

when exact queries become expensive over big data. But these

do not currently support temporal or persistent queries, and our

proposed sketches will complement these systems in these tasks.

Our Results. This paper proposes a framework and designs tech-

niques that extend and combine AQP with temporal big data. In

particular, instead of (or on top of) using a multi-version database,

this paper proposes the design and implementation of persistent

data summaries that o�er interactive temporal analytics with strong

theoretical guarantees on their approximation quality. We will design

a series of data summarization tools which answer queries about

any point in the history of the data. These summaries do not require

signi�cantly more space or are not signi�cantly harder to maintain

than the summaries used for all of the data.

A natural approach to these challenges is to downsize the data by

sampling. While query sampling is a decades-old concept, and has

been explored recently in systems like BlinkDB [3], DBO [41, 41], G-

OLA [86], and XDB [51], samples do not directly o�er the desired
persistence properties needed for the critical temporal analysis

tasks. Hence, it is also important to explore how to turn samples and

other data summaries (various synopses and sketches) persistent.

Speci�cally this paper makes the following contributions:

• We introduce two new and useful models for temporal analytics

on a data stream which are amenable to sketching, and o�er
e�cient and useful queries: These are At-The-Time-Persistence

(ATTP) which allows one to query the state of data at a speci�c
point in the past, and Back-In-Time-Persistence (BITP) which

allows queries from a prior point in time up until now.

• We provide a variety of new sketching techniques for ATTP

and BITP that build on existing streaming sketches which have

demonstrated their immensive e�ectiveness in numerous previ-

ous studies. These include sampling-based sketches (weighted

and unweighted), linear sketches (e.g., count-min sketch, count

sketch), and space-e�cient deterministic mergeable sketches

(e.g., Misra Gries and Frequent Directions).

• For each such sketch we provide proof of the total space and

update time. They are all independent of the stream (where prior

temporal sketches often have assumptions) and in most cases

have nearly the same bound as the standard streaming sketches.

• We conduct a thorough experimental evaluation on several large

data sets focusing on the heavy-hitters and matrix-covariance

sketching problems.We provide a fair comparison across variants,

and demonstrate numerous situations where the new sketches

provide clear and sizeable advantages over the state-of-the-art.

2 PRELIMINARIES

2.1 Stream Models

A data stream A is de�ned by a sequence of items with timestamps

A = ((a1, t1), (a2, t2), . . . , (an , tn)), where each ai is an object and

ti is a timestamp that ti < ti+1 (for simplicity in descriptions, we

assume there are not ties, but that is addressed in code through an

assigned canonical order). The object ai could take on several forms:

it could be an index ei from a �xed (but typically large) universe [d]

like IP addresses; it could be a vector ai 2 Rd , representing a row
in a matrix A 2 Rn⇥d ; and it could be a pair ai = (ei ,wi) where ei
is again an index, andwi is a weight of that index (which could be

negative, or a count ci , and in many cases is always 1).

2.2 Data Summaries

There are many forms of data summaries [21, 57, 67, 84]. A sketch

S is a data structure representation of A, but uses space sub-linear

in A, and S allows speci�c queries for which it has approximation

guarantees. There are several general models that most sketches

fall under, and our analysis of persistent summaries will use these

general properties, which then imply results for many speci�c
classes of queries. First, a random sample is a powerful common

summary of A. Indeed, any robust and meaningful data analysis

which relies on the assumption thatA is i.i.d. from some distribution

will allow some sort of approximation guarantee associated with a

random sample. For some classes of queries or goals, it is useful to

allow for weighted random sampling, e.g., sampling each element

ai proportionally to an implicit or explicit weight w(ai); these

are generally methods which reduce the variance of estimators

using importance sampling (e.g., with sensitivity sampling [34] or

leverage scores [57], for instance, used in randomized algorithms

for matrices and data).

Second, a linear sketch is (an almost always random) data struc-

ture S where each data-value S[j] is a linear combination of the data

stream elements: that is for instance in the index-count pair model

where ai = (ei , ci) then S[j] = �(e1)c1 + �(e2)c2 + . . . + �(en)cn , or

in matrix sketching setting, the �s represent a �xed (but randomly

chosen) linear transformation (e.g., a JL projection). Notably, any

linear sketch can handle negative values of ci (e.g., subtractions).

Third, amergeable summary [1] is a sketch S which for an approx-

imation error � has a size sizeε (S), and given two such summaries

S1 and S2 of data sets A1 and A2 with the same size error guaran-

tee � and sizeε (S1) = sizeε (S2), they can be used to create a single

summary S = mergeε (S1, S2) of A = A1 [A2 of the same error �

and size sizeε (S) without re-inspecting A1 or A2. In some cases,

the size depends (mildly) on the size of A, and the error may in-

crease by some � on each merge operation; in this case we call it an

�-mergeable sketch. Linear sketches are mergeable (since linear op-

erations are commutative under addition). Random samples can be

made mergeable if they are implemented by assigning each element

a random value, and then maintaining the top k of these values in

a priority queue; although these samples are without replacement

and much analysis uses with-replacement samples, it can be made

with-replacement by a careful secondary subsample at the time

of analysis. Moreover, a without-replacement sample has negative

dependence which has as good and typically better convergence

properties than fully-independent ones. However, other types of

sketches (e.g., deterministic ones) are also known to be mergeable.

We next survey several relevant and exemplar types of sketches

and the best-known results within these general frameworks.

2.2.1 Frequency estimation and heavy hi�ers. Given a list A =

ha1,a2, · · · ,ani, the frequency of j 2 [d], denoted by f (j) = |{i 2
[1,n] | ai = j}|, is the count of j in A. An �-approximate frequency

estimation summary (an �-FE summary) of A, for all j, can return

f̂ (j) such that f (j) � �n  f̂ (j)  f (j) + �n. Various summaries

provide stronger bounds by either having no error on one of the two

inequalities, or replacing the �n termwith �n̂where n̂ can depend on

the “tail.” Although these improvements carry throughwith our new

models, for simplicity, we mainly ignore them. An �-approximate

heavy hitters summary ofA returns a list of indices {j1, j2, . . . , } for

parameter � , with any index j 2 [d] which satis�es f (j) > �n, and

no index j that has f (j) < �n � �n. An �-FE summary is su�cient

for an �-approximate heavy hitters summary, but depending on its

structure may require di�erent time to retrieve the full list.

A random sample of size k = O
⇣

1
ε2

log 1
δ

⌘

provides an �-FE

summary with probability at least 1 � � .
The popular CountMin sketch [22] is a linear sketch which

provides an �-FE sketch with probability 1 � � using O
⇣

1
ε
log 1

δ

⌘

space. The Count sketch [11] is another linear sketches that uses

O
⇣

1
ε2

log 1
δ

⌘

space, but has a slightly stronger guarantee so the

�n is replaced with �
q

Õd
j=1 f (j)

2, which is much smaller than �n

when the distribution is skewed.

The Misra-Gries [61] and SpaceSaving sketches [60] are deter-

ministic sketches that provide �-FE summaries; they are mergeable

and isomorphic to each other [1], and require O(1/�) space.

2.2.2 Matrix estimation. There are many sketches for matrix es-

timation [57, 84], and its many applications in data mining and

machine learning. We focus on the setting where rows of an n ⇥ d
matrix A appear one-by-one, and the ith row ai 2 Rd , is a d-

dimensional vector. Our desired sketch, which we call an �-matrix

covariance sketch (or �-MC sketch) will be an ` ⇥ d matrix B (or

will be able to reconstitute such a matrix), which will guarantee

that kATA � BT Bk2  � kAk2
F
. This for instance ensures for any

unit vector x 2 Rd that kAx k � kBx k2  � kAk2
F
, and by increasing

the size ` by any additive factor k < ` that the covariance error is

at most � kA �Ak k2F /kAk
2
F
, or by increasing the size ` by a multi-

plicative factor k that kA � �Bk (A)k2F  � kA � Ak k2F where Ak is

the best rank-k approximation of A, and �H is a projection oper-

ator onto the subspace spanned by H [36]. While there are other

sorts of matrix approximation bounds [57, 84], ones which are not

directly related to this one, many di�erent sketching algorithms

satisfy these bounds, and it is directly computable in empirical

evaluation [26].

Aweighted random sampling, weighted asw(ai) = kak2, achieves
this bound with ` = O(d/�2) rows [4, 26]. Linear sketches also can

achieve this error using ` = O(d/�2) when based on JL random

projections [69] or more e�ciently for sparse data based on the

Count sketch using ` = O(d2/�2) [14, 62]; both of these bounds

can actually be tightened signi�cantly when the numeric rank is

large, for instance when kAk2
F
/kAk22 = Ω(1/�), then we only need

` = O(1/�) [18]. And deterministic mergeable sketches based on

Frequent Directions (an extension of the Misra-Gries [61] frequent

items sketch) attains this error using ` = O(1/�) [36].

Other approaches, like leverage score sampling [30], can provide

stronger relative error bounds as well, but are more challenging

to generate e�cient streaming sketches [29]. One approach [17]

maintains a sample of rows B, and uses this to estimate the (ridge)

leverage score of each incoming row, and then retains it propor-

tional to this value. It never discards any sampled data, and provides

a (� , �)-MC sketch B which ensures with constant probability that

(1 � �)ATA � �I � BT B � (1 + �)ATA + �I ,

that is, almost (1 ± �)-relative error in all directions, and using

O
⇣

1
α 2d logd log

�

� kAk22/�
�

⌘

rows.

2.2.3 �antiles estimation. In this setting, each ai in the stream is

a real value in R; in fact, any family of objects with a total order and

a constant time comparison operator can be the input. For a value

� 2 R, let Aτ = |{a 2 A | a  � }|/|A| be the fraction of items in the

stream at most � . An �-quantile summary should be able to answer

either of the following queries for all instances of the query:

(1) given a value � 2 R report Âτ , an estimate of Aτ so that

|Âτ �Aτ |  � .

(2) given a threshold � 2 (0, 1] report a value �̂ so |Aτ̂ �� |  � .

A random sample of size k = O
⇣

1
ε2

log 1
δ

⌘

is again an �-quantile

summary with probability 1 � � . A long series of work has culmi-

nated in a �-quantiles sketch of size k = O
⇣

1
ε
log log 1

εδ

⌘

[46], and

the size increases slightly to k = O
⇣

1
ε
log2 log 1

εδ

⌘

if it is merge-

able [46]; these constructions hold with probability 1 � � .

2.2.4 Approximate Range Counting�eries and KDEs. The quan-

tiles query can be seen to approximate a 1-dimensional distribution.

To generalize it to higher dimensions one needs to specify a method

to query the data – a range counting query. Here we letA ⇢ Rd , and
consider a family of ranges R. An range r 2 R returns the number

of points in that range r (A) = |{a 2 A | a 2 r }|. A useful combina-

torial measure of this is the VC-dimension [79] � ; for axis-aligned

rectangles � = 2d , for disks � = d + 1, for halfspaces � = d . Then

an �-approximate range counting (�-ARC) summary S satis�es that

maxr 2A
�

�

�

r (A)
|A |
� r (S)

size(S)

�

�

�  � . The �-ARC summaries are typically

subsamples so size(S) = |S | is just the number of points in S .

A random sample of size k = O
⇣

1
ε2
(� + log 1

δ
)
⌘

is an �-ARC sum-

mary with probability 1 � � [52]. Smaller summaries exist [13, 83],

including mergeable ones [1] of size k = O
⇣

(1/�)
2ν
ν+1 log

2ν+1
ν+1 1

εδ

⌘

;

for the special case of axis-aligned rectangles this can be reduced

to O
⇣

(1/�) log2d+3/2 1
εδ

⌘

. These succeed with probability � 1 � � .
Another interpretation of this problem is to allow queries with

kernels K (e.g., Gaussian kernels K(x ,a) = exp(�kx � ak2)). Then
an �-KDE coreset S preserves the worst case error on a kernel

density estimate kdeA(x) =
1
|A |

Õ

a2A K(x ,a); that is kkdeA �
kdeS k1 = maxx 2Rd |kdeA(x)� kdeS (x)|  � . A random sample of

size k = O
⇣

1
ε2

log 1
δ

⌘

achieves this for any positive de�nite kernel,

regardless of the dimension [56, 75]. For dimensions d < 1/�2, this

can be improved to k = O(
p
d
ε
) [47, 75]; and can use the same-

weight-merge framework [1] to become mergeable using space

O
⇣p

d
ε

log2 1
εδ

⌘

, with probability 1 � � .

2.2.5 Other coresets and sketches. There are numerous other vari-

ety of coresets and sketches, including for k-means [16, 34, 35, 49,

58], and other clustering variants [37, 38]; distinct elements [7, 45],

graphs [33], optimization, and other more obscure ones. While

many of these use uniform or weighted (sensitivity-based) sam-

pling, or are linear or mergeable, we do not provide the full list.

2.3 ATTP and BITP: Problem De�nition

In this paper, we introduce two models for persistent sketches, at-

the-time persistence (ATTP) and back-in-time persistence (BITP),

which are useful in practice and allows for considerably more e�-

cient sketches. We de�ne ATTP and BITP sketches as extensions

of traditional sketches that answer queries at any historical times-

tamps of a stream. Our main results are previewed in Table 1.

Given a stream A and two time values s < t , de�ne As,t as the
content of the stream which arrived in the time interval [s, t]. Let

t0 be a time point before any points in the stream arrived, and tnow
the current time. Then we also de�ne speci�c stream subsets as

At = At0,t and A�t = At,tnow . Our goal in this paper is to provide

summaries (e.g., coresets and sketches) of At , and A�t which we

denote as St , and S�t , respectively.
While most streaming algorithms focus on summarizing the

contents At0,tnow , there have been a few works exploring time-

restricted summaries which can allow query summaries of the form

Ss,t ; which we call a for-all-times persistent (FATP) sketch. Our

focus is however largely of the more restrictive forms St and S�t ;
which we call ATTP and BITP queries respectively. While these are

indeed more restrictive, they are quite relevant corresponding to

the state of the summary (and hence data analysis context) at that

time t and queries back to some recent (a dynamically adjustable

sliding window query). Moreover, they admit, in our opinion, very

simple and elegant algorithms, small space, and fast update time.

One previous work is on the persistent Count-Min sketch (PCM)

which is FATP sketch for the �-FE problem [82]. Its analysis heavily

relies on a “random stream model" assumption that the elements

arrive from a �xed random distribution. Their theoretical results are

not directly comparable to ours, which like most streaming space

analysis do not rely on this. FATP sketches which use sublinear

space are not possible without this assumption. The main idea is to

build piecewise-linear approximations for the counters in a Count-

Min sketch. Since the elements arrive from a �xed distribution, the

growth of these counters are linear in expectation. It can answer

FATP queries similar to a CM sketch, except it returns the median of

the counter values instead of the minimum value. To guarantee an

�-FE FATP sketch (under the random stream model), it can handle

one-element queries usingO(1/�2) expected space, and requires an

additional logn to handle heavy hitter queries.

The only other previous work we know of in either of these

frameworks is an ATTP model focusing entirely on the quantiles

summary [77]. This work only considers the case with additions and

deletions of data – these deletions cause numerous complications,

including a lower bound including the harmonic sequence of sketch

sizes. In contrast, our approaches mainly focus on insertion-only

streams (as is the case with most large data, e.g., routers, website

monitoring, log structures) where if there are a small number of

corrections they can be handled in a separate structure post-hoc.

This allows our algorithms to be signi�cantly simpler and more

general (handling any summaries based on random samples [32, 81],

linear sketches [11, 22, 69], or mergeable summaries [1]).

Use cases for ATTP and BITP. Consider a system administrator

monitoring updates for a website, and building models and making

decisions based on real-time summaries of the data up to that point.

Later (say months later), they realize some poor decision was made,

then an ATTP sketch allows them to quickly go back and review

the state of the summaries, and analyze their potential mistakes

from what the state was at those times.

Table 1: Main bounds for ATTP sketches, marked if also

BITP (see Cor. 3.1). Weighted (wt.) bounds with U -bounded

weights and U = poly(n); matrix bounds assume 1 
mini kai k.

ATTP sketches BITP Sketch Size Thm

�-quantiles X O
�

��2 logn
�

R 3.1

wt. �-quantiles X O
�

��2 logn
�

R 3.3

�-FE X O
�

��2 logn
�

5.1

wt. �-FE X O
�

��2 logn
�

R 3.3

�-FE O
�

��1 logn
�

4.2

�-ARC (� = O(1)) X O
�

��2 logn
�

R 3.1

wt. �-ARC (� = O(1)) X O
�

��2 logn
�

R 3.3

�-KDE X O
�

��2 logn
�

R 3.1

�-MC X O
�

d��2 log kAkF
�

5.1

�-MC O
�

d��1 log kAkF
�

4.3

(� , �)-MC O

✓

d2

α 2 logd log
α kA k22

ε

◆

r 3.3

R: Randomized, includes log 1
δ
factor to ensure holds with probability at least 1 � δ .

r: Randomized, with constant probability.

Sliding window analysis is essential when the most recent data

in a large data stream is most relevant towards understand recent

trends. Their weakness is that they provide a �xed length of history

they summarize. If one wants to expand the analysis from one day

to two days (or say 42.3 hours), this information is not captured.

However, with a BITP sketch, one can e�ciently retrieve summaries

on data for any window length into the past.

More general FATP sketches, while able to handle As,t queries,

for non-uniform data require linear space, or have much weaker ac-

curacy guarantees. See for instance Figure 1 where monthly check-

points in a state-of-the-art OLAP system has space grow linearly

with the size of the data, or Section 6.1 where our ATTP sketches

signi�cantly outperform the FATP PCM sketch in accuracy as well

as update and query time as a function of memory usage.

3 ATTP AND BITP RANDOM SAMPLES

A random sample is one of the most versatile data summaries.

Almost everything from frequency estimates to quantile estimates

[40] to kernel density estimates [43, 88] can be shown to have

a guaranteed approximation from a random sample of the data.

Therefore in this section, we propose a variant of random sample

summary which is made at-the-time persistent, and we will use it

as building blocks of other ATTP sketches.

Note that under the turnstile model (i.e. if we allow deletions),

the strongest guarantees are impossible, since we may insert many

items and then delete most of them. If the random sample was

entirely from the deleted set, we know nothing about what data

remains.

The classic method to maintain a random sample in a stream

is called reservoir sampling [81]. This maintains a set of k items

uniformly at random from a stream. On seeing the ith item in the

stream (after the �rst k which are kept deterministically), it decides

to keep it with probability k/i , and if it is kept, it replaces a random

item from the reservoir of kept items. The maintained items are a

uniform random sample from the entire stream up to that point.

However, if after building it, we consider the stream up to a time

t (a query q over St), and t is su�ciently smaller than the current

time instance i (for instance less than i/k) then we do not expect

to have a good estimate of that portion of the stream (it is likely

that the summary has no information at all!). Rather we modify the

algorithm to never delete any items from the reservoir. Instead, we

mark an item that would have been deleted at time i with this value

i . Then in the future, we can reconstruct a perfect uniform random

sample for any stream up to a time t from this data: we return all

items which are retained in the summary when they �rst appear,
but are not yet marked (for deletion) at time t ; these items in the

normal reservoir sampling summary would potentially have been

deleted at some point after time t . Since the probability of keeping

an item decreases inversely with the size of the stream, the total

number of items ever kept is O(k logn) for a stream of size n.

L���� 3.1. For a stream of length n, the expected number of

items kept in k independent persistent reservoir sampling is E(kSn) =

kHn  k(1 + lnn), where Hn is the nth harmonic number. And with

probability at least 0.9, kSn 2 k(1 + lnn) ⌥O(
p
k lnn).

P����. For the ith of these k independent persistent reservoir

sampling, let Xi, j be the random variable of whether jth item is

kept, and Sk,n =
Õk
i=1

Õn
j=1 Xi, j be the random variable of the total

number of items kept. We have probability mass function for Xi, j ,

Pi, j (x) =

⇢

1 � 1/j if x = 0,

1/j if x = 1.

The mean and variance of Xi, j is

E(Xi, j) =0(1 � 1/j) + 1(1/j) = 1/i

Var(Xi, j) =(0 � 1/j)2(1 � 1/j) + (1 � 1/j)2/j = 1/j � 1/j2 < 1/j

The mean and variance of Sk,n is

E(Sk,n) =

k
’

i=1

n
’

j=1

E(Xi, j) = k

n
’

j=1

1

j
= kHn  k(1 + lnn)

Var(Sk,n) =

k
’

i=1

n
’

j=1

Var(Xi, j) = k

n
’

j=1

✓

1

j
� 1

j2

◆

 k lnn.

Using Chebyshev’s inequality,

P(|Sk,n � E[Sk,n]| � ∆)  Var(Sk,n)/∆
2  (k lnn)/∆2

= � .

Solving for ∆ =
p

(k lnn)/� . ⇤

In many cases, it is also useful to maintain k uniform samples

without replacement. This is simple to accomplish with a priority

queue inO(logk) worst case, andO(1) amortized time per element.

Each new element ai in a stream is assigned a uniform random

number ui 2 [0, 1] and is kept if that number is among the top k

largest numbers generated. The priority queue is kept among these

top k items, and a new item is compared to the kth largest value

(maintained separately) before touching the priority queue.

Implications. For any sketch which requires a random uniform

sample of size k , we can extend it to a streaming at-the-time persis-

tence sketch with an extra factor logn in space.

T������ 3.1. On a stream of size n, using a persistent random

sample, ATTP summaries can solve the following challenges with

probability at least 1 � � :
• �-quantiles summary with O

⇣

1
ε2

log n
δ

⌘

space,

• �-FE sketch with O
⇣

1
ε2

log n
δ

⌘

space,

• �-ARC sketch with VC-dimension � with O
⇣

ν

ε2
log n

δ

⌘

space,

• �-KDE sketch with O
⇣

1
ε2

log n
δ

⌘

space.

3.1 Persistent Weighted Random Samples

This can be extended to weighted reservoir sampling techniques.

Consider a set of items in a streamA = ha1,a2, . . . ,ani where each
has a non-negative weightwi . LetWi =

Õi
j=1wi be the total weight

up to the ith item in the stream. A single item is maintained, and

on seeing a new item ai it is put in the reservoir with probability

wi/Wi , otherwise the old item is retained. To sample k items with-

replacement, run k of these processes in parallel.

The analysis for the total number of samples of this algorithm

is slightly more complicated since it may be that the weights, for

instance, double every step (i.e.,wi+1 = 2wi for all i). In this case,

in expectation about half of all items are selected at any point, and

the size of the persistent summary is Ω(n). However, this results in

an unrealistic ratio between weights of points, wherewn/w1 = 2n .

It is thus common to assume that the weights are polynomially

bounded; that is, there exist a value U so that 1/U  wi/w j  U

for all i, j. We say weights are U -bounded in such a setting. For

instance, it requires log2U bits to represent integers from 1 to U .

We assume logU ⌧ n.

L���� 3.2. For a stream of length n withU -bounded weights, the

expected number of items kept in k independent persistent weighted

reservoir sampling is sk = O(k(logn + logU)). And with probability

at least 0.9, the number is in the range sk 2 O (k(logU + logn)) ±

O
⇣

p

k(logn + logU)
⌘

.

P����. We consider simulating this process by decomposing

each item of weightwi into at mostU distinct items with uniform

weights. This stream then has at most nU items, and by Lemma 3.1,

E[sk] = O(k log(nU)) = O(k(logn + logU)), and similarly the devi-

ation from this expected value is bounded byO
⇣

p

k(logn + logU)
⌘

with probability at least 0.9. ⇤

Without Replacement Sampling: It is not di�cult to extend

this algorithmically to weighted without replacement sampling.

The simplest (near optimally [15]) is via priority sampling [32]. For

each item ai in the stream, generate a uniform random number

ui 2 [0, 1], and create a priority qi = wi/ui . It then simply retains

the k largest priorities, again with a priority queue in O(logk)

worst case time, and expectedO(1) time. It reweights those selected

as ŵi = max{wi ,q(k+1):n } where q(k+1):n is the (k + 1)th largest

priority among all n items.

The update time improves from O(k) for with-replacement to

worst case O(logk), and expected case O(1) time. This improves

the concentration bounds, and often the empirical performance.

T������ 3.2. For any stream with U -bounded weights, the ex-

pected size of ATTP k-priority sampling is O
�

k(logn + logU)
�

.

The proof is verbose and tedious, so we defer it to the full version.

We overview it here. We �rst show the hardest case is when streams

have non-decreasing weights, and it is su�cient to analyze the case

when they are all powers of 2. For each power of 2 we can borrow

from the proof for equal weight streams. To combine the analysis

of these di�erent equal-weight substreams, we can argue starting

a substream with weight 2i at element s , is similar to having seen

about 1
2i

Õs
j=1w j elements of those weights before. Adding the

contributions of each ordered substream provides our result.

Implications. For any sketch which requires a random weighted

sample of size k , we can extend it to a streaming at-the-time persis-

tence sketch with an extra factor logn in space. For instance, the

weighted version of frequency estimation, quantiles, and approxi-

mate range counting an item’s contribution is proportional to its

weight requires sampling proportional to its weight. The sample

size requirements are not more than with uniform weights, and

depending on the distribution may be improved.

T������ 3.3. On a stream of size n, withU -bounded weights and

U = poly(n), using a persistent random sample, ATTP summaries

can solve the following challenges with probability at least 1 � � :
• weighted �-quantiles summary with O

⇣

1
ε2

log n
δ

⌘

space,

• weighted �-FE sketch with O
⇣

1
ε2

log n
δ

⌘

space,

• weighted �-ARC coreset for range space with VC-dimension � with

O
⇣

ν

ε2
log n

δ

⌘

space, and

• �-MC sketch using O

✓

1
ε2

log
kA k2

F

δ

◆

rows via norm sampling.

• (� , �)-MC sketch using O

✓

1
α 2d logd log

α kA k22
ε

◆

rows.

3.2 BITP Random Samples

A naive inverse of this procedure will require Ω(n) space to obtain

a BITP sketch, since every item, as it is seen, might be required for

a sample over a very short BITP time window. So we cannot simply

save forever every item used in a sketch. Instead, we will carefully

delete items once they would never be used again.

That is, to achieve all of the same space bounds as before, we

simulate the without replacement sampling algorithms, and when

an item has k items with larger weight which appear after it, it

can be deleted. The argument for the space bounds follows directly

from the ATTP analysis. A key di�erence in ATTP sketches is that

all but a vanishing fraction of the data points will never be part of

the sketch, and this can be detected with a single threshold check

in O(1) time. Hence the ATTP sketch has amortized O(1) update

time. On the other hand, every item in a BITP sketch is part of some

sketch while it is among the most recent k items and continues to

be until there are k items after it with larger weights, so this same

bound is not available.

In particular, a naive implementation will require Ω(k) amortized

time to process each item over the course of the stream. For instance,

assume we initially deposit each item in a cache, which we batch

process when it gets sizeCk for some constant (e.g.,C = 4), to only

retain the top k items (excluding the most recent k items). This

can be done in amortized O(logk) time per item. Yet a constant

fraction (a 1/C fraction) of items will be retained, and of them a

constant fraction (a 1/2C fraction) of them will have no more than

k/2 items with larger weights. Then as we maintain these items

in a standard priority queue, their rank can still decrement Ω(k)

times before there are k items with larger weights, and they are

discarded. So while this trick can reduce the constants, Ω(n) items

will still require Ω(k) time to process.

We describe a more computationally e�cient way to maintain

the required items; it applies some batch operations, and therefore

the space increases by a constant factor. All kept items are main-

tained sorted by arrival order. Let there be m items kept at any

given time (recall,m = O(k logn) in expectation). Cache the next

m items that arrive. Now scan the 2m items in arrival order (new

to old). During the scan store/insert them in an auxiliary binary

tree sorted by value so it can handle insert and rank in O(logm)

time. On processing, if the rank is more than k , then do not retain

the item (in the BITP sketch memory or tree). This reduces the

insert and rank cost to O(logk) since although there will be about

m items kept in the tree, we only need to keep the topO(k) of them

balanced. This scan process takes O(m logk) time. For each batch

of sizem, the scan takesO(m logk) expected time; hence each item

in any batch has amortized, expected O(logk) processing time.

C�������� 3.1. For any ATTP random sample sketch (for a ran-

dom sample of size k), we can maintain a BITP sketch with the same

asymptotic size. The ATTP sketch has O(1) amortized update time,

and the BITP one has O(logk) expected amortized update time.

Queries. On a query for the ATTP sketch, there are exactly

k items active at any given window. We can store these as in-

tervals, and use an interval tree to query them in k + logm =

O(k + logk log logn) time.

To query the BITP sketch, the set of k active items are not neces-

sarily demarked for a time window, as up to half of the items may

still be stored in the cache and not yet processed on the scan. We

can �rst perform the compression scan at the time of the query,

and it takes O(k logn) time in the expected worst case.

4 FROM STREAMING TO ATTP SKETCHES

In this section, we describe a very general framework for ATTP

sketches, which works for known sketches that can be maintained

in an insertion-only stream, and provides additive error. For each

element ai in a streamA, associate it with a non-negative weightwi ,

which could always be 1, could be provided explicitly as (ai ,wi), or

implicitly (e.g., aswi = kai k2, in the case of matrix sketching where

ai 2 Rd). Then for the stream up to item ai , denotedAi , let the total

weight at that point beWi =
Õi
j=1wi . It is also sometimes more

convenient to reference this weight at a time t asW (t), which is the

sum of all weights up to time t . If a sketch bounds a set of queries

up to �Wi at all points ai , for some error parameter � 2 (0, 1), we
refer to it as an additive error sketch.

Then our general framework is as follows. Run the streaming

algorithm to maintain a sketch s(1/�) at all times. Keep track of

checkpoints c1, c2, . . . , ck at various points in the stream – these are

the only information retained in the ATTP sketch. Each checkpoint

c j corresponds with a time tj . In the simplest form, each checkpoint

c j stores the full stream sketch at time tj ; and then the total space

requirement is ks(1/�), and what remains is to bound k , the number

of checkpoints needed.

To bound the number of checkpoints, we recordW (tj) at themost

recent checkpoint, and use this to decide when to record new check-

points. At the current stream element ai ifWi �W (tj) < �W (tj) we

do not include a new checkpoint. If however,Wi �W (tj) � �W (tj)

then we record a new checkpoint j + 1 at the time tj+1 of the pre-

vious stream element ai�1 and using the state before processing

ai . Since the total weight between times tj and tj+1 is less than

�W (tj), then the error for any property of the sketch cannot change

more than �W (tj)  �W (tj+1). If the total weight is bounded by

W and the minimum weight is at least 1, then because the gaps

geometrically progress, there can be at most k = O
⇣

1
ε
logW

⌘

.

L���� 4.1. An �-additive error sketch which requires s(1/�) space

in an insertion only stream, can maintain a ATTP sketch with space

O
⇣

s(1/�) · 1
ε
logW

⌘

.

Implications. Applying the above bound to the best known insertion-

only streaming sketches achieves the following results. Unfortu-

nately, because of the 1
ε
logn overhead (for uniform weights so

W = n), these generally are not a theoretical space improvement

over the random sampling approaches.

T������ 4.1. On a stream of size n, using checkpoints of the

streaming sketch, ATTP summaries can solve the following challenges

with probability at least 1 � � :
• �-quantiles summary with O

⇣

1
ε2

log log 1
εδ

logn
⌘

space,

• �-FE sketch with O
⇣

1
ε2

logn
⌘

space,

• �-ARC sketch with VC-dimension � using

O
⇣

��
3ν+1
ν+1 log

2ν+1
ν+1 1

εδ
logn

⌘

space,

• �-KDE sketch with k = O
⇣p

d
ε2

log2 1
εδ

logn
⌘

space,

• �-MC sketch using O
⇣

1
ε2

log kAk2
⌘

rows via Frequent Directions,

assuming the 1  mini kai k, and
• (� , �)-MC sketch using O

⇣

d2

α 2ε
log kAk2

⌘

rows via count sketch,

assuming the 1  mini kai k.

4.1 Elementwise Improvements : Main Idea

When the sketch maintains a set of speci�c counters which have

consistent meaning during the course of the stream, then another

optimization can be performed. For instance, this property holds

for any linear sketch, but also for other ones including Misra-Gries.

We say a sketch is a h-component additive error sketch if it has this

property, and each stream element ai a�ects at most h components.

Then we can maintain a separate checkpoint for each counter j.

If this occurred at time t then the checkpoint is labeled c j (t), and the

overall weight at this time is stillW (t). Then we only update this

checkpoint if |c j (t)�c j (tnow)| > �W (tnow). This requires extra over-

head to maintain, but the advantage arises when an update a�ects
a constant number of counters (e.g., h = 1 for MG, h = log(1/�) for

CMS and CS) or the total change is all weights of counters from ele-

ment ai isO(wi). Then total number of checkpoints is still bounded

by k = O(1
ε
logW), but each checkpoint only a�ects one counter.

L���� 4.2. Anh-component �-additive error sketch in an insertion

only stream, can maintain a ATTP sketch with space O(h · 1
ε
logW).

Implications. This improvement has two direct implications im-

proving both frequent items and matrix covariance sketches, mak-

ing these problems near-optimal with this improvement.

T������ 4.2. On a stream of size n, using checkpoints of the

streaming sketch, ATTP summaries can solve the following challenges

with probability at least 1 � � :
• �-FE sketch with O

⇣

1
ε
logn

⌘

space, and

• (� , �)-MC sketch using O
⇣

d2

α 2ε
log kAk2

⌘

rows via count sketch,

assuming the 1  mini kai k.

4.2 Frequent Directions Improvement

The Frequent Directions sketch is not a h-component additive error

sketch, since each (batch) update performs a SVD on the sketch,

and updates all of the values jointly. However, we can still achieve

a similar space improvement with more care.

We maintain a sketch that has full checkpoints (each a ` ⇥ d
matrix) and partial checkpoints (each is one d-dimensional row

vector). On a query, we �nd the nearest full update prior to the

query, and process the partial updates since then.

To understand how the ATTP sketch works, we �rst ignore the
streaming memory constraint. That is we assume (here assuming

d < n) that a d ⇥ d matrix �ts in memory. We can then maintain

the covariance exactly by caching C>i Ci = C>i�1Ci�1 + aia
>
i . We

will instead use this as the basis for a residual sketch of parts not

stored since the most recent checkpoint. We can calculate the �rst
eigenvector � and eigenvalue � 2 ofC>i Ci . Using a parameter ` > 0,

if � 2
> kAi k2F /`, we make a partial checkpoint with vector �� ,

and remove this part from the caching summary C>i Ci C>i Ci �
� 2��>. After every ` partial checkpoints, wemake a full checkpoint.

The full checkpoint merges the last full checkpoint with all of the

partial checkpoints since the last full checkpoint.

It turns out that based on the mergeability of FD, to maintain

� kAk2
F
error, only an FD sketch of the residual Ĉ of size ` = 2/�

is needed, and the combination of the three parts can use the FD

compression sketch B̂ down to ` = 2/� rows also. This means that

the residual covariance can be maintained as an FD sketch Ĉ of

the residual, and only requires O(`d) space, and the top eigenvalue

times the top eigenvector of Ĉ>Ĉ is stored as ĉ1, the �rst row of

Ĉ after each FD update. This is detailed in Algorithm 1, where

FD`(Ĉ,ai) does an update to Ĉ with row ai using a size `d sketch.

Why this approach is correct. We omit the time subscript i in

the rest of this section. Let matrix B stack all the partial checkpoints

at the time t  i as its rows; we have B>B+C>C = A>A. The above
approach is running FD with size parameter ` = 2/� on rows of

B, resulting in a summary B̂. By the FD bound and properties of

residual C we have kB>B � B̂>B̂k2  ε

2 kBk
2
F
 ε

2 kAk
2
F
, thus

kA>A � B̂>B̂k2  kB>B � B̂>B̂k2 + kC>Ck2  � kAk2F .
To query the FD ATTP sketch at time t , we use the latest full

checkpoint B̂ which occurred before t , and then stack all of the

partial checkpoints ĉ j which occurred before t , but after B̂. This

will represent a matrix G, and we use G>G to approximate A>A.

T������ 4.3. The checkpoints made by Algorithm 1 with ` = 2/�

form an ATTP �-MC sketch using space O((d/�) log
kA kF
ka1 k).

Algorithm 1: FD ATTP Sketch

input :A = {a1,a2, · · · ,aN }, ` > 0

1 Ĉ 0; B̂ 0; kAk2
F
 0; p 0

2 for i := 1 to n do

3 kAk2
F
 kAk2

F
+ kai k2

4 Ĉ FD`(Ĉ,ai)

5 while kĉ1k2 � kAk2F /` do
6 Make partial checkpoint ĉ1 as bp+1 with timestamp i

7 Remove �rst row ĉ1 from Ĉ (ĉ2 becomes ĉ1)

8 p p + 1

9 if p = ` then

10 Make full checkpoint FD`(B̂,b1, · · · ,b`) as B̂ with

timestamp i

11 p 0

P����. At any query timestamp t , let A be the full stack of all

rows, and let B be the row stack of all partial checkpoints before

or at t . Let B̂ be the stack of the last full checkpoint before or at t

and the partial checkpoint which came afterwards. Let Ĉ be the FD

sketch of the residual matrix C .

kA>A � B̂>B̂k2 = kB>B � B̂>B̂ +C>C � Ĉ>Ĉ + Ĉ>Ĉk2
 kB>B � B̂>B̂k2 + kC>C � Ĉ>Ĉk2 + kĈ>Ĉk2
 � kBk2F + � kC k

2
F + � kAk

2
F = 2� kAk2F

The last equality holds because of B>B +C>C = A>A,

kBk2F + kCk
2
F = Tr(B>B) + Tr(C>C)

=Tr(B>B +C>C) = Tr(A>A) = kAk2F .
To bound the number of partial checkpoints, we �rst have the

sum of all checkpoints squared norm
Õ

j kbj k2 = kBk2F  kAk
2
F
. In

the worst case, a checkpoint at time tj has squared norm kbj k2 =
� kA(tj)k2F = kA(tj)k

2
F
� kA(tj�1)k2F . The 1st checkpoint b1 is for the

�rst non-zero vector, say a1, since ka1k2 > � ka1k2 = � kA(1)k2
F
for

any � < 1. The 2nd checkpoint b2 at time t2 > 1 has squared norm

at least � kA(t2)k2, so kA(t2)k2 � kb1k2+kb2k2 � ka1k2+� kA(t2)k2,
which means kA(t2)k2 � ka1 k

2

1�ε . The kth checkpoint bk at time tk ,

we have kA(tk)k2F �
ka1 k2

(1�ε)k�1 . Setting kAk
2
F
= kA(tk)k2F and solving

for k  1 + log1/(1�ε)(kAk2F /ka1k
2) = O((1/�) log(kAkF /ka1k)),

and the total sketch size is then O(dk) as claimed. ⇤

In this algorithm description and analysis, we use the slow ver-

sion of the FD algorithm that only uses ` rows. In practice, we

would like to use the Fast FD algorithm [36] which uses 2` rows

and batches the computation of the internal SVD, and amortizes

its cost. However, this results in an additional challenge in that the

�rst eigenvalue of Ĉ>i Ĉi is not always stored in the �rst row Ĉi each

step, only once every ` steps. E�orts for heuristic improvements

towards the faster FD algorithm were ine�ective in practice.

5 MERGEABILITY TO BITP SKETCHES

For coresets beyond linear sketches and random samples, the most

common and generic approach is called merge-reduce. Such algo-

rithms have been developed speci�cally, for instance, for density-
based coresets [13, 66], clustering and PCA sketches [35], and geo-

metric ones [1, 9]. The idea is to conceptually decompose the stream

into dyadic intervals based on the time items arrive. For each such

base interval (at the lowest level of the dyadic tree considered),

create a sketch. Then for each node in the dyadic interval tree,

compute a sketch by merging the two sketches which are in the

child nodes, then reduce the size so the space at each node is the

same. Reducing the size typically increases the error in an additive

fashion (so at most O(� · logn) error at the root); for mergeable

summaries [1] the error does not increase in the reduce step. In

a streaming algorithm, we only precompute merges on same-size

summaries, and thus only maintain at most one summary of each

size, so at most logn in total.

For an ATTP sketch, we also need to ensure we can answer any

historical query, and so it is required to maintain the left edge of

the tree (any potential root, not just the current root). However, if

we ask a query that does not correspond with a single complete

subtree, we need to reconstruct the result from up to logn disjoint

subtrees; which can be reduced to log 1
ε
subtrees for �-additive

error sketches. This means we need to maintain every node within

a depth of log 1
ε
of a node on the left spine of the merge tree. There

are in total (logn) · 2log 1/ε = 1
ε
logn such nodes.

Lets examine this another way, to understand that we can ignore

(and thus discard) summaries that are not within a depth of log 1
ε

of the left spine, or equivalently, do occur after 2j objects in the

stream and account for fewer than (�/2)2j objects in the stream. If

(a) all summaries used on a query of size at least 2j have at most

(�/2)2j error, and (b) including or omitting this particular summary

of representing (�/2)2j objects (because it is on the boundary of

a query) also incurs at most (�/2)2j error; then the total error is

at most �2j . This argument describes why we only need nodes in

the merge tree at depth at most log 1/� from the left spine for the

ATTP sketch.

What is useful about this above representation is that it can be

applied to a BITP sketch. Now instead of maintaining more items

near the start of the stream (on the left side of the tree), we maintain

more at the current part of the stream (on the right side of the tree).

Instead of discarding a summary containing (�/2)2j�1 objects each
if 2j objects came before it, we discard it if 2j objects come after it.

And this can be done dynamically even if the right side of the tree

is not complete. Thus, the same size bound applies, but it results in

a BITP sketch.

T������ 5.1. On a stream of size n, using a merge tree for an

�-additive error problem that has a mergeable sketch of size s(1/�) can

produce a ATTP or BITP sketch of sizeO(s(1/�) 1
ε
logn). In particular,

BITP summaries can solve the following challenges:

• �-FE sketch (using an MG sketch) with size O(1
ε2

logn), and

• �-MC sketch (using an FD sketch) with O(1
ε2

log kAk2
F
) rows, as-

suming the 1  mini kai k.
Unfortunately, compared to the ATTP chaining sketches in Sec-

tion 4, this approach has two drawbacks. First, it cannot leverage

the compression for h-component �-additive sketches (and similar

ideas applied to FD). This requires an extra factor of 1/� in space.

Second, this approach has the additional overhead of keeping track

of when a summary can be discarded; for the chaining approach

in Section 4, this is decided as soon as it is created. But for BITP,

a separate priority queue (or similar) is required, and this adds

REFERENCES
[1] P. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi. Mergeable

summaries. ACM Transactions on Database Systems, 38(4):1–28, 2013.
[2] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan, S. Madden, B. Moza-

fari, and I. Stoica. Knowing when you’re wrong: building fast and reliable
approximate query processing systems. In SIGMOD, 2014.

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:
queries with bounded errors and bounded response times on very large data. In
EuroSys, 2013.

[4] F. Alan, K. Ravi, and V. Santosh. Fast monte-carlo algorithms for �nding low-rank
approximations. In FOCS, 1998.

[5] M. Arlitt and T. Jin. A workload characterization study of the 1998 world cup
web site. Netwrk. Mag. of Global Internetwkg., 14(3):30–37, 2000.

[6] B. Babcock and C. Olston. Distributed top-k monitoring. In SIGMOD, 2003.
[7] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting

distinct elements in a data stream. In RANDOM, pages 1–10, 2002.
[8] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically

optimal multiversion b-tree. VLDB J., 5(4):264–275, 1996.
[9] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic

transformations. Journal of Algorithms, 1(4), 1980.
[10] G. S. Brodal, K. Tsakalidis, S. Sioutas, and K. Tsichlas. Fully persistent b-trees. In

SODA, pages 602–614, 2012.
[11] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data

streams. In ICALP, 2002.
[12] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing: No silver

bullet. In SIGMOD, pages 511–519, 2017.
[13] B. Chazelle and J. Matousek. On linear-time deterministic algorithms for op-

timization problems in �xed dimensions. Journal of Algorithms, 21:579–597,
1996.

[14] K. L. Clarkson and D. P. Woodru�. Low rank approximation and regression in
input sparsity time. In STOC, 2013.

[15] E. Cohen, N. Du�eld, H. Kaplan, C. Lund, and M. Thorup. Stream sampling for
variance-optimal estimation of subset sums. In SODA, 2009.

[16] M. B. Cohen, S. Elder, C.Musco, C.Musco, andM. Persu. Dimensionality reduction
for k -means clustering and low rank approximation. In STOC, 2015.

[17] M. B. Cohen, C. Musco, and J. Pachocki. Online row sampling. In APPROX/RAN-
DOM, volume 60, 2016.

[18] M. B. Cohen, J. Nelson, and D. P. Woodru�. Optimal approximate matrix product
in terms of stable rank. In ICALP, 2016.

[19] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed
approximate query tracking. In Proc. International Conference on Very Large Data
Bases, 2005.

[20] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggre-
gates in a networked world: distributed tracking of approximate quantiles. In
SIGMOD, 2005.

[21] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for mas-
sive data: Samples, histograms, wavelets, sketches. Foundations and Trends in
Databases, 4(1-3):1–294, 2012.

[22] G. Cormode and S. Muthukrishnan. An improved data stream summary: The
count-min sketch and its applications. Journal of Algorithms, 55:58–75, 2005.

[23] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional
monitoring. In SODA, 2008.

[24] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s di�erent: Distributed,
continuous monitoring of duplicate-resilient aggregates on data streams. In ICDE,
2006.

[25] G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering the divide: Contin-
uous clustering of distributed data streams. In Proc. IEEE International Conference
on Data Engineering, 2007.

[26] A. Desai, M. Ghashami, and J. M. Phillips. Improved practical matrix sketch-
ing with guarantees. IEEE Transactions on Knowledge and Data Engineering,
28(7):1678–1690, 2016.

[27] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven
data acquisition in sensor networks. In VLDB, 2004.

[28] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang. Sample + seek:
Approximating aggregates with distribution precision guarantee. In SIGMOD,
pages 679–694, 2016.

[29] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodru�. Fast approxi-
mation of matrix coherence and statistical leverage. Journal of Machine Learning
Research, 13:3441–3472, 2012.

[30] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix
decompositions. SIAM Journal of Matrix Analysis and Applications, 30:844–881,
2008.

[31] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. J. Comput. Syst. Sci., 38(1):86–124, 1989.

[32] N. Du�eld, C. Lund, and M. Thorup. Priority sampling for estimation of arbitrary
subset sums. JACM, 54(32), 2007.

[33] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances
in the streaming model: The value of space. In Proc. ACM-SIAM Symposium on
Discrete Algorithms, 2005.

[34] D. Feldman and M. Langberg. A uni�ed framework for approximating and
clustering data. In Proceedings of the 43rd annual ACM symposium on Theory of
computing, 2011.

[35] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-
size coresets for k -means, PCA, and projective clustering. In SODA, 2013.

[36] M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodru�. Frequent direc-
tions: Simple and deterministic matrix sketching. SIAM Journal on Computing,
45(5):1762–1792, 2016.

[37] S. Guha. Tight results for clustering and summarizing data streams. In ICDT,
2009.

[38] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams. In
FOCS, 2000.

[39] L. Huang, M. Garofalakis, A. D. Joseph, and N. Taft. Communication-e�cient
tracking of distributed cumulative triggers. In ICDCS, 2007.

[40] Z. Huang, L. Wang, K. Yi, and Y. Liu. Sampling based algorithms for quantile
computation in sensor networks. In Proc. ACM SIGMOD International Conference
on Management of Data, 2011.

[41] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query
processing with the DBO engine. ACM Transactions on Database Systems, 33(4),
Article 23, 2008.

[42] S. Jeyashanker, S. Kashyap, R. Rastogi, and P. Shukla. E�cient constraint moni-
toring using adaptive thresholds. In ICDE, 2008.

[43] S. Joshi, R. V. Kommaraju, and J. M. Phillips. Comparing distributions and shapes
using the kernel distance. In Proceedings 27th Symposium on Computational
Geometry, 2011.

[44] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaudhuri, and
B. Ding. Quickr: Lazily approximating complex adhoc queries in bigdata clusters.
In SIGMOD, pages 631–646, 2016.

[45] D. M. Kane, J. Nelson, and D. P. Woodru�. An optimal algorithm for the distinct
elements problem. In PODS, pages 41–52. ACM, 2010.

[46] Z. Karnin, K. Lang, and E. Liberty. Optimal quantile approximation in streams.
In Proceedings IEEE Symposium on Foundations of Computer Science, 2016.

[47] Z. Karnin and E. Liberty. Discrepancy, coresets, and sketches in machine learning.
In Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of
PMLR, pages 1975–1993, 2019.

[48] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear.
The vertica analytic database: C-store 7 years later. Proc. VLDB Endow.,
5(12):1790âĂŞ1801, Aug. 2012.

[49] M. Langberg and L. J. Schulman. Universal ε -approximators for integrals. In
Proceedings ACM-SIAM Symposium on Discrete Algorithms, 2010.

[50] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via random
walks. In SIGMOD, pages 615–629, 2016.

[51] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join and XDB: online aggregation via
random walks. SIGMOD Record, 46(1):33–40, 2017.

[52] Y. Li, P. Long, and A. Srinivasan. Improved bounds on the samples complexity of
learning. Journal of Computer and System Sciences, 62:516–527, 2001.

[53] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R.Wang, and Y. Zhu. Immortal
DB: transaction time support for SQL server. In SIGMOD Conference, pages 939–
941. ACM, 2005.

[54] D. B. Lomet and F. Li. Improving transaction-time DBMS performance and
functionality. In ICDE, pages 581–591, 2009.

[55] D. B. Lomet and B. Salzberg. Access methods for multiversion data. In SIGMOD
Conference, pages 315–324. ACM Press, 1989.

[56] D. Lopez-Paz, K. Muandet, B. Schölkopf, and I. Tolstikhin. Towards a learning
theory of cause-e�ect inference. In International Conference on Machine Learning,
pages 1452–1461, 2015.

[57] M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends in Machine Learning, NOW Publishers, 3(2), 2011.

[58] K. Makarychev, Y. Makarychev, and I. Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In STOC, 2019.

[59] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently)
frequent items in distributed data streams. In ICDE, 2005.

[60] A. Metwally, D. Agrawal, and A. Abbadi. An integrated e�cient solution for
computing frequent and top-k elements in data streams. ACM Transactions on
Database Systems, 31(3):1095–1133, 2006.

[61] J. Misra and D. Gries. Finding repeated elements. Sc. Comp. Prog., 2:143–152,
1982.

[62] J. Nelson and H. L. Nguyen. OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proceedings of 54th IEEE Symposium on
Foundations of Computer Science, 2013.

[63] T. Neumann. E�ciently compiling e�cient query plans for modern hardware.
Proc. VLDB Endow., 4(9):539âĂŞ550, June 2011.

[64] C. Olston, J. Jiang, and J. Widom. Adaptive �lters for continuous queries over
distributed data streams. In SIGMOD, 2003.

[65] Y. Peng, J. Guo, , W. Qian, and A. Zhou. Persistent bloom �lter: Membership
testing for the entire history. In SIGMOD, 2018.

[66] J. M. Phillips. Algorithms for ε -approximations of terrains. In ICALP, 2008.
[67] J. M. Phillips. Coresets and sketches. In 3rd, editor, Handbook of Discrete and

Computational Geometry, chapter 48. CRC Press, 2016.
[68] C. Plattner, A. Wapf, and G. Alonso. Searching in time. In SIGMOD Conference,

pages 754–756. ACM, 2006.
[69] T. Sarlos. Improved approximation algorithms for large matrices via random

projections. In Proceedings Symposium on Foundations of Computer Science, 2006.
[70] A. D. Sarma, M. Theobald, and J. Widom. LIVE: A lineage-supported versioned

DBMS. In SSDBM, volume 6187 of Lecture Notes in Computer Science, pages
416–433. Springer, 2010.

[71] I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring
threshold functions over distributed data streams. In SIGMOD, 2006.

[72] I. Sharfman, A. Schuster, and D. Keren. Shape sensitive geometric monitoring.
In Proc. ACM Symposium on Principles of Database Systems, 2008.

[73] R. Shaull, L. Shrira, and H. Xu. Skippy: a new snapshot indexing method for
time travel in the storage manager. In SIGMOD Conference, pages 637–648. ACM,
2008.

[74] L. Shrira and H. Xu. SNAP: e�cient snapshots for back-in-time execution. In
ICDE, pages 434–445. IEEE Computer Society, 2005.

[75] W. M. Tai and J. M. Phillips. Improved coresets for kernel density estimates. In
Proceedings ACM-SIAM Sympoisum on Discrete Algorithms, 2018.

[76] M. Tang, F. Li, J. M. Phillips, and J. Jestes. E�cient threshold monitoring for
distributed probabilistic data. In ICDE, 2012.

[77] Y. Tao, K. Yi, C. Sheng, J. Pei, and F. Li. Logging every footstep: Quantile sum-
maries for the entire history. In Proc. ACM SIGMOD International Conference on

Management of Data, 2010.
[78] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and practice of bloom

�lters for distributed systems. IEEE CST, 14(1):131–155, 2012.
[79] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequen-

cies of events to their probabilities. The. of Prob. App., 16:264–280, 1971.
[80] P. J. Varman and R. M. Verma. An e�cient multiversion access structure. IEEE

Trans. Knowl. Data Eng., 9(3):391–409, 1997.
[81] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical

Software, 11(1):37–57, 1985.
[82] Z. Wei, G. Luo, K. Yi, X. Du, and J. Wen. Persistent data sketching. In SIGMOD

Conference, pages 795–810. ACM, 2015.
[83] Z. Wei and K. Yi. The space complexity of 2-dimensional approximate range

counting. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 252–264, 2013.

[84] D. P. Woodru�. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10:1–157, 2014.

[85] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles.
In PODS, pages 167–174, 2009.

[86] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica. G-OLA: generalized on-
line aggregation for interactive analysis on big data. In SIGMOD, pages 913–918,
2015.

[87] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical bootstrap: a new
method for fast error estimation in approximate query processing. In SIGMOD,
pages 277–288, 2014.

[88] Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and e�ciency for kernel
density estimates in large data. In SIGMOD, pages 433–444, 2013.

