
On Combining IR Methods to Improve Bug Localization
Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud

The Division of Computer Science and Engineering

Louisiana State University

skhati1,mtushe1,amahmo4@lsu.edu

ABSTRACT
Information Retrieval (IR) methods have been recently employed

to provide automatic support for bug localization tasks. However,

for an IR-based bug localization tool to be useful, it has to achieve

adequate retrieval accuracy. Lower precision and recall can leave

developers with large amounts of incorrect information to wade

through. To address this issue, in this paper, we systematically inves-

tigate the impact of combining various IR methods on the retrieval

accuracy of bug localization engines. The main assumption is that

different IR methods, targeting different dimensions of similarity

between artifacts, can be used to enhance the confidence in each

others’ results. Five benchmark systems from different application

domains are used to conduct our analysis. The results show that a)
near-optimal global configurations can be determined for different

combinations of IR methods, b) optimized IR-hybrids can signifi-

cantly outperform individual methods as well as other unoptimized

methods, and c) hybrid methods achieve their best performance

when utilizing information-theoretic IR methods. Our findings can

be used to enhance the practicality of IR-based bug localization

tools and minimize the cognitive overload developers often face

when locating bugs.

CCS CONCEPTS
• Software and its engineering → Maintaining software.

KEYWORDS
Information Retrieval, Bug Localization, Software Debugging

ACM Reference Format:
Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud. 2020. On Combin-

ing IRMethods to Improve Bug Localization. In 28th International Conference
on Program Comprehension (ICPC ’20), October 5–6, 2020, Seoul, Republic of
Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3387904.

3389280

1 INTRODUCTION
Despite the substantial resources being devoted to deliver high

quality software, software systems are still shipped with defects.

Whenever a bug is reported, developers go through their code

to find any code fragments related to the bug, a process that is

known as bug localization. However, when software systems get

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00

https://doi.org/10.1145/3387904.3389280

large, localizing bugs manually can become a tedious and error-

prone task [34, 43]. This problem can be particularly challenging in

open source environments, where projects can have multiple active

branches that are maintained by distributed developer teams [48].

To minimize this effort, contemporary bug localization tools employ

conventional Information Retrieval (IR) methods for automated

support. The main objective is to help developers narrow down

their search space when looking for buggy code artifacts [29, 38].

Generally speaking, IR methods match the textual description of

bugs, often expressed in natural language, with source code. The

underlying assumption is that code fragments that share some sort

of textual similarity with a bug’s description are likely to be related

to the bug [24, 37, 38].

IR-based bug localization methods are appealing for their low

computational cost and the fact that they can be independent of

the programming language [3, 21, 24, 27, 40, 54]. However, due to

their inherent sub-optimal accuracy, IR methods are still far from

achieving performance levels that are adequate for practical appli-

cations. Consequently, developers still have to vet the outcomes of

these tools in order to locate relevant code (true positives) and to

discard incorrect matches (false positives).

To improve the performance of existing IR-based bug localization

tools, researchers have considered combining various IR methods

into hybrid pairs [4, 15, 16, 45, 49]. The hybrid approach can be

analogous to consulting multiple experts with different types of

expertise. In particular, combining orthogonal IR methods, which

target different aspects of similarity between text artifacts, is ex-

pected to enhance the confidence in the retrieved results (preci-

sion) as well as help to retrieve links that are missed by individual

methods (recall). However, existing hybrid methods either treat

individual IR methods equally or rely on existing heuristics for as-

signing confidence levels to each individual IR method in the hybrid

combination [16, 45]. These tactics can limit the improvement in

the performance as different IR methods perform differently, thus,

should not be equally trusted.

To overcome these limitations, in this paper, we propose an

optimized approach for systematically combining individual IR-

methods into hybrid pairs. Our approach is calibrated based on

the performance of individual IR methods. To conduct our anal-

ysis, we experiment with four different IR methods that employ

different mechanisms for calculating the textual similarity between

textual artifacts [2, 7, 16, 20, 24, 30, 40, 45, 52, 54]. Specifically, our

set of IR methods consists of: Vector Space Model (VSM) [41] as a

representative of string matching methods, Latent Semantic Index-

ing (LSI) [11] as a representative of semantically-enabled methods,

Jensen-Shannon Model (JSM) [1] as a representative of probabilistic

methods, and Pointwise Mutual Information (PMI) [8] as a repre-

sentative of information-theoretic text retrieval methods.

https://doi.org/10.1145/3387904.3389280
https://doi.org/10.1145/3387904.3389280
https://doi.org/10.1145/3387904.3389280

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud

Our analysis in this paper is conducted using five benchmark

systems obtained from a broad range of application domains. Our

objectives are to a) determine the nature of impact that combin-

ing individual IR methods has on the retrieval accuracy during

bug localization tasks, b) approximate configuration settings that

can be used to optimize the performance of the hybrid methods,

c) compare the performance of optimized versus unoptimized IR-

hybrid methods, and d) study the impact of individual methods’

performance on the performance of their combinations.

The rest of this paper is organized as follows. Section 2 provides

a brief discussion of the different IR methods and hybrid approaches

investigated in our analysis. Section 3 describes our experimental

setup. Section 4 presents our results. Section 5 discusses our main

findings. Section 6 reviews seminal related work and positions our

work within existing literature. Section 7 discusses the potential

limitations of our study. Finally, Section 8 concludes the paper and

describes several directions of future work.

2 APPROACH AND RESEARCH QUESTIONS
In this section, we introduce the various IR methods used in our

analysis, describe the hybrid approaches used for combining these

methods, and present our main research questions.

2.1 Information Retrieval Methods
A large number of IR methods have been employed to provide auto-

matic support for developers during bug localization sessions [2, 7,

16, 20, 24, 30, 40, 45, 52, 54]. In our analysis, we select four of these

methods that, a) have been consistently reported to achieve com-

petitive performance, and b) support relatively different similarity

functions. The following is a description of these methods.

2.1.1 Vector Space Model. VSM is an algebraic model that repre-

sents a text artifact as an unordered vector of words (also known

as a bag-of-words) [41]. Using VSM, a corpus (collection of text

documents) is converted into a term-document matrix. Each term

or word in the matrix represents a single term or word found in

the corpus and each column represents an individual document.

Each entry in the matrixwi , j carries a specific weight for the term

j in the document i. The weight of a term is typically measured

using its frequency - inverse document frequency (TF.IDF) [26].

TF.IDF is the product of the number of occurrence of the term in

the document (TF) and the term’s scarcity across all the documents

(IDF). Formally, TF.IDF can be computed as:

TF .IDF = f (w,d) × log

|D |

|di : w ∈ di ∧ di ∈ D |
(1)

where f(w,d) is the frequency of occurrences of the term w in the

document d, D is the total number of documents in the corpus,

andw ∈ d indicates the presence of the term w in the document d.
Similarity between two documents can be determined by calculating

the distance between their document vectors. Cosine distance is

widely used to measure the similarity between vectors.

2.1.2 Latent Semantic Indexing. LSI [11] is an IR method that is

used to identify the latent relationships between terms and concepts

contained in a text corpus. LSI draws on the assumption that there

is some underlying semantic structure that is partially concealed

by the variability of the contextual usage of words in a certain

corpus [12]. Formally, LSI starts by constructing a single term-

document matrix of sizem×n for the corpus, wherem is the number

of terms and n is the number of documents in the corpus. Singular

Value Decomposition (SVD) is then used to reduce this matrix to a

product of three matrices, expressing the term-document matrix in

the form:

A = U ΣVT
(2)

where A is the term-document matrix, U and V are anm × r and an
r × n orthogonal matrices respectively, and Σ is an r × r diagonal
matrix of the singular values of A. The key objective of LSI is to

reduce the dimensionality of the information retrieval problem.

This is achieved by deleting all but the k largest values on the

diagonal of Σ and the corresponding columns in the other two

matrices. The resulting truncated matrices are represented as Uk ,
Σk , and Vk for U , Σ, and V respectively. This truncation process

generates a k-dimensional vector space. The vectors in this space

represent the documents in the corpus. The vector representation

for the query in this k-dimensional space can be calculated in the

same manner as:

v = qTUkΣ
−1
k (3)

where q is the TF-vector for the query. The similarity between

the query and a document in the collection can then be computed

by calculating the cosine distance between the query computed

vector v and the column vector representing the document in the

VT
k matrix.

2.1.3 Jensen-Shannon Model. Presented by Abadi et al. [1], JSM is

a probabilistic IR technique that represents each document d in the

corpus as a probabilistic distribution over its words. The probability

of each word in this distribution is calculated as:

pi =
f (wi ,d)

Td
(4)

where f (wi ,d) is the frequency of the wordwi in the document d ,
andTd is the total number of words ind . The similarity between any

two documents (q, d) can be estimated using the distance between

their probabilistic distributions p̂q and p̂q , calculated using the

Jensen-Shannon Divergence [9] as:

JSM(d,q) = 1 −

[
H (

p̂d + p̂q

2

) −
H (p̂d) + H (p̂q)

2

]
(5)

where H is the entropy of the distribution p̂, given by:

H (p̂) =
n∑
j=1

p̂(x j) · log2 p̂(x j) (6)

where n is the length of p̂. JSM value can be in the range [0, 1],

where 1 indicates a perfect similarity. JSM has been used in software

traceability tasks and has been reported to outperform methods

such as VSM and LSI [1, 31].

2.1.4 PointwiseMutual Information. PMI is an information-theoretic

measure of information overlap, or statistical dependence, between

two words. PMI was introduced by Church and Hanks [8], and later

used by Turney [46] to identify synonym pairs using Web search

results. Formally, the PMI between two words w1 and w2 can be

measured as the probability of them occurring in the same text

On Combining IR Methods to Improve Bug Localization ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

versus the probabilities of them occurring separately. Assuming

the corpus contains N artifacts, PMI can be calculated as:

PMI = log
2
(

C(w1,w2)
N

C(w1)
N

C(w2)
N

) = log
2
(
P(w1,w2)

P(w1)P(w2)
) (7)

where C(w1,w2) is the number of documents in the corpus con-

taining both w1 and w2, and C(w1) and C(w2) are the number of

documents containingw1 andw2 respectively. If the wordsw1 and

w2 are frequently associated, the probability of observingw1 and

w2 together will be larger than the chance of observing them inde-

pendently. This results in a PMI >> 1. On the other hand, if there

is no relation betweenw1 andw2, then the probability of observ-

ing w1 and w2 together will be much less than the probability of

observing them independently (i.e., PMI << 1).

PMI is symmetrical; the amount of information acquired about

w2 from observingw1 is equivalent to the amount of information

acquired aboutw1 when observingw2. The value of PMI can go from

−∞ to +∞, where −∞ indicates that the two words are not related,

or do not appear together in any of the corpus documents, and +∞

implies a complete co-occurrence between the words. The value of

PMI can be normalized to fit in the range [-1, 1] as follows [5]:

nPMI =
PMI

− log
2
(P(w1,w2))

=
log

2
(P(w1)P(w2))

log
2
(P(w1,w2))

− 1 (8)

To utilize PMI in text retrieval, a method such as Text Semantic

Similarity (TSS) can be used [28]. TSS is a text based and corpus

based measure that estimates semantic similarity between two texts

using the pairwise semantic similarity of their individual words. TSS

models the semantic similarity of texts as a function of the semantic

similarity of their words. In particular, TSS combines information

from word-to-word similarity and word specificity to calculate the

similarity between texts. Formally, the semantic similarity between

two texts T1 and T2 can be described as follows:

TSS =
1

2

(

∑|T1 |
i=1 (maxSim(wi ,T2) × IDF (wi))∑

IDF (wi)

+

∑|T2 |
j=1 (maxSim(w j ,T1) × IDF (w j))∑

IDF (w j)
)

(9)

wheremaxSim(wi ,T2) is the similarity score betweenwi from T1
and its most similar word in T2. Similarly,maxSim(w j ,T1) is the
similarity score between the wordw j from the text T2 and its most

similar word in T1. IDF (w) is the word’s specificity, calculated as

the number of artifacts in the corpus divided by the number of

artifacts that contain the wordw .

2.2 The Hybrid Approach
The basic idea behind the hybrid approach is that different IR meth-

ods use different expertise to localize bugs. In other words, each

method arrives at the conclusion, or the similarity judgment, be-

tween a bug report and code artifacts differently. For instance, VSM

uses simple word matching to calculate similarity. LSI, on the other

hand, calculates similarity between texts by comparing their under-

lying latent semantic structures (or topics). The hybrid approach

assumes that each individual IR method is an independent expert

on bug localization whose judgment determines the occurrence of

a bug in a code artifact. Therefore, combining experts’ forecasts

is expected to provide a forecast that is more certain than that of

each individual expert [18, 50]. This approach has been successfully

employed in tasks such as feature location [37] and traceability

link recovery [16]. In our analysis, we consider two types of hybrid

approaches: optimized and unoptimized.

2.2.1 Optimized IR-Hybrids. A hybrid approach of IR methods can

be obtained by combining the ranked lists generated by different

IR methods based on some sort of an optimization function [16].

Formally, let X be the set of source code files in the system, and

let Y be the list of bug reports. Let i and j be any two IR methods,

simi (x,y) is the similarity between the source code artifact x and

the bug report y as calculated by the IR method i , and λ is an opti-

mization variable which expresses the confidence in the judgment

of the method i . The combination of i and j can be established as

follows:

simi , j (x,y) = λ × simi (x,y) + (1 − λ) × simj (x,y) (10)

Eq. 10 assumes that the similarity scores generated by methods i
and j are in same range (e.g., [0-1]). If this is not the case, the scores

can be normalized as follows:

simi (x,y)normalized =
simi (x,y) − simi (X ,Y)

σ (simi (X ,Y))
(11)

where simi (X ,Y) is the mean of similarity scores between all the

source code artifacts and bug reports in the system andσ (simi (X ,Y))
is the standard deviation of the similarity scores.

2.2.2 Unoptimized Hybrid Methods. This set of hybrid methods

do not apply any sort of optimization to combine the outcome of

different IR methods (i.e., individual IR methods are treated equally).

In our analysis, we consider two unoptimized methods that were

proven to enhance the performance of bug localization tools [45].

These methods can be described as follows:

• Borda Count: Borda Count [14] is a rank-only combination

approach which assigns scores to the retrieved links based

on their ranks in each IR method’s ranked list. Formally,

assuming a set of IR methods C . Each method ci ∈ C ranks

the link k at rank ri ,k . Let Mi be the number of links that

received a non-zero score by ci . Then, the Borda Count for k
in ci is calculated asMi − ri ,k . The total Borda Count for k
in the combination of the methods in C can be calculated as:

Borda(k) =

|C |∑
i=0

Mi − ri ,k (12)

After calculating the Borda scores for all retrieved links, the

rank of each link in the combined list is calculated based on

its total Borda Count.

• Score Addition: Score Addition is a score-based combina-

tion approach that sums up the scores assigned by each

individual IR methods to each retrieved link. Assuming a

set of IR methods C , where each methods ci ∈ C assigned a

score of si ,k to the link k . Then the Score Addition of k for

the combination of IR methods in C is calculated as:

ScoreAddition(k) =

|C |∑
i=0

si ,k (13)

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud

Table 1: The experimental systems used in our analysis.

System Bug Reports Source File
AspectJ [39] 318 6503

Eclipse [54] 3075 12300

JodaTime [39] 43 315

SWT [54] 98 484

ZXing [54] 20 391

2.3 Research Questions
The main objective of our empirical investigation is to compare the

performance of the λ-optimized IR-hybrids against the individual

IR methods as well as the unoptimized IR-hybrids (Borda Count and

Score Addition). To guide our analysis, we formulate the following

research questions:

• RQ1: Is there any global optimal λ that can be used for

combining IR methods in Eq.10?

• RQ2: How effective is the hybrid approach in comparison

to the individual IR methods?

• RQ3: How effective are the λ-optimized IR-hybrids in com-

parison to the unoptimized hybrids?

• RQ4: How does the performance of individual IR methods

affect the performance of their hybrid pairs?

3 EXPERIMENTAL SETUP
In this section, we describe our empirical investigation, including

the systems used in our analysis and the different performance

measures used to assess the accuracy of the proposed methods.

3.1 Experimental Systems
Five benchmark open source systems from two datasets are used

in our analysis. These systems, described in Table 1, were obtained

from the following sources:

• Zhou et al. [54]: This dataset includes bug reports from three

popular open source projects, SWT, ZXing, and Eclipse. Each
bug report in the dataset consists of the bug’s title, its de-

scription, and the list of files modified to fix the bug. This

dataset consists 98, 20, and 3075 bug reports for SWT, ZXing,
and Eclipse respectively.

• moreBugs [39]: This dataset includes bug reports from the

AspectJ and the JodaTime repositories. For each bug report,

the dataset includes the bug’s title, its description, and the

list of files modified to fix the bug. The dataset consists of

318 bug reports for AspectJ and 43 bug reports for JodaTime.

3.2 Evaluation Measures
To evaluate the performance of the proposed methods, we use two

conventional IR evaluation measures that are commonly used in

the bug localization literature [17, 25, 40]. These measures can be

described as follows:

• Mean Reciprocal Rank (MRR): Reciprocal rank (RR) is

the multiplicative inverse of the rank of the first correct item

of a query. It measures how early a correct item appears in

a ranked list. This measure is used when the user is mainly

concerned with retrieving at least one correct item. For in-

stance, if the first relevant item occurs at rank n, then the

reciprocal rank is computed as
1

n [10]. MRR is the average

of the reciprocal ranks across all queries Q . This measure

can be calculated as follows:

MRR =
1

|Q |

|Q |∑
i=1

1

ranki
(14)

where ranki is the rank of the first relevant item for the

query Qi . MRR ranges between 0 and 1, where 1 represents

a perfect retrieval scenario (i.e., a correct item is positioned

at rank 1 for each query).

• Top NRank (TRN): This measure returns the percentage of

queries that contains at least one relevant item in the first N

items of the retrieved list. Different values of N can be used,

in our analysis we use N = {1, 5, 10}. For example, a TR1=

50% indicates that 50% of the queries returned a correct item

as the top ranked item in the list (first hit).

MRR and TRN are effective indicators of the practicality of IR-

based bug localization tools. Specifically, there are typically very

few source code artifacts related to each reported bug. The ranking

of these correct artifacts is critical for the effectiveness of the IR-

method as identifying at least one buggy source file often makes it

easier for developers to find the rest [40]. In fact, previous research

reported that developers would perceive an automated debugging

tool as not-useful if it does not locate the root cause of a bug early

in the ranked list [2, 22, 33].

3.3 Implementation
We start our experimental analysis by indexing source code artifacts

in our systems. Indexing is the process of extracting the textual

component of code (code lexicon) embedded in identifier names

and internal code comments. In our analysis, a code file is treated as

a text file. The textual content of each file is extracted using string

manipulation [19]. Extracted code identifiers are split into their

constituent words using standard camel-casing (e.g., libraryEntry
is split to library and entry). During this process, programming

reserved words and English stop-words are filtered out (e.g., int,
the). These words are highly unlikely to provide any discriminative

information to the retrieval method. The stop-word list provided

by StanfordNLP is used in our analysis. The remaining terms are

stemmed to their morphological roots using Porter stemmer [36].

The outcome of the indexing process is a compact content descriptor

(unordered vector of terms) for each of our code artifacts. The code

in our experiment is indexed at a class granularity level (i.e., a code

artifact is basically a single class). In particular, since we are mainly

dealing with Object Oriented code, we assume that each file holds

a single class. Inner classes are considered to be a part of the main

class.

The BluebitMatrix Calculator, a high performancematrix algebra

for .NET programming, is used to implement LSI. We adopted a

brute-force search strategy to determine the optimal value of k for

each query [20]. Specifically, for each query in each of our systems,

we generated the LSI space for all k values in the set [50, 100, 150,

200, ..., 900]. The performance in terms of reciprocal rank (RR) was

then measured for each query at each k value. The k value which

On Combining IR Methods to Improve Bug Localization ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

produced the highest RR was used. In AspectJ, SWT, and ZXing,
the majority of queries achieved their highest RR values at k=50.
In Eclipse, k=100 achieved the highest RR for the majority of the

queries. In JodaTime, the best RR was achieved at k=300.

4 RESULTS AND ANALYSIS
In this section, we examine the performance of the various IR

methods proposed earlier, analyze and compare the performance

of the hybrid methods, and describe the λ optimization process.

4.1 Individual Methods Performance
We start our analysis by examining the performance of individual

IR methods. Specifically, each method is used to retrieve the code

artifacts relevant to each bug report in each of our benchmark

systems. Table 2 shows the TR1, TR5, TR10, and MRR values for

each IR method averaged over each system.

The results show that, on average, PMI outperforms VSM, JSM,

and LSI, in terms of MRR, TR5, and TR10. In general, PMI works

better in larger systems, while JSM seems to be working better for

smaller systems. This can be explained based on the fact that PMI

favors larger files over smaller ones. In other words, larger files

tend to be given a higher similarity score, thus appear higher in

the retrieved list. This gives PMI a clear advantage over other IR

methods as larger source code files tend to be more defect-prone.

Zhang et al. [53] reported that only a small number of largest

source files in software systems accounts for a large proportion of

the defects. Similar observations were made by Ostrand et al [32]

who reported that 20% of the largest files contained 70% of bugs.

We applied Wilcoxon rank sum test to examine the differences

in the performance of individual IR methods in terms of MRR.

Specifically, we compared the RR values for each query in each

system achieved by PMI against the RR values achieved by other

methods (VSM, LSI, and JSM). Statistical significance was measured

at p ≤ 0.05. Table 3 report the results of our statistical analysis. The

results show that PMI significantly outperformed other methods

in three out of five systems used in our analysis. More specifically,

in Eclipse, AspectJ, and SWT, PMI managed to achieve statistically

significant improvement over other methods. In JodaTime, JSM

managed to achieve the best results. However, the improvement

over PMI was insignificant. A similar behavior was observed in

ZXing; other methods outperformed PMI, with JSM achieving the

best results. However, the differences in MRR were insignificant.

4.2 Optimized Hybrids vs. Individual Methods
A main question when combining two IR methods using the opti-

mized approach is to determine the λ value that can maximize the

retrieval accuracy of the hybrid pair. In the literature, such value is

often chosen to be 0.5, in other words, the same confidence level is

assigned for both methods i and j in Eq. 10 [16, 18]. However, our

analysis of individual methods’ performances revealed that different

methods performed differently; thus they cannot be treated equally,

instead, they should be assigned confidence levels according to their

individual performance. To determine such values, we followed an

exhaustive search approach. In particular, for each combination

of methods, we measured the performance in terms of MRR at

different λ values with a 0.1 step size (i.e., λ = 0, 0.1, 0.2, 0.3, ..., 1).

Table 2: The performance of the individual IR methods in
terms of TR1, TR5, TR10, and MRR

System Method TR1(%) TR5(%) TR10(%) MRR

AspectJ

VSM 5.66 16.04 22.64 0.12

LSI 7.55 14.78 22.01 0.12

JSM 7.55 18.55 23.90 0.13

PMI 15.72 35.22 45.28 0.25

Eclipse

VSM 8.85 21.53 29.27 0.16

LSI 18.34 33.92 42.47 0.26

JSM 14.24 29.98 38.76 0.22

PMI 17.59 40.36 51.67 0.29

JodaTime

VSM 20.93 51.16 67.44 0.35

LSI 37.21 53.49 62.79 0.45

JSM 37.21 58.14 72.09 0.47

PMI 18.60 62.79 83.72 0.40

SWT

VSM 11.22 34.69 46.94 0.23

LSI 8.16 19.39 24.49 0.14

JSM 11.22 29.59 43.88 0.22

PMI 27.55 68.37 81.63 0.44

ZXing

VSM 30.00 40.00 55.00 0.37

LSI 30.00 45.00 45.00 0.38

JSM 35.00 55.00 65.00 0.44

PMI 25.00 45.00 55.00 0.34

Table 3: Comparing methods performance against PMI in
terms of MRR using Wilcoxon Rank Sum Test

PMI-VMS PMI-LSI PMI-JSM

AspectJ p < 0.00, Z =-9.89 p < 0.00, Z=-8.41 p < 0.00, Z=-9.08

Eclipse p < 0.00, Z=-26.55 p < 0.00, Z=-7.08 p < 0.00, Z=-15.28

JodaTime p = 0.39, Z=-0.87 p = 0.75, Z=-0.32 p = 0.54, Z=-0.611

SWT p < 0.00, Z=-4.64 p < 0.00, Z=-6.15 p < 0.00, Z=-5.08

Zxing p = 0.96, Z=-0.05 p = 0.88, Z=-0.15 p = 0.27, Z=-1.108

Values of λ that maximized the performance for each hybrid pair

of methods over each system were then averaged. For example,

Fig. 1 shows the performance (MRR) of VSM when combined with

other methods at different λ values over the system JodaTime. The
solid horizontal line in the chart shows the performance of VSM

before being combined with any other method. Other lines show

the performance of VSM, in terms of MRR, when combined with

other methods using different values of λ.
The optimal average values of λ for each method pair is shown

in Table 4. For instance, the table shows that, when combining VSM

and LSI, both methods can be assigned an equal λ value. In other

words, both methods can be trusted equally. However, if VSM is

to be combined with PMI, then VSM should be assigned a lower

confidence (λ = 0.2) while PMI is assigned a higher confidence (1 - λ
= 0.8). In general, our results show that PMI is to be trusted the most,

followed by JSM, LSI, and finally VSM. These results are aligned

with our individual methods’ analysis results. In particular, PMI

achieved the best performance individually, followed by JSM, LSI

and finally VSM. These results answers our first research question

(RQ1). In general, there is no global optimal λ value that works

for all combinations of the IR methods. The value of λ should vary

depending on the performance of the methods to be combined.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

λ

M
R
R

JodaTime, VSM
VSM

VSM-LSI

VSM-JSM

VSM-PMI

Figure 1: Optimizing λ for VSM in JodaTime.

Table 4: Average near-optimal values of λ of the hybridmeth-
ods across all experimental systems (Optimized for best
MRR).

VSM LSI JSM PMI
VSM - 0.5 0.3 0.2

LSI 0.5 - 0.3 0.2

JSM 0.7 0.7 - 0.5

PMI 0.8 0.8 0.5 -

To answer our second research question (RQ2), we generate the
set of ranked lists for each system using all combinations of the

IR methods given the λ values identified earlier. The results are

shown in Table 5. The table shows the percentage change (potential

loss or gain) in MRR. Specifically, assuming method i achieves a
value of Pi for a certain performance measure, and the value Pi , j
for the same measure after being combined with method j, then
the percentage change in the performance is calculated as follows:

Pi j − Pi

Pi
× 100% (15)

For example, in Table 5, the first row shows the percentage change in

the values of MRR for VSM when combined with LSI, JSM, and PMI

over the AspectJ project (VSM is method i in Eq. 10). The row in the

table shows that the MRR for the VSM-LSI pair increased by 20.17%

when compared to the MRR achieved by VSM alone. To detect

statistical significance in the loss/gain results, we used Wilcoxon

signed-rank test. The results in Table 6 and Table 7 show that, except

for few cases, all methods experienced significant improvement in

their MRR when combined with other methods using the optimized

approach. Similarly, most optimized hybrid methods experienced

significant improvement in their TR10 scores. These results answer

RQ2.

4.3 Optimized vs. Unoptimized Methods
To answer our third research question (RQ3), we compare the per-

formance of the λ-optimized methods to Score Addition and Borda

Count. Performance is measured using TR1, TR5, and TR10. These

measures are more sensitive for detecting critical improvements in

terms of the ranking of true positives between the different meth-

ods. The results of our analysis are shown in Table 8. On average,

Table 5: The performance gain (%MRR) of the hybrid meth-
ods in comparison to the individual IR methods.

Method System VSM LSI JSM PMI

VSM

AspectJ - 20.17 27.04 104.80

Eclipse - 58.35 35.32 85.74

Joda - 38.83 28.72 40.27

SWT - -3.47 17.32 114.53

ZXing - 28.56 19.88 -1.70

Average - 28.49 25.66 68.737

LSI

AspectJ 13.46 - 16.67 115.99

Eclipse -6.42 - 3.29 38.09

Joda 8.79 - 25.06 31.70

SWT 56.79 - 43.66 212.39

ZXing 24.21 - 19.53 26.07

Average 19.36 - 21.64 84.85

JSM

AspectJ 13.75 10.69 - 74.55

Eclipse -5.58 21.96 - 37.24

Joda -4.23 18.74 - 28.18

SWT 27.96 -3.53 - 109.01

ZXing 1.08 4.31 - -6.11

Average 6.60 10.43 - 48.58

PMI

AspectJ -6.75 4.91 -11.24 -

Eclipse 0.69 26.71 6.68 -

Joda 24.09 48.69 52.42 -

SWT 15.28 3.35 2.97 -

ZXing 5.96 40.66 20.04 -

Average 7.85 24.86 14.18 -

the optimized approach managed to outperform the other unop-

timized methods that treat all individual IR methods equally. To

test for statistical significance, we used the McNemar’s test [13].

This test uses a categorical explanatory variable to show if paired

observations in two groups differ significantly in terms of the de-

pendent variable. Due to space limitations, we only show the results

in terms of TR10 in Table 9. The table shows that the improvement

of λ-optimized method over Addition Score and Broda Count is

significant in most cases, particularly for the PMI-VSM and PMI-

LSI pairs. This observation can be attributed to the fact that the

proposed λ-optimized method assigned more confidence to PMI,

a high performing method, over VSM or LSI, a comparatively low

performing methods. Additionally, it can be observed that the per-

formance improvement is significant for Eclipse where there is a
larger number of bugs to experiment with compared to the other

four systems used in our experiment.

5 DISCUSSION
Our analysis has revealed that, on average, when two methods i and
j are combined using Eq.10, the generated hybrid list is often higher

in quality in comparison to the lists generated by each method

individually. However, the performance gain of the hybrid pair

tends to be influenced by the individual performance of i and j.
Specifically, the performance gain is:

• Directly proportional to the number of unique relevant arti-

facts retrieved by method j, and
• Inversely proportional to the number of relevant files re-

trieved by method i.

On Combining IR Methods to Improve Bug Localization ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 6: Comparing performance of the hybrid and individual methods in terms of MRR using Wilcoxon Signed Rank Test.

System
VSM LSI JSM PMI

LSI JSM PMI VSM JSM PMI VSM LSI PMI VSM LSI JSM

AspectJ

p = 0.89

Z = -0.14

↑
p = 0.08

Z = -1.74

↑
p < 0.01

Z = -12.20

↑
p < 0.01

Z = -6.63

↑
p < 0.01

Z = -5.06

↑
p < 0.01

Z = -12.38

↑
p < 0.01

Z = -5.47

↑
p < 0.05

Z = -2.30

↑
p < 0.01

Z = -12.46

↑
p < 0.01

Z = -2.93

↓
p = 0.29

Z = -1.05

↑
p < 0.01

Z = -4.16

↓

Eclipse

p < 0.01

Z = -31.14

↑
p < 0.01

Z = -23.15

↑
p < 0.01

Z = -34.61

↑
p = 0.74

Z = -0.33

↓
p < 0.01

Z = -8.73

↑
p < 0.01

Z = -23.79

↑
p = 0.83

Z = -0.21

↓
p < 0.01

Z = -21.50

↑
p < 0.01

Z = -28.10

↑
p = 0.84

Z = -0.20

↑
p < 0.01

Z = -19.31

↑
p < 0.01

Z = -4.41

↑

JodaTime

p = 0.09

Z = -1.70

↑
p < 0.01

Z = -3.55

↑
p < 0.05

Z = -2.20

↑
p = 0.13

Z = -1.53

↑
p < 0.01

Z = -2.90

↑
p < 0.01

Z = -2.62

↑
p = 0.95

Z = -0.06

↓
p = 0.21

Z = -1.26

↑
p < 0.01

Z = -2.78

↑
p < 0.05

Z = -2.22

↑
p < 0.01

Z = -3.45

↑
p < 0.01

Z = -3.53

↑

SWT

p < 0.01

Z = -2.71

↓
p < 0.05

Z = -2.16

↑
p < 0.01

Z = -6.62

↑
p < 0.01

Z = -7.17

↑
p < 0.01

Z = -6.60

↑
p < 0.01

Z = -7.55

↑
p < 0.01

Z = -4.47

↑
p < 0.05

Z = -2.09

↓
p < 0.01

Z = -7.13

↑
p < 0.05

Z = -2.09

↑
p = 0.91

Z = -0.12

↑
p = 0.80

Z = -0.26

↑

ZXing

p = 0.59

Z = -0.53

↑
p < 0.05

Z = -1.98

↑
p = 0.83

Z = -0.21

↓
p < 0.01

Z = -2.97

↑
p < 0.01

Z = -2.76

↑
p = 0.15

Z = -1.45

↑
p = 0.37

Z = -0.90

↑
p = 0.39

Z = -0.86

↑
p = 0.69

Z = -0.40

↓
p < 0.05

Z = -2.13

↑
p < 0.05

Z = -2.24

↑
p < 0.05

Z = -2.14

↑

Table 7: Comparing performance of hybrid and individual methods in terms of TR10 using Wilcoxon Signed Rank Test.

System
VSM LSI JSM PMI

LSI JSM PMI VSM JSM PMI VSM LSI PMI VSM LSI JSM

AspectJ

p = 0.35

Z = -0.94

↑
p < 0.01

Z = -2.98

↑
p < 0.01

Z = -7.24

↑
p = 0.22

Z = -1.23

↑
p < 0.05

Z = -2.33

↑
p < 0.01

Z = -7.48

↑
p = 0.06

Z = -1.88

↑
p = 0.12

Z = -1.57

↑
p < 0.01

Z = -6.35

↑
p = 0.06

Z = -1.92

↓
p = 0.50

Z = -0.67

↑
p < 0.01

Z = -3.27

↓

Eclipse

p < 0.01

Z = -18.26

↑
p < 0.01

Z = -13.06

↑
p < 0.01

Z = -24.76

↑
p = 0.70

Z = -0.38

↓
p < 0.01

Z = -5.61

↑
p < 0.01

Z = -20.32

↑
p < 0.05

Z = -2.10

↓
p < 0.01

Z = -10.34

↑
p < 0.01

Z = -19.07

↑
p = 0.91

Z = -0.12

↑
p < 0.01

Z = -12.06

↑
p < 0.01

Z = -2.93

↑

JodaTime

p = 1.00

Z = 0.00

↑
p = 0.32

Z = -1.00

↑
p = 0.06

Z = -1.90

↑
p = 0.16

Z = -1.41

↑
p < 0.05

Z = -2.24

↑
p < 0.01

Z = -2.89

↑
p = 0.66

Z = -0.45

↓
p = 0.56

Z = -0.58

↑
p < 0.05

Z = -2.53

↑
p = 0.66

Z = -0.45

↑
p = 0.66

Z = -0.45

↑
p = 0.18

Z = -1.34

↑

SWT

p < 0.05

Z = -2.36

↓
p < 0.05

Z = -2.14

↑
p < 0.01

Z = -5.75

↑
p < 0.01

Z = -3.21

↑
p < 0.01

Z = -3.61

↑
p < 0.01

Z = -7.62

↑
p < 0.01

Z = -3.05

↑
p = 0.20

Z = -1.28

↓
p < 0.01

Z = -6.25

↑
p = 0.66

Z = -0.45

↑
p = 0.21

Z = -1.27

↑
p = 0.53

Z = -0.63

↑

ZXing

p = 0.32

Z = -1.00

↑
p = 0.16

Z = -1.41

↑
p = 0.56

Z = -0.58

↓
p = 0.32

Z = -1.00

↑
p = 0.08

Z = -1.73

↑
p < 0.05

Z = -2.00

↑
p = 1.00

Z = 0.00

↑
p = 0.32

Z = -1.00

↑
p = 1.00

Z = 0.00

↓
p = 0.32

Z = -1.00

↑
p = 0.16

Z = -1.41

↑
p = 0.16

Z = -1.41

↑

The direct proportionality can be explained based on the fact

that, when two methods retrieve two different sets of artifacts, the

hybrid combination has a higher chance of including more relevant

artifacts. As a result, we see an increase in the performance. Also, if

theMRR and the TR10 of j are higher compared to i, the combination

method is more likely to have a higher MRR and a higher TR10

compared to i. The second relation, inverse proportionality, can

be explained based on the fact that, if i has already retrieved most

of the relevant artifacts, the chances of j contributing any new

relevant artifacts are relatively low. In fact, the combination may

result in a loss of some of the relevant artifacts that i retrieved but j
did not. As a result, we may see a decline in the overall performance

of i in terms of MRR and TR10.

To get better insights into these observations, we examine the

number of unique links generated by each method. To explain this

analysis, consider three different retrieval methods α , β , and γ .
Assuming these methods were used to retrieve the code artifacts

related to a specific bug report and retrieved the relevant files

{a,b, c,d, e, f ,д,h} as shown in Fig. 2. The overlapping areas show

the relevant files that were retrieved by multiple methods. In our

example, α retrieved {a,b, c,d, e}. β and γ retrieved {d, f ,д,h} and
{e, f } respectively. Given these results, α managed to retrieve 3

unique relevant artifacts {a,b, c} that both β and γ failed to retrieve.

α retrieved 4 unique artifacts compared to β and 4 unique artifacts

compared γ . β retrieved 3 unique artifacts {d,д,h} compared to γ
and 3 unique artifacts { f ,д,h} compared to α . On the other hand, γ

retrieved a unique artifact { f } compared to α and a unique artifact

{e} compared to β . Similar to this example, we repeat this analysis

over all of our investigated IRmethods. Specifically, we calculate the

unique number of artifacts each method retrieved in comparison to

each other method and the number of artifacts that each IR method

uniquely captured in all systems. The results are shown Table 10. In

general, PMI retrieved the largest and most unique set of artifacts,

therefore, was assigned a larger λ than other methods.

In summary, to answer RQ4, although in most cases the perfor-

mance of the hybrid methods have increased by at least a small

amount in comparison to the performance of the individual meth-

ods, more performance improvement is obtained when the methods

being combined returned different sets of relevant code artifacts

and also achieved comparable performances individually. However,

combining methods which returned a similar set of relevant arti-

facts did not necessarily enhance the performance. Also, combining

a high performing method with a very low performing method may

negatively impact the performance of the high performing method,

thus, impacting the overall performance of the hybrid pair. Finally,

to summarize our findings, we revisit our research questions:

• RQ1: Is there any global optimal λ that can be used for
combining IR methods in Eq.10? Different hybrid meth-

ods require different λ values. This value depends on the

individual performance of the combined methods. Specifi-

cally, methods that are more effective individually should be

assigned higher confidence levels. Our analysis also revealed

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud

Table 8: TR1, TR5, and TR10 for Score Addition, Borda Count, and the λ-optimized approach for all combinations of IR-methods
used in our experiment.

Method System AdditionScore Borda Count λ-optimized
TR1 TR5 TR10 TR1 TR5 TR10 TR1 TR5 TR10

PMI-VSM

SWT 19.39 45.92 71.43 26.53 61.22 78.57 30.61 68.37 84.69

ZXing 30.00 60.00 65.00 20.00 55.00 60.00 25.00 60.00 60.00

Joda 25.58 55.81 74.42 30.23 67.44 79.07 37.21 62.79 79.07

AspectJ 8.81 21.38 29.25 12.26 27.67 38.05 12.58 28.93 38.05

Eclipse 11.15 26.96 36.29 13.85 31.90 44.85 15.54 37.14 48.33

Average 18.99 42.02 55.28 20.58 48.65 60.11 24.19 51.45 62.03

PMI-LSI

SWT .00 16.33 44.90 2.04 14.29 24.49 23.47 57.14 80.61

ZXing 40.00 50.00 65.00 30.00 55.00 60.00 35.00 60.00 65.00

Joda 51.16 69.77 79.07 46.51 72.09 86.05 44.19 79.07 86.05

AspectJ 11.01 23.58 33.96 15.09 27.36 37.42 17.30 34.59 43.71

Eclipse 22.63 44.16 52.62 24.23 45.04 56.65 24.65 50.21 60.29

Average 24.96 40.77 55.11 23.57 42.76 52.92 28.92 56.20 67.13

PMI-JSM

SWT 20.41 57.14 71.43 23.47 55.10 72.45 20.41 57.14 71.43

ZXing 30.00 65.00 65.00 25.00 60.00 60.00 30.00 65.00 65.00

Joda 44.19 76.74 93.02 37.21 79.07 86.05 44.19 76.74 93.02

AspectJ 12.58 25.79 33.33 12.89 25.16 34.91 12.58 25.79 33.33

Eclipse 18.89 38.41 49.66 17.27 36.29 47.64 18.89 38.41 49.66

Average 25.21 52.62 62.49 23.17 51.12 60.21 25.21 52.62 62.49

VSM-LSI

SWT 7.14 19.39 25.51 1.02 4.08 9.18 7.14 19.39 25.51

ZXing 40.00 50.00 55.00 40.00 50.00 55.00 40.00 50.00 55.00

Joda 27.91 58.14 67.44 34.88 55.81 69.77 27.91 58.14 67.44

AspectJ 7.86 17.30 24.53 6.92 16.04 23.58 7.86 17.30 24.53

Eclipse 13.79 30.70 39.28 15.02 30.60 40.91 13.79 30.70 39.28

Average 19.34 35.10 42.35 19.57 31.31 39.69 19.34 35.10 42.35

VSM-JSM

SWT 16.33 36.73 53.06 13.27 31.63 53.06 15.31 35.71 55.10

ZXing 35.00 50.00 65.00 30.00 50.00 65.00 35.00 50.00 65.00

Joda 30.23 55.81 72.09 23.26 60.47 69.77 32.56 62.79 74.42

AspectJ 8.81 17.92 26.10 7.86 18.24 26.42 8.81 18.55 26.73

Eclipse 11.71 26.02 34.99 11.28 25.59 35.84 13.01 28.75 37.59

Average 20.41 37.30 50.25 17.13 37.19 50.02 20.94 39.16 51.77

LSI-JSM

SWT 2.04 11.22 23.47 1.02 7.14 11.22 3.06 22.45 32.65

ZXing 40.00 45.00 50.00 35.00 50.00 65.00 40.00 50.00 65.00

Joda 48.84 65.12 69.77 32.56 65.12 74.42 41.86 67.44 76.74

AspectJ 8.81 18.55 26.42 10.06 17.92 24.21 8.81 19.18 25.47

Eclipse 17.92 37.79 45.59 17.95 35.48 45.24 17.46 36.36 45.27

Average 23.52 35.54 43.05 19.32 35.13 44.02 22.24 39.09 49.03

Table 9: Comparing performance of the λ-optimized method to Addition Score and Borda Count in terms of TR10 using McNe-
mar’s Test (bold indicates significant improvement).

System
Score Addition Borda Count

PMI VSM LSI PMI VSM LSI
VSM LSI JSM LSI JSM JSM VSM LSI JSM LSI JSM JSM

SWT p < 0.05 p < 0.05 1.00 1.00 1.00 p < 0.05 p < 0.05 p < 0.05 0.73 p < 0.05 0.22 p < 0.05
ZXing 1.00 0.63 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

JodaTime 0.25 0.22 1.00 1.00 0.25 1.00 0.63 0.38 1.00 1.00 1.00 1.00

AspectJ p < 0.05 p < 0.05 1.00 1.00 0.63 0.77 p < 0.05 p < 0.05 0.79 p < 0.05 1.00 p < 0.05
Eclipse p < 0.05 p < 0.05 1.00 1.00 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 0.87 p < 0.05 p < 0.05

that an average near optimal λ can be calculated for each

hybrid pair as shown in Table 4.

• RQ2: How effective is the hybrid approach in compar-
ison to the individual IR methods? Almost all methods

experienced a significant improvement in performance when

combined with other methods using the optimized hybrid

approach. This gain was more obvious in larger systems

where the number and size of code artifacts were larger, thus

resulting in a better performance for a method such as PMI.

On Combining IR Methods to Improve Bug Localization ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

d e

f

α

β γ

a,b, c

д,h

Figure 2: Example: An illustration of the calculation of the
number of unique artifacts retrieved by three IR methods α ,
β , and γ .

Table 10: Each row shows the number of unique relevant ar-
tifacts (true positives) retrieved by each IR method in com-
parison to the other methods. The diagonal shows the num-
ber of relevant artifacts unique to the method (were not re-
trieved by any other method).

VSM LSI JSM PMI

VSM 93 395 351 794

LSI 794 285 549 679

JSM 855 654 191 550

PMI 1585 1507 1273 1017

• RQ3: How effective are the λ-optimized IR-hybrids in
comparison to the unoptimized hybrids? If optimized

correctly, hybrid methods can outperform unoptimized hy-

brid methods. Specifically, different individual IR methods

perform differently; therefore, treating thesemethods equally

in the hybrid combination can limit the level of potential

enhancement, or even worse, lead to a decline in the perfor-

mance.

• RQ4: Howdoes the performance of individual IRmeth-
ods affect the performance of their hybrid pairs? The
performance of hybrid methods depends on the performance

of their individual methods. Methods that retrieve more

unique links individually (e.g., PMI) bring in more value

to the hybrid pair, thus should be assigned higher confidence

levels.

6 RELATEDWORK AND NOVELTY
In this section, we review seminal work related to our work in this

paper and we position our work within existing literature.

6.1 Related Work
The closest work to our analysis in this paper can be found in

Thomas et al. [45]. The authors investigated the impact of a large

space of IR configurations (e.g., code pre-processing, similarity met-

rics, and term weights) on the accuracy of IR-based bug localization

methods. The authors reported that different parameter settings

had considerable impacts on the accuracy of IR methods. The results

also suggested that combining multiple IR methods, using Borda

Count and Score Addition, improved the performance in all cases.

Binkley et al. [4] investigated the impact of using Learning to

Rank (LtR) in IR-based software maintenance tasks. LtR is machine

learning technique developed to learn how to better rank the doc-

uments retrieved using IR methods. Such technique can learn to

optimize the weights of different IR features for a better accuracy.

Such features included different search configurations such as keep-

ing/removing source words, variations in splitting source code

terms, and using different IR methods (VSM, LSI, and the Query

LikelihoodModels [35]). Evaluating LtR over two common software

maintenance tasks (feature location and traceability) showed that

that LtR enabled statistically significant improvements in multiple

performance indicators over several baseline methods.

Wang and Lo [49] examined the performance of various VSM

variants in bug localization tasks. The authors proposed a Genetic

algorithm (GA) based approach to explore the space of possible

compositions of different TF.IDF weighting schemes to generate

a near-optimal composite model of VSM. The proposed approach

was evaluated against several baselines using thousands of bug

reports from AspectJ, Eclipse, and SWT. The results showed that

the proposed approach improved the hit rate at 5 (TR5) and MRR

over multiple systems.

Gethers et al. [16] used the λ-optimized approach to combine

orthogonal IR techniques, which have been statistically shown to

produce dissimilar results, to enhance the performance in IR-based

requirements traceability tasks. The authors experimented with

combining VSM, JMS, and Relational Topic Modeling (RTM) [6].

An empirical evaluation conducted on six software systems showed

that the integrated method outperformed stand-alone IR methods

as well as any other combination of non-orthogonal methods with

statistically significant margins.

6.2 Novelty and Impact
Our review of seminal related work shows that existing work is

mainly focused on investigating the performance of various IR

methods in matching bug reports with their related buggy code

artifacts (e.g. [20, 24, 38]). Other lines of research include the design,

development, and evaluation of IR-based bug localization tools

(e.g. [30, 40, 54]), enhancing the performance of existing IR-based

bug localization methods (e.g. [4, 7, 16, 29, 45, 49, 52]), or proposing

more valid measures to assess the effectiveness of these methods

(e.g. [2, 22]). Our work in this paper builds upon existing work to

propose a more effective solution for the problem. In particular, our

work advances the state-of-the-art as follows:

• We provide further evidence that combining multiple IR

methods can enhance the performance of IR-based bug lo-

calization tools. However, our analysis shows that relying

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud

on unoptimized techniques can limit the performance of hy-

brid methods. Furthermore, we advance previous work [16]

by empirically determining near-optimal configurations for

specific combinations of methods. Such configurations can

be used as reference points for developers attempting to

get the best out of their IR-based retrieval engines. More

accurate retrieval can help to reduce the cognitive effort

required to localize bugs in large and complex software sys-

tems. This can be particularly important in Open Source

environments, such as GitHub or SourceForge. In such envi-

ronments, projects are maintained by distributed teams of

contributors who often work on multiple active releases of

the project. This search space of code, change reports, and

commits, has to be initially reduced in order to minimize the

information overload and help developers, especially new-

comers, to find tasks that match their skill set. In fact, the

ability to find bugs that are of interest has been identified as

a main problem facing OSS developers [44].

• Our approach minimizes the number of configurations (a

single λ knob) that developers need to work with in order to

reach acceptable performance levels. Using other retrieval

configurations (e.g., text pre-processing) can lead to overly

complicated models (e.g., Thomas et al. identified around

3,172 configurations [45]). Furthermore, our proposed ap-

proach is unsupervised. Unlike the Machine Learning (ML)

techniques proposed in [4, 49], no training of any sort is

required to achieve a significant enhancement in perfor-

mance. This gives our approach a practicality advantage

over ML-based techniques especially that such techniques

are frequently associated with hidden technical debt [42].

• Our findings highlight the value of the semantic charac-

teristics of words (e.g., meaningful domain specific words)

over their syntactic characteristics. Semantically fit words

give the code its linguistic identity. IR methods such as PMI

exploit this identity to establish connections between bug

reports and fragments of source code. However, recent evi-

dence revealed that most software systems exhibit a signifi-

cant amount of linguistic change during their lifetime [47].

Therefore, maintaining the accuracy of IR methods require

preserving the linguistic fitness of the system by constantly

refactoring linguistic anomalies during code reviews.

7 THREATS TO VALIDITY
The analysis presented in this paper has several limitations that

might affect the validity of the results [51]. A potential threat to

the proposed study’s internal validity is the class-granularity level

adopted in our analysis. In particular, different granularity levels

might considerably change the behavior of IR methods. However,

since we are dealing with Object Oriented systems, each class sup-

posedly encapsulates one functionality, thus can be treated as a

separate artifact. An internal validity argument could be made

about using a brute-force strategy to calibrate methods such as LSI

and determine λ in Eq. 3. Other calibration strategies (e.g., Genetic

algorithms) might provide a more efficient solution to the prob-

lem [23]. Such strategies become especially useful when dealing

with a large number of features that make a brute-force solution

infeasible.

Threats to external validity are conditions that limit the ability

to generalize the results of the experiment [51]. In particular, the

results of our experiment might not generalize beyond the specific

experimental settings used in this paper. A potential threat to our

external validity stems from the subject systems used in our analysis.

Specifically, our calibration was carried out over only five systems.

Therefore, further experimentation over more, and perhaps larger,

datasets is necessary to ensure the generalizability of our optimized

λ values.

Construct validity is the degree to which the various perfor-

mance measures accurately capture the concepts they purport to

measure [51]. In our experiment, there were minimal threats to

construct validity as standard performance measures (MRR and

TRn), which are commonly used in bug localization research, were

used to assess the performance of our investigated methods. We

believe that these measures sufficiently captured and quantified the

different aspects of performance we were interested in.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we investigated the impact of combining different IR

methods on the accuracy of static bug localization techniques. Our

set of IR methods consisted of VSM, LSI, JSM, and PMI combined

into hybrid pairs using a λ-optimized method and two unoptimized

methods, Borda Count and Score Addition. Five benchmark sys-

tems from different application domains were used to conduct our

analysis. The performance of the different investigated IR methods

was measured using performance indicators that are commonly

used in IR-based bug localization research.

Our results showed that combining different methods almost

always resulted in improvement over all performance indicators.

However, the amount of improvement was highly dependent on the

performance of individual IR methods. The results also showed that

near optimal confidence levels can be determined for each hybrid

pair of IR methods. Specifically, methods that retrieve more unique

relevant artifacts individually should be assigned more confidence

when combined with their less effective counterparts, otherwise,

treating the combined IR methods equally can limit any potential

improvement in performance.

In our future work, we will build automated solution to help

calibrate IR methods in the context of large-scale distributed OSS

environments. Our goal is to be able to automatically determine

which IR methods, or combinations of methods, work best for dif-

ferent types of software systems or code retrieval tasks, and how

much confidence should be assigned to each method. Furthermore,

a working tool that implements our main findings in this paper

will be developed. Such tool will enable us to conduct long term

usability studies to gain a better understanding of our methods’

scalability, usability, and scope of applicability.

ACKNOWLEDGMENT
This research is supported by the U.S. National Science Foundation

(Award CCF 1821525).

On Combining IR Methods to Improve Bug Localization ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Aharon Abadi, Mordechai Nisenson, and Yahalomit Simionovici. 2008. A Trace-

ability Technique for Specifications. In International Conference on Program Com-
prehension. 103–112.

[2] Matthew Beard, Nicholas Kraft, Letha Etzkorn, and Stacy Lukins. 2011. Measuring

the Accuracy of Information Retrieval Based Bug Localization Techniques. In

Working Conference on Reverse Engineering. 124–128.
[3] David Binkley and Dawn Lawrie. 2010. Information retrieval applications in

software maintenance and evolution. Encyclopedia of Software Engineering (2010),
454–463.

[4] David Binkley and Dawn Lawrie. 2014. Learning to rank improves IR in SE. In

International Conference on Software Maintenance and Evolution. 441–445.
[5] Gerlof Bouma. 2009. Normalized (pointwise) mutual information in collocation

extraction. In Proceedings of GSCL. 31–40.
[6] Jonathan Chang and David Blei. 2010. Hierarchical relational models for docu-

ment networks. The Annals of Applied Statistics 4, 1 (2010), 124–150.
[7] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,

Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting Missing

Information in Bug Descriptions. In Joint Meeting on Foundations of Software
Engineering. 96–407.

[8] Kenneth Church and Patrick Hanks. 1990. Word Association Norms, Mutual

Information, and Lexicography. Computer Linguistics 16, 1 (1990), 22–29.
[9] Thomas Cover and Joy Thomas. 1991. Elements of Information Theory. Wiley-

Interscience.

[10] Nick Craswell. 2009. Mean reciprocal rank. In Encyclopedia of Database Systems.
Springer, 1703–1703.

[11] Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, and Richard

Harshman. 1990. Indexing by latent semantic analysis. Journal of the American
Society for Information Science 41, 6 (1990), 391–407.

[12] S. Dumais, G. Furnas, T. Landauer, S. Deerwester, and R. Harshman. 1988. Using

Latent Semantic Analysis to Improve Access to Textual Information. In SIGCHI
Conference on Human Factors in Computing Systems. 281–285.

[13] Allen L Edwards. 1948. Note on the "correction for continuity" in testing the

significance of the difference between correlated proportions. Psychometrika 13,
3 (1948), 185–187.

[14] Merijn Van Erp and Lambert Schomaker. 2000. Variants of the Borda count

method for combining ranked classifier hypotheses. In International Workshop
On Frontiers In Handwriting Recognition.

[15] Atsushi Fujii. 2007. Enhancing Patent Retrieval by Citation Analysis. In In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 793–794.

[16] Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. 2011.

On integrating orthogonal information retrieval methods to improve traceability

recovery. In International Conference on Software Maintenance. 133–142.
[17] J. Huffman-Hayes, A. Dekhtyar, and S. Sundaram. 2006. Advancing candidate

link generation for requirements tracing: the study of methods. IEEE Transactions
on Software Engineering 32, 1 (2006), 4–19.

[18] Robert Jacobs. 1995. Methods for combining experts’ probability assessments.

Methods 7, 5 (1995), 867–888.
[19] Saket Khatiwada,Michael Kelly, and AnasMahmoud. 2016. STAC: A tool for Static

Textual Analysis of Code. In International Conference on Program Comprehension.
1–3.

[20] Saket Khatiwada, Miroslav Tushev, and AnasMahmoud. 2017. Just enough seman-

tics: An information theoretic approach for IR-based software bug localization.

Information and Software Technology 93 (2017), 45–57.

[21] Tien Le, Richard Oentaryo, and David Lo. 2015. Information Retrieval and Spec-

trum Based Bug Localization: Better Together. In Joint Meeting on Foundations of
Software Engineering. 579–590.

[22] Tien-Duy Le, Ferdian Thung, and David Lo. 2014. Predicting Effectiveness of

IR-based Bug Localization Techniques. In International Symposium on Software
Reliability Engineering. 335–345.

[23] Sugandha Lohar, Sorawit Amornborvornwong, Andrea Zisman, and Jane Cleland-

Huang. 2013. Improving trace accuracy through data-driven configuration and

composition of tracing features. In Joint Meeting on Foundations of Software
Engineering. 378–388.

[24] S. Lukins, N. Kraft, and L. Etzkorn. 2008. Source Code Retrieval for Bug Localiza-

tion Using Latent Dirichlet Allocation. In Reverse Engineering. 155–164.
[25] Anas Mahmoud and Nan Niu. 2015. On the Role of Semantics in Automated

Requirements Tracing. Requirements Engineering 20, 3 (2015), 281–300.

[26] Christopher Manning, Prabhakar Raghavan, Hinrich Schütze, et al. 2008. Intro-
duction to information retrieval. Cambridge University Press Cambridge.

[27] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Petrenko. 2005. Static tech-

niques for concept location in object-oriented code. In Program Comprehension.
33–42.

[28] Rada Mihalcea, Courtney Corley, and Carlo Strapparava. 2006. Corpus-based and

Knowledge-based Measures of Text Semantic Similarity. In National Conference
on Artificial Intelligence. 775–780.

[29] Laura Moreno, John Treadway, Andrian Marcus, and Wuwei Shen. 2014. On

the Use of Stack Traces to Improve Text Retrieval-Based Bug Localization. In

International Conference on Software Maintenance and Evolution. 151–160.
[30] Anh Nguyen, Tung Nguyen, Jafar Al-Kofahi, Hung Nguyen, and Tien Nguyen.

2011. A topic-based approach for narrowing the search space of buggy files from

a bug report. In Automated Software Engineering. 263–272.
[31] Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. 2010.

On the equivalence of information retrieval methods for automated traceability

link recovery. In International Conference on Program Comprehension. 68–71.
[32] Thomas Ostrand, Elaine Weyuker, and Robert Bell. 2005. Predicting the location

and number of faults in large software systems. IEEE Transactions on Software
Engineering 31, 4 (2005), 340–355.

[33] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Techniques

Actually Helping Programmers?. In International Symposium on Software Testing
and Analysis. 199–209.

[34] Nancy Pennington. 1987. Stimulus structures and mental representations in

expert comprehension of computer programs. Cognitive Psychology 19, 3 (1987),

295–341.

[35] Jay Ponte and W Bruce Croft. 1998. A Language Modeling Approach to Informa-

tion Retrieval. In Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. 275–281.

[36] F. Porter. 1997. An algorithm for suffix stripping. Morgan Kaufmann Publishers

Inc., 313–316.

[37] Denys Poshyvanyk, Yann-Gaël Guèhèneuc, Andrian Marcus, and Giuliano An-

toniol. 2007. Feature Location Using Probabilistic Ranking of Methods Based

on Execution Scenarios and Information Retrieval. Software Engineering, IEEE
Transactions 33, 6 (2007), 420–432.

[38] Shivani Rao and Avinash Kak. 2011. Retrieval from Software Libraries for Bug

Localization: A Comparative Study of Generic and Composite Text Models. In

Working Conference on Mining Software Repositories. 43–52.
[39] Shivani Rao and Avinash Kak. 2013. moreBugs: A New Dataset for Benchmarking

Algorithms for Information Retrieval from Software Repositories. Technical Report.
Purdue University, School of Electrical and Computer Engineering.

[40] Ripon Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne Perry. 2013. Im-

proving bug localization using structured information retrieval. In Automated
Software Engineering. 345–355.

[41] G. Salton, A. Wong, and C. Yang. 1975. A vector space model for automatic

indexing. Communications of ACM 18, 11 (1975), 613–620.

[42] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar

Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-

son. 2015. Hidden Technical Debt in Machine Learning Systems. In International
Conference on Neural Information Processing Systems. 2503–2511.

[43] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowl-

edge. IEEE Transactions on Software Engineering 10, 5 (1984), 595–609.

[44] Igor Steinmacher, Marco Aurelio, Graciotto Silva, Marco Aurelio Gerosa, and

David F.Redmiles. 2015. A systematic literature review on the barriers faced by

newcomers to open source software projects. Information and Software Technology
59 (2015), 67–85.

[45] Stephen Thomas, Meiyappan Nagappan, Dorothea Blostein, and Ahmed Hassan.

2013. The impact of classifier configuration and classifier combination on bug

localization. IEEE Transactions on Software Engineering 39, 10 (2013), 1427–1443.

[46] Peter Turney. 2001. Mining theWeb for Synonyms: PMI-IR Versus LSA on TOEFL.

In European Conference on Machine Learning. 491–502.
[47] Miroslav Tushev, Saket Khatiwada, and Anas Mahmoud. 2019. Linguistic Change

in Open Source Software. In International Conference on Software Maintenance
and Evolution. 296–300.

[48] Haoren Wang and Huzefa Kagdi. 2018. A Conceptual Replication Study on Bugs

that Get Fixed in Open Source Software. In International Conference on Software
Maintenance and Evolution. 299–310.

[49] Shaowei Wang and David Lo. 2014. Compositional Vector Space Models for

Improved Bug Localization. In International Conference on Software Maintenance
and Evolution. 171–180.

[50] Robert L Winkler and Robert T Clemen. 2004. Multiple experts vs. multiple

methods: Combining correlation assessments. Decision Analysis 1, 3 (2004),

167–176.

[51] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. 2012.

Experimentation in Software Engineering. Springer.
[52] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to Rank Relevant

Files for Bug Reports Using Domain Knowledge. In ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 689–699.

[53] Hongyu Zhang. 2009. An investigation of the relationships between lines of code

and defects. In International Conference on Software Maintenance. 274–283.
[54] Jian Zhou, Hongyu Zhang, and D. Lo. 2012. Where should the bugs be fixed?

More accurate information retrieval-based bug localization based on bug reports.

In International Conference on Software Engineering. 14–24.

	Abstract
	1 Introduction
	2 Approach and Research Questions
	2.1 Information Retrieval Methods
	2.2 The Hybrid Approach
	2.3 Research Questions

	3 Experimental Setup
	3.1 Experimental Systems
	3.2 Evaluation Measures
	3.3 Implementation

	4 Results and Analysis
	4.1 Individual Methods Performance
	4.2 Optimized Hybrids vs. Individual Methods
	4.3 Optimized vs. Unoptimized Methods

	5 Discussion
	6 Related Work and Novelty
	6.1 Related Work
	6.2 Novelty and Impact

	7 Threats to Validity
	8 Conclusions and Future Work
	References

