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ABSTRACT

Information Retrieval (IR) methods have been recently employed
to provide automatic support for bug localization tasks. However,
for an IR-based bug localization tool to be useful, it has to achieve
adequate retrieval accuracy. Lower precision and recall can leave
developers with large amounts of incorrect information to wade
through. To address this issue, in this paper, we systematically inves-
tigate the impact of combining various IR methods on the retrieval
accuracy of bug localization engines. The main assumption is that
different IR methods, targeting different dimensions of similarity
between artifacts, can be used to enhance the confidence in each
others’ results. Five benchmark systems from different application
domains are used to conduct our analysis. The results show that a)
near-optimal global configurations can be determined for different
combinations of IR methods, b) optimized IR-hybrids can signifi-
cantly outperform individual methods as well as other unoptimized
methods, and ¢) hybrid methods achieve their best performance
when utilizing information-theoretic IR methods. Our findings can
be used to enhance the practicality of IR-based bug localization
tools and minimize the cognitive overload developers often face
when locating bugs.
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1 INTRODUCTION

Despite the substantial resources being devoted to deliver high
quality software, software systems are still shipped with defects.
Whenever a bug is reported, developers go through their code
to find any code fragments related to the bug, a process that is
known as bug localization. However, when software systems get
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large, localizing bugs manually can become a tedious and error-
prone task [34, 43]. This problem can be particularly challenging in
open source environments, where projects can have multiple active
branches that are maintained by distributed developer teams [48].
To minimize this effort, contemporary bug localization tools employ
conventional Information Retrieval (IR) methods for automated
support. The main objective is to help developers narrow down
their search space when looking for buggy code artifacts [29, 38].
Generally speaking, IR methods match the textual description of
bugs, often expressed in natural language, with source code. The
underlying assumption is that code fragments that share some sort
of textual similarity with a bug’s description are likely to be related
to the bug [24, 37, 38].

IR-based bug localization methods are appealing for their low
computational cost and the fact that they can be independent of
the programming language [3, 21, 24, 27, 40, 54]. However, due to
their inherent sub-optimal accuracy, IR methods are still far from
achieving performance levels that are adequate for practical appli-
cations. Consequently, developers still have to vet the outcomes of
these tools in order to locate relevant code (true positives) and to
discard incorrect matches (false positives).

To improve the performance of existing IR-based bug localization
tools, researchers have considered combining various IR methods
into hybrid pairs [4, 15, 16, 45, 49]. The hybrid approach can be
analogous to consulting multiple experts with different types of
expertise. In particular, combining orthogonal IR methods, which
target different aspects of similarity between text artifacts, is ex-
pected to enhance the confidence in the retrieved results (preci-
sion) as well as help to retrieve links that are missed by individual
methods (recall). However, existing hybrid methods either treat
individual IR methods equally or rely on existing heuristics for as-
signing confidence levels to each individual IR method in the hybrid
combination [16, 45]. These tactics can limit the improvement in
the performance as different IR methods perform differently, thus,
should not be equally trusted.

To overcome these limitations, in this paper, we propose an
optimized approach for systematically combining individual IR-
methods into hybrid pairs. Our approach is calibrated based on
the performance of individual IR methods. To conduct our anal-
ysis, we experiment with four different IR methods that employ
different mechanisms for calculating the textual similarity between
textual artifacts [2, 7, 16, 20, 24, 30, 40, 45, 52, 54]. Specifically, our
set of IR methods consists of: Vector Space Model (VSM) [41] as a
representative of string matching methods, Latent Semantic Index-
ing (LSI) [11] as a representative of semantically-enabled methods,
Jensen-Shannon Model (JSM) [1] as a representative of probabilistic
methods, and Pointwise Mutual Information (PMI) [8] as a repre-
sentative of information-theoretic text retrieval methods.
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Our analysis in this paper is conducted using five benchmark
systems obtained from a broad range of application domains. Our
objectives are to a) determine the nature of impact that combin-
ing individual IR methods has on the retrieval accuracy during
bug localization tasks, b) approximate configuration settings that
can be used to optimize the performance of the hybrid methods,
¢) compare the performance of optimized versus unoptimized IR-
hybrid methods, and d) study the impact of individual methods’
performance on the performance of their combinations.

The rest of this paper is organized as follows. Section 2 provides
a brief discussion of the different IR methods and hybrid approaches
investigated in our analysis. Section 3 describes our experimental
setup. Section 4 presents our results. Section 5 discusses our main
findings. Section 6 reviews seminal related work and positions our
work within existing literature. Section 7 discusses the potential
limitations of our study. Finally, Section 8 concludes the paper and
describes several directions of future work.

2 APPROACH AND RESEARCH QUESTIONS

In this section, we introduce the various IR methods used in our
analysis, describe the hybrid approaches used for combining these
methods, and present our main research questions.

2.1 Information Retrieval Methods

A large number of IR methods have been employed to provide auto-
matic support for developers during bug localization sessions [2, 7,
16, 20, 24, 30, 40, 45, 52, 54]. In our analysis, we select four of these
methods that, a) have been consistently reported to achieve com-
petitive performance, and b) support relatively different similarity
functions. The following is a description of these methods.

2.1.1  Vector Space Model. VSM is an algebraic model that repre-
sents a text artifact as an unordered vector of words (also known
as a bag-of-words) [41]. Using VSM, a corpus (collection of text
documents) is converted into a term-document matrix. Each term
or word in the matrix represents a single term or word found in
the corpus and each column represents an individual document.
Each entry in the matrix w; j carries a specific weight for the term
Jj in the document i. The weight of a term is typically measured
using its frequency - inverse document frequency (TF.IDF) [26].
TF.IDF is the product of the number of occurrence of the term in
the document (TF) and the term’s scarcity across all the documents
(IDF). Formally, TF.IDF can be computed as:
ID| (1)
|di : wedi Adj € D|
where f{w,d) is the frequency of occurrences of the term w in the
document d, D is the total number of documents in the corpus,
and w € d indicates the presence of the term w in the document d.
Similarity between two documents can be determined by calculating
the distance between their document vectors. Cosine distance is
widely used to measure the similarity between vectors.

TF.IDF = f(w,d) X log

2.1.2  Latent Semantic Indexing. LSI [11] is an IR method that is
used to identify the latent relationships between terms and concepts
contained in a text corpus. LSI draws on the assumption that there
is some underlying semantic structure that is partially concealed
by the variability of the contextual usage of words in a certain
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corpus [12]. Formally, LSI starts by constructing a single term-
document matrix of size mxn for the corpus, where m is the number
of terms and n is the number of documents in the corpus. Singular
Value Decomposition (SVD) is then used to reduce this matrix to a
product of three matrices, expressing the term-document matrix in
the form:

A=UsvT ()

where A is the term-document matrix, U and V are an m X r and an
r X n orthogonal matrices respectively, and X is an r X r diagonal
matrix of the singular values of A. The key objective of LSI is to
reduce the dimensionality of the information retrieval problem.
This is achieved by deleting all but the k largest values on the
diagonal of ¥ and the corresponding columns in the other two
matrices. The resulting truncated matrices are represented as Uy,
3k, and Vi for U, %, and V respectively. This truncation process
generates a k-dimensional vector space. The vectors in this space
represent the documents in the corpus. The vector representation
for the query in this k-dimensional space can be calculated in the
same manner as:

v=q" U 3)
where q is the TF-vector for the query. The similarity between
the query and a document in the collection can then be computed
by calculating the cosine distance between the query computed
vector v and the column vector representing the document in the
VkT matrix.

2.1.3 Jensen-Shannon Model. Presented by Abadi et al. [1], JSM is
a probabilistic IR technique that represents each document d in the
corpus as a probabilistic distribution over its words. The probability
of each word in this distribution is calculated as:

f(wi,d)
pi= 4)
where f(w;, d) is the frequency of the word w; in the document d,
and T is the total number of words in d. The similarity between any
two documents (g, d) can be estimated using the distance between
their probabilistic distributions py and py, calculated using the
Jensen-Shannon Divergence [9] as:

pa+pq,  Hpa) +Hpg)
JSM(d.q) =1~ [H( e )
where H is the entropy of the distribution p, given by:
n
H(p) = ) plx)) - logy plx;) (©)
j=1

where n is the length of . JSM value can be in the range [0, 1],
where 1 indicates a perfect similarity. JSM has been used in software
traceability tasks and has been reported to outperform methods
such as VSM and LSI [1, 31].

2.1.4  Pointwise Mutual Information. PMI s an information-theoretic
measure of information overlap, or statistical dependence, between
two words. PMI was introduced by Church and Hanks [8], and later
used by Turney [46] to identify synonym pairs using Web search
results. Formally, the PMI between two words w; and wy can be
measured as the probability of them occurring in the same text
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versus the probabilities of them occurring separately. Assuming
the corpus contains N artifacts, PMI can be calculated as:

M P(w1, wg)
PMI = logy( Clow) Clws) ) = log 5 ) Py ?

where C(w1, wp) is the number of documents in the corpus con-
taining both w; and wy, and C(w;) and C(wy) are the number of
documents containing wi and wy respectively. If the words w; and
wy are frequently associated, the probability of observing w; and
wy, together will be larger than the chance of observing them inde-
pendently. This results in a PMI >> 1. On the other hand, if there
is no relation between w; and wy, then the probability of observ-
ing wy and wy together will be much less than the probability of
observing them independently (i.e., PMI << 1).

PMI is symmetrical; the amount of information acquired about
wy from observing wi is equivalent to the amount of information
acquired about w1 when observing wy. The value of PMI can go from
—o0 to +00, where —co indicates that the two words are not related,
or do not appear together in any of the corpus documents, and +co
implies a complete co-occurrence between the words. The value of
PMI can be normalized to fit in the range [-1, 1] as follows [5]:

PMI _ log,(P(w1)P(wz)) _
—logy(P(w1, w2))  log,(P(w1, w2))

To utilize PMI in text retrieval, a method such as Text Semantic
Similarity (TSS) can be used [28]. TSS is a text based and corpus
based measure that estimates semantic similarity between two texts
using the pairwise semantic similarity of their individual words. TSS
models the semantic similarity of texts as a function of the semantic
similarity of their words. In particular, TSS combines information
from word-to-word similarity and word specificity to calculate the
similarity between texts. Formally, the semantic similarity between
two texts T; and T, can be described as follows:

nPMI = ®)

ZI.Tll(maxSim(Wi, Tz) X IDF(w;))

7SS = (2L
=3 3 IDF(w;) o
Z‘jzzll(maxSim(Wj, T1) X IDF(wj))
+
3 IDF(w))

where maxSim(w;, Ty) is the similarity score between w; from T;
and its most similar word in T». Similarly, maxSim(wj, Tr) is the
similarity score between the word w; from the text T and its most
similar word in T;. IDF(w) is the word’s specificity, calculated as
the number of artifacts in the corpus divided by the number of
artifacts that contain the word w.

2.2 The Hybrid Approach

The basic idea behind the hybrid approach is that different IR meth-
ods use different expertise to localize bugs. In other words, each
method arrives at the conclusion, or the similarity judgment, be-
tween a bug report and code artifacts differently. For instance, VSM
uses simple word matching to calculate similarity. LSI, on the other
hand, calculates similarity between texts by comparing their under-
lying latent semantic structures (or topics). The hybrid approach
assumes that each individual IR method is an independent expert
on bug localization whose judgment determines the occurrence of
a bug in a code artifact. Therefore, combining experts’ forecasts
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is expected to provide a forecast that is more certain than that of
each individual expert [18, 50]. This approach has been successfully
employed in tasks such as feature location [37] and traceability
link recovery [16]. In our analysis, we consider two types of hybrid
approaches: optimized and unoptimized.

2.2.1 Optimized IR-Hybrids. A hybrid approach of IR methods can
be obtained by combining the ranked lists generated by different
IR methods based on some sort of an optimization function [16].
Formally, let X be the set of source code files in the system, and
let Y be the list of bug reports. Let i and j be any two IR methods,
sim;(x, y) is the similarity between the source code artifact x and
the bug report y as calculated by the IR method i, and A is an opti-
mization variable which expresses the confidence in the judgment
of the method i. The combination of i and j can be established as
follows:

sim; j(x,y) = A X simj(x,y) + (1 = A) X simj(x, y) (10)
Eq. 10 assumes that the similarity scores generated by methods i

and j are in same range (e.g., [0-1]). If this is not the case, the scores
can be normalized as follows:

simi(x,y) —sim;(X,Y)
o(simi(X,Y))

simi(X, Ynormalized = (11)
where sim;(X,Y) is the mean of similarity scores between all the
source code artifacts and bug reports in the system and o(sim;(X, Y))
is the standard deviation of the similarity scores.

2.2.2  Unoptimized Hybrid Methods. This set of hybrid methods
do not apply any sort of optimization to combine the outcome of
different IR methods (i.e., individual IR methods are treated equally).
In our analysis, we consider two unoptimized methods that were
proven to enhance the performance of bug localization tools [45].
These methods can be described as follows:

e Borda Count: Borda Count [14] is a rank-only combination
approach which assigns scores to the retrieved links based
on their ranks in each IR method’s ranked list. Formally,
assuming a set of IR methods C. Each method ¢; € C ranks
the link k at rank r; . Let M; be the number of links that
received a non-zero score by c;. Then, the Borda Count for k
in ¢; is calculated as M; — r; . The total Borda Count for k
in the combination of the methods in C can be calculated as:

IC]
Borda(k) = ZMi —Tik (12)
i=0
After calculating the Borda scores for all retrieved links, the
rank of each link in the combined list is calculated based on
its total Borda Count.

e Score Addition: Score Addition is a score-based combina-
tion approach that sums up the scores assigned by each
individual IR methods to each retrieved link. Assuming a
set of IR methods C, where each methods ¢; € C assigned a
score of s; ;. to the link k. Then the Score Addition of k for
the combination of IR methods in C is calculated as:

IC]
ScoreAddition(k) = Z Si k (13)
i=0
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Table 1: The experimental systems used in our analysis.

System Bug Reports  Source File
Aspect] [39] 318 6503
Eclipse [54] 3075 12300
JodaTime [39] 43 315
SWT [54] 98 484
ZXing [54] 20 391

2.3 Research Questions

The main objective of our empirical investigation is to compare the
performance of the A-optimized IR-hybrids against the individual
IR methods as well as the unoptimized IR-hybrids (Borda Count and
Score Addition). To guide our analysis, we formulate the following
research questions:

e RQjq: Is there any global optimal A that can be used for
combining IR methods in Eq.10?

e RQ,: How effective is the hybrid approach in comparison
to the individual IR methods?

e RQ3: How effective are the A-optimized IR-hybrids in com-
parison to the unoptimized hybrids?

e RQ4: How does the performance of individual IR methods
affect the performance of their hybrid pairs?

3 EXPERIMENTAL SETUP

In this section, we describe our empirical investigation, including
the systems used in our analysis and the different performance
measures used to assess the accuracy of the proposed methods.

3.1 Experimental Systems

Five benchmark open source systems from two datasets are used
in our analysis. These systems, described in Table 1, were obtained
from the following sources:

e Zhou et al. [54]: This dataset includes bug reports from three
popular open source projects, SWT, ZXing, and Eclipse. Each
bug report in the dataset consists of the bug’s title, its de-
scription, and the list of files modified to fix the bug. This
dataset consists 98, 20, and 3075 bug reports for SWT, ZXing,
and Eclipse respectively.

e moreBugs [39]: This dataset includes bug reports from the
Aspect and the JodaTime repositories. For each bug report,
the dataset includes the bug’s title, its description, and the
list of files modified to fix the bug. The dataset consists of
318 bug reports for Aspect] and 43 bug reports for JodaTime.

3.2 Evaluation Measures

To evaluate the performance of the proposed methods, we use two
conventional IR evaluation measures that are commonly used in
the bug localization literature [17, 25, 40]. These measures can be
described as follows:

e Mean Reciprocal Rank (MRR): Reciprocal rank (RR) is
the multiplicative inverse of the rank of the first correct item
of a query. It measures how early a correct item appears in
a ranked list. This measure is used when the user is mainly
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concerned with retrieving at least one correct item. For in-
stance, if the first relevant item occurs at rank n, then the
reciprocal rank is computed as % [10]. MRR is the average
of the reciprocal ranks across all queries Q. This measure
can be calculated as follows:

1 1Q] 1
MRR = — _ 14
|O] ; rank; (14)

where rank; is the rank of the first relevant item for the
query Q;. MRR ranges between 0 and 1, where 1 represents
a perfect retrieval scenario (i.e., a correct item is positioned
at rank 1 for each query).

Top N Rank (TR y): This measure returns the percentage of
queries that contains at least one relevant item in the first N
items of the retrieved list. Different values of N can be used,
in our analysis we use N = {1, 5, 10}. For example, a TR;=
50% indicates that 50% of the queries returned a correct item
as the top ranked item in the list (first hit).

MRR and TRy are effective indicators of the practicality of IR-
based bug localization tools. Specifically, there are typically very
few source code artifacts related to each reported bug. The ranking
of these correct artifacts is critical for the effectiveness of the IR-
method as identifying at least one buggy source file often makes it
easier for developers to find the rest [40]. In fact, previous research
reported that developers would perceive an automated debugging
tool as not-useful if it does not locate the root cause of a bug early
in the ranked list [2, 22, 33].

3.3 Implementation

We start our experimental analysis by indexing source code artifacts
in our systems. Indexing is the process of extracting the textual
component of code (code lexicon) embedded in identifier names
and internal code comments. In our analysis, a code file is treated as
a text file. The textual content of each file is extracted using string
manipulation [19]. Extracted code identifiers are split into their
constituent words using standard camel-casing (e.g., LibraryEntry
is split to library and entry). During this process, programming
reserved words and English stop-words are filtered out (e.g., int,
the). These words are highly unlikely to provide any discriminative
information to the retrieval method. The stop-word list provided
by StanfordNLP is used in our analysis. The remaining terms are
stemmed to their morphological roots using Porter stemmer [36].
The outcome of the indexing process is a compact content descriptor
(unordered vector of terms) for each of our code artifacts. The code
in our experiment is indexed at a class granularity level (i.e., a code
artifact is basically a single class). In particular, since we are mainly
dealing with Object Oriented code, we assume that each file holds
a single class. Inner classes are considered to be a part of the main
class.

The Bluebit Matrix Calculator, a high performance matrix algebra
for .NET programming, is used to implement LSI. We adopted a
brute-force search strategy to determine the optimal value of k for
each query [20]. Specifically, for each query in each of our systems,
we generated the LSI space for all k values in the set [50, 100, 150,
200, ..., 900]. The performance in terms of reciprocal rank (RR) was
then measured for each query at each k value. The k value which
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produced the highest RR was used. In Aspect}, SWT, and ZXing,
the majority of queries achieved their highest RR values at k=50.
In Eclipse, k=100 achieved the highest RR for the majority of the
queries. In JodaTime, the best RR was achieved at k=300.

4 RESULTS AND ANALYSIS

In this section, we examine the performance of the various IR
methods proposed earlier, analyze and compare the performance
of the hybrid methods, and describe the A optimization process.

4.1 Individual Methods Performance

We start our analysis by examining the performance of individual
IR methods. Specifically, each method is used to retrieve the code
artifacts relevant to each bug report in each of our benchmark
systems. Table 2 shows the TRy, TRs, TR1g, and MRR values for
each IR method averaged over each system.

The results show that, on average, PMI outperforms VSM, JSM,
and LSI, in terms of MRR, TRs, and TRy¢. In general, PMI works
better in larger systems, while JSM seems to be working better for
smaller systems. This can be explained based on the fact that PMI
favors larger files over smaller ones. In other words, larger files
tend to be given a higher similarity score, thus appear higher in
the retrieved list. This gives PMI a clear advantage over other IR
methods as larger source code files tend to be more defect-prone.
Zhang et al. [53] reported that only a small number of largest
source files in software systems accounts for a large proportion of
the defects. Similar observations were made by Ostrand et al [32]
who reported that 20% of the largest files contained 70% of bugs.

We applied Wilcoxon rank sum test to examine the differences
in the performance of individual IR methods in terms of MRR.
Specifically, we compared the RR values for each query in each
system achieved by PMI against the RR values achieved by other
methods (VSM, LSI, and JSM). Statistical significance was measured
at p < 0.05. Table 3 report the results of our statistical analysis. The
results show that PMI significantly outperformed other methods
in three out of five systems used in our analysis. More specifically,
in Eclipse, Aspect], and SWT, PMI managed to achieve statistically
significant improvement over other methods. In JodaTime, JSM
managed to achieve the best results. However, the improvement
over PMI was insignificant. A similar behavior was observed in
ZXing; other methods outperformed PMI, with JSM achieving the
best results. However, the differences in MRR were insignificant.

4.2 Optimized Hybrids vs. Individual Methods

A main question when combining two IR methods using the opti-
mized approach is to determine the A value that can maximize the
retrieval accuracy of the hybrid pair. In the literature, such value is
often chosen to be 0.5, in other words, the same confidence level is
assigned for both methods i and j in Eq. 10 [16, 18]. However, our
analysis of individual methods’ performances revealed that different
methods performed differently; thus they cannot be treated equally,
instead, they should be assigned confidence levels according to their
individual performance. To determine such values, we followed an
exhaustive search approach. In particular, for each combination
of methods, we measured the performance in terms of MRR at
different A values with a 0.1 step size (i.e, A =0,0.1,0.2,0.3, ..., 1).
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Table 2: The performance of the individual IR methods in
terms of TRy, TR5, TR19, and MRR

System Method | TR1(%) TR5(%) TR19(%) | MRR
VSM 5.66 16.04 22.64 0.12
LSI 7.55 14.78 22.01 0.12
Aspect] JSM 7.55 18.55 23.90 0.13
PMI 15.72 35.22 45.28 0.25
VSM 8.85 21.53 29.27 0.16
LSI 18.34 33.92 42.47 0.26
Eclipse JSM 14.24 29.98 38.76 0.22
PMI 17.59 40.36 51.67 0.29
VSM 20.93 51.16 67.44 0.35
LSI 37.21 53.49 62.79 0.45
JodaTime JSM 37.21 58.14 72.09 0.47
PMI 18.60 62.79 83.72 0.40
VSM 11.22 34.69 46.94 0.23
LSI 8.16 19.39 24.49 0.14
SWT JSM 11.22 29.59 43.88 0.22
PMI 27.55 68.37 81.63 0.44
VSM 30.00 40.00 55.00 0.37
LSI 30.00 45.00 45.00 0.38
ZXing JSM 35.00 55.00 65.00 0.44
PMI 25.00 45.00 55.00 0.34

Table 3: Comparing methods performance against PMI in
terms of MRR using Wilcoxon Rank Sum Test

| PMIVMS | PMELSI | PMIJSM
Aspect] | p<0.00,Z=-9.89 | p<0.00,Z=-8.41 | p < 0.00, Z=-9.08
Eclipse | p < 0.00, Z=-26.55 | p < 0.00, Z=-7.08 | p < 0.00, Z=-15.28
JodaTime | p=039,Z=-0.87 | p=0.75,Z=-032 | p=0.54, Z=-0.611
SWT | p<0.00,Z=-464 | p<0.00,Z=-615 | p<0.00, Z=-5.08
Zxing | p=0.96,Z=-005 | p=0.88,Z=-0.15 | p =027, Z=-1.108

Values of A that maximized the performance for each hybrid pair
of methods over each system were then averaged. For example,
Fig. 1 shows the performance (MRR) of VSM when combined with
other methods at different A values over the system JodaTime. The
solid horizontal line in the chart shows the performance of VSM
before being combined with any other method. Other lines show
the performance of VSM, in terms of MRR, when combined with
other methods using different values of A.

The optimal average values of A for each method pair is shown
in Table 4. For instance, the table shows that, when combining VSM
and LSI, both methods can be assigned an equal A value. In other
words, both methods can be trusted equally. However, if VSM is
to be combined with PMI, then VSM should be assigned a lower
confidence (4 = 0.2) while PMI is assigned a higher confidence (1 - A
= 0.8). In general, our results show that PMI is to be trusted the most,
followed by JSM, LSI, and finally VSM. These results are aligned
with our individual methods’ analysis results. In particular, PMI
achieved the best performance individually, followed by JSM, LSI
and finally VSM. These results answers our first research question
(RQ1). In general, there is no global optimal A value that works
for all combinations of the IR methods. The value of A should vary
depending on the performance of the methods to be combined.
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Figure 1: Optimizing A for VSM in JodaTime.

Table 4: Average near-optimal values of A of the hybrid meth-
ods across all experimental systems (Optimized for best
MRR).

[ vsM 1sT JSM PMI

VSM - 05 03 02
Lt | 05 - 03 02
JSM | 07 07 - 0.5

PMI 0.8 0.8 0.5 -

To answer our second research question (RQ2), we generate the
set of ranked lists for each system using all combinations of the
IR methods given the A values identified earlier. The results are
shown in Table 5. The table shows the percentage change (potential
loss or gain) in MRR. Specifically, assuming method i achieves a
value of P; for a certain performance measure, and the value P; ;
for the same measure after being combined with method j, then
the percentage change in the performance is calculated as follows:

Py =Pi  100% (15)

P;

For example, in Table 5, the first row shows the percentage change in
the values of MRR for VSM when combined with LSI, JSM, and PMI
over the Aspect project (VSM is method i in Eq. 10). The row in the
table shows that the MRR for the VSM-LSI pair increased by 20.17%
when compared to the MRR achieved by VSM alone. To detect
statistical significance in the loss/gain results, we used Wilcoxon
signed-rank test. The results in Table 6 and Table 7 show that, except
for few cases, all methods experienced significant improvement in
their MRR when combined with other methods using the optimized
approach. Similarly, most optimized hybrid methods experienced
significant improvement in their TRyo scores. These results answer

ROQ;.

4.3 Optimized vs. Unoptimized Methods

To answer our third research question (RQ3), we compare the per-
formance of the A-optimized methods to Score Addition and Borda
Count. Performance is measured using TRy, TR5, and TR;9. These
measures are more sensitive for detecting critical improvements in
terms of the ranking of true positives between the different meth-
ods. The results of our analysis are shown in Table 8. On average,
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Table 5: The performance gain (%MRR) of the hybrid meth-
ods in comparison to the individual IR methods.

Method | System | VSM LSI  JSM PMI
Aspect] - 20.17  27.04 104.80
Eclipse - 58.35 3532 85.74
VSM Joga - 38.83  28.72 40.27
SWT - -3.47 17.32  114.53
ZXing - 28.56  19.88 -1.70
Average - 28.49  25.66  68.737
Aspect] | 13.46 - 16.67  115.99
LSI Eclipse | -6.42 - 3.29 38.09
Joda 8.79 - 25.06 31.70
SWT 56.79 - 43.66  212.39
ZXing 24.21 - 19.53 26.07
Average 19.36 - 21.64  84.85
Aspect] | 13.75  10.69 - 74.55
Eclipse | -5.58 21.96 - 37.24
JsM Joda -4.23  18.74 - 28.18
SWT 27.96  -3.53 - 109.01
ZXing 1.08 4.31 - -6.11
Average 6.60  10.43 - 48.58
Aspect] | -6.75 491 -11.24 -
PMI Eclipse | 0.69 2671  6.68 -
Joda 24.09 48.69  52.42 -
SWT 1528 3.35 2.97 -
ZXing 5.96  40.66  20.04 -
Average 785 2486 14.18 -

the optimized approach managed to outperform the other unop-
timized methods that treat all individual IR methods equally. To
test for statistical significance, we used the McNemar’s test [13].
This test uses a categorical explanatory variable to show if paired
observations in two groups differ significantly in terms of the de-
pendent variable. Due to space limitations, we only show the results
in terms of TRy in Table 9. The table shows that the improvement
of A-optimized method over Addition Score and Broda Count is
significant in most cases, particularly for the PMI-VSM and PMI-
LSI pairs. This observation can be attributed to the fact that the
proposed A-optimized method assigned more confidence to PMI,
a high performing method, over VSM or LSI, a comparatively low
performing methods. Additionally, it can be observed that the per-
formance improvement is significant for Eclipse where there is a
larger number of bugs to experiment with compared to the other
four systems used in our experiment.

5 DISCUSSION

Our analysis has revealed that, on average, when two methods i and
Jj are combined using Eq.10, the generated hybrid list is often higher
in quality in comparison to the lists generated by each method
individually. However, the performance gain of the hybrid pair
tends to be influenced by the individual performance of i and j.
Specifically, the performance gain is:

e Directly proportional to the number of unique relevant arti-
facts retrieved by method j, and

e Inversely proportional to the number of relevant files re-
trieved by method i.
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Table 6: Comparing performance of the hybrid and individual methods in terms of MRR using Wilcoxon Signed Rank Test.

VSM LSI JSM PMI
System
LSI JSM PMI VSM JSM PMI VSM LSI PMI VSM LSI JSM

p =089 p =0.08 p <001 p<001, p<001, p<00l .| p<001, p<005 p < 0.01 p<001 p=029 , p<001
Aspectd | o141 zoamal z-12201 | Z--663" Z=-5061 Zz--12381 | z=-5477 Z--2301 Z--12461 | z=-293" Z--1057 Z--a16"

) p <001 p < 0.01 p < 0.01 p=074 p<00l . p<00l p=083  p<001 p <001 p=084 _ p<00l . p<o00l
Edipse | 7" 31141 z--3151 z-3a611 | z--033) 28731 Z-23797 | z-021} Z--2150" Z--28101 [ Z=-0207 Z=-19311 Z--4a1!

' =009 p < 0.01 p <005 p=013 _ p<00l_ p<00l p=095  p=021 p < 0.01 p<005. p<00l, p<00l
JodaTime 7' 1 00T Z_3551 z--2201|z=-1531 z-=2001 z--2621|2z=-006" z=-1261 7z--2781|z=-2221 z-3451 7z--3531

p <001 p <0.05 p <001 p <0.01 p<0.01 p<0.01 p <001 p <0.05 p<0.01 p <0.05 p=091 p =0.80
SWT | 7 ot z-a16! z-w62! | z-7177 Z-660" z--1551|z-aa7’ z-200' z-713V|z-2000 z-012T z--026"

) p =059 p <005 =083 p<00l . p<00l . p=015 p=037 _ p=039 =069 p<005. p<005, p<005
Xing | o o531 z-108 T Z-w021t|z--2071 Z-2767 Zz-1451|z-090" Z--0861 z=--0a0'|z-213" Z--2241 z--214]

Table 7: Comparing performance of hybrid and individual methods in terms of TRjo using Wilcoxon Signed Rank Test.

VSM LSI JSM PMI
System
LSI JSM PMI VSM JSM PMI VSM LSI PMI VSM LSI JSM

p=035 p <0.01 p <0.01 p=022 . p<005. p<001 p=006 . p=012 p <0.01 p =0.06 p=050 . p<001
Aspec] |7 o ou T Zzo208 T z-241 | z--1231 z-2331 z-7481 | z-c1ss! zo-is71 z-w635 1 | z--192) z--0671 Z--327%

) p <001 p < 0.01 p < 0.01 p=070  p<00l._ p<001 p<005  p<001 P < 0.01 p=091 . p<00l . p<001
Eclipse | 7' 15061 7z--13061 z--24761|z=-038" z-=5611 Z-2032"|2z=-210" Z--10341 Z=-19071 [ z=-0127 Z=-12061 Z=-2037

! P =1.00 p=032 p = 0.06 p=016 . p<005. p<00l p=066 p=056 p <0.05 P =066 p=066 . p=018
JodaTime 7 g0 T Zz_1007 z--1001 | z-cta1? z-2247 7z-280 1| z-0as z--0587 z--2531|z-045] Z--0a5T z--1347

p <005 p <005 p <001 p<00l . p<00l . p<001 p <00l . p=020 p <001 b = 0.66 p=021 =053
SWT | 7 236t z--2141 z-57512z-3211 Z-3611 z--7621|z=305" z--128' Z--6251|z=-0451 Z--1277 z--0631

. p=032 p=0.16 p =0.56 p =032 p =0.08 p <0.05 p =100 p =032 p =100 p =032 p=0.16 p=0.16
zXing | 7 ool zoaqa T z-wsst|z--100" z--17137 z-2001 | z-0001 zZ--t00! Z-000t|z--100" z--1ta1! z-1a!

The direct proportionality can be explained based on the fact
that, when two methods retrieve two different sets of artifacts, the
hybrid combination has a higher chance of including more relevant
artifacts. As a result, we see an increase in the performance. Also, if
the MRR and the TR of j are higher compared to i, the combination
method is more likely to have a higher MRR and a higher TRyg
compared to i. The second relation, inverse proportionality, can
be explained based on the fact that, if i has already retrieved most
of the relevant artifacts, the chances of j contributing any new
relevant artifacts are relatively low. In fact, the combination may
result in a loss of some of the relevant artifacts that i retrieved but j
did not. As a result, we may see a decline in the overall performance
of i in terms of MRR and TRyj.

To get better insights into these observations, we examine the
number of unique links generated by each method. To explain this
analysis, consider three different retrieval methods «, f, and y.
Assuming these methods were used to retrieve the code artifacts
related to a specific bug report and retrieved the relevant files
{a,b,c,d,e, f,g,h} as shown in Fig. 2. The overlapping areas show
the relevant files that were retrieved by multiple methods. In our
example, « retrieved {a, b, ¢, d, e}. f and y retrieved {d, f, g, h} and
{e, f} respectively. Given these results, @ managed to retrieve 3
unique relevant artifacts {a, b, c} that both § and y failed to retrieve.
a retrieved 4 unique artifacts compared to f and 4 unique artifacts
compared y. ff retrieved 3 unique artifacts {d, g, h} compared to y
and 3 unique artifacts { f, g, h} compared to @. On the other hand, y

retrieved a unique artifact { f} compared to a and a unique artifact
{e} compared to f. Similar to this example, we repeat this analysis
over all of our investigated IR methods. Specifically, we calculate the
unique number of artifacts each method retrieved in comparison to
each other method and the number of artifacts that each IR method
uniquely captured in all systems. The results are shown Table 10. In
general, PMI retrieved the largest and most unique set of artifacts,
therefore, was assigned a larger A than other methods.

In summary, to answer RQy, although in most cases the perfor-
mance of the hybrid methods have increased by at least a small
amount in comparison to the performance of the individual meth-
ods, more performance improvement is obtained when the methods
being combined returned different sets of relevant code artifacts
and also achieved comparable performances individually. However,
combining methods which returned a similar set of relevant arti-
facts did not necessarily enhance the performance. Also, combining
a high performing method with a very low performing method may
negatively impact the performance of the high performing method,
thus, impacting the overall performance of the hybrid pair. Finally,
to summarize our findings, we revisit our research questions:

e RQq:Is there any global optimal A that can be used for
combining IR methods in Eq.10? Different hybrid meth-
ods require different A values. This value depends on the
individual performance of the combined methods. Specifi-
cally, methods that are more effective individually should be
assigned higher confidence levels. Our analysis also revealed



ICPC 20, October 5-6, 2020, Seoul, Republic of Korea Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud

Table 8: TR;, TR;5, and TR for Score Addition, Borda Count, and the A-optimized approach for all combinations of IR-methods
used in our experiment.

AdditionScore Borda Count A-optimized
Method | System
TRy TRs  TRyo | TRy TRs  TRyp TR TRs TRyo
SWT 1939 4592 7143 | 26.53 61.22 7857 | 30.61 6837  84.69
ZXing 30.00 60.00 65.00 [ 20.00 55.00 60.00 | 25.00 60.00 60.00
PMI-VSM Joda 25.58 55.81 74.42 | 30.23 67.44 79.07 | 37.21 62.79  79.07

Aspect] 8.81 21.38 29.25 | 12.26 27.67 38.05 | 1258 28.93  38.05
Eclipse 11.15 2696 36.29 | 13.85 3190 4485 | 1554 37.14 4833

Average 18.99  42.02 55.28 | 20.58 48.65 60.11 | 24.19 51.45 62.03
SWT .00 16.33 4490 | 2.04 14.29 2449 | 2347 57.14 80.61

ZXing 40.00 50.00 65.00 [ 30.00 55.00 60.00 [ 35.00 60.00 65.00

PMI-LSI Joda 51.16  69.77 79.07 | 46.51 72.09 86.05 | 44.19 79.07 86.05

Aspect] 11.01 23,58 3396 | 15.09 27.36 37.42 ( 17.30 3459 4371
Eclipse 22.63 44.16 52.62 | 24.23 45.04 56.65 | 24.65 50.21  60.29

Average 2496  40.77 55.11 | 23.57 42.76 5292 | 28.92 56.20 67.13

SWT 20.41 57.14 7143 | 2347 5510 7245 | 2041 57.14 7143

ZXing 30.00 65.00 65.00 [ 25.00 60.00 60.00 | 30.00 65.00 65.00

PMI-JSM Joda 44.19 76.74 93.02 | 37.21 79.07 86.05 | 44.19 76.74  93.02

Aspect] 12.58 2579 3333 | 12.89 25.16 3491 | 12.58 25.79 3333
Eclipse 18.89 3841 49.66 | 17.27 36.29 47.64 | 18.89 3841 49.66

Average 2521 52.62 6249 | 2317 51.12 60.21 | 2521 52.62 62.49
SWT 7.14 19.39  25.51 1.02 4.08 9.18 7.14 19.39 2551

ZXing 40.00  50.00 55.00 | 40.00 50.00 55.00 [ 40.00 50.00 55.00

VSM-LSI Joda 2791 58.14 67.44 | 34.88 55.81 69.77 | 2791 58.14 67.44

Aspect] 7.86 17.30  24.53 6.92 16.04 23.58 7.86 17.30  24.53
Eclipse 13.79 30.70 39.28 | 15.02 30.60 4091 | 13.79 30.70  39.28

Average 19.34  35.10 4235 | 19.57 3131 39.69 | 19.34 3510 42.35
SWT 16.33  36.73 53.06 | 13.27 31.63 53.06 | 1531 3571 55.10

ZXing 35.00 50.00 65.00 [ 30.00 50.00 65.00 | 35.00 50.00 65.00

VSM-JSM Joda 30.23  55.81  72.09 | 23.26 60.47 69.77 | 32.56 62.79  74.42

Aspect] 8.81 17.92  26.10 | 7.86 18.24 26.42 8.81 18.55  26.73
Eclipse 11.71  26.02 3499 | 11.28 2559 3584 | 13.01 28.75  37.59

Average 20.41  37.30 50.25 | 17.13 37.19 50.02 | 20.94 39.16 51.77
SWT 2.04 11.22 2347 1.02 7.14  11.22 3.06 2245  32.65

ZXing 40.00 45.00 50.00 | 35.00 50.00 65.00 | 40.00 50.00 65.00

LSIJSM Joda 48.84  65.12 69.77 | 3256 65.12 74.42 | 41.86 67.44 76.74

Aspect] 8.81 18.55 2642 | 10.06 17.92 24.21 8.81 19.18  25.47
Eclipse 17.92 37.79 4559 | 17.95 3548 4524 | 17.46 36.36  45.27
Average 23.52 3554 43.05 | 1932 3513 44.02 | 2224 39.09 49.03

Table 9: Comparing performance of the A-optimized method to Addition Score and Borda Count in terms of TR using McNe-
mar’s Test (bold indicates significant improvement).

Score Addition Borda Count
System PMI VSM LSI PMI VSM LSI
VSM LSI JSM LSI JSM JSM VSM LSI JSM LSI JSM JSM
SWT p<005 p<0.05 100 | 1.00 1.00 p<005 | p<005 p<0.05 0.73 p<0.05 0.22 p < 0.05
ZXing 1.00 0.63 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
JodaTime 0.25 0.22 1.00 | 1.00 0.25 1.00 0.63 0.38 1.00 1.00 1.00 1.00
Aspect] p<005 p<005 100 | 1.00 0.63 0.77 p<005 p<0.05 0.79 p <0.05 1.00 p < 0.05
Eclipse p<005 p<005 100 | 100 p<005 | p<005 | p<005 p<005 p<0.05 0.87 p<005 | p<005
that an average near optimal A can be calculated for each combined with other methods using the optimized hybrid
hybrid pair as shown in Table 4. approach. This gain was more obvious in larger systems
e RQ,: How effective is the hybrid approach in compar- where the number and size of code artifacts were larger, thus
ison to the individual IR methods? Almost all methods resulting in a better performance for a method such as PML

experienced a significant improvement in performance when
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Figure 2: Example: An illustration of the calculation of the
number of unique artifacts retrieved by three IR methods «,
f,andy.

Table 10: Each row shows the number of unique relevant ar-
tifacts (true positives) retrieved by each IR method in com-
parison to the other methods. The diagonal shows the num-
ber of relevant artifacts unique to the method (were not re-
trieved by any other method).

VSM  LSI JSM PMI

VSM 93 395 351 794

LSI 794 285 549 679
JSM 855 654 191 550
PMI 1585 1507 1273 | 1017

e RQ3: How effective are the A-optimized IR-hybrids in
comparison to the unoptimized hybrids? If optimized
correctly, hybrid methods can outperform unoptimized hy-
brid methods. Specifically, different individual IR methods
perform differently; therefore, treating these methods equally
in the hybrid combination can limit the level of potential
enhancement, or even worse, lead to a decline in the perfor-
mance.

e RQ4:How does the performance of individual IR meth-
ods affect the performance of their hybrid pairs? The
performance of hybrid methods depends on the performance
of their individual methods. Methods that retrieve more
unique links individually (e.g., PMI) bring in more value
to the hybrid pair, thus should be assigned higher confidence
levels.

6 RELATED WORK AND NOVELTY

In this section, we review seminal work related to our work in this
paper and we position our work within existing literature.
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6.1 Related Work

The closest work to our analysis in this paper can be found in
Thomas et al. [45]. The authors investigated the impact of a large
space of IR configurations (e.g., code pre-processing, similarity met-
rics, and term weights) on the accuracy of IR-based bug localization
methods. The authors reported that different parameter settings
had considerable impacts on the accuracy of IR methods. The results
also suggested that combining multiple IR methods, using Borda
Count and Score Addition, improved the performance in all cases.

Binkley et al. [4] investigated the impact of using Learning to
Rank (LtR) in IR-based software maintenance tasks. LtR is machine
learning technique developed to learn how to better rank the doc-
uments retrieved using IR methods. Such technique can learn to
optimize the weights of different IR features for a better accuracy.
Such features included different search configurations such as keep-
ing/removing source words, variations in splitting source code
terms, and using different IR methods (VSM, LSL, and the Query
Likelihood Models [35]). Evaluating LtR over two common software
maintenance tasks (feature location and traceability) showed that
that LtR enabled statistically significant improvements in multiple
performance indicators over several baseline methods.

Wang and Lo [49] examined the performance of various VSM
variants in bug localization tasks. The authors proposed a Genetic
algorithm (GA) based approach to explore the space of possible
compositions of different TF.IDF weighting schemes to generate
a near-optimal composite model of VSM. The proposed approach
was evaluated against several baselines using thousands of bug
reports from Aspectd, Eclipse, and SWT. The results showed that
the proposed approach improved the hit rate at 5 (TRs5) and MRR
over multiple systems.

Gethers et al. [16] used the A-optimized approach to combine
orthogonal IR techniques, which have been statistically shown to
produce dissimilar results, to enhance the performance in IR-based
requirements traceability tasks. The authors experimented with
combining VSM, JMS, and Relational Topic Modeling (RTM) [6].
An empirical evaluation conducted on six software systems showed
that the integrated method outperformed stand-alone IR methods
as well as any other combination of non-orthogonal methods with
statistically significant margins.

6.2 Novelty and Impact

Our review of seminal related work shows that existing work is
mainly focused on investigating the performance of various IR
methods in matching bug reports with their related buggy code
artifacts (e.g. [20, 24, 38]). Other lines of research include the design,
development, and evaluation of IR-based bug localization tools
(e.g. [30, 40, 54]), enhancing the performance of existing IR-based
bug localization methods (e.g. [4, 7, 16, 29, 45, 49, 52]), or proposing
more valid measures to assess the effectiveness of these methods
(e.g. [2, 22]). Our work in this paper builds upon existing work to
propose a more effective solution for the problem. In particular, our
work advances the state-of-the-art as follows:

e We provide further evidence that combining multiple IR
methods can enhance the performance of IR-based bug lo-
calization tools. However, our analysis shows that relying
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on unoptimized techniques can limit the performance of hy-
brid methods. Furthermore, we advance previous work [16]
by empirically determining near-optimal configurations for
specific combinations of methods. Such configurations can
be used as reference points for developers attempting to
get the best out of their IR-based retrieval engines. More
accurate retrieval can help to reduce the cognitive effort
required to localize bugs in large and complex software sys-
tems. This can be particularly important in Open Source
environments, such as GitHub or SourceForge. In such envi-
ronments, projects are maintained by distributed teams of
contributors who often work on multiple active releases of
the project. This search space of code, change reports, and
commits, has to be initially reduced in order to minimize the
information overload and help developers, especially new-
comers, to find tasks that match their skill set. In fact, the
ability to find bugs that are of interest has been identified as
a main problem facing OSS developers [44].

e Our approach minimizes the number of configurations (a
single A knob) that developers need to work with in order to
reach acceptable performance levels. Using other retrieval
configurations (e.g., text pre-processing) can lead to overly
complicated models (e.g., Thomas et al. identified around
3,172 configurations [45]). Furthermore, our proposed ap-
proach is unsupervised. Unlike the Machine Learning (ML)
techniques proposed in [4, 49], no training of any sort is
required to achieve a significant enhancement in perfor-
mance. This gives our approach a practicality advantage
over ML-based techniques especially that such techniques
are frequently associated with hidden technical debt [42].

e Our findings highlight the value of the semantic charac-
teristics of words (e.g., meaningful domain specific words)
over their syntactic characteristics. Semantically fit words
give the code its linguistic identity. IR methods such as PMI
exploit this identity to establish connections between bug
reports and fragments of source code. However, recent evi-
dence revealed that most software systems exhibit a signifi-
cant amount of linguistic change during their lifetime [47].
Therefore, maintaining the accuracy of IR methods require
preserving the linguistic fitness of the system by constantly
refactoring linguistic anomalies during code reviews.

7 THREATS TO VALIDITY

The analysis presented in this paper has several limitations that
might affect the validity of the results [51]. A potential threat to
the proposed study’s internal validity is the class-granularity level
adopted in our analysis. In particular, different granularity levels
might considerably change the behavior of IR methods. However,
since we are dealing with Object Oriented systems, each class sup-
posedly encapsulates one functionality, thus can be treated as a
separate artifact. An internal validity argument could be made
about using a brute-force strategy to calibrate methods such as LSI
and determine A in Eq. 3. Other calibration strategies (e.g., Genetic
algorithms) might provide a more efficient solution to the prob-
lem [23]. Such strategies become especially useful when dealing
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with a large number of features that make a brute-force solution
infeasible.

Threats to external validity are conditions that limit the ability
to generalize the results of the experiment [51]. In particular, the
results of our experiment might not generalize beyond the specific
experimental settings used in this paper. A potential threat to our
external validity stems from the subject systems used in our analysis.
Specifically, our calibration was carried out over only five systems.
Therefore, further experimentation over more, and perhaps larger,
datasets is necessary to ensure the generalizability of our optimized
A values.

Construct validity is the degree to which the various perfor-
mance measures accurately capture the concepts they purport to
measure [51]. In our experiment, there were minimal threats to
construct validity as standard performance measures (MRR and
TRy), which are commonly used in bug localization research, were
used to assess the performance of our investigated methods. We
believe that these measures sufficiently captured and quantified the
different aspects of performance we were interested in.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the impact of combining different IR
methods on the accuracy of static bug localization techniques. Our
set of IR methods consisted of VSM, LSI, JSM, and PMI combined
into hybrid pairs using a A-optimized method and two unoptimized
methods, Borda Count and Score Addition. Five benchmark sys-
tems from different application domains were used to conduct our
analysis. The performance of the different investigated IR methods
was measured using performance indicators that are commonly
used in IR-based bug localization research.

Our results showed that combining different methods almost
always resulted in improvement over all performance indicators.
However, the amount of improvement was highly dependent on the
performance of individual IR methods. The results also showed that
near optimal confidence levels can be determined for each hybrid
pair of IR methods. Specifically, methods that retrieve more unique
relevant artifacts individually should be assigned more confidence
when combined with their less effective counterparts, otherwise,
treating the combined IR methods equally can limit any potential
improvement in performance.

In our future work, we will build automated solution to help
calibrate IR methods in the context of large-scale distributed OSS
environments. Our goal is to be able to automatically determine
which IR methods, or combinations of methods, work best for dif-
ferent types of software systems or code retrieval tasks, and how
much confidence should be assigned to each method. Furthermore,
a working tool that implements our main findings in this paper
will be developed. Such tool will enable us to conduct long term
usability studies to gain a better understanding of our methods’
scalability, usability, and scope of applicability.

ACKNOWLEDGMENT

This research is supported by the U.S. National Science Foundation
(Award CCF 1821525).



On Combining IR Methods to Improve Bug Localization

REFERENCES

(1]

[2

[

[13]

[14

[15]

(18]

[19

[20]

[21

oo
0

[23]

[24

[25]

[26

[27]

[28

Aharon Abadi, Mordechai Nisenson, and Yahalomit Simionovici. 2008. A Trace-
ability Technique for Specifications. In International Conference on Program Com-
prehension. 103-112.

Matthew Beard, Nicholas Kraft, Letha Etzkorn, and Stacy Lukins. 2011. Measuring
the Accuracy of Information Retrieval Based Bug Localization Techniques. In
Working Conference on Reverse Engineering. 124-128.

David Binkley and Dawn Lawrie. 2010. Information retrieval applications in
software maintenance and evolution. Encyclopedia of Software Engineering (2010),
454-463.

David Binkley and Dawn Lawrie. 2014. Learning to rank improves IR in SE. In
International Conference on Software Maintenance and Evolution. 441-445.
Gerlof Bouma. 2009. Normalized (pointwise) mutual information in collocation
extraction. In Proceedings of GSCL. 31-40.

Jonathan Chang and David Blei. 2010. Hierarchical relational models for docu-
ment networks. The Annals of Applied Statistics 4, 1 (2010), 124-150.

Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting Missing
Information in Bug Descriptions. In Joint Meeting on Foundations of Software
Engineering. 96-407.

Kenneth Church and Patrick Hanks. 1990. Word Association Norms, Mutual
Information, and Lexicography. Computer Linguistics 16, 1 (1990), 22-29.
Thomas Cover and Joy Thomas. 1991. Elements of Information Theory. Wiley-
Interscience.

Nick Craswell. 2009. Mean reciprocal rank. In Encyclopedia of Database Systems.
Springer, 1703-1703.

Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, and Richard
Harshman. 1990. Indexing by latent semantic analysis. Journal of the American
Society for Information Science 41, 6 (1990), 391-407.

S. Dumais, G. Furnas, T. Landauer, S. Deerwester, and R. Harshman. 1988. Using
Latent Semantic Analysis to Improve Access to Textual Information. In SIGCHI
Conference on Human Factors in Computing Systems. 281-285.

Allen L Edwards. 1948. Note on the "correction for continuity" in testing the
significance of the difference between correlated proportions. Psychometrika 13,
3(1948), 185-187.

Merijn Van Erp and Lambert Schomaker. 2000. Variants of the Borda count
method for combining ranked classifier hypotheses. In International Workshop
On Frontiers In Handwriting Recognition.

Atsushi Fujii. 2007. Enhancing Patent Retrieval by Citation Analysis. In In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 793-794.

Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. 2011.
On integrating orthogonal information retrieval methods to improve traceability
recovery. In International Conference on Software Maintenance. 133-142.

J. Huffman-Hayes, A. Dekhtyar, and S. Sundaram. 2006. Advancing candidate
link generation for requirements tracing: the study of methods. IEEE Transactions
on Software Engineering 32, 1 (2006), 4-19.

Robert Jacobs. 1995. Methods for combining experts’ probability assessments.
Methods 7, 5 (1995), 867-888.

Saket Khatiwada, Michael Kelly, and Anas Mahmoud. 2016. STAC: A tool for Static
Textual Analysis of Code. In International Conference on Program Comprehension.
1-3.

Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud. 2017. Just enough seman-
tics: An information theoretic approach for IR-based software bug localization.
Information and Software Technology 93 (2017), 45-57.

Tien Le, Richard Oentaryo, and David Lo. 2015. Information Retrieval and Spec-
trum Based Bug Localization: Better Together. In Joint Meeting on Foundations of
Software Engineering. 579-590.

Tien-Duy Le, Ferdian Thung, and David Lo. 2014. Predicting Effectiveness of
IR-based Bug Localization Techniques. In International Symposium on Software
Reliability Engineering. 335-345.

Sugandha Lohar, Sorawit Amornborvornwong, Andrea Zisman, and Jane Cleland-
Huang. 2013. Improving trace accuracy through data-driven configuration and
composition of tracing features. In Joint Meeting on Foundations of Software
Engineering. 378-388.

S. Lukins, N. Kraft, and L. Etzkorn. 2008. Source Code Retrieval for Bug Localiza-
tion Using Latent Dirichlet Allocation. In Reverse Engineering. 155-164.

Anas Mahmoud and Nan Niu. 2015. On the Role of Semantics in Automated
Requirements Tracing. Requirements Engineering 20, 3 (2015), 281-300.
Christopher Manning, Prabhakar Raghavan, Hinrich Schiitze, et al. 2008. Intro-
duction to information retrieval. Cambridge University Press Cambridge.

A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Petrenko. 2005. Static tech-
niques for concept location in object-oriented code. In Program Comprehension.
33-42.

Rada Mihalcea, Courtney Corley, and Carlo Strapparava. 2006. Corpus-based and
Knowledge-based Measures of Text Semantic Similarity. In National Conference
on Artificial Intelligence. 775-780.

[29]

[30]

[31

[32

w
&

(34]

(35]

[36

[37

[38

[39

[40

[41

[42

[43

[44

S
)

‘o
=

[53

(54

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

Laura Moreno, John Treadway, Andrian Marcus, and Wuwei Shen. 2014. On
the Use of Stack Traces to Improve Text Retrieval-Based Bug Localization. In
International Conference on Software Maintenance and Evolution. 151-160.

Anh Nguyen, Tung Nguyen, Jafar Al-Kofahi, Hung Nguyen, and Tien Nguyen.
2011. A topic-based approach for narrowing the search space of buggy files from
a bug report. In Automated Software Engineering. 263-272.

Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. 2010.
On the equivalence of information retrieval methods for automated traceability
link recovery. In International Conference on Program Comprehension. 68-71.
Thomas Ostrand, Elaine Weyuker, and Robert Bell. 2005. Predicting the location
and number of faults in large software systems. IEEE Transactions on Software
Engineering 31, 4 (2005), 340-355.

Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Techniques
Actually Helping Programmers?. In International Symposium on Software Testing
and Analysis. 199-209.

Nancy Pennington. 1987. Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive Psychology 19, 3 (1987),
295-341.

Jay Ponte and W Bruce Croft. 1998. A Language Modeling Approach to Informa-
tion Retrieval. In Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. 275-281.

F. Porter. 1997. An algorithm for suffix stripping. Morgan Kaufmann Publishers
Inc., 313-316.

Denys Poshyvanyk, Yann-Gaél Gueheneuc, Andrian Marcus, and Giuliano An-
toniol. 2007. Feature Location Using Probabilistic Ranking of Methods Based
on Execution Scenarios and Information Retrieval. Software Engineering, IEEE
Transactions 33, 6 (2007), 420-432.

Shivani Rao and Avinash Kak. 2011. Retrieval from Software Libraries for Bug
Localization: A Comparative Study of Generic and Composite Text Models. In
Working Conference on Mining Software Repositories. 43-52.

Shivani Rao and Avinash Kak. 2013. moreBugs: A New Dataset for Benchmarking
Algorithms for Information Retrieval from Software Repositories. Technical Report.
Purdue University, School of Electrical and Computer Engineering.

Ripon Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne Perry. 2013. Im-
proving bug localization using structured information retrieval. In Automated
Software Engineering. 345-355.

G. Salton, A. Wong, and C. Yang. 1975. A vector space model for automatic
indexing. Communications of ACM 18, 11 (1975), 613-620.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. 2015. Hidden Technical Debt in Machine Learning Systems. In International
Conference on Neural Information Processing Systems. 2503-2511.

Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowl-
edge. IEEE Transactions on Software Engineering 10, 5 (1984), 595-609.

Igor Steinmacher, Marco Aurelio, Graciotto Silva, Marco Aurelio Gerosa, and
David F.Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Technology
59 (2015), 67-85.

Stephen Thomas, Meiyappan Nagappan, Dorothea Blostein, and Ahmed Hassan.
2013. The impact of classifier configuration and classifier combination on bug
localization. IEEE Transactions on Software Engineering 39, 10 (2013), 1427-1443.
Peter Turney. 2001. Mining the Web for Synonyms: PMI-IR Versus LSA on TOEFL.
In European Conference on Machine Learning. 491-502.

Miroslav Tushev, Saket Khatiwada, and Anas Mahmoud. 2019. Linguistic Change
in Open Source Software. In International Conference on Software Maintenance
and Evolution. 296—300.

Haoren Wang and Huzefa Kagdi. 2018. A Conceptual Replication Study on Bugs
that Get Fixed in Open Source Software. In International Conference on Software
Maintenance and Evolution. 299-310.

Shaowei Wang and David Lo. 2014. Compositional Vector Space Models for
Improved Bug Localization. In International Conference on Software Maintenance
and Evolution. 171-180.

Robert L Winkler and Robert T Clemen. 2004. Multiple experts vs. multiple
methods: Combining correlation assessments. Decision Analysis 1, 3 (2004),
167-176.

C. Wohlin, P. Runeson, M. Hést, M. Ohlsson, B. Regnell, and A. Wesslén. 2012.
Experimentation in Software Engineering. Springer.

Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to Rank Relevant
Files for Bug Reports Using Domain Knowledge. In ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 689-699.

Hongyu Zhang. 2009. An investigation of the relationships between lines of code
and defects. In International Conference on Software Maintenance. 274-283.

Jian Zhou, Hongyu Zhang, and D. Lo. 2012. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug reports.
In International Conference on Software Engineering. 14-24.



	Abstract
	1 Introduction
	2 Approach and Research Questions
	2.1 Information Retrieval Methods
	2.2 The Hybrid Approach
	2.3 Research Questions

	3 Experimental Setup
	3.1 Experimental Systems
	3.2 Evaluation Measures
	3.3 Implementation

	4 Results and Analysis
	4.1 Individual Methods Performance
	4.2 Optimized Hybrids vs. Individual Methods
	4.3 Optimized vs. Unoptimized Methods

	5 Discussion
	6 Related Work and Novelty
	6.1 Related Work
	6.2 Novelty and Impact

	7 Threats to Validity
	8 Conclusions and Future Work
	References

