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Abstract

A key challenge in scaling Gaussian Process
(GP) regression to massive datasets is that
exact inference requires computation with a
dense n × n kernel matrix, where n is the
number of data points. Significant work fo-
cuses on approximating the kernel matrix via
interpolation using a smaller set of m “induc-
ing points”. Structured kernel interpolation
(SKI) is among the most scalable methods: by
placing inducing points on a dense grid and
using structured matrix algebra, SKI achieves
per-iteration time of O(n + m logm) for ap-
proximate inference. This linear scaling in n
enables inference for very large data sets; how-
ever the cost is per-iteration, which remains
a limitation for extremely large n. We show
that the SKI per-iteration time can be reduced
to O(m logm) after a single O(n) time pre-
computation step by reframing SKI as solving
a natural Bayesian linear regression problem
with a fixed set of m compact basis functions.
With per-iteration complexity independent of
the dataset size n for a fixed grid, our method
scales to truly massive data sets. We demon-
strate speedups in practice for a wide range
of m and n and apply the method to GP in-
ference on a three-dimensional weather radar
dataset with over 100 million points.

1 Introduction

GPs are a widely used and principled class of methods
for predictive modeling. They have a long history in
spatial statistics and geostatistics for spatio-temporal
interpolation problems (Matheron, 1973; Cressie and
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Johannesson, 2008). They were later adopted in
ML as general-purpose predictive models (Rasmussen,
2004), motivated in part by connections to neural net-
works (Neal, 1995; Williams, 1997). More recently, sim-
ilar connections have been identified between GPs and
deep networks (Lee et al., 2018; Matthews et al., 2018;
Garriga-Alonso et al., 2019; Novak et al., 2019; Cheng
et al., 2019). GPs can be used for general-purpose
Bayesian regression (Williams and Rasmussen, 1996;
Rasmussen, 1999), classification (Williams and Barber,
1998), and many other applications (Rasmussen, 2004;
Wilson and Adams, 2013).

A well-known limitation of GPs is running-time scala-
bility. The basic inference and learning tasks require
linear algebraic operations (e.g., matrix inversion, lin-
ear solves, computing log-determinants) with an n× n
kernel matrix, where n is the number of data points.
Exact computations require Θ(n3) time — e.g., using
the Cholesky decomposition — which severely limits
applicability to large problems. Hence, a large amount
of work has been devoted to improving scalability of GP
inference and learning through approximation. Most
of this work is based on the idea of forming an approx-
imate kernel matrix that includes low-rank structure,
e.g., through the use of inducing points or random fea-
tures (Williams and Seeger, 2001; Snelson and Ghahra-
mani, 2005; Quiñonero-Candela and Rasmussen, 2005;
Rahimi and Recht, 2007; Le et al., 2013). With rank-m
structure, the running time of key tasks can be reduced
to Θ(nm2 +m3) (Quiñonero-Candela and Rasmussen,
2005). However, this scaling with n and m continues
to limit the size of input data sets that can be handled,
the approximation accuracy, or both.

Structured kernel interpolation (SKI) is a promising ap-
proach to further improve the scalability of GP methods
on relatively low-dimensional data (Wilson and Nick-
isch, 2015). In SKI, m inducing points are placed on a
regular grid, which, when combined with any stationary
kernel covariance function (e.g., RBF kernel), imposes
extra structure in the approximate kernel matrix. Ker-
nel matrix operations on the grid (i.e., multiplying with
a vector) require only O(m logm) time, and interpo-
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lating from the grid requires O(n) time. By combining
structured kernel operations with iterative methods
for numerical linear algebra, the running time to solve
core GP tasks becomes O(k(n + m logm)) where k
is the number of iterations, and is usually much less
than m or n. The modest per-iteration runtime of
O(n + m logm) allows the modeler to select a large
number of inducing points.

We show how to further improve the scalability of SKI
with respect to n and scale to truly massive data sets.
We first show that the SKI approximation corresponds
to exact inference in a Bayesian regression problem with
a fixed set of m compact spatial basis functions. This
lets us reduce the per-iteration runtime to O(m logm)
— completely independent of n — after a one-time pre-
processing cost of O(n) to compute sufficient statistics
of the regression problem. However, naive application
of these ideas introduces undesirable trade-offs: while
the per-iteration cost is better, we must solve linear
systems that are computationally less desirable than
the original ones — e.g., they are asymmetric instead
of symmetric, or have worse condition number. To
avoid these trade-offs, we contribute novel “factorized”
conjugate gradient and Lanczos methods, which allow
us to solve the original linear systems in O(m logm)
time per-iteration instead of O(n+m logm).

Our techniques accelerate SKI inference and learning
across a wide range of settings. They apply to each
of the main sub-tasks of GP inference: computing the
posterior mean, posterior covariance, and log-likelihood.
We demonstrate runtime improvements across differ-
ent data sets and grid sizes, and the ability to scale
GP inference to datasets well outside the typical range
that can be handled by SKI or other approaches, such
as inducing point methods. For example, we demon-
strate the ability to perform GP inference on a three-
dimensional weather radar dataset with 120 million
data points, using a grid of 128, 000 inducing points.

1.1 Related Work

Outside of SKI and its variants (Wilson et al., 2015;
Gardner et al., 2018a), a variety of scalable GP meth-
ods have been proposed. Most notable are induc-
ing point methods (sparse GP approximations), such
as the Nyström, SoRs, FITC, and SMGP methods
(Williams and Seeger, 2001; Snelson and Ghahramani,
2005; Quiñonero-Candela and Rasmussen, 2005; Walder
et al., 2008). These methods require either Ω(nm2)
time for direct solves, or Ω(nm) per-iteration cost if
using iterative methods. Our approach significantly
improves the dependence on both n and m to just O(n)
preprocessing time and O(m logm) per-iteration cost.

While inducing point methods generally cannot leverage

structured matrix methods like SKI, especially in higher
dimensions, they may achieve comparable accuracy
with a smaller number of inducing points. Directly
comparing SKI to popular inducing point methods is
beyond the scope of this work, however prior work
shows significant performance gains on large, relatively
low-dimensional datasets (Wilson and Nickisch, 2015;
Dong et al., 2017). We note that very recent work
(Meanti et al., 2020) seeks to push the limits of inducing
point methods via careful systems and hardware level
implementations. Like our work, they achieve scaling
to datasets with over 100 million points.

Many scalable GP methods have also been proposed in
the geostatistics literature – see (Heaton et al., 2019)
for a survey. These include structured methods when
observations lie on a grid (Guinness and Fuentes, 2017;
Stroud et al., 2017). Most closely related to our work
is fixed rank kriging (FRK) (Cressie and Johannes-
son, 2008), which can be viewed as a generalization
of our Bayesian regression interpretation of SKI. Like
inducing point methods, FRK using m basis functions
requires Ω(nm2) time. We show that SKI can also be
viewed as a special case of FRK with a fixed kernel
function and a particular set of basis functions arising
from interpolation. These two choices allow our faster
runtime, through the application of structured matrix
vector multiplication techniques and factorized itera-
tive methods, which in turn significantly increases the
number of basis functions that can be used.

2 Background

Notation: Throughout we use bold letters to represent
vectors and capitals to represent matrices. I ∈ Rn×n
represents the identity matrix, with dimension apparent
from context. ForM ∈ Rp×r, mv(M) denotes the time
required to multiply M by any vector in Rr.

2.1 Gaussian Process Regression

In GP regression (Rasmussen, 2004), response values
are modeled as noisy measurements of a random func-
tion f on input data points. Let D be a set of n
points x1, . . . ,xn ∈ Rd with corresponding response
values y1, . . . , yn ∈ R. Let y ∈ Rn have its ith entry
equal to yi and X ∈ Rn×d have its ith row equal to xi.
A Gaussian process with kernel (covariance) function
k(x,x′) : Rd × Rd → R is a random function f such,
for any x1, . . . ,xn ∈ Rd:

f = [f(x1), ..., f(xn)] ∼ N (0,KX), (1)

where KX = [k(xi,xj)]
n
i,j=1 ∈ Rn×n is the kernel (co-

variance) matrix on the data points X.

We assume without loss of generality that f is zero-
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mean. The responses y are modeled as measurements
of fX with i.i.d. Gaussian noise, i.e., y ∼ N (f , σ2I).

The posterior distribution of f given the data D =
(X,y) is itself a Gaussian process. The standard GP
inference tasks are to compute the posterior mean and
covariance and the log-likelihood, given in Fact 1.

Fact 1 (Exact GP Inference). The posterior
mean, covariance, and log likelihood for Gaussian
process regression are given by:

mean: µf |D(x) = kTx z

covariance: kf |D(x,x′) =

k(x,x′)− kTx (KX + σ2I)−1kx′

log likelihood: log p(y) =

− 1

2
[log det(KX + σ2I) + yT z + n log(2π)]

where kx ∈ Rn has ith entry k(x,xi) and z =
(KX + σ2I)−1y.

Evaluating the posterior mean µf |D(x), covariance
kf |D(x,x′), and log likelihood require matrix-vector
multiplication (MVM) with (KX + σ2I)−1, which
is the major run-time bottleneck for GP inference.
Computing this inverse directly requires Θ(n3) time.
The log likelihood requires a further computation of
log det(KX + σ2I), which again naively takes Θ(n3)
time using the Cholesky decomposition. Computing its
gradient, which is necessary, e.g., in hyper-parameter
tuning with gradient based methods, requires a further
trace computation involving (KX + σ2I)−1.

Inference Via Iterative Methods. One way to
accelerate GP inference is to avoid full matrix factor-
ization like Cholesky decomposition and instead use
iterative methods. Gardner et al. (2018b) detail how
to compute or approximate each term in Fact 1 using
a modified version of the conjugate gradient (CG).

For example, the vector z = (KX + σ2I)−1y ∈ Rn
is computed by using CG to solve (KX + σ2I)z = y,
which yields the posterior mean as µf |D(x) = kTx z, and
is also used in the calculation of the log-likelihood.

We will use two iterative algorithms in our work:
(1) conjugate gradient to solve linear systems Av = b
for symmetric positive definite (SPD) A, (2) the Lanc-
zos algorithm to (sometimes partially) tridiagonalize an
SPD matrix A ∈ Rp×p as A = QTQT where Q ∈ Rp×p
is orthonormal and T ∈ Rp×p is tridiagonal. Tridiago-
nalization is used to approximate log det(·) terms (Dong
et al., 2017; Ubaru et al., 2017) and to compute a low-
rank factorization for approximate posterior covariance
evaluation (Pleiss et al., 2018).

Each iteration of CG or Lanczos for GP inference re-
quires matrix-vector multiplication with A = KX+σ2I,
which in general takes mv(KX) + n = O(n2) time, but
may be faster if KX has special structure. The number
of iterations required to reach a given error tolerance
depends on the eigenspectrum of A, and is usually
much less than n, often mostly between 50 to 100. It
can be even lower with preconditioning (Gardner et al.,
2018b). Recent works thus often informally considers
the number of iterations to be a constant independent
of n (Gardner et al., 2018b,a).

2.2 Structured Kernel Interpolation

For large n, the Θ(n2) per-iteration cost of iterative
methods is still prohibitively expensive. Structured
kernel interpolation (SKI) is a method to accelerate
MVMs by using an approximate kernel matrix with
a special structure (Wilson and Nickisch, 2015). SKI
approximates the kernel k(x,x′) as:

k̃(x,x′) = wT
xKGwx′ (2)

where KG ∈ Rm×m is the kernel matrix for the set of
m points on a dense d-dimensional grid, and the vector
wx ∈ Rm contains interpolation weights to interpolate
from grid points to arbitrary x ∈ Rd. That is, the kernel
values between any two points is approximated by
interpolating kernel inner products among grid points.

SKI can use any interpolation strategy (e.g., linear or
cubic); typically, the strategy is local, so that wx has
only a constant number of non-zero entries correspond-
ing to the grid points closest to x. E.g., for linear
interpolation, wx has 2d non-zeros. Let W ∈ Rn×m
have ith row equal to wxi

. SKI approximates the true
kernel matrix KX as K̃X = WKGW

T . Plugging this
approximation directly into the GP inference equations
of Fact 1 yields the SKI inference scheme in Def. 1.

Definition 1 (SKI Inference). The SKI approx-
imate inference equations are given by:

mean: µf |D(x) ≈ wT
xKGW

T z̃

covariance: kf |D(x,x′) ≈
wT

xKGwx′ −wT
xKGW

T (K̃X + σ2I)−1WKGwx′

log likelihood: log p(y) ≈

− 1

2
[log det(K̃X + σ2I) + yT z̃ + n log(2π)]

where K̃X = WKGW
T and z̃ =

(
K̃X + σ2I

)−1
y.

SKI Running Time and Memory. The SKI
method admits efficient approximate inference due to:



Faster Kernel Interpolation for Gaussian Processes

(1) the sparsity of the interpolation weight matrix W ,
and (2) the structure of the on-grid kernel matrix KG.

The cost for each iteration of CG or Lanczos is
O(mv(K̃X + σ2I)) = O(mv(W ) +mv(KG) + n). This
runtime is O(n + m logm) per iteration assuming:
(1) W has O(1) entries per row and so mv(W ) = O(n),
and (2) KG is multilevel Toeplitz, so mv(KG) =
O(m logm) via fast Fourier transform (Lee, 1986). The
matrix KG is multilevel Toeplitz (also known as block
Toeplitz with Toeplitz blocks or BTTB) whenever G
is an equally-spaced grid and k(·, ·) is stationary. The
memory footprint is roughly nnz(W )+m+n = O(n+m)
to storeW , KG, and y, where nnz(A) denotes the num-
ber of non zeros of A.

Overall, SKI improves significantly on the naive O(n2)
per-iteration cost required to apply the true kernel
matrix KX , to per-iteration runtime of O(n+m logm).
However, when n is very large, the O(n) term (for
both runtime and memory) can become a bottleneck.
Our main contribution is to remove this cost, giving
methods with O(m logm) per-iteration runtime with
O(m) memory after O(n) preprocessing.

3 SKI as Bayesian Linear Regression
with Fixed Basis Functions

Our first contribution is to reformulate SKI as exact
inference in a Bayesian linear regression problem with
compact basis functions associated with grid points.
This lets us use standard conjugate update formulas for
Bayesian linear regression to reduce SKI’s per-iteration
runtime to O(m logm), with O(n) preprocessing.

Definition 2 (Grid-Structured Gaussian Pro-
cess; GSGP). Let G = {g1, . . . ,gm} ⊆ Rd be a
set of grid points and k(x,x′) : Rd × Rd → R be a
positive-definite kernel function. A grid-structured
Gaussian process f is defined by the following gen-
erative process:

θ ∼ N (0,KG),

f(x) = wT
xθ, ∀x ∈ Rd.

where w maps x ∈ Rd to wx ∈ Rm.

Notice that a GSGP is a classical Bayesian linear re-
gression model. In principle, w can be any mapping
from Rd to Rm. However, for computational efficiency
and to match the notion of interpolation, the vector
wx will be taken to be the set of weights used by any
fixed scheme to interpolate values from grid points to
arbitrary locations x ∈ Rd. The generative process is
illustrated in Figure 1 for d = 1 and cubic interpolation
on an integer grid (Keys, 1981). The basis functions
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Figure 1: GSGP illustration. Bottom: basis functions for
cubic interpolation are compact and centered at grid points.
Top: a GSGP (thick black curve) is formed as the sum of
scaled basis functions (lighter colored curves) with random
weights at grid points (vertical dashed lines) drawn from
the original GP.

wj
x for each grid point j and for all x are shown in

the bottom panel. The jth basis function is centered
at j and supported on [j − 2, j + 2). For any fixed x,
the vector wx has at most four nonzero entries corre-
sponding to the four nearest grid points. The GSGP f
is generated by first drawing random weights θ as the
values of the original GP — with covariance function
k(·, ·) — at grid points. The generated function f(x)
can be interpreted in two ways: (1) a sum of scaled
basis functions f(x) =

∑
j θjw

j
x, (2) the result of inter-

polating the grid values θ to Rd using the interpolation
scheme.
Claim 1. A GSGP with grid weights θ drawn from
a GP with covariance function k(x,x′) is itself a GP
with covariance function k̃(x,x′) = wT

xKGwx′ .

Proof. For any finite number of input points x1, . . . ,xn,
the joint distribution of (f(x1), . . . , f(xn)) is zero-mean
Gaussian, since each f(xi) = wT

xi
θ is a linear trans-

formation of the same zero-mean Gaussian random
variable θ. Therefore, f(x) is a zero-mean GP. For a
particular pair of function values f(x) and f(x′), the
covariance is given by

Cov(f(x), f(x′)) = Cov(wT
xθ,w

T
x′θ)

= wT
x Cov(θ,θ)wx′

= wT
xKGwx′ = k̃(x,x′). (3)

Therefore, f has the claimed covariance function.

In other words: the exact covariance function of the



Mohit Yadav, Daniel Sheldon, Cameron Musco

Fact 2 (GSGP Inference). The posterior mean,
covariance, and log likelihood functions for the grid-
structured Gaussian process (Def. 2) are given by:

mean: µf |D(x) = wT
x z̄

covariance: kf |D(x,x′) = wT
x C̄wx′

log likelihood: log p(y) =

− 1

2

[
log det(KGW

TW + σ2I) +
yT (y −W z̄)

σ2

+ n log(2π) + (n−m) log σ2
]
,

where z̄ = E[θ|y] = (KGW
TW + σ2I)−1KGW

Ty
is the posterior mean of θ and C̄ = Var(θ|y) =

σ2
(
KGW

TW + σ2I
)−1

KG is the posterior vari-
ance of θ.

GSGP is the same as the SKI approximation in Eq. (2).
Now, suppose noisy observations y ∼ N (fX , σ

2) are
made of the GSGP at input locations X. It is well
known that the posterior distribution of f is a Gaussian
process, with mean, covariance and log likelihood given
in Fact 2 (Neal, 2011; Bishop, 2006) and the proof of
the same is presented in Appendix A.1. From Claim 1
it follows that:

Theorem 1 (Equivalence of GSGP Inference and SKI
Approximation). The inference expressions of Fact 2
are identical to the SKI approximations of Def. 1.

For illustrative purposes, we provide a purely linear
algebraic proof of Theorem 1 in Appendix A.2.

3.1 GSGP Running Time and Memory

By Theorem 1, we can apply the SKI approximation
using the GSGP inference equations of Fact 2; these
also involve structured matrices that are well suited
to iterative methods. In particular, they require lin-
ear solves and logdet computation for the m×m ma-
trix KGW

TW + σ2I rather than the n × n matrix
WKGW

T +σ2I. Under the standard SKI assumptions,
this leads to O(m logm) per-iteration run time and
O(m) memory footprint with O(n) precomputation.

Precomputation: GSGP involves precomputing
WTW ∈ Rm×m, WTy ∈ Rm, and yTy ∈ R, which
are the sufficient statistics of a linear regression prob-
lem with feature matrix W . Each is a sum over n
data points and has fixed size depending only on m.
Once computed, each expression in Fact 2 can be com-
puted without referring back to the data W and y.
It is clear that yTy =

∑n
i=1 y

2
i can be computed in

O(n) time with a single pass over the data. Assume
the interpolation strategy is local (e.g., linear or cubic

interpolation), so that each wxi has O(1) non-zeros.
Then WTy =

∑n
i=1 wT

xi
y can also be computed in

O(n) time with one pass over the data, since each inner
product accesses only a constant number of entries of y.
WTW also has desirable computational properties:
Claim 2. Assume that G = {g1, . . . ,gm} has spac-
ing s, i.e., ‖gi − gj‖∞ ≥ s for any i, j ∈ m and that
wj

x is non-zero only if ‖gj −x‖∞ < r · s for some fixed
integer r. Then WTW can be computed in O(n(2r)2d)
time and has at most (4r − 1)d entries per row. There-
fore mv(WTW ) = O(m(4r − 1)d).

Proof. First, write WTW as a sum over data points:

WTW =
n∑
i=1

wxiw
T
xi
.

The vector wxi
has nonzeros only for grid points gj

such that ‖gj − xi‖∞ ≤ r · s. Since the grid points
have spacing s, there are at most (2r)d such grid points.
Therefore, the outer product wxi

wT
xi

has at most (2r)2d

non-zeros, and the sum can be computed in O(n(2r)2d)
time. Also note that the sum is also sparse.

The entry (WTW )jk is non-zero only if there is some
data point xi within distance r from both gj and gk in
each dimension. This is true only if ‖gj−gk‖∞ < 2r ·s.
For a given grid point gj , there are at most (4r − 1)d

grid points gk satisfying ‖gj − gk‖∞ < 2r · s (e.g., in 1
dimension there are 2r− 1 neighbors to the left, 2r− 1
neighbors to the right, plus the case k = j). Therefore
the jth row of WTW has as most (4r − 1)d nonzeros,
as claimed.

For example, r = 1 for linear interpolation and r = 2 for
cubic interpolation. The upshot is that WTW can be
precomputed in O(n) time, after which matrix-vector
multiplications take O(m) time, with dependence on r
and d similar to that of mv(W ) = O(n(2r)d).

Per-Iteration: As discussed in Section 2.2, due to its
grid structure, KG admits fast matrix-vector multipli-
cation: mv(KG) = O(m logm) for stationary kernels.
Since WTW is sparse, mv(WTW ) = O(m). Over-
all, mv(KGW

TW + σ2I) = O(m logm), giving per-
iteration runtime of O(m logm) for computing the
approximate mean, covariance, and log-likelihood in
Fact 2 via iterative methods. Importantly, this com-
plexity is independent of the number of data points.

Memory: GSGP uses nnz(WTW ) +m+m = O(m)
memory to store WTW , WTy and KG.

Limitations of GSGP. Directly replacing the clas-
sic SKI method with the GSGP inference equations of
Fact 2 reduces per-iteration cost but has some undesir-
able trade-offs. In particular, unlike WKGW

T + σ2I,
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the matrix KGW
TW + σ2I is asymmetric. Thus, con-

jugate gradient and Lanczos—which are designed for
symmetric positive semidefinite matrices—are not ap-
plicable. Asymmetric solvers like GMRES (Saad and
Schultz, 1986) can be used, and seem to work well
in practice for posterior mean estimation, but do not
enjoy the same theoretical convergence guarantees, nor
do they as readily provide the approximate tridiago-
nalization for low-rank approximation for predictive
covariance (Pleiss et al., 2018) or log-likelihood estima-
tion (Dong et al., 2017). It is possible to algebraically
manipulate the GSGP expressions to yield symmetric
m×m systems, but these lose the desirable ‘regularized
form’ A + σ2I and have worse conditioning, leading
to more iterations being required in practice (see Ap-
pendix A.3).

4 Efficient SKI via Factorized
Iterative Methods

In this section we show how to achieve the best of both
SKI and the GSGP reformulation: we design ‘factor-
ized’ versions of the CG and Lanczos methods used
in SKI with just O(m logm) per-iteration complexity.
These methods are mathematically equivalent to the
full methods, and so enjoy identical convergence rates,
avoiding the complications of the asymmetric solves
required by GSGP inference.

4.1 The Factorized Approach

Our approach centers on a simple observation relat-
ing matrix-vector multiplication with the SKI kernel
approximation K̃X = WKGW

T + σ2I and the GSGP
operator KGW

TW + σ2I. To apply the SKI equations
of Def. 1 via an iterative method, a key step at each
iteration is to multiply some iterate zi ∈ Rn by K̃X ,
requiring O(n+m logm) time. We avoid this by main-
taining a compressed representation of any iterate as
zi = W ẑi + ciz0, where ẑi ∈ Rm, ci ∈ R is a scalar
coefficient, and z0 is an initial value. At initialization,
ẑ0 = 0 and c0 = 1. Critically, this compressed repre-
sentation can be updated with multiplication by K̃X

in just O(m logm) time using the following claim:
Claim 3 (Factorized Matrix-Vector Multiplication).
For any zi ∈ Rn with zi = W ẑi + ciz0,

(WKGW
T + σ2I)zi = W ẑi+1 + ci+1z0,

where ẑi+1 = (KGW
TW + σ2I)ẑi + ciKGW

T z0 and
ci+1 = σ2 · ci. Call this operation a factorized update
and denote it as (ẑi+1, ci+1) = A(ẑi, ci). If the vector
KGW

T z0 is precomputed in O(n+m logm) time, each
subsequent factorized update takes O(m logm) time.

The proof of the above claim is given in Appendix B.1.

For algorithms such as CG, we also need to support
additions and inner products in the compressed rep-
resentation. Additions are simple via linearity. Inner
products can be computed efficiently as well:
Claim 4 (Factorized Inner Products). For any zi,yi ∈
Rn with zi = W ẑi + ciz0 and yi = W ŷi + diy0,

zTi yi = ẑTi W
TW ŷi + diẑ

T
i W

Ty0

+ ciŷ
T
i W

T z0 + cidiy
T
0 z0.

We denote the above operation by 〈(ẑi, ci), (ŷi, di)〉. If
WT z0, WTy0, and yT0 z0 are precomputed in O(n)
time, then 〈(ẑi, ci), (ŷi, di)〉 can be computed using just
one matrix-vector multiplication with WTW and O(m)
additional time.

Algorithm 1 Conjugate gradient

1: procedure CG(KG,W,b, σ,x0, ε)
2: r0 = b− K̃x0

3: p0 = r0
4: for k = 0 to maxiter do
5: αk =

rTk rk
pT

k K̃pk

6: xk+1 = xk + αk · pk
7: rk+1 = rk − αk · K̃pk
8: if rTk+1rk+1 ≤ ε break
9: βk =

rTk+1rk+1

rTk rk

10: pk+1 = rk+1 + βkpk

11: return xk+1

Algorithm 2 Factorized conjugate gradient (FCG)

1: procedure FCG(KG,W,b, σ,x0, ε)
2: r0 = b− K̃x0, r̂0 = 0, cr0 = 1
3: p̂0 = 0, cp0 = 1, x̂0 = 0, cx0 = 0
4: for k = 0 to maxiter do
5: αk =

〈(r̂k,crk),(r̂k,c
r
k)〉

〈(p̂k,c
p
k),A(p̂k,c

p
k)〉

6: (x̂k+1, c
x
k+1) = (x̂k, c

x
k) + αk · (p̂k, cpk)

7: (r̂k+1, c
r
k+1) = (r̂k, c

r
k)− αk · A(p̂k, c

p
k)

8: if 〈(r̂k+1, c
r
k+1), (r̂k+1, c

r
k+1)〉 ≤ ε break

9: βk =
〈(r̂k+1,c

r
k+1),(r̂k+1,c

r
k+1)〉

〈(r̂k,crk),(r̂k,c
r
k)〉

10: (p̂k+1, c
p
k+1) = (r̂k+1, c

r
k+1)+βk ·(p̂k, cpk)

11: return xk+1 = W x̂k+1 + cxk+1 · r0 + x0

Figure 2: Above K̃ = WKGW
T + σ2I. A(·) and 〈·, ·〉

denote the factorized matrix-vector multiplication and inner
product updates of Claims 3 and 4. The vector x0 ∈ Rn is
an initial solution, the scalar ε > 0 is a tolerance parameter,
and maxiter is the maximum number of iterations.

4.2 Factorized Conjugate Gradient

We now give an example of this approach by deriving a
“factorized conjugate gradient” algorithm. Factorized



Mohit Yadav, Daniel Sheldon, Cameron Musco

CG has lower per-iteration complexity than standard
CG for computing the posterior mean, covariance, and
log likelihood in the SKI approximations of Def. 1.
In Appendix B, we apply the same approach to the
Lanczos method, which can be used in approximating
the logdet term in the log likelihood, and for computing
a low-rank approximation of the posterior covariance.

Figure 2 shows both the classic CG method and our
factorized variant. CG maintains three iterates, the
current solution estimate xk, the residual rk, and a
search direction pk. We maintain each in a compressed
form with xk = W x̂k+cxkr0+x0, rk = W r̂k+crkr0, and
pk = W p̂k + cpkr0. Note that the initialization term r0
is shared across all iterates with a different coefficient,
and that xk has an additional fixed component x0.
This is an initial solution guess for the system solve,
frequently zero. With these invariants, simply applying
Claims 3 and 4 gives the factorized algorithm.

Proposition 1 (Factorized CG Equivalence and Run-
time). The outputs of Algos. 1 and 2 on the same
inputs are identical. Alg. 2 performs two matrix-vector
multiplications with KG and three with W initially. In
each iteration, it performs a constant number of mul-
tiplications with KG and WTW plus O(m) additional
work. IfWTW is sparse and KG has multilevel Toeplitz
structure, its per iteration runtime is O(m logm).

Appendix B presents a further optimization to only
require one matrix-vector multiplication with KG and
one with WTW per iteration. A similar optimization
applies to the factorized Lanczos method.

5 Experiments

We conduct experiments to evaluate our “GSGP ap-
proach” of using factorized algorithms to solve SKI
inference tasks. We use: (1) factorized CG to solve
the linear systems for the SKI posterior mean and
covariance expressions of Def. 1 and for approximate
tridiagonalization within stochastic log-likelihood ap-
proximations (Gardner et al., 2018b), and (2) factorized
Lanczos for low-rank approximations of the SKI pre-
dictive covariance (Pleiss et al., 2018).

Our goals are to: (1) evaluate the running-time im-
provements of GSGP, (2) examine new speed-accuracy
tradeoffs enabled by GSGP, and (3) demonstrate the
ability to push the frontier of GP inference for mas-
sive data sets. We use a synthetic data set and three
real data sets from prior work (Dong et al., 2017; Wil-
son and Nickisch, 2015; Angell and Sheldon, 2018),
summarized in Table 1. We focus on large, relatively
low-dimensional datasets – the regime targeted by struc-
tured kernel interpolation methods. The Radar dataset
is a subset of a larger 120M point dataset. While SKI

cannot scale to the full data size without significant
computational resources, at the end of the section we
demonstrate that GSGP’s ability to scale to this regime
with modest runtime and memory usage.
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Figure 3: Per-iteration time taken by the SKI and GSGP
methods on a synthetic dataset for posterior mean approxi-
mation. We see significant speedups when the grid size m is
relatively small compared to n. Even when m is larger, e.g.,
m = Θ(n), GSGP performs no worse than and sometimes
improves upon SKI’s runtime, e.g., when m = n/16.

Dataset n d m Time Memory

Sound 59.3K 1 8K 0.433 0.247
59.3K 1 60K 0.941 0.505

Radar 10.5M 3 51.2K 0.014 0.007
10.5M 3 6.4M 0.584 0.425

Precipitation

528K 3 128K 0.326 0.366
528K 3 528K 0.491 0.628
528K 3 1.2M 0.806 2.941

Table 1: Ratios of GSGP to SKI per-iteration time and
memory usage for posterior mean approximation for differ-
ent values of m and n. GSGP shows large improvements in
a range of settings, even with very large grid size m.

All linear solves use a tolerance of 0.01 and all kernels
are squared exponential. We utilize cubic interpolation
for all experiments and provide details on hardware and
hyperparameters in Appendix C.1. In all cases, error
bars show 95% confidence intervals of mean running
time over independent trials.

Per-iteration resource usage. We first compare the
per-iteration runtime for posterior mean calculation
using CG and Factorized CG on synthetic data of
varying sizes. The function f(x) is a sine wave with
two periods in the interval [0, 1]. Random x locations
are sampled in the interval and y = f(x) + ε with
ε ∼ N (0, 0.25); grid points are equally spaced on [0, 1].
Figure 3 shows the average per-iteration inference time
over all iterations of 8 independent trials for increasing
n and three different settings of grid size: m = n,
m = n/16 and m =

√
n. GSGP is substantially faster

whenm < n (note log scale) and no slower whenm = n.
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Figure 4: Error vs. runtime for approximate inference
tasks on the sound dataset with varying grid size m. GSGP
gives much faster runtimes for fixed m, allowing one to
use a larger grid and achieve better error-runtime tradeoffs
than SKI. Times are averaged over 20 trials and include
pre-processing. See text for description of error metrics.

Memory usage is another important consideration. Ta-
ble 1 compares both per-iteration running time and
memory usage for posterior mean inference on our real
data sets. Per-iteration time is averaged over one run
of CG and Factorized CG for each setting; memory
usage is calculated as nnz(W ) + m + n for SKI and
nnz(WTW ) + 2m for GSGP, where nnz(A) is the num-
ber of nonzero entries of A. The gains are significant,
especially when m� n, and gains in time and/or mem-
ory are possible even when m equals or exceeds n (e.g.,
precipitation, m ∈ {528K, 1.2M}); for very large m it
is more resource efficient to run the original algorithm
(or use Factorized CG without precomputing WTW ).

Inference accuracy vs. time. A significant advan-
tage of GSGP is the ability to realize error-runtime
tradeoffs that were not previously possible. Fig-
ure 4 illustrates this for the sound data set (n =
59.3K) by comparing error vs. running time for
four different GP inference tasks for grid sizes m ∈
{1K, 2K, 5K, 6K, 8K, 10K, 30K, 60K}. For mean esti-
mation we compute SMAE (mean absolute error nor-
malized by the mean of observations) on a held-out
test set of 691 points. For other tasks (log-likelihood,
covariance) we compute error relative to a reference
value computed with SKI for the highest m using ab-
solute difference for log-likelihood and Frobenius norm
from the reference value for covariance matrices. For
log-likelihood, we use 30 samples and tol = 0.01 for
stochastic logdet approximation (Dong et al., 2017).
For covariance, we compute the 691 × 691 posterior
covariance matrix for test points, first using the exact
SKI expressions (which requires 691 linear solves) and
then using a rank-k approximation (Pleiss et al., 2018),
that, once computed, yields O(k) time approximations
of posterior covariances, for k = min{m, 10000}. For
each task, GSGP is faster when m < n, sometimes sub-
stantially so, and achieves the same accuracy, leading
to strictly better error-runtime tradeoffs.

Very large n. Figure 5 shows running time vs. m
for GP inference tasks on a data set of n = 10.5M
radar reflectivity measurements in three dimensions
from 13 radar stations in the northeast US (Angell and
Sheldon, 2018). This is a situation where m � n is
highly relevant: even the smallest grid size of 51.2K =
80× 80× 8 is of scientific value for summarizing broad-
scale weather and biological activity.

GSGP is much faster, e.g., roughly 150x and 15x faster
for m = 51.2K on mean inference and log-likelihood
estimation respectively after one-time pre-processing
(first panel). Pre-processing is up to 3x slower for
GSGP due to the need to compute WTW . To perform
only one mean inference, the overall time of GSGP
and SKI including pre-processing is similar, which is
consistent with the observation that typical solves use
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Figure 5: Runtime vs. grid size m for GP inference tasks
on the radar data set with 10.5M data points. We observe
significantly faster runtimes for GSGP across all tasks and a
wide range of grid sizes. From top to bottom: pre-processing
time, mean inference runtime, and log-determinant runtime
for tol = 0.1 and tol = 0.01 respectively. 30 random vectors
are used in both log-determinant computations.

only tens of iterations, and some of the per-iteration
gain is offset by pre-processing. However, scientific
modeling is highly iterative, and tasks other than mean
inference performmany more iterations of linear solvers;
the total time for GSGP in these cases is much smaller
than SKI. In realistic applications with massive data
sets, we expect WTW to be computed once and saved
to disk. GSGP also has the significant advantage that
its memory footprint is O(m), while SKI is O(m+ n).

The data above is a subset from a national radar net-
work, which was the limit on which SKI could run
without exceeding 10GB of memory. To demonstrate
scalability of GSGP, we ran on data from the entire
national radar network with n = 120M for m = 128K,
on which SKI far exceeds this memory limit. On this
problem, GSGP takes 4861.60 ± 233.42 seconds for
pre-processing, and then 9.33± 0.31 seconds for mean
inference (averaged over 10 trials).

6 Conclusions and Future Work

Our work shows that the SKI method for approximate
Gaussian process regression in fact performs exact in-
ference for a natural grid-structured Gaussian process.
We leverage this observation to give an implementation
for the method with per-iteration complexity indepen-
dent of the dataset size n. This leads to significantly
improved performance on a range of problems, includ-
ing the ability to scale GP inference to radar datasets
with over 100 million data points – a regime far beyond
what can typically be handled by SKI or other approx-
imation methods, such as inducing point and random
feature approaches.

Our work leaves open a number of questions. Algorith-
mically, it would be interesting to explore if SKI can
be efficiently implemented using direct, rather than
iterative, solvers that take advantage of the Toeplitz
and band-like structures of KG and WTW respectively.
Theoretically, it would be interesting to further explore
the grid-structured Gaussian process for which SKI
performs exact inference. Intuitively, by interpolating
data points to a grid, this method seems to suppress
‘high-frequency’ components of the kernel covariance
function. Can this be analyzed to lead to formal ap-
proximation guarantees or practical guidance in how
to choose the grid size?
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