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Abstract—Open Source Software (OSS) projects start with an
initial vocabulary, often determined by the first generation of
developers. This vocabulary, embedded in code identifier names
and internal code comments, goes through multiple rounds of
change, influenced by the interrelated patterns of human (e.g.,
developers joining and departing) and system (e.g., maintenance
activities) interactions. Capturing the dynamics of this change
is crucial for understanding and synthesizing code changes over
time. However, existing code evolution analysis tools, available in
modern version control systems such as GitHub and SourceForge,
often overlook the linguistic aspects of code evolution. To bridge
this gap, in this paper, we propose to study code evolution in OSS
projects through the lens of developers’ language, also known as
code lexicon. OQur analysis is conducted using 32 OSS projects
sampled from a broad range of application domains. Our results
show that different maintenance activities impact code lexicon
differently. These insights lay out a preliminary foundation for
modeling the linguistic history of OSS projects. In the long run,
this foundation will be utilized to provide support for basic
program comprehension tasks and help researchers gain new
insights into the complex interplay between linguistic change and
various system and human aspects of OSS development.

I. INTRODUCTION

Large OSS projects, maintained by large distributed devel-
oper teams, tend to have a rich history. Surveys of software
professionals revealed that software history is indispensable
for developers [1], [2]. Developers frequently ask questions
about the history of code to understand change rationale, track
bugs to their origin, or trace features to their older versions.
However, current version control systems (e.g. GitHub and
SourceForge) provide a single lens on history through com-
mits. Commits record changes per code file and line along with
developers’ descriptions of these changes. However, a large
percentage of change information is rarely documented [3].
Such non-informative commits have been identified as one
of the main challenges facing OSS developers examining
software history [4], [5].

To address these limitations, in this Early Research Achieve-
ments (ERA) paper, we propose a new window on software
history. In particular, we analyze software evolution through
the lens of developers’ language [6], [7]. The vocabulary
of this language, embedded in code identifier names, makes
up around 70% of code lexicon [8]. Research on program
comprehension revealed that identifiers capture developers’
understanding of their system and its application domain at
the most primitive level. Such information can be crucial for
developers during maintenance sessions [8], [9], [10], [11],
[12], [13], [14], [15]. Comments were also found to play

a paramount role in arriving at a correct understanding of
the program, especially for newcomers who do not have an
adequate experience in the internals of the system [7], [16].

In the context of software, language evolution is typically
influenced by code evolution activities such as refactoring,
feature addition, and bug fixes. In our analysis, we hypothesize
that these different software evolution activities have different
impacts on the system’s vocabulary. Therefore, the ability
to capture and model changes in the system vocabulary is
expected to uncover the history of events that led to these
changes, revealing unique aspects of code evolution that are
typically overlooked by existing methods used in modern
version control systems, such as diff functions or Abstract
Syntax Trees (ASTs) [3], [4], [17], [18], [19].

Our analysis is conducted using 32 open source systems,
including their revisions and metadata. Our objective is to
explore the specific impacts of different maintenance tasks
on the linguistic identity of OSS projects and provide a
preliminary evidence on the nature and magnitude of this
impact.

II. FOUNDATION AND ANALYSIS

In this paper, we aim to investigate linguistic change in
OSS projects. To conduct our analysis, we adapt Petersen et
al.’s [20] statistical model of natural language evolution to OSS
projects’ code lexicon. According to this model, a survival-
of-the-fittest effect controls the way words emerge, grow, and
vanish throughout human history. Specifically, words are com-
peting actors in a system of finite resources. Words can gain or
lose momentum influenced by historical events (e.g., war), new
innovations (e.g., penicillin), and socio-technological advances
(e.g., the Internet) [21], [22], [23]. Such information can be
used to investigate linguistic trends quantitatively and explore
questions deeply-rooted in cultural anthropology [20], [24].

In OSS development, the frequent maintenance actions
performed on the system as well as the highly dynamic nature
of developer teams, apply similar evolutionary pressures on
the usage and survival capacity of code lexicon words [25].
To understand and quantify the magnitude of this change,
we investigate the impact of different software maintenance
activities on OSS code lexicon. In general, we identify three
generic categories of such activities:

+ Bug fixes: these activities include corrective maintenance
requests, mainly targeting bugs in the system, or errors
in the program’s logic.



o Feature additions: these activities typically include re-
quests for new major or minor functionality to be added
to the system.

« Improvements: improvement activities typically include
perfective, adaptive, and preventive maintenance requests,
focusing on improving existing code by, for instance, en-
hancing the efficiency of underlying algorithms, improv-
ing code structure by refactoring, or improving interfaces.

Resolving the relationship between these different activities
and code change will provide a fundamental understanding of
the dynamics of linguistic change in OSS projects and bridge a
very important gap in code evolution research. In what follows,
we describe our data collection and analysis process in greater
detail.

A. Data Collection

To understand the relationship between maintenance ac-
tivities and linguistic change, we selected 32 projects
from GitHub, covering four programming languages: Java,
C#, Python, and JavaScript. The criteria for selecting the
projects were a) the project should have a long history,
or a large number of releases, b) the project should be
relatively popular, which can be quantified through the
number of stars the project received on GitHub [26],
and ¢) the maintenance activities for each release of the
project should be explicitly classified by project maintain-
ers. For example, the Java project NewPipe in our dataset
marks feature additions as New (e.g., New: Basic Media
Support), bugs as Fixed (e.g., Fix random popup
player crash #2133), and other perfective tasks as
Improvements (e.g., Improvement: clearing watch
history using options menu). This criterion was en-
forced to ensure the validity of the results. Specifically, it can
be challenging to accurately classify the type of maintenance
activity if the issues related to the activity are not explicitly
defined [27], [28].

To collect our data, we used the GitHub API [29] to
download the top starred Java, C#, Python, and JavaScript
projects (8 x 4) along with their corresponding public releases.
This API provides a convenient way for directly downloading
project data (e.g., releases, commits, issues, and contributors),
thus enabling access to all forms of events instigated by
code evolution activities. Selecting a smaller set of well-
maintained projects helps to mitigate the data validity threats
often associated with running experimentation on large-scale
datasets of OSS projects [27]. The descriptive statistics of our
32 selected projects are provided in Table L.

To extract source code lexicon from our projects, we used
regular expressions. Code lexicon consists of all words used
in source code except for any keywords reserved for the
programming language itself. Regular expressions treat code
artifacts as raw text files. Therefore, the code itself does not
have to compile, or even be complete, for regular expressions
to work. After identifiers are extracted, we further split any
compound words into their constituent words based on camel-
casing (e.g., userID is split into User and ID) or any

special characters (e.g. underscore) typically used in code
naming conventions (e.g., file_type is splitinto £ile and
type). After atomic words of code identifiers are extracted,
stemming is applied to reduce words to their morphological
roots [30]. The accuracy of our indexing tool (%97) has been
independently verified in our previous work [31].

B. Analysis and Results

The objective of our analysis is to examine whether lin-
guistic change can be predicted by the different maintenance
activities performed on the project. To expose such effect, we
use Granger Causality, an econometric technique that is used
to test if one variable precedes another in a stationary time-
series [32]. Precisely, given the variables A and B, we test to
see if the values of A and the previous history of B predict the
values of B better than the history of B alone. The assumption
behind using this test is that the different releases of the system
can be represented as points in a time series.

One of the parameters of Granger Causality is lag. The
operationalization of lag depends on the problem, or the
context. In our case, a lag of 1 represents the value of linguistic
change for release i and maintenance activities submitted in
the release notes for the same release i. Lag of 2 measures
the correlation between linguistic change of i-th release and
maintenance activities submitted for i-/ release, and so on.
Usually, in time series analysis, several lag values are tested.
In our analysis, we measure lag of 1 and 2 for short term
impacts and lag of 5 to capture long term impacts.

To quantify the magnitude of linguistic shift in OSS
projects, we rely on Petersen et al’s word-frequency
model [20]. According to this model, the linguistic change
rate (A); ;) between two releases r; and r; of the system can
be calculated as the number of different words (words birth
and death) between the two releases divided by the number
of unique words in both releases. The average A, of a system
s which has n releases can be calculated as the average A; ;
between each two consecutive releases in the time series of
the system:
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As an example of our analysis, Fig. 1 shows linguistic change
at different releases of Synapse—an open source research col-
laborative platform—in comparison to the number of bug fixes,
feature additions, and improvements for each release. This
word-frequency model can be more sensitive to change than
more coarse-grained, or topic based, models such as Latent
Dirichlet Allocation (LDA) [33]. Specifically, the operational
complexity and the inherent sparsity of the textual information
of code often leads to generating incoherent topics that can
hardly describe change [34], [35], [36], [37].

The results of our Granger Causality analysis are presented
in Table II. In general, the results show that feature additions
were the most significant predictors of linguistic change,
followed by improvements and bug fixes, which were able
to significantly predict linguistic change in a smaller number



TABLE I: Descriptive statistics for our sample of 32 projects, including the total lines of code (LOC) and average number of
releases, bug fixes, feature additions, and improvements for the set of projects sampled from each programming language.

Language LOC Releases  Bug fixes  Feature Additions  Improvements
Java 8.10M 61 270 186 306
C# 7.95M 80 272 197 123
Python 14.39M 87 308 145 291
JavaScript 14.89M 117 588 193 209
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Fig. 1: Linguistic Change (Eq. 1) for Synapse, compared to the number of bug fixes, feature additions, and improvements

of projects. We also notice the differences between different
programming languages, for instance, bug fixes significantly
predicted linguistic change for five out of the eight C# projects.
For Python projects, feature additions and improvements
caused the most disturbance in code lexicon. In contrast,
JavaScript projects showed significantly less linguistic sensi-
tivity to feature additions and improvements. Furthermore, for
the majority of the projects where the lag of 1 is significant, the
lags of 2 and 5 are also significant, which suggests that bug
fixes, feature additions, and improvements have a long-term
impact on linguistic change, not limited by a single release.

Different maintenance activities can predict linguis-
tic change at different levels of accuracy. Fea-
ture additions are the best predictors of change.
However, the magnitude of the effect seems to be
influenced by the programming language.

III. CONCLUSION, IMPACT, AND NEXT STEPS

In this paper, we conducted a preliminary analysis, using a
frequency-based statistical model of language evolution [20],
to study linguistic change in OSS projects. Our analysis
revealed that different types of software maintenance activities
have different impacts on code lexicon. Overall, the effect of
maintenance activities is non-uniform. This effect even varies
among programming languages, indicating that different main-
tenance activities might have different linguistic footprints.

In terms of practical impact, resolving the micro relations
between change in code lexicon and the different types of
maintenance activities can help developers to diagnose and
reverse the symptoms of code aging, make informed design
and maintenance decisions, and ensure a sustainable and stable
delivery process. For instance, capturing the linguistic foot-
prints of maintenance activities can help developers to pinpoint
the specific activities responsible for linguistic antipatterns
(LAs), or inconsistencies among the naming of a code entity.
LAs were found to be a main symptom of code aging. Such
linguistic anomalies, often introduced during maintenance
sessions, lead to a steeper learning curve, misunderstandings,
and eventually bug-prone code in the project [38], [39], [40].
Therefore, linguistic change analysis can be very important
for the stability of OSS projects, given that OSS environments
often lack an organizational structure that enforces the confor-
mance to a specific naming convention [6].

Our work can also have practical impacts on OSS projects
sustainability. For instance, creativity is often defined as a
function of new features proposed and implemented [41],
[42]. Our analysis showed that new features came with new
vocabulary, thus more linguistic change. However, higher
levels of linguistic change might destabilize the project. In
OSS environments, project stability is a necessity for quality
control [43]. Therefore, resolving the interdependency rela-
tions between linguistic change, creativity, and quality can help
to define the levels of linguistic change that can be optimal for
keeping the system’s quality under control, at the same time,
do not restrain OSS developers’ creativity.



TABLE II: Granger Causality results for each individual project in our analysis. The variables provided are predictors of
Linguistic Change. p-values are indicated: *p<0.05; tp < 0.01; ip < 0.001. Empty cells indicate that no change of that

specific type was reported in the project.

Bug fix Feature addition Improvement
Lag 1 2 5 1 2 5 1 2 5
C#
aspboilerplatenet 0.912 0.952  0.970 0.190  0.126  0.429 0.348  0.475 0.703
cake 0.000f  0.000%  0.003" | 0.000* 0.000f 0.000" | 0.000% 0.000% 0.002f
optikey 0.000%  0.0027  0.000% | 0.041*  0.038*  0.296
ckan 0.000F  0.000*  0.003" | 0.000f 0.001f 0.057 0.024"  0.070 0.218
azure-pipelines 0.275 0.503  0.434 0.002"  0.014* 0.242 0.002"  0.011* 0.116
VisualStudio 0.000f  0.000f  0.002F | 0.005" 0.013* 0.218 0.079 0.054 0.2248
clasticnet 0.5067  0.7769  0.5209 | 0.4518 0.7887  0.6495
hearthstone 0.000f  0.000f  0.012" | 0.000%* 0.000% 0.000%
Java
flym 0.000%  0.000f  0.006" | 0.000f 0.000%f 0.001f | 0.000* 0.000*  0.000*
RxJava 0.966  0.941 0.878 0.795  0.956 0.826
mongo-java-driver | 0.000%  0.000f  0.000% | 0.000% 0.000%* 0.000% | 0.000% 0.000% 0.000%
gksms 0.199  0.315  0.705 0.009"  0.034*  0.020* | 0.356  0.228 0.621
checkstyle 0.001%  0.012*  0.009" | 0.000F  0.000%*  0.000%
filedownloader 0.917 0.7102  0.809 0.000%  0.002"  0.002" | 0.000f 0.000f  0.000%
newpipe 0.784 0.489 0.452 0.000%  0.000*  0.004" | 0.801 0.025*  0.046*
android-catcher 0.001"  0.002"  0.002" | 0.000f 0.000%f 0.000% | 0.000* 0.000*  0.000*
Python
synapse 0.000%  0.000%  0.000% | 0.000F  0.000*  0.000% | 0.000%  0.000%  0.000%
erpnext 0.267 0.211 0.575 0.000  0.000%  0.000% | 0.000*  0.000F  0.000%
tautulli 0.935 0.942 0.662 0.000%  0.000*  0.000% | 0.000f 0.000%f 0.001f
kinto 0.501 0.138 0.012* | 0.000%* 0.000f 0.000% | 0.000%  0.000%  0.000*
aiohttp 0.000%*  0.000%  0.022* | 0.000f 0.000* 0.000% | 0.000f 0.000f  0.000*
netbox 0.662 0.756 0.721 0.000%  0.000%  0.000% | 0.000%  0.000%  0.000%
h 0.164  0.417  0.209 0.000%  0.002" 0.117 0.012*  0.051 0.056
conan 0.000%  0.000*  0.000% | 0.000f 0.000%f 0.000% | 0.000*  0.000%  0.000*
JavaScript
RocketChat 0.015*  0.031T  0.098 0.001"  0.005" 0.008" | 0.970  0.891 0.938
ghost 0.136 0.314 0.278 0.000%  0.000%  0.000% | 0.692 0.872 0.184
habitica 0.677  0.904  0.918 0.352  0.601 0.709 0.474  0.764  0.510
vuejs 0.818  0.318  0.776 0.519  0.859  0.639 0.481 0.628 0.942
redux-form 0.358  0.495  0.967 0.998  0.968  0.769
semantic-ui 0.000f  0.000F  0.001" | 0.626 0.764 0.947 0.000%  0.000%  0.000%
vuetify 0.000*  0.000%*  0.010* | 0.000f  0.000*  0.000% | 0.000% 0.000% 0.001F
stylelint 0.002"  0.010* 0.001* | 0.000%* 0.000%*  0.000%

In terms of theoretical impact, our preliminary work in this
paper lays out a theoretical foundation for describing and mod-
eling the evolution of developers’ language in OSS projects.
Our aim is to provide a fundamental understating of how such
language emerges and becomes shaped by different models of
language selection. According to Croft’s [44], understanding
language change at a micro- and macro-levels provides a basis
for understanding the generation and propagation of language
structures, thus provides a description of how a language
system may emerge and continue to change over time. The
overarching goal in this paper is to advance the state-of-the-art
in theoretical software engineering research by articulating a

unified theory of linguistic change in OSS projects. According
to Sjgberg et al., in order for software engineering to develop
into a mature field of science, theory-building should become
an integral part of its research and practice [45]. In the long
run, a well-defined theory of code lexicon evolution will serve
as a core asset that researchers can utilize to quantitatively
investigate linguistic trends in OSS and uncover best practices
for maintaining successful OSS projects and building vibrant
OSS communities.
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