Fig. 6 (middle) and this gives the desired permutation
on the main diagonal. Finally, we can construct the lower part of the spanning tree
corresponding to that permutation using Lemma 5, and construct the upper part of
the spanning tree by merging minimum size subtrees in each layer. An example of
the algorithm is shown in Fig. 6 (right). The formal description of the algorithm for
general rectangular grids is also tabulated under Algorithm 2, in which for the case of
a rectangular grid, we use the middle part of the grid to connect the lower triangle to
the upper triangle via parallel disjoint paths.

5.3 Approximation factor for theMin- Min algorithm

Lower triangle: We first show that the cost of Min- Min over the lower triangle is at
most 4/3 of the optimal tree over the lower triangle.

Lemma 6 The Min- Min algorithm costs at most 4/3 of the optimal over the cuts in
the lower triangle. In other words,

Alg(�,i) ≤ 4

3
OPT (�,i), i = 1, 2, . . . , n − 1,

where Alg refers to the output of Min- Min. Moreover, this implies the same approx-
imation factor for the entire lower triangle energy, i.e., Alg� ≤ 4

3OPT �.

Proof By the construction of Lemma 5, the edges of the proposed tree over cut
(�, i) have 1, 2, ..., i successors (in some order). Therefore, Alg(�,i) = ∑i

j=1 j2 =
i(i + 1)(2i + 1)/6, for i = 1, . . . , n−1. Comparing to the lower bound (9) for lower
triangle cuts:

Alg(�,i)

OPT (�,i)
≤ 4i(i + 1)(2i + 1)

6i(i + 1)2
= 2(2i + 1)

3(i + 1)
<

4

3
.

Since this is true for all cuts, it also holds for the entire lower triangle. 	
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Upper triangle: To analyze theMin- Min algorithm over the upper triangle, we obtain
a relation between the cost of the algorithm over successive cuts:

Lemma 7 For i = 1, . . . , n − 2, we have

Alg(u,i) ≤ Alg(u,n−1) + 2
n−1∑

j=i+1

[

Su, j + S2u, j

j( j + 1)
+ j

]

. (10)

Proof Let a1, a2, ..., ai+1 be the number of successors for the edges of cut (u, i), in
non-decreasing order (i ≥ 2).We know that

∑i+1
j=1 a j = Su,i . Sincewemerge a1, a2 in

the higher level, the edges of cut (u, i−1)will have (a1+a2+1), (a3+1), ..., (ai+1+1)
successors. Therefore the cost of cut (u, i − 1) is

Alg(u,i−1) = (a1 + a2 + 1)2 + (a3 + 1)2 + · · · + (ai+1 + 1)2

=
i+1∑

j=1

a2j + 2
i+1∑

j=1

a j + 2a1a2 + i = Alg(u,i) + 2Su,i + 2a1a2 + i .

Since a1 is the smallest number, it is upper-bounded by the average, i.e. a1 ≤ Su,i/(i+
1). Similarly, a2 is the smallest among the rest, therefore a2 ≤ (Su,i − a1)/i ≤ Su,i/i .
So the algorithm satisfies:

Alg(u,i−1) ≤ Alg(u,i) + 2Su,i + 2
S2u,i

(i + 1)i
+ i .

By recursively applying this upper bound, we get (10). 	

Next, add equation (10) across all upper-triangle cuts and use the lower bound of
Lemma 4 to upper bound the energy of Alg over the upper triangle:

Lemma 8 The output of theMin- Min satisfies: Algu

OPT u ≤ 2 + O( 1
log n ).

Proof We first sum (10) over i to get:

Algu =
n−1∑

i=1

Alg(u,i) (11)

≤ (n − 1)Alg(u,n−1) + 2
n−2∑

i=1

n−1∑

j=i+1

[

Su, j + S2u, j

j( j + 1)
+ j

]

(12)

= (n − 1)Alg(u,n−1) + 2
n−1∑

j=2

( j − 1)

[

Su, j + S2u, j

j( j + 1)
+ j

]

(13)

Now, for the first term in (13) we have:

(n − 1)Alg(u,n−1) = (n − 1)
n∑

i=1

i2 = (n − 1)n(n + 1)(2n + 1)

6
.
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For the Su, j term in the summation of (13) we have:

2
n−1∑

j=2

( j − 1)Su, j = 2
n−1∑

j=2

( j − 1)

(

n2 − j( j + 1)

2

)

= 3

4
n4 − 5

2
n3 + 9

4
n2 − 1

2
n.

For the quadratic term in (13), we have:

2
n−1∑

j=2

( j − 1)S2u, j

j( j + 1)
≤ 2

n−1∑

j=2

S2u, j

j + 1
≤ 2

n−1∑

j=2

OPT (u, j) ≤ 2OPT u,

where the second inequality is due to (8). Finally, we can calculate the last term of
(13), as:

2
n−1∑

j=2

( j − 1) j = 2

3
n3 − 2n2 + 4

3
n.

Replacing these polynomials back into (13) we get:

Algu ≤ 2OPT u + 13

12
n4 − 5

3
n3 − 1

12
n2 + 2

3
n. (14)

Dividing this by OPT u and using Lemma 4 completes the proof. 	

Overall approximation: The worse approximation factor between the guarantees for
OPT � and OPT u determines the overall result:

Theorem 4 For a rectangular n × m (n ≤ m) grid with loads satisfying di ∈
[dmin, dmax] for all nodes i ∈ V \{r}, the Min- Min algorithm for the network
reconfiguration problem with uniform resistances gives an approximation factor of

α2
(
2 + O( 1

log n )
)
, where α = dmax/dmin. In particular, if the loads are uniform and

as n → ∞, the Min- Min algorithm gives a 2-approximation.
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Proof For square grids with uniform loads, the approximation result follows immedi-
ately from Lemmas 6 and 8. Moreover, for the rectangular grid with uniform loads,
we can apply the Min- Min algorithm on the lower and upper triangle parts, and use
the middle section to connect the two triangles simply by parallel disjoint paths. The
analysis is then similar to the square case.

For non-uniform loads, we consider the uniform counterpart of this instance, which
is the same graph with di = dmin for all i ∈ V \{r}. Running the Min- min algorithm
on this uniform case outputs a tree T whose loss is at most twice of the optimal tree
in the uniform setting (call the optimal tree T ∗

u , and its loss OPTu). Let f and f̃
be the electrical flows on tree T with the actual and modified loads, respectively;
then we have f̃ ≤ f ≤ α f̃ . This gives the following inequality regarding energies:
E( f ) ≤ α2E( f̃ ) ≤ α2

(
2 + O( 1

log n )
)
OPTu .

It only remains to argue that OPTu ≤ OPT , where OPT is the loss of the optimal
tree (call it T ∗) in the original instance. This is true because if we reduce the loads
on T ∗ to dmin, we decrease its loss, but on the other hand, the resulting energy should
still be more than OPTu , by the optimality assumption of OPTu . 	


Note that α in the above approximation captures the ratio between the biggest and
the smallest loads, and is usually independent of n in practice (typically, loads do not
vary a lot in a realistic scenario). The above approximation ratio can be thought of
as min{2α2, n}, where n comes from the general result of Theorem 2 in the case of a
large α.

6 A generalization ofMin- Min and computational results

6.1 The layered-matching heuristic

We extend our intuition from the theoretical results and propose a generalization of
Min- Min. The main idea is to partition the graph into layers and connect each layer
to the upper layer in a balanced way, similar to Min- Min. To partition the graph
into layers, we can use an arbitrary breadth first search tree rooted at r , which results
in layers based on the hop-distance from the root (this is like the diagonal cuts on
the grid), starting with layer L1 comprised of nodes adjacent to the root. To connect
layers L1, . . . , Lk in a balanced manner, we use the flow relaxation, and find the best
matching that creates a flow which is close to the relaxed solution in terms of L∞
norm. In particular, to connect nodes in layer Lk to the upper layer Lk−1, using f r

the solution of the flow relaxation, di be the demand of node i , let xi j be the indicator
of picking an edge (i, j) ∈ E . Then, finding the best matching reduces to solving the
following integer program:
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min ε

s.t.
∑

i∈Lk−1:
(i, j)∈E

xi j = 1 ∀ j ∈ Lk,

− ε ≤ xi j d j − f ri j xi j ≤ ε, ∀ i ∈ Lk−1, j ∈ Lk : (i, j) ∈ E,

xi j ∈ {0, 1}, ∀ i ∈ Lk−1, j ∈ Lk : (i, j) ∈ E .

(15)

This IP can be solved very fast in practice since it finds a (local) matching between two
layers of nodes (as discussed in the next section). Once we find the matching between
layers k and k−1, we contract each node of Lk−1 with its successors, while replacing
the demand of that node with the total demand of the corresponding subgraph. By
repeating this process in a bottom-up fashion, all the nodes get connected to the root
via a single path, hence we obtain a valid spanning tree. The full description of the
heuristic is in Algorithm 3.

6.2 Computational results for 25× 25 sparsified grids

As previously discussed, electricity distribution networks resemble sparsified grids.
For computational experiments12, we constructed 25 instances for each sparsification
probability on 25 × 25 grids where edges are deleted independently with some prob-
ability p ∈ {0.05, 0.1, 0.2} as long as they do not disconnect the (current) graph; an
example of such sparsified grids is given inFig. 4.Demands for each vertex are sampled
uniformly randomly in [0.5, 1.5], resistances are also sampled uniformly randomly in
[1, 10] and the root node is placed in the corner. To incorporate the acyclic support
constraint, we utilizedMartin’s [48] extended formulation for spanning trees; we refer
the reader to Appendix 6 for more details on the MIP formulation and computational
plots.

We benchmarked13 the performance of depth-first search (DFS) trees, shortest-
path trees (SPT), RIDe, the Layered-Matching (LM) heuristic, the branch exchange

12 The code written for the simulations in this paper can be found here: https://github.com/hassanmortagy/
Electrical-Flows-over-Spanning-Trees.
13 We implemented all algorithms in Python 3.7, utilizing numpy and networkx for some of our
functions. We used these packages from the Anaconda 4.7.12 distribution, with Gurobi 9 [27] as a solver
for the MIP.
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Fig. 7 Left: Plots comparing performance of branch exchange (initialized with DFS trees) and the mixed
integer program initialized with the layered matching heuristic solution, on sparse 25× 25 grids with spar-
sification probability p = 0.2. The demands and resistances are randomly chosen in [0.5, 1.5] and [1, 10]
respectively. The dotted horizontal line compares the quality of the Layered Matching heuristic solution
and the color margins represent confidence intervals across the different instances. Right: Benchmarking
performance of all algorithms on instances where resistances are chosen adversarially as explained in
Appendix 5. Further, the demands are also randomly chosen in [0.5, 1.5] and the sparsification probability
p = 0.05

heuristic and the convex integer program. The branch exchange variant we utilized
starts a new iteration once an improving solution is found, as opposed to looking for
the exchange that results in the most improvement. We also considered a variant that
uses binary search on the value of the improvement where we only do an exchange
if it results in an improvement of value at least T ; if no such improvement exists we
divide T by two and proceed.We found that the latter version was significantly slower.

Our computations show that the algorithms proposed in this paper are orders of
magnitude faster than branch exchange (initialized with a random DFS tree) while
having comparable performance. For example, on 25× 25 grid instances with sparsi-
fication probability p = 0.2, the mean time taken by the LM heuristic is 1.35 seconds,
whereas the mean time it takes the branch exchange heuristic to attain the same cost as
LM is around 35,000 seconds (see Table 1). We believe that this significant improve-
mentwill allow systemoperators tominimize losses even on an hourly basis as demand
patterns change.

Moreover we find that Gurobi mostly failed to even find a feasible solution for
sparsified 25 × 25 grids instances in a 24-hour time limit. To help the IP solver, we
provide a warm start solution using different algorithms and let the solver run for 24
hours. This outperforms the branch exchange heuristic after running for the same one
day time limit (see Fig. 7-(left)). In addition, running the MIP with the LM output as
a warm-start obtains the same performance as initializing branch exchange with the
LM output (as opposed to a DFS tree), however the MIP additionally gives provable
optimality gaps. We report the gap in solution quality with respect to the best feasible
solution found after running all algorithms for 24 hours. In particular, we found that
the best feasible solution was obtained by running the MIP with the LM output as a
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warm-start in 46.7% of the instances, and branch exchange initialized with the LM
output in 53.3% of the instances.14

For the set of random instances considered, SPTs outperformed LM and Ride (see
Table 1). However, since SPTs are oblivious to the node demands this behavior is not
generalizable. To explore this further, we constructed sparsified grid instances with
edge resistances generated using adversarial distributions (mimicking the worst-case
instances for SPTs, given by a Hamiltonian path of low resistance). In these instances,
we find that the performance of SPTs is arbitrarily bad and the ratio of the cost between
SPTs and LM grows linearly in the dimension of the graph (see Appendix 5 for more
details). Moreover, we find that LM outperformed all the other methods, as shown in
Fig. 7-(right). Since LM is robust to the structure of the graph, edge resistances and
node demands and SPTs are very cheap to compute, we propose taking the best of
both for initializing the MIPs.

Finally, the computations suggest that the approximation factor obtained by RIDe
in practice is much better than the worst-case theoretical bounds we show. Further, the
performance of RIDe (as expected) and LM significantly improve as the graph gets
sparser (see Table 1), and their improvement over branch exchange becomes more
pronounced. This is very desirable since electricity distribution networks are indeed
typically sparse in practice.

7 Conclusions and open questions

In this paper we studied the network reconfiguration problem from power systems
(for distribution networks) through the lens of approximation algorithms.We provided
approximation algorithms for different scenarios with restrictions on graph structure,
line resistances, and node demands. Some open questions still remain, including the
extension of the

√
n-approximation (or even constant-factor approximation) to pla-

nar graphs, analysis for the iterative deletion of the min-flow edge (introduced by
Shirmohammadi and Hong [58]), and the hardness of the problem for grids or planar
graphs.

Acknowledgements We thank the participants of the Real-Time Decision Making Reunion Workshop,
Mixed Integer Programming Workshop, and the IEEE Power & Energy Systems General Meeting for
valuable feedback.We also thankDavidWilliamson for pointing us to low-stretch spanning trees, Alexandra
Kolla for pointing us to spectrally-thin trees, Tasos Sidiropoulos for pointing us to the grid embedding of
planar graphs, and the anonymous referees for numerous useful suggestions to improve this manuscript.

ADetailed overview of existing techniques

Related work in power systems: The problem of reconfiguring the electric distribution
network to minimize line losses was first introduced by Civanlar et al. [12] and Baran
and Wu [8] where they introduced and implemented an algorithm called “Branch
Exchange”, which tries to locally improve the objective by swapping two edges of

14 For these solutions, the provable gaps using MIPs were around 15–30%.
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the graph. Unlike branch exchange that maintains a feasible spanning tree during
its execution, there are other algorithms that start with the entire graph and delete
edges one by one until a feasible solution is obtained [58]. We discussed this approach
further in Sect. 3. Subsequently, many other heuristic algorithmswere proposed for the
reconfiguration problem, including but not limited to genetic algorithms [19], particle
swarm optimization [38], artificial neural networks [54], etc. The missing part in all of
these heuristics is a rigorous theoretical performance guarantee that shows why/when
these algorithms perform well. To that end, Khodabakhsh et al. [31] recently showed
that the reconfiguration problem is equivalent to a supermodularminimization problem
under a matroid constraint.

Existing techniques in combinatorial optimization: One may ask the question if a
simple spanning tree like breadth-first or depth-first search tree will be a good solution
to the reconfiguration problem. It is shown in [31] that if the edges are identical, the
optimal tree will include all the edges incident to the root. So the BFS tree might be
a better candidate. However, as we showed in Sect. 4, a BFS tree can have a loss of
Ω(n) times the optimal loss. Depth-first search can be worse; for example, a cycle
with spokes and root in the center has a gap of Ω(n2). (the optimal tree is a star with
linear cost, while the DFS tree will take the cycle with cubic cost.)

Our problem looks like a bicriteria tree approximation; on the one hand, we want to
connect demands to the root via shortest paths, on the other hand, we want the paths to
be disjoint, i.e., degree of the nodes (except the root) in the tree must be small. Similar
problems have been studied in the Computer Science literature: Könemann and Ravi
[37] consider finding a minimum cost spanning tree subject to maximum degree at
most B. The variation where each node has its own specified degree bound is also
studied by Fekete et al. [22] and Singh and Lau [59]. Khuller et al. [33] also define
Light Approximate Shortest-path Trees (LAST), in which a tree is (α, β)-LAST if the
distances to the root are increased by at most a factor of α (compared to the original
graph), while the cost of the tree is at most β times the minimum spanning tree.
However, the main difficulty in using these approximations for the reconfiguration
problem is accounting for the resultant flow in the spanning trees. The cost on the
edges of the tree are then no longer linear (as in the above mentioned results) or even
quadratic.

Electrical energy is minimized when considering edge-disjoint paths to connect
nodes [57]. However, the complete disjointness is rarely achievable in our problem
(unless the graph is a star with root in the center), and hence we want to limit the
number of flows that merge together. This is more related to the Edge-Disjoint Path
with Congestion (EDPwC) problem, studied byAndrews et al. [5], which is as follows:
Given an undirected graph with V nodes, a set of terminal pairs and an integer c, the
objective is to route as many terminal pairs as possible, subject to the constraint that at
most c demands can be routed through any edge in the graph. They show hardness of
approximation for EDPwC problem. The main differences with our problem are that
in EDPwC there is a hard constraint on the flow routed through any edge, while in our
problem there is a quadratic cost associated with that flow, as well as the additional
spanning tree constraint in the reconfiguration problem.
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A natural question is if there are some known graph families where one can exploit
existing structures to find an approximation.We consider planar graphs, alsomotivated
by the application since many distribution networks are designed that way. As we saw
in Sect. 4, one way to obtain useful lower bounds for the objective function is via
generating a packing of cuts that are small in size, i.e., do not have many edges.
A celebrated result in the theory of planar graphs is the existence of a small set of
vertices, called the vertex-separator, that can disconnect the graph into components
of almost equal size [42]. This can even be applied in a recursive manner, as shown
by Frederickson [21], to divide the graph into O(n/r) regions with no more than r
vertices each, and O(n/

√
r) boundary vertices in total. However, it is unclear how to

bound the cost of these cuts or regions in the reconfiguration problem, unless we have
more information about the direction of the resultant flow on boundary edges.

Existing techniques in electrical flows: Electrical flows have been an active area of
research in the past two decades, due to their computational efficiency and numerous
applications to graph theory problems. In particular, it was shown that one can compute
an electrical flow in a graph in near-linear time [14,15,30]. Moreover, various novel
graph algorithms involve computing an electrical flow as a subroutine. For example,
Madry [47] andLiu andSidford [43] use electrical flows to obtain the fastest algorithms
for the Max- flow problem so far.

Ifwe relax the spanning tree constraint, our problem reduces to the standard problem
of computing an electrical flow in a graph that satisfies the demands. Even though the
support of an electrical flow in its full generality does not form a spanning tree, still,
it maybe be beneficial to use the minimum energy electrical flow in the graph as
a starting point. Shirmohammadi and Hong [58] follow this approach and propose
an iterative algorithm for the reconfiguration problem, where in each iteration they
compute the electrical flow and delete the edge with smallest flow such that the graph
remains connected. They demonstrated experimentally that their iterative algorithm
performs well in practice but they provide no theoretical guarantees. In Sect. 3, we
proposed a similar iterative edge-deletion algorithmandprove its approximationbound
in Theorem 1.

At the heart of these edge deletions is the question of whether we can delete edges
from the graph without increasing the energy cost too much. One approach that can
be used to address this question is spectral sparsification [60], which aims to reduce
the number of edges in the graph while maintaining (1 ± ε) approximations of the
Laplacian quadratic form. In their classic result, Spielman and Srivastava [61] show
that one can construct such a sparsifier with Õ(n/ε2) edges. Chu et al. [11] slightly
improve upon the results of Spielman and Srivastava, bringing the number of edges
down to Õ(n/ε) for some specific instances.

Using the fact that electric flows are fully characterized by the Laplacian quadratic
form, one may conclude that by using such a sparsifier we can reduce the number of
edges in the graph without significantly increasing the energy cost. However, this is
not true, because to obtain such sparsifier they compensate the deletion of edges by
changing the weights (i.e. resistances) on the edges. Thus, since we assume resistances
are fixed, to the best of our knowledge, the existing spectral sparsification approach
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does not extend to our problem. This motivates the need of a novel approach to handle
edge deletions without increasing the energy too much.

Uniform Spanning Trees: To deal with the iterative edge deletions, we consider sam-
pling from distributions over spanning trees. Random spanning trees are one of the
most well-studied probabilistic combinatorial structures in graphs. Recent work has
specifically considered product distributions over spanning trees where the probabil-
ity of each tree is proportional to the product of its edge weights. (This is motivated
by the desirable properties and numerous applications of such product distributions.)
For example, Asadpour et al. [6] break the O(log n) approximation factor barrier of
the ATSP problem by rounding a point in the relative interior of the spanning tree
polytope by sampling from a maximum entropy distribution over spanning trees; this
maximum entropy distribution turns out to be a product distribution.Moreover, a beau-
tiful property of product distributions over spanning trees is the fact that the marginal
probability of an edge being in a random spanning tree is exactly equal to the product
of the edge weight and the effective resistance of the edge (see Appendix 3). This is
a fact that we exploit in our RIDe algorithm.

Low-stretch trees: Finally, another relevant approach in the electric flows literature,
entails low stretch trees. Given a weighted graph G, a low-stretch spanning tree T is a
spanning tree with the additional property that it approximates distances between the
endpoints of any edge in G. In particular,15 the stretch of an edge e = (u, v) is the
ratio of the (unique) shortest path distance between u and v in T to re (the weight of
edge e in G). Furthermore, the total stretch of T is defined as the sum of the stretch of
all edges in G. Kelner et al. [30] show that for any tree, the gap between the energy of
the flow in that tree and the flow in the original graph, is at most the total stretch of that
tree. Naturally, one may wonder if there exists a low value for the (total) stretch such
that all graphs have a spanning tree with that stretch. The answer to that question is
unfortunately no.Abraham andNeiman [2] show that one can construct a spanning tree
T for any connected graphwith total stretch at mostO(m log n log log n) in near-linear
time (Theorem 2.11 in [30]); this bound is tight up to an O(log log n) factor because
Alon et. al [3] show that the total stretch is Ω(m log n) for certain graph instances.
Thus, this implies that the energy cost of T is at most Õ(m) times that of the original
graph. We improve upon this approximation result using our RIDe algorithm.

BMissing background information

We give a review of preliminaries on electrical flows, graph Laplacians and their
pseudoinverse, and matrix inversion results. We refer the reader to [45,62] for more
details.

15 We follow the definition of Elkin et al. [18], but this definition slightly differs in the denominator from

others given in the literature. Abraham and Neiman [2] and Abraham et al. [1] define the stretch as dT (u,v)
dG (u,v)

,

where dG is the shortest-path metric on G with respect to the edge weights. Note that these definitions are
equivalent if the edge weights are uniform.
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B1 The graph Laplacian

Let G = (V , E) be a connected and undirected graph with |V | = n, |E | = m. Each
edge e ∈ E is also associated with a resistance re > 0. The inverse of the resistance is
called conductance, defined by ce = 1/re. Let B ∈ R

n×m be the vertex-edge incidence
matrix upon orienting each edge in E arbitrarily. Also, let R be an m × m diagonal
resistance matrix where Re,e = re. We define the weighted Laplacian L := BCBT ,
where C = R−1. Since C is a positive definite and symmetric matrix, we could
write L = (C1/2BT )T (C1/2BT ), which implies that L is positive-semi definite, since
xT Lx ≥ 0 for all x ∈ R

n .
Let 1 be the all-ones vector. For any matrix A ∈ R

m×n , denote the span of the
columns of A by im(A) ⊆ R

m . It is well known that if G is connected, the only
vector in the nullspace of the Laplacian L is the all-ones vector 1. In what follows,
we will use the Moore-Penrose pseudoinverse, denoted by L†, to invert the Laplacian.
Since L is symmetric and positive semi-definite, we can write L in terms of its eigen-
decomposition L = ∑n

i=1 λi ui uTi , where 0 = λ1 ≤ · · · ≤ λn are the eigenvalues
of L sorted in increasing order and ui are the corresponding singular orthonormal
vectors. Now, the pseudoinverse could be conveniently characterized using L† =∑n

i=2
1
λi
ui uTi . Observe that LL

† = ∑n
i=2 uiu

T
i and is thus a projection matrix that

projects onto im(L). In other words, for any vector x ∈ R
n such that xT 1 = 0,

LL†x = x .

B2 An introduction to electrical flows

Given a graph G = (V , E), a root r ∈ V and demands di ≥ 0 for all i ∈ V \{r}, we
begin by assigning a demand dr = −∑

i∈V \{r} bi to the root, and we collect these
demands into a demand vector b ∈ R

n . An electrical flow is a feasible flow that
satisfies demands, while also minimizing the electrical energy. Hence, computing an
electrical flow amounts to solving the following problem:

min E( f ) = f T R f

s.t. B f = b
(P2)

The optimality conditions16 of (P2) (i.e. the problem of computing an electrical flow)
imply the existence of a vector of potentials on the nodes (dual variables) φ ∈ R

n such
that

f ∗
u,v = φv − φu

ru,v

(16)

or f ∗ = CBTφ in matrix notation. By pre-multiplying this equation with B on both
sides, we have φ = L†b, which is well-defined since 1T b = 0. Using these facts, one

16 Ohm’s Law says that the electrical flow on any edge is equal to the potential difference divided by the
resistance of the edge (or equivalently multiplied by the conductance).
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can easily show that

E( f ∗) = RT f ∗R = φT Lφ = bTφ = bT L†b. (17)

For any pair of vertices u and v, let χuv ∈ R
n be a vector with a−1 in the coordinate

corresponding to u, a 1 in the coordinate corresponding to v, and all other coordinates
equal to 0. The effective resistance between a pair of vertices u, v is defined as

Reff(u, v) := χT
uvL

†χuv. (18)

In other words, it is the energy of sending one unit of electrical flow from u to v.
For any edge e = (u, v), it is well known that Reff(e) ≤ re, where equality holds

if and only if e forms the only path between u and v (see for example Theorem D
in [34]). Intuitively, if Reff(e) = re, then, upon sending one unit of electrical flow
between the endpoints of e, all that flow goes through e, which implies that e is bridge
since otherwise we could otherwise reroute some of the flow through another u − v

path and decrease the effective resistance, which would contradict the optimality of
the electrical flow.

B3 Uniform spanning trees

In aweightedgraph, a uniformdistributionof spanning trees is one such that probability
of each tree is proportional to the product of the weight of its edges.

Definition 1 For w : E → R++, we say λ is a w−uniform spanning tree distribution
if it is a product distribution and for any spanning tree T ∈ T

P[T ] ∝
∏

e∈T
w(e).

Let λe := PT∼λ(e ∈ T ) be the marginal probability of an edge e ∈ E . It is known
that (see for example [17,45,62])

λe = w(e)χT
e L†

wχe and
∑

e∈E
λe = n − 1,

where Lw is theweightedLaplacian definedwith respect to theweightsw. In particular,
the vector of marginal probabilities λe, e ∈ E , is in the spanning tree polytope. In this
work, we specifically consider the case when we choose w to be the conductances,
i.e. λ is a c−uniform distribution. Hence, using (18) we know that λe = ceχT

e L†χe =
ceReff(e), where L is the weighted Laplacian defined with respect to the conductances
(see Appendix 1). Therefore, for any spanning tree T ∈ T ,

P[T ] =
∏

e∈T ce
K

and
∑

e∈E
ceReff(e) = n − 1, (19)
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where K = ∑
T∈T

∏
e∈T ce is the normalization factor.

Observe that under a c−uniform spanning tree distribution, if an edge e = (u, v)

has a lowmarginal probability ceReff(e), then there are relatively a lot of paths between
u and v excluding e. Therefore upon deleting an edge e from the graph, it would not be
costly to reroute the flowgoing through edge e. Similarly, if an edge has a highmarginal
probability, then rerouting the flow upon deleting that edge would be relatively very
costly. This is the crucial observation that we use in our RIDe algorithm.

B4 A note on reactive power

In this paper, we assumed that the demands (di ’s) are real-valued parameters. However,
in energy systems, demands are usually complex numbers d = p + iq, capturing the
active (p) and reactive (q) parts of the demand. Consequently, the loss on each line
will be re[(∑i∈succ(e) pi )2 + (

∑
i∈succ(e) qi )2]. Note that in this case, the objective

function can be decomposed into two additive parts, in which one is only a function of
real demands (p), and the other is only a function of the reactive part (q).We argue that
our results would still hold. In particular, the approximate solutions in Theorems 1,2,3
are independent of the demands; hence, the approximation factor would hold for both
the active and reactive parts of the objective function. In Theorem 4, the Min- Min
algorithm would output the same spanning tree if performed with either p or q, given
the uniform assumption on (complex) loads; therefore, the approximation factor holds
for both parts of the objective function.

C Convex optimization over the flow polytope

One can think of the reconfiguration problem (P0) as minimizing a convex function
over the vertices of a (flow) polytope. However, the general results from convex opti-
mization over flowpolytopes do not lead to good guarantees.We propose a randomized
algorithm RIDe that rounds the fractional solution obtained from the flow relaxation to
vertices of the flow polytope, while providing anO(m − n) approximation guarantee.
But before that, here we review this new perspective on our reconfiguration problem,
and some main results of interest in convex optimization over polytopes.

For a directed and connected graph G with vertex-edge incidence matrix B and a
demand vector b : V → R, the general flow polytope is given by P = { f ∈ R

m :
B f = b, f ≥ 0}. It is known that the support of the vertices of the flow polytope,
denoted by vert(P), forms a spanning tree (see Theorem 7.4 in [9]). This follows from
the fact that there is a one-to-one correspondence between the bases of the graphic
matroid defined by G and the linear matroid defined on the incidence matrix B. In
other words, there is a one-to-one correspondence between the spanning trees ofG and
subsets of n − 1 linearly independent columns of B (note that the rank of B is n − 1).
Therefore, a basic solution of the flow polytope will be one in which the flow is sent
along a spanning tree (when ignoring the edge directions). If such a basic solution
(spanning tree) additionally satisfies the flow conservation constraints while taking
the edge directions into account, we obtain a basic feasible solution or a vertex of P .
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Since for undirected graphs we can replace each edge with two directed edges, we
can replace the flow conservation constraints of the network reconfiguration problem
given in (1) using the constraints given by P above, where an extreme point of that
polytope will then correspond to a flow sent along a spanning tree rooted at the root
r . Such an extreme point is precisely one of the feasible solutions of (P0) and (P1).
Hence, we have arrived at the following formulation of the network reconfiguration
problem:

min{ f T R f | f ∈ vert(P)}.

In particular, if all the resistances are uniform, then the problem is equivalent to
finding a vertex with the smallest Euclidean norm, which is known to be NP-hard
(see, for example, Lemma 4.1.4 in [28]). To the best of our knowledge, there do not
exist any approximation algorithms for minimizing convex functions over vertices
of a polytope. Even if we just require the solution to be integral (instead of lie at a
vertex), and make strong assumptions on the objective function like strong convexity
and Lipschitz gradients, Baes et al. [7] have proved the following result:

Theorem 5 (Theorem 2 in [7]) Let F = P ∩Z
n be presented by an oracle for solving

quadratic minimization problems of the type min cT x + τ
2‖x‖22 with varying c ∈ Q

n

and τ ∈ Q+. There is no polynomial time algorithm that can produce for every
F = P ∩Z

n and every strongly convex function h : Rn → R with Lipschitz gradients
a feasible point x̄ such that h(x̄) − h(x∗) ≤ n2 − n, where x∗ = arg minx∈F h(x).

The authors also show that thisn2−n approximation is tight.Observe that this bound
translates to an m2 − m approximation in the context of the network reconfiguration
problem. However, the RIDe algorithm we propose gives an O(m−n) approximation
in the stronger setting in which we require the solution to be a vertex of the flow
polytope.

More recently, Hildebrand et al. [29] show that there is an FPTAS for solving
problems of the form minP∩Zn xT Qx , where P ⊆ R

n is a polyhderon and Q ∈ Z
n×n

is a symmetric matrix with at most one negative eigenvalue. Recall that the objective
function of the network reconfiguration is f T R f , where R is positive definite and
symmetric. Hence, if we additionally assume all the resistances are integral, then
using the result of Hildebrand et al. [29], there exists an FPTAS for minimizing the
energy of the flow over integral flows. However, this result clearly does not extend
to the network reconfiguration problem, since one can obtain an integral flow whose
support does not form a spanning tree.

D Challenges for generalizing cut-based results to planar graphs

As mentioned in Sect. 4, one potential generalization of the cut-based approximation
results is to find such a family of cuts for planar graphs and to try to get an O(

√
n)-

approximation for planar graphswith uniformedge resistances. In particular, the planar
separator theoremcanbe interesting to solve this problem, as it guarantees the existence
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Fig. 8 Limitations of cut-based lower bounds for planar graphs

of small cuts for any planar graph. Here we discuss potential roadblocks towards this
approach.
1. Edge separators:All planar graphs do not have small edge separators. For example,
if we consider a wheel graph with n nodes as shown in Fig. 8-(left), any cut that
splits the graph into two (almost) equal-size parts has at least a constant fraction of n
edges. Even though each planar graph has a vertex separator of sizeO(

√
n), when we

consider edge separators, one can only guarantee an edge separator of sizeO(
√

Δn),
where Δ is the maximum degree in the graph [16].
2. Constrained separator cuts: Suppose that the planar graph has a bounded degree,
the second limitation is that the choice of the kth cut is constrained by the choice of
previous cuts. The separator theorem is oblivious to the edge directions in the following
sense: once we find a cut ofO(

√
Δn) in our planar graph as shown in Fig. 8-(middle),

it induces a natural direction on the corresponding edges, where the subsequent cuts
have to respect those directions. In other words, if edge (ui , vi ) appears in our cut,
there cannot be a future cut S � r such that vi ∈ S and ui /∈ S. Since the opposite is
valid (ui ∈ S, vi /∈ S), contracting ui , vi is not possible, without loss of generality.

The example in Fig. 8-(right) shows how finding appropriate cuts might be chal-
lenging even with contracting edges (note that by considering edge contraction, we are
already losing the option of cut intersections, hence searching over a smaller family
of cuts). The idea in this figure is that after we find our first (small) cut S1, we contract
the edges that intersect the cut, in an attempt to avoid using those edges in violating
directions in the future cuts. Nowwhen we find our next cut S2 in the contracted graph
(shown at the bottom), notice that node x becomes unreachable from the root. This is
because cut S1 induces the direction of edge (x, y) to be from x to y, and cut S2 sets
the direction of edge (x, w) from x to w. In other words, even with just 2 cuts, it has
become infeasible to find a spanning tree that respects the cut directions.

If one can somehow incorporate these one-way constraints in the separator oracle,
i.e., once a node vi is picked in S, the corresponding ui ’s (could be more than one)
from previous cuts should be picked in S as well, then one could recursively use this
oracle and hope for an O(

√
n) approximation.
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Fig. 9 Top left: An example of a 5 × 5 grid, where the root r is the green node in the bottom-left corner,
all the demands are 1, and the resistances for each edge are given in the figure. These edge resistances are
chosen in an adversarial manner to demonstrate how SPTs are oblivious to node demands. Top right: The
SPT with respect to the adversarial edge resistances and its cost. Bottom left: The LM tree for adversarial
instance and its cost. Bottom right: The optimal tree for adversarial instance and its cost

E Performance of shortest-path trees

The problemwith shortest-path trees is that they are oblivious to the node demands.We
now give a simple construction that demonstrates this behavior. Consider the complete
undirected graph Gn = (V , E) on n nodes, where n ≥ 3. Fix a root r arbitrarily and
let P be any Hamiltonian path in Gn starting at r . Now, suppose that re = 1 for all
e ∈ P and re = n for all other edges e ∈ E\P . Finally, let all the demands di = 1 for
all i ∈ V .

By construction, in this example the shortest path tree rooted at r will be P . The
cost of that tree is

n−1∑

i=1

(1)i2 = 1

6
(n − 1)n(2n − 1) = 1

6
(2n3 − 3n2 + n) ≥ 1

6
(2n3 − 3n2) ≥ n3

6
,
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Fig. 10 Comparison of LM
Heuristic and SPTs on
adversarial instances for varying
n × n grid sizes (the x-axis
represents the value of n). In
those instances, we also add
noise to the edge resistances and
consider sparsification
probabilities
p ∈ {0, 0.05, 0.1, 0.2}

where the last inequality follows since n ≥ 3. We now compare this with the LM
Heuristic, which also attains the optimal tree in this example. The LM Heuristic will
start by computing a BFS tree rooted at r . Since Gn is a complete graph, this tree will
only have two layers: (i) layer 1 will just contain r , (ii) layer 2 will contain all other
nodes in the graph. Now, the LMHeuristic will match the nodes in layer 2 to the nodes
in layer 1 by solving the LP given in themain paper. However in this specific case, there
is only one possible matching: match all nodes in layer 2 to the root node r in layer 1.
This gives us a final tree, where all nodes i ∈ V \{r} are connected to the root through
the edge (r , i). The cost of that tree is (1)(1)2 + (n)(n − 1)(1)2 = n2 − n + 1 ≤ n2.
Hence the gap between the SPT and the LM tree (which is also the optimal tree) is at
least n/6 or Ω(n). Note that the same gap could be achieved by the wheel gap, which
is planar.

We can also extend this construction to grid graphs. Consider and n × n grid and
fix a root r in the corner of the grid. Further, consider a DFS tree rooted at r . A DFS
tree in this case will be a Hamiltonian path P with n2 − 1 edges that starts at r and
visits every other node in the graph. Now, suppose that re = 1 for all e ∈ P and
the resistances for other edges are greedily chosen as small as possible so that the
shortest-paths tree coincides with P . Finally, let all the demands di = 1 for all i ∈ V .
We give an example for a 5 × 5 grid in Fig. 9.

We see in Fig. 9 that the LM tree is near optimal and the ratio between the cost of
SPT and LM tree is around 3. We extend this construction for varying grid sizes, and
in line with the original experiments presented in the main body of the paper, we add
noise to the edge resistances that is sampled from a normal distribution with mean
0 and standard deviation of 0.5, while also considering sparsification probabilities
p ∈ {0, 0.05, 0.1, 0.2}. This is how we generated the resistances for the adversarial
second set of instances used in the computations. In Fig. 7-(right), we present the
performance of our algorithms on those adversarial instances, where we find that LM
is the best performing algorithm. The best feasible solution was obtained by running

123



Electrical flows over spanning trees

the MIP with the LM output as a warm-start in 64% of the instances, and Branch
Exchange initialized with the LM output in 36% of the instances.

As shown in Fig. 10, we find that the cost of SPTs can be arbitrarily bad due to
the fact that they are oblivious to node demands. We also see that as the sparsification
probability increases, the ratio between SPTs and LM decreases, which is expected as
the cost of the DFS tree decreases as the sparsification probability increases.

F Computations

F1MIP formulation used in computations

Let G = (V , E) (|V | = n, |E | = m) be a connected and undirected graph with:
root r ∈ V , resistances re > 0 for each edge e ∈ E and demands di ≥ 0 for each
node i ∈ V \{r} supplied by the root node (which implies that dr = −∑

i∈V \{r} di ).
Also, let δ+(v) and δ−(v) denote the sets of incoming and outgoing edges of v (after
fixing an arbitrary orientation on the edges). To incorporate acyclic support constraints
we utilized Martin’s [48] extended formulation for spanning trees, which has O(n3)
constraints and variables. The network reconfiguration problem could be formulated
as follows:

min
∑

e∈E
re f

2
e

s.t
∑

e∈δ+(u)

fe −
∑

e∈δ−(u)

fe = du ∀ u ∈ V

∑

e∈E
xe = n − 1

x{v,w} = zv,w,u + zw,v,u ∀ {v,w} ∈ E, u ∈ V \{v,w}
x{v,w} +

∑

u∈V \{v,w}:
{v,u}∈E

zv,u,w = 1 ∀ {v,w} ∈ E

− Mxe ≤ fe ≤ Mxe ∀ e ∈ E

x{v,w} ∈ {0, 1}, zv,w,u ∈ {0, 1} ∀ {v,w} ∈ E, u ∈ V \{v,w}

where M is a sufficiently large scalar. In particular it suffices to set M =∑
u∈V \{r} du = −dr . Note that the pairs {v,w} are unordered, while v, v,w are an

ordered triple of distinct vertices with {v,w} ∈ E (and u ∈ V \{v,w}).

F2More computational plots

Recall that for our first set of computational experiments, we constructed instances
on 25 × 25 grids with sparsification probability p ∈ {0.05, 0.1, 0.2}. Moreover we
consider demands and resistances randomly chosen in [0.5, 1.5] and [1, 10] respec-
tively. We benchmarked the performance of depth-first search (DFS) trees, RIDe,
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Fig. 11 Plot comparing performance of different algorithms and MIP with different warm-start solutions
on sparse 25 × 25 with sparsifcation probability p ∈ {0.05, 0.1, 0.2}. The demands and resistances are
randomly chosen in [0.5, 1.5] and [1, 10] respectively. The dotted horizontal line compares the quality of
the Layered Matching heuristic solution and the color margins represent confidence intervals across the
different instances

the Layered-Matching (LM) heuristic, the Branch Exchange heuristic and the con-
vex integer program given in the previous section. In the main body of the paper we
only presented the plots for when the sparsification probability was p = 0.2. Here,
we present additional plots (with more details about the performance of Ride and
Branch Exchange initialized with the LM tree) for varying sparsification probabilities
p ∈ {0.05, 0.1, 0.2} (Fig. 11).
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