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ABSTRACT

In the era of big data, more and more applications require the in-
formation of historical data to support rich analytics, learning, and
mining operations. In these cases, it is highly desirable to retrieve in-
formation of previous versions of data. Traditionally, multi-version
databases can be used to store all historical values of the data in or-
der to support historical queries. However, storing all the historical
data can be impractical due to its large space consumption. In this
paper, we propose the concept of at-the-time persistent (ATTP) and
back-in-time persistent (BITP) sketches, which are sketches that ap-
proximately answer queries on previous versions of data with small
space. We then provide several implementations of ATTP/BITP
sketches which are shown to be more efficient compared to existing
state-of-the-art solutions in our empirical studies.
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+ Information systems — Data streaming; - Theory of com-
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1 INTRODUCTION

Increasingly, in the era of big data, more applications require the
storage of and access to all historical data to support rich analytics,
learning, and mining operations. As data sources grow rapidly,
it is becoming commonplace to make snap decisions about these
data sets interactively in real time. This data is quickly classified,
or scanned for anomalies, or used to predict valuation. In each
case this data is also often used to update a model. After that, the
data may be discarded (in private messenger), passed along (on a
router, a self-driving car), or archived (at a large internet company)
but where retrieval is at a much higher cost than now. In these
scenarios the model is built and updated online, and as is crucial

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 18-27, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3452802

= SAMPLING = VERTICA
- CMG = VERTICA_WINDOWED_AGG

—— SAMPLING —— VERTICA
- CMG = VERTICA_ WINDOWED_AGG

150

),

100

4

Memory Usage (GB

Average query time (s)

0 5 10 0 5 10
Number of Logs (x10”) Number of Logs (x10”)

Figure 1: Memory usage (left) and average query time (right)
vs total number of logs inserted using ATTP sketches (SAM-
PLING and CMG) and a state-of-the-art columnar store (Ver-
tica), for temporal heavy hitter queries in (0, t] over 10 copies
of 98 world cup website access logs. VERTICA: store full data
in Vertica. VERTICA_WINDOWED_AGG: store daily aggre-
gated data in Vertica. The lines for SAMPLING and CMG
overlap in both figures.

for any prediction step, it evolves over time as data arrives. But
if something goes wrong in the model and we want to audit the
process, or we want to revert to an older version, or we want to
study the historical effects of the data via a summary, these tasks
are often impossible or too costly in these settings.

Our proposed solution is to build sketches which can handle
these tasks approximately, for which, under traditional models
there are large array of techniques [21, 67]. However, these are
typically designed to work over all of the data from the history
(up to now), and existing data summaries do not support tempo-
ral analytics: those queries and analytical operations that involve
filtering conditions on the temporal dimension. Thus, while these
summaries can only answer data queries and analytics about all of
the data, their efficacy demonstrates that approximation is tolerable
in many practical applications [21, 67].

An alternative solution to address these application needs are
multi-version databases or more simply to store time stamps in
an OLAP database [48, 63]. However, these solutions can be costly
when there are a large number of records accumulated over time.
In Figure 1, we compare the scalability of two of our proposed
sketches (SAMPLING and Chain Misra-Gries (CMG)) with keeping
all data, or daily aggregated data in a state-of-the-art columnar store
(Vertica), in terms of memory usage and average query time. We find
that, even with a columnar store that highly compresses the data
and leverages advanced query processing techniques such as SIMD,
storing and querying based on full data (or windowed aggregates)
becomes increasingly expensive compared to our sketches.

Another potential solution may be approximate query processing
(AQP) [2, 12, 21, 41, 50, 87]. It provides an appealing alternative
for big data analytics when approximations are acceptable; this is
especially useful towards building interactive analytical systems,



when exact queries become expensive over big data. But these
do not currently support temporal or persistent queries, and our
proposed sketches will complement these systems in these tasks.

Our Results. This paper proposes a framework and designs tech-
niques that extend and combine AQP with temporal big data. In
particular, instead of (or on top of) using a multi-version database,
this paper proposes the design and implementation of persistent
data summaries that offer interactive temporal analytics with strong
theoretical guarantees on their approximation quality. We will design

a series of data summarization tools which answer queries about

any point in the history of the data. These summaries do not require

significantly more space or are not significantly harder to maintain
than the summaries used for all of the data.

A natural approach to these challenges is to downsize the data by
sampling. While query sampling is a decades-old concept, and has
been explored recently in systems like BlinkDB [3], DBO [41, 41], G-
OLA [86], and XDB [51], samples do not directly offer the desired
persistence properties needed for the critical temporal analysis
tasks. Hence, it is also important to explore how to turn samples and
other data summaries (various synopses and sketches) persistent.

Specifically this paper makes the following contributions:

e We introduce two new and useful models for temporal analytics
on a data stream which are amenable to sketching, and offer
efficient and useful queries: These are At-The-Time-Persistence
(ATTP) which allows one to query the state of data at a specific
point in the past, and Back-In-Time-Persistence (BITP) which
allows queries from a prior point in time up until now.

e We provide a variety of new sketching techniques for ATTP
and BITP that build on existing streaming sketches which have
demonstrated their immensive effectiveness in numerous previ-
ous studies. These include sampling-based sketches (weighted
and unweighted), linear sketches (e.g., count-min sketch, count
sketch), and space-efficient deterministic mergeable sketches
(e.g., Misra Gries and Frequent Directions).

e For each such sketch we provide proof of the total space and
update time. They are all independent of the stream (where prior
temporal sketches often have assumptions) and in most cases
have nearly the same bound as the standard streaming sketches.

e We conduct a thorough experimental evaluation on several large
data sets focusing on the heavy-hitters and matrix-covariance
sketching problems. We provide a fair comparison across variants,
and demonstrate numerous situations where the new sketches
provide clear and sizeable advantages over the state-of-the-art.

2 PRELIMINARIES
2.1 Stream Models

A data stream A is defined by a sequence of items with timestamps
A = ((a1,t1), (az, t2), . . ., (an, tn)), where each a; is an object and
tj is a timestamp that #; < t;4+1 (for simplicity in descriptions, we
assume there are not ties, but that is addressed in code through an
assigned canonical order). The object a; could take on several forms:
it could be an index e; from a fixed (but typically large) universe [d]
like IP addresses; it could be a vector a; € RY, representing a row
in a matrix A € R"%4; and it could be a pair a; = (ej, w;) where e;
is again an index, and w; is a weight of that index (which could be
negative, or a count c;, and in many cases is always 1).

2.2 Data Summaries

There are many forms of data summaries [21, 57, 67, 84]. A sketch
S is a data structure representation of A, but uses space sub-linear
in A, and S allows specific queries for which it has approximation
guarantees. There are several general models that most sketches
fall under, and our analysis of persistent summaries will use these
general properties, which then imply results for many specific
classes of queries. First, a random sample is a powerful common
summary of A. Indeed, any robust and meaningful data analysis
which relies on the assumption that A is i.i.d. from some distribution
will allow some sort of approximation guarantee associated with a
random sample. For some classes of queries or goals, it is useful to
allow for weighted random sampling, e.g., sampling each element
a; proportionally to an implicit or explicit weight w(a;); these
are generally methods which reduce the variance of estimators
using importance sampling (e.g., with sensitivity sampling [34] or
leverage scores [57], for instance, used in randomized algorithms
for matrices and data).

Second, a linear sketch is (an almost always random) data struc-
ture S where each data-value S[j] is a linear combination of the data
stream elements: that is for instance in the index-count pair model
where a; = (ej, ¢j) then S[j] = a(e1)c1 + alez)ca +. .. + alen)cn, or
in matrix sketching setting, the as represent a fixed (but randomly
chosen) linear transformation (e.g., a JL projection). Notably, any
linear sketch can handle negative values of ¢; (e.g., subtractions).

Third, a mergeable summary [1] is a sketch S which for an approx-
imation error ¢ has a size size.(S), and given two such summaries
S1 and S; of data sets A; and Ay with the same size error guaran-
tee ¢ and size(S1) = size.(S2), they can be used to create a single
summary S = merge,(S1,S2) of A = A; U A; of the same error ¢
and size size,(S) without re-inspecting A; or Az. In some cases,
the size depends (mildly) on the size of A, and the error may in-
crease by some « on each merge operation; in this case we call it an
a-mergeable sketch. Linear sketches are mergeable (since linear op-
erations are commutative under addition). Random samples can be
made mergeable if they are implemented by assigning each element
a random value, and then maintaining the top k of these values in
a priority queue; although these samples are without replacement
and much analysis uses with-replacement samples, it can be made
with-replacement by a careful secondary subsample at the time
of analysis. Moreover, a without-replacement sample has negative
dependence which has as good and typically better convergence
properties than fully-independent ones. However, other types of
sketches (e.g., deterministic ones) are also known to be mergeable.

We next survey several relevant and exemplar types of sketches
and the best-known results within these general frameworks.

2.2.1 Frequency estimation and heavy hitters. Given a list A =
(ai,az, - ,an), the frequency of j € [d], denoted by f(j) = |{i €
[1,n] | a;i = j}|, is the count of j in A. An e-approximate frequency
estimation summary (an e-FE summary) of A, for all j, can return
f(]) such that f(j) —en < f(]) < f(j) + en. Various summaries
provide stronger bounds by either having no error on one of the two
inequalities, or replacing the en term with ¢7i where 7 can depend on
the “tail” Although these improvements carry through with our new
models, for simplicity, we mainly ignore them. An e-approximate
heavy hitters summary of A returns a list of indices {j1, jz, . . ., } for



parameter a, with any index j € [d] which satisfies f(j) > an, and
no index j that has f(j) < an — en. An e-FE summary is sufficient
for an e-approximate heavy hitters summary, but depending on its
structure may require different time to retrieve the full list.

A random sample of size k = O (ﬁ log %) provides an &-FE

summary with probability at least 1 — §.
The popular CountMin sketch [22] is a linear sketch which

provides an ¢-FE sketch with probability 1 — § using O (% log %)
space. The Count sketch [11] is another linear sketches that uses

@) (5—12 log %) space, but has a slightly stronger guarantee so the

en is replaced with ¢, IZJ”.I:I f(j)?, which is much smaller than en
when the distribution is skewed.

The Misra-Gries [61] and SpaceSaving sketches [60] are deter-
ministic sketches that provide e-FE summaries; they are mergeable
and isomorphic to each other [1], and require O(1/¢) space.

2.2.2  Matrix estimation. There are many sketches for matrix es-
timation [57, 84], and its many applications in data mining and
machine learning. We focus on the setting where rows of an n x d
matrix A appear one-by-one, and the ith row a; € R, is a d-
dimensional vector. Our desired sketch, which we call an e-matrix
covariance sketch (or e-MC sketch) will be an ¢ X d matrix B (or
will be able to reconstitute such a matrix), which will guarantee
that ||ATA - BTB|); < £||A||12:. This for instance ensures for any
unit vector x € R? that ||Ax|| — ||Bx||? < £||A||}2,, and by increasing
the size ¢ by any additive factor k < ¢ that the covariance error is
at most ¢||A — Ay ||1%/||A||12: or by increasing the size ¢ by a multi-
plicative factor k that [|A — zp, (A)||12D < el|[A-Ag ||12c where Ay is
the best rank-k approximation of A, and 7y is a projection oper-
ator onto the subspace spanned by H [36]. While there are other
sorts of matrix approximation bounds [57, 84], ones which are not
directly related to this one, many different sketching algorithms
satisfy these bounds, and it is directly computable in empirical
evaluation [26].

A weighted random sampling, weighted as w(a;) = ||a||%, achieves
this bound with ¢ = O(d/e2) rows [4, 26]. Linear sketches also can
achieve this error using £ = O(d/e?) when based on JL random
projections [69] or more efficiently for sparse data based on the
Count sketch using £ = O(d?/¢®) [14, 62]; both of these bounds
can actually be tightened significantly when the numeric rank is
large, for instance when ||A||%/||A||§ = Q(1/¢), then we only need
¢ = O(1/¢) [18]. And deterministic mergeable sketches based on
Frequent Directions (an extension of the Misra-Gries [61] frequent
items sketch) attains this error using £ = O(1/¢) [36].

Other approaches, like leverage score sampling [30], can provide
stronger relative error bounds as well, but are more challenging
to generate efficient streaming sketches [29]. One approach [17]
maintains a sample of rows B, and uses this to estimate the (ridge)
leverage score of each incoming row, and then retains it propor-
tional to this value. It never discards any sampled data, and provides
a (a, €)-MC sketch B which ensures with constant probability that

(1-a)ATA- eI <BTB<(1+a)ATA+ ¢,
that is, almost (1 + a)-relative error in all directions, and using
0] (ﬁdlogdlog ((x||A||§/£)) rows.

2.2.3  Quantiles estimation. In this setting, each a; in the stream is
areal value in R; in fact, any family of objects with a total order and
a constant time comparison operator can be the input. For a value
Tt eR, let A; = |{a € A| a < r}|/|A] be the fraction of items in the
stream at most 7. An e-quantile summary should be able to answer
either of the following queries for all instances of the query:

(1) given a value r € R report A, an estimate of A; so that

|A; —A7| <e.

(2) given a threshold ¢ € (0, 1] report a value 7 so |A; — ¢| < e.

A random sample of size k = O (Eiz log %) is again an e-quantile
summary with probability 1 — §. A long series of work has culmi-

nated in a e-quantiles sketch of size k = O (% loglog %) [46], and

the size increases slightly to k = O (% log? log %) if it is merge-
able [46]; these constructions hold with probability 1 — 6.

2.2.4 Approximate Range Counting Queries and KDEs. The quan-
tiles query can be seen to approximate a 1-dimensional distribution.
To generalize it to higher dimensions one needs to specify a method
to query the data — a range counting query. Here we let A C R4, and
consider a family of ranges R. An range r € R returns the number
of points in that range r(A) = |{a € A | a € r}|. A useful combina-
torial measure of this is the VC-dimension [79] v; for axis-aligned
rectangles v = 2d, for disks v = d + 1, for halfspaces v = d. Then
an e-approximate range counting (¢-ARC) summary S satisfies that

max,cA % - Singi)Q) < ¢. The ¢-ARC summaries are typically

subsamples so size(S) = |S| is just the number of points in S.

A random sample of size k = O (E—lz(v + log %)) is an e-ARC sum-
mary with probability 1 — § [52]. Smaller summaries exist [13, 83],
including mergeable ones [1] of size k = O ((1/6‘)% log% %)
for the special case of axis-aligned rectangles this can be reduced
to O ((1/{:‘) 10g2d+3/2 %) These succeed with probability > 1 - §.

Another interpretation of this problem is to allow queries with
kernels X (e.g., Gaussian kernels K(x, a) = exp(—||x — a||?)). Then
an ¢-KDE coreset S preserves the worst case error on a kernel
density estimate kde(x) = ﬁ Y aca K(x,a); that is ||kdegq —
kdes|lco = max, cpa [kdea(x) —kdes(x)| < e. A random sample of
size k = O (ﬁ log %) achieves this for any positive definite kernel,
regardless of the dimension [56, 75]. For dimensions d < 1/¢?, this
can be improved to k = O(\/TE) [47, 75]; and can use the same-
weight-merge framework [1] to become mergeable using space

1o) (‘/Tg log? %), with probability 1 — §.

2.2.5 Other coresets and sketches. There are numerous other vari-
ety of coresets and sketches, including for k-means [16, 34, 35, 49,
58], and other clustering variants [37, 38]; distinct elements [7, 45],
graphs [33], optimization, and other more obscure ones. While
many of these use uniform or weighted (sensitivity-based) sam-
pling, or are linear or mergeable, we do not provide the full list.

2.3 ATTP and BITP: Problem Definition

In this paper, we introduce two models for persistent sketches, at-
the-time persistence (ATTP) and back-in-time persistence (BITP),



which are useful in practice and allows for considerably more effi-
cient sketches. We define ATTP and BITP sketches as extensions
of traditional sketches that answer queries at any historical times-
tamps of a stream. Our main results are previewed in Table 1.

Given a stream A and two time values s < t, define AS? as the
content of the stream which arrived in the time interval [s, ¢]. Let
to be a time point before any points in the stream arrived, and tnow
the current time. Then we also define specific stream subsets as
Al = Af? and A~ = Abtow Qur goal in this paper is to provide
summaries (e.g., coresets and sketches) of At and A™¢ which we
denote as S?, and S, respectively.

While most streaming algorithms focus on summarizing the
contents Afo-frow  there have been a few works exploring time-
restricted summaries which can allow query summaries of the form
5%t which we call a for-all-times persistent (FATP) sketch. Our
focus is however largely of the more restrictive forms S* and S77;
which we call ATTP and BITP queries respectively. While these are
indeed more restrictive, they are quite relevant corresponding to
the state of the summary (and hence data analysis context) at that
time ¢ and queries back to some recent (a dynamically adjustable
sliding window query). Moreover, they admit, in our opinion, very
simple and elegant algorithms, small space, and fast update time.

One previous work is on the persistent Count-Min sketch (PCM)
which is FATP sketch for the -FE problem [82]. Its analysis heavily
relies on a “random stream model” assumption that the elements
arrive from a fixed random distribution. Their theoretical results are
not directly comparable to ours, which like most streaming space
analysis do not rely on this. FATP sketches which use sublinear
space are not possible without this assumption. The main idea is to
build piecewise-linear approximations for the counters in a Count-
Min sketch. Since the elements arrive from a fixed distribution, the
growth of these counters are linear in expectation. It can answer
FATP queries similar to a CM sketch, except it returns the median of
the counter values instead of the minimum value. To guarantee an
£-FE FATP sketch (under the random stream model), it can handle
one-element queries using O(1/¢?) expected space, and requires an
additional log n to handle heavy hitter queries.

The only other previous work we know of in either of these

frameworks is an ATTP model focusing entirely on the quantiles
summary [77]. This work only considers the case with additions and
deletions of data — these deletions cause numerous complications,
including a lower bound including the harmonic sequence of sketch
sizes. In contrast, our approaches mainly focus on insertion-only
streams (as is the case with most large data, e.g., routers, website
monitoring, log structures) where if there are a small number of
corrections they can be handled in a separate structure post-hoc.
This allows our algorithms to be significantly simpler and more
general (handling any summaries based on random samples [32, 81],
linear sketches [11, 22, 69], or mergeable summaries [1]).
Use cases for ATTP and BITP. Consider a system administrator
monitoring updates for a website, and building models and making
decisions based on real-time summaries of the data up to that point.
Later (say months later), they realize some poor decision was made,
then an ATTP sketch allows them to quickly go back and review
the state of the summaries, and analyze their potential mistakes
from what the state was at those times.

Table 1: Main bounds for ATTP sketches, marked if also
BITP (see Cor. 3.1). Weighted (wt.) bounds with U-bounded

weights and U = poly(n); matrix bounds assume 1 <

min; |4
ATTP sketches BITP Sketch Size Thm
e-quantiles X O (¢7%log n)R 3.1
wt. e-quantiles X O (¢ %logn)R 3.3
e-FE X O (¢ %logn) 5.1
wt. e-FE X O (¢ %logn)R 3.3
e-FE O (¢7logn) 4.2
e-ARC (v = O(1)) X O (¢ %logn)R 3.1
wt. e-ARC (v = O(1)) X o (5_2 log n)R 3.3
¢-KDE X O (e2logn)R 3.1
&-MC X O (de™2log ||AllF) 5.1
&-MC O (de™log ||AllF) 43
(a, £)-MC (0] (Z_i log dlog w T o33

R: Randomized, includes log % factor to ensure holds with probability at least 1 — &.
r: Randomized, with constant probability.

Sliding window analysis is essential when the most recent data
in a large data stream is most relevant towards understand recent
trends. Their weakness is that they provide a fixed length of history
they summarize. If one wants to expand the analysis from one day
to two days (or say 42.3 hours), this information is not captured.
However, with a BITP sketch, one can efficiently retrieve summaries
on data for any window length into the past.

More general FATP sketches, while able to handle AS 1t queries,
for non-uniform data require linear space, or have much weaker ac-
curacy guarantees. See for instance Figure 1 where monthly check-
points in a state-of-the-art OLAP system has space grow linearly
with the size of the data, or Section 6.1 where our ATTP sketches
significantly outperform the FATP PCM sketch in accuracy as well
as update and query time as a function of memory usage.

3 ATTP AND BITP RANDOM SAMPLES

A random sample is one of the most versatile data summaries.
Almost everything from frequency estimates to quantile estimates
[40] to kernel density estimates [43, 88] can be shown to have
a guaranteed approximation from a random sample of the data.
Therefore in this section, we propose a variant of random sample
summary which is made at-the-time persistent, and we will use it
as building blocks of other ATTP sketches.

Note that under the turnstile model (i.e. if we allow deletions),
the strongest guarantees are impossible, since we may insert many
items and then delete most of them. If the random sample was
entirely from the deleted set, we know nothing about what data
remains.

The classic method to maintain a random sample in a stream
is called reservoir sampling [81]. This maintains a set of k items
uniformly at random from a stream. On seeing the ith item in the
stream (after the first k which are kept deterministically), it decides
to keep it with probability k/i, and if it is kept, it replaces a random
item from the reservoir of kept items. The maintained items are a
uniform random sample from the entire stream up to that point.



However, if after building it, we consider the stream up to a time
t (a query q over S?), and ¢ is sufficiently smaller than the current
time instance i (for instance less than i/k) then we do not expect
to have a good estimate of that portion of the stream (it is likely
that the summary has no information at all!). Rather we modify the
algorithm to never delete any items from the reservoir. Instead, we
mark an item that would have been deleted at time i with this value
i. Then in the future, we can reconstruct a perfect uniform random
sample for any stream up to a time ¢ from this data: we return all
items which are retained in the summary when they first appear,
but are not yet marked (for deletion) at time ¢; these items in the
normal reservoir sampling summary would potentially have been
deleted at some point after time ¢. Since the probability of keeping
an item decreases inversely with the size of the stream, the total
number of items ever kept is O(k log n) for a stream of size n.

LEMMA 3.1. For a stream of length n, the expected number of
items kept in k independent persistent reservoir sampling is E(kSp,) =
kH, < k(1 + Inn), where Hy, is the nth harmonic number. And with
probability at least 0.9, kS, € k(1 + Inn) ¥ O(VkInn).

Proor. For the ith of these k independent persistent reservoir
sampling, let X; ; be the random variable of whether jth item is
kept, and Sy ,, = Zle > ;.’:1 X, j be the random variable of the total
number of items kept. We have probability mass function for Xj ;,

1-1/j ifx=0,

P”J(x):{ 1/j ifx = 1.

The mean and variance of X; j is
E(Xi,j) =0(1 —1/j) + 1(1/j) = 1/i
Var(X; j) =(0 - 1/)*(1 = 1/)) + A = 1/j* [ = 1/j = 1/j* < 1/j

The mean and variance of Sy, is

k n n
E(Skn) = D, > (X)) = kZ} = kHy, < k(1 +1Inn)
=

i=1 j=1
k n n 1 1

Var(Sg. ) =Z Z Var(X; ;) = kz (f - 3) <klnn.
i=1 =1 =

Using Chebyshev’s inequality,
P(ISk.n = E[Sk.nll = A) < Var(Sg,)/A% < (klnn)/A? = 6.

Solving for A = y/(kInn)/é. O

In many cases, it is also useful to maintain k uniform samples
without replacement. This is simple to accomplish with a priority
queue in O(log k) worst case, and O(1) amortized time per element.
Each new element g; in a stream is assigned a uniform random
number u; € [0, 1] and is kept if that number is among the top k
largest numbers generated. The priority queue is kept among these
top k items, and a new item is compared to the kth largest value
(maintained separately) before touching the priority queue.

Implications. For any sketch which requires a random uniform
sample of size k, we can extend it to a streaming at-the-time persis-
tence sketch with an extra factor log n in space.

THEOREM 3.1. On a stream of size n, using a persistent random
sample, ATTP summaries can solve the following challenges with
probability at least 1 — §:

o ¢-quantiles summary with O (E—lz log %) space,
o ¢-FE sketch with O (5_12 log %) space,
® ¢-ARC sketch with VC-dimension v with O

—

2 log %) space,
e ¢-KDE sketch with O (Eiz log %) space.

3.1 Persistent Weighted Random Samples

This can be extended to weighted reservoir sampling techniques.
Consider a set of items in a stream A = (a1, ay, . . ., an) where each
has a non-negative weight w;. Let W; = 3, ;‘:1 w; be the total weight
up to the ith item in the stream. A single item is maintained, and
on seeing a new item a; it is put in the reservoir with probability
w; /W, otherwise the old item is retained. To sample k items with-
replacement, run k of these processes in parallel.

The analysis for the total number of samples of this algorithm
is slightly more complicated since it may be that the weights, for
instance, double every step (i.e., wi+1 = 2w; for all i). In this case,
in expectation about half of all items are selected at any point, and
the size of the persistent summary is Q(n). However, this results in
an unrealistic ratio between weights of points, where wy, /w; = 2".
It is thus common to assume that the weights are polynomially
bounded; that is, there exist a value U so that 1/U < w;/w; < U
for all i, j. We say weights are U-bounded in such a setting. For
instance, it requires log, U bits to represent integers from 1 to U.
We assume log U < n.

LEmMA 3.2. For a stream of length n with U-bounded weights, the
expected number of items kept in k independent persistent weighted
reservoir sampling is s = O(k(log n + log U)). And with probability
at least 0.9, the number is in the range s € O (k(logU + logn)) +

0 (yKllogn +1og ).

Proor. We consider simulating this process by decomposing
each item of weight w; into at most U distinct items with uniform
weights. This stream then has at most nU items, and by Lemma 3.1,
E[sx] = O(klog(nU)) = O(k(log n + log U)), and similarly the devi-

ation from this expected value is bounded by O (\/k(log n + log U))
with probability at least 0.9. m]

Without Replacement Sampling: It is not difficult to extend
this algorithmically to weighted without replacement sampling.
The simplest (near optimally [15]) is via priority sampling [32]. For
each item g; in the stream, generate a uniform random number
u; € [0, 1], and create a priority gq; = w;/u;. It then simply retains
the k largest priorities, again with a priority queue in O(logk)
worst case time, and expected O(1) time. It reweights those selected
as Wi = max{Wwi, q(k+1):n} Where q(g11)., is the (k + 1)th largest
priority among all n items.

The update time improves from O(k) for with-replacement to
worst case O(log k), and expected case O(1) time. This improves
the concentration bounds, and often the empirical performance.

THEOREM 3.2. For any stream with U-bounded weights, the ex-
pected size of ATTP k-priority sampling is O (k(log n + log U)).



The proofis verbose and tedious, so we defer it to the full version.
We overview it here. We first show the hardest case is when streams
have non-decreasing weights, and it is sufficient to analyze the case
when they are all powers of 2. For each power of 2 we can borrow
from the proof for equal weight streams. To combine the analysis
of these different equal-weight substreams, we can argue starting
a substream with weight 2 at element s, is similar to having seen
about 2% ZJS.:l wj elements of those weights before. Adding the
contributions of each ordered substream provides our result.

Implications. For any sketch which requires a random weighted
sample of size k, we can extend it to a streaming at-the-time persis-
tence sketch with an extra factor log n in space. For instance, the
weighted version of frequency estimation, quantiles, and approxi-
mate range counting an item’s contribution is proportional to its
weight requires sampling proportional to its weight. The sample
size requirements are not more than with uniform weights, and
depending on the distribution may be improved.

THEOREM 3.3. On a stream of size n, with U-bounded weights and
U = poly(n), using a persistent random sample, ATTP summaries
can solve the following challenges with probability at least 1 — §:

o weighted e-quantiles summary with O (;—2 log %) space,

weighted e-FE sketch with O (Eiz log %) space,

weighted e-ARC coreset for range space with VC-dimension v with
0] (E—Vz log %) space, and
llAIIZ

e-MC sketch using O (fiZ log TF) rows via norm sampling.

&

2
(e, €)-MC sketch using O (#dlog dlog M) rows.

3.2 BITP Random Samples

A naive inverse of this procedure will require Q(n) space to obtain
a BITP sketch, since every item, as it is seen, might be required for
a sample over a very short BITP time window. So we cannot simply
save forever every item used in a sketch. Instead, we will carefully
delete items once they would never be used again.

That is, to achieve all of the same space bounds as before, we
simulate the without replacement sampling algorithms, and when
an item has k items with larger weight which appear after it, it
can be deleted. The argument for the space bounds follows directly
from the ATTP analysis. A key difference in ATTP sketches is that
all but a vanishing fraction of the data points will never be part of
the sketch, and this can be detected with a single threshold check
in O(1) time. Hence the ATTP sketch has amortized O(1) update
time. On the other hand, every item in a BITP sketch is part of some
sketch while it is among the most recent k items and continues to
be until there are k items after it with larger weights, so this same
bound is not available.

In particular, a naive implementation will require Q(k) amortized
time to process each item over the course of the stream. For instance,
assume we initially deposit each item in a cache, which we batch
process when it gets size Ck for some constant (e.g., C = 4), to only
retain the top k items (excluding the most recent k items). This
can be done in amortized O(log k) time per item. Yet a constant
fraction (a 1/C fraction) of items will be retained, and of them a

constant fraction (a 1/2C fraction) of them will have no more than
k/2 items with larger weights. Then as we maintain these items
in a standard priority queue, their rank can still decrement Q(k)
times before there are k items with larger weights, and they are
discarded. So while this trick can reduce the constants, Q(n) items
will still require Q(k) time to process.

We describe a more computationally efficient way to maintain
the required items; it applies some batch operations, and therefore
the space increases by a constant factor. All kept items are main-
tained sorted by arrival order. Let there be m items kept at any
given time (recall, m = O(k log n) in expectation). Cache the next
m items that arrive. Now scan the 2m items in arrival order (new
to old). During the scan store/insert them in an auxiliary binary
tree sorted by value so it can handle insert and rank in O(log m)
time. On processing, if the rank is more than k, then do not retain
the item (in the BITP sketch memory or tree). This reduces the
insert and rank cost to O(log k) since although there will be about
m items kept in the tree, we only need to keep the top O(k) of them
balanced. This scan process takes O(mlog k) time. For each batch
of size m, the scan takes O(m log k) expected time; hence each item
in any batch has amortized, expected O(log k) processing time.

COROLLARY 3.1. For any ATTP random sample sketch (for a ran-
dom sample of size k), we can maintain a BITP sketch with the same
asymptotic size. The ATTP sketch has O(1) amortized update time,
and the BITP one has O(log k) expected amortized update time.

Queries. On a query for the ATTP sketch, there are exactly
k items active at any given window. We can store these as in-
tervals, and use an interval tree to query them in k + logm =
O(k + log k loglog n) time.

To query the BITP sketch, the set of k active items are not neces-
sarily demarked for a time window, as up to half of the items may
still be stored in the cache and not yet processed on the scan. We
can first perform the compression scan at the time of the query,
and it takes O(k log n) time in the expected worst case.

4 FROM STREAMING TO ATTP SKETCHES

In this section, we describe a very general framework for ATTP
sketches, which works for known sketches that can be maintained
in an insertion-only stream, and provides additive error. For each
element g; in a stream A, associate it with a non-negative weight w;,
which could always be 1, could be provided explicitly as (a;, w;), or
implicitly (e.g., as w; = ||a;||?, in the case of matrix sketching where
a; € Rd). Then for the stream up to item a;, denoted A;, let the total
weight at that point be W; = Zj.:l w;. It is also sometimes more
convenient to reference this weight at a time ¢ as W(t), which is the
sum of all weights up to time ¢. If a sketch bounds a set of queries
up to ¢éW; at all points a;, for some error parameter ¢ € (0, 1), we
refer to it as an additive error sketch.

Then our general framework is as follows. Run the streaming
algorithm to maintain a sketch s(1/¢) at all times. Keep track of
checkpoints c1, c2, . . ., ¢ at various points in the stream - these are
the only information retained in the AT TP sketch. Each checkpoint
cj corresponds with a time ;. In the simplest form, each checkpoint
cj stores the full stream sketch at time ¢;; and then the total space
requirement is ks(1/¢), and what remains is to bound k, the number
of checkpoints needed.



To bound the number of checkpoints, we record W(t;) at the most
recent checkpoint, and use this to decide when to record new check-
points. At the current stream element a; if W; — W(tj) < eW(t;) we
do not include a new checkpoint. If however, W; — W(t;) > eW(t;)
then we record a new checkpoint j + 1 at the time #;41 of the pre-
vious stream element a;—; and using the state before processing
a;. Since the total weight between times ¢; and t;41 is less than
eW(t}), then the error for any property of the sketch cannot change
more than eW(tj) < eW(tj+1). If the total weight is bounded by
W and the minimum weight is at least 1, then because the gaps

geometrically progress, there can be at most k = O (% log W).

LEMMA 4.1. An e-additive error sketch which requires s(1/¢) space
in an insertion only stream, can maintain a ATTP sketch with space

0(s(1/e)- L10gW).

Implications. Applying the above bound to the best known insertion-

only streaming sketches achieves the following results. Unfortu-
nately, because of the % log n overhead (for uniform weights so
W = n), these generally are not a theoretical space improvement
over the random sampling approaches.

THEOREM 4.1. On a stream of size n, using checkpoints of the
streaming sketch, ATTP summaries can solve the following challenges
with probability at least 1 — §:

o ¢-quantiles summary with O (ﬁ loglog % log n) space,

o ¢-FE sketch with O (:—2 log n) space,
o ¢-ARC sketch with VC-dimension v using

3v+l 2v.

0] (fm logTJr11 % log n) space,
o ¢-KDE sketch withk = O (g log? % log n) space,

o ¢-MC sketch using O (eil log ||A||2) rows via Frequent Directions,
assuming the 1 < min; ||a;||, and
o (a,¢€)-MC sketch using O (;l_:g log ||A||2) rows via count sketch,

assuming the 1 < min; ||a;||.

4.1 Elementwise Improvements : Main Idea

When the sketch maintains a set of specific counters which have
consistent meaning during the course of the stream, then another
optimization can be performed. For instance, this property holds
for any linear sketch, but also for other ones including Misra-Gries.
We say a sketch is a h-component additive error sketch if it has this
property, and each stream element a; affects at most h components.
Then we can maintain a separate checkpoint for each counter j.
If this occurred at time ¢ then the checkpoint is labeled c;(t), and the
overall weight at this time is still W(t). Then we only update this
checkpoint if |c;(t) —cj(tnow)| > eW (tnow). This requires extra over-
head to maintain, but the advantage arises when an update affects
a constant number of counters (e.g., h = 1 for MG, h = log(1/5) for
CMS and CS) or the total change is all weights of counters from ele-
ment a; is O(w;). Then total number of checkpoints is still bounded
by k = O(% log W), but each checkpoint only affects one counter.

LEMMA 4.2. An h-component e-additive error sketch in an insertion
only stream, can maintain a ATTP sketch with space O(h - % log W).

Implications. This improvement has two direct implications im-
proving both frequent items and matrix covariance sketches, mak-
ing these problems near-optimal with this improvement.

THEOREM 4.2. On a stream of size n, using checkpoints of the
streaming sketch, ATTP summaries can solve the following challenges
with probability at least 1 — §:

o ¢-FE sketch with O (% log n) space, and

e (a,¢)-MC sketch using O (;—226 log ||A||2) rows via count sketch,

assuming the 1 < min; ||a;||.

4.2 Frequent Directions Improvement

The Frequent Directions sketch is not a h-component additive error
sketch, since each (batch) update performs a SVD on the sketch,
and updates all of the values jointly. However, we can still achieve
a similar space improvement with more care.

We maintain a sketch that has full checkpoints (each a £ X d
matrix) and partial checkpoints (each is one d-dimensional row
vector). On a query, we find the nearest full update prior to the
query, and process the partial updates since then.

To understand how the ATTP sketch works, we first ignore the
streaming memory constraint. That is we assume (here assuming
d < n) that a d X d matrix fits in memory. We can then maintain
the covariance exactly by caching C/C; = C/_,Ci—1 + aja] . We
will instead use this as the basis for a residual sketch of parts not
stored since the most recent checkpoint. We can calculate the first
eigenvector v and eigenvalue o2 of Cl.TCi. Using a parameter £ > 0,
if 02 > ||Ai||%/€, we make a partial checkpoint with vector o,
and remove this part from the caching summary C;'—C i — C;'—C i =
o?vvT. After every £ partial checkpoints, we make a full checkpoint.
The full checkpoint merges the last full checkpoint with all of the
partial checkpoints since the last full checkpoint.

It turns out that based on the mergeability of FD, to maintain
s||A||}2, error, only an FD sketch of the residual C of size £ = 2/¢
is needed, and the combination of the three parts can use the FD
compression sketch B down to £ = 2/¢ rows also. This means that
the residual covariance can be maintained as an FD sketch € of
the residual, and only requires O(¢d) space, and the top eigenvalue
times the top eigenvector of CTC is stored as ¢, the first row of
C after each FD update. This is detailed in Algorithm 1, where
FD;(C, a;) does an update to C with row a; using a size £d sketch.
Why this approach is correct. We omit the time subscript i in
the rest of this section. Let matrix B stack all the partial checkpoints
at the time t < i as its rows; we have BT B+ CTC = AT A. The above
approach is running FD with size parameter { = 2/¢ on rows of
B, resulting in a summary B. By the FD bound and properties of
residual C we have |BTB - BT B||; < %IlBH% < §||A||%, thus

ATA=BTBll; < IB"TB— BBl + IC"Cllz < e|lAll}.

To query the FD ATTP sketch at time ¢, we use the latest full

checkpoint B which occurred before t, and then stack all of the

partial checkpoints ¢; which occurred before t, but after B. This
will represent a matrix G, and we use G' G to approximate AT A.

THEOREM 4.3. The checkpoints made by Algorithm 1 with{ = 2/¢
form an ATTP ¢-MC sketch using space O((d/¢) log IAlLe ).

lladll




Algorithm 1: FD ATTP Sketch
input:A = {ay,az, - ,an},{ >0

1C—0;Be—0; JA|Z —0;p—0

2 fori:=1tondo

s | IR < ANG + llall?

4 C « FDy(C, aj)

5 | while||&]? > [|A]%/¢ do

6 Make partial checkpoint ¢; as by with timestamp i

7 Remove first row ¢; from ¢ (¢2 becomes ¢1)

8 pe—p+1

9 if p = { then

10 Make full checkpoint FDg(B, by, -+ ,bp) as B with
timestamp i

11 p<—0

ProoOF. At any query timestamp t, let A be the full stack of all
rows, and let B be the row stack of all partial checkpoints before
or at t. Let B be the stack of the last full checkpoint before or at t
and the partial checkpoint which came afterwards. Let C be the FD
sketch of the residual matrix C.

JATA-BTB|ls = |BTB-BTB+CTC-CTC+CCl,

<|IBTB =BT Bllz + ICTC = CTCllp + ICTCl2
< ellBII + ellClE + ell AT = 2¢l|AllG

The last equality holds because of BTB + CTC = AT A,

IBIIZ + ICI|2 = Tx(BTB) + Tr(CT C)
=Tr(B'B+C'C) = Tr(ATA) = ||All%.

To bound the number of partial checkpoints, we first have the
sum of all checkpoints squared norm 3 ; ||bj||2 = ||B||12U < ||A||12D In
the worst case, a checkpoint at time t; has squared norm ||b; 12 =
£||A(),‘j)||12c = ||A(L‘J)||12E - ||A(tj_1)||%. The 1st checkpoint by is for the
first non-zero vector, say ay, since [|a1[|* > e[|a1|* = ¢||A(1)||% for
any ¢ < 1. The 2nd checkpoint by at time ¢, > 1 has squared norm

atleast e[| A(t2)||%, so [ A(t2)II* > [1b1 12+ 116211 > lla1 || +ell A%,

which means ||A(t2)]|? > llay I The kth checkpoint by at time #g,

1-¢ °
2 . .
we have ||A(tk)||12; > (1||_a;)|,L_1.Sett1ng ||A||12: = ||A(tk)||12; and solving

for k < 1+ logyq_p)(lAlIZ/lla1ll*) = O((1/e)log(l|Allr/lla1ll)),
and the total sketch size is then O(dk) as claimed. o

In this algorithm description and analysis, we use the slow ver-
sion of the FD algorithm that only uses ¢ rows. In practice, we
would like to use the Fast FD algorithm [36] which uses 2¢ rows
and batches the computation of the internal SVD, and amortizes
its cost. However, this results in an additional challenge in that the
first eigenvalue of (ATIT C; is not always stored in the first row C; each
step, only once every ¢ steps. Efforts for heuristic improvements
towards the faster FD algorithm were ineffective in practice.

5 MERGEABILITY TO BITP SKETCHES

For coresets beyond linear sketches and random samples, the most
common and generic approach is called merge-reduce. Such algo-
rithms have been developed specifically, for instance, for density-
based coresets [13, 66], clustering and PCA sketches [35], and geo-
metric ones [1, 9]. The idea is to conceptually decompose the stream

into dyadic intervals based on the time items arrive. For each such
base interval (at the lowest level of the dyadic tree considered),
create a sketch. Then for each node in the dyadic interval tree,
compute a sketch by merging the two sketches which are in the
child nodes, then reduce the size so the space at each node is the
same. Reducing the size typically increases the error in an additive
fashion (so at most O(e - log n) error at the root); for mergeable
summaries [1] the error does not increase in the reduce step. In
a streaming algorithm, we only precompute merges on same-size
summaries, and thus only maintain at most one summary of each
size, so at most log n in total.

For an ATTP sketch, we also need to ensure we can answer any
historical query, and so it is required to maintain the left edge of
the tree (any potential root, not just the current root). However, if
we ask a query that does not correspond with a single complete
subtree, we need to reconstruct the result from up to log n disjoint
subtrees; which can be reduced to log% subtrees for e-additive
error sketches. This means we need to maintain every node within
a depth of log % of a node on the left spine of the merge tree. There
are in total (log n) - 2181/ = % log n such nodes.

Lets examine this another way, to understand that we can ignore
(and thus discard) summaries that are not within a depth of log %
of the left spine, or equivalently, do occur after 2/ objects in the
stream and account for fewer than (¢/2)2/ objects in the stream. If
(a) all summaries used on a query of size at least 2/ have at most
(¢/2)2/ error, and (b) including or omitting this particular summary
of representing (¢/2)2/ objects (because it is on the boundary of
a query) also incurs at most (¢/2)2/ error; then the total error is
at most £2/. This argument describes why we only need nodes in
the merge tree at depth at most log 1/¢ from the left spine for the
ATTP sketch.

What is useful about this above representation is that it can be
applied to a BITP sketch. Now instead of maintaining more items
near the start of the stream (on the left side of the tree), we maintain
more at the current part of the stream (on the right side of the tree).
Instead of discarding a summary containing (£/2)2/~! objects each
if 2/ objects came before it, we discard it if 2/ objects come after it.
And this can be done dynamically even if the right side of the tree
is not complete. Thus, the same size bound applies, but it results in
a BITP sketch.

THEOREM 5.1. On a stream of size n, using a merge tree for an
e-additive error problem that has a mergeable sketch of size s(1/¢) can
produce a ATTP or BITP sketch of size O(s(l/e)% log n). In particular,
BITP summaries can solve the following challenges:

o ¢-FE sketch (using an MG sketch) with size O(g—l2 logn), and
o ¢-MC sketch (using an FD sketch) with O(;—2 log ||A||127) rows, as-
suming the 1 < min; ||a;||.

Unfortunately, compared to the ATTP chaining sketches in Sec-
tion 4, this approach has two drawbacks. First, it cannot leverage
the compression for h-component ¢-additive sketches (and similar
ideas applied to FD). This requires an extra factor of 1/¢ in space.
Second, this approach has the additional overhead of keeping track
of when a summary can be discarded; for the chaining approach
in Section 4, this is decided as soon as it is created. But for BITP,
a separate priority queue (or similar) is required, and this adds
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Figure 2: ATTP heavy hitter average precision and recall
against total memory usage on Client-ID dataset.

additional overhead. However, it leads to a general strategy from
any mergeable sketch to a BITP sketch.

6 EXPERIMENTS

We conducted an experimental study on a real-world dataset and
a synthetic dataset to evaluate the memory consumption, perfor-
mance and scalability of the proposed ATTP and BITP sketches for
the heavy hitter and the matrix sketch applications. All experiments
were implemented as single-threaded C++ programs. While they
were run on two different processors (Intel Core 17-3820 3.6GHz
and Intel Xeon E5-1650 v3 3.50GHz), we ensured that the time
measurements in the same set of experiments were collected from
the runs on the same type of processor. For the matrix sketches,
we used the reference implementation of the LAPACK and BLAS
routines for linear algebra operators.

6.1 ATTP Heavy Hitters

Data sets. For the ATTP heavy hitter problem, we use the 1998
World Cup website access log [5], which includes about 1.35 billion
log entries. Each log entry contains a timestamp, a client ID, and
an object ID. The client ID is the anonymized source IP address,
and the object ID is the anonymized URL in an HTTP request.
The ID numbers are assigned in a consecutive range of integers
starting from 0. There are about 2.77M distinct clients and 90K
distinct objects, and they are stored as 32-bit unsigned integers in
our system. The timestamps are the standard UNIX timestamps,
which are stored as 64-bit unsigned integers. We treat Client-ID
and Object-ID as two datasets and run two experiments on them.
We note that Client-ID is a quite uniform dataset while Object-ID
is slightly more skewed. The highest frequency in the Client-ID
is about 3, 700 times of the average while it is 11, 800 times of the
average in the Object-ID dataset. We set the threshold for the heavy
hitters as 0.0002 and 0.01 respectively for the client ID dataset and
the object ID dataset, such that the returned heavy hitters represent
about 0.001% to 0.01% of the total number of distinct IDs in both
datasets. For each dataset and each sketch, we issue five queries in
20% incrementals of the data size at the end of all the updates and
report the average precisions and recalls.

Competitors and parameters. Besides the ATTP random sam-
pling without replacement (SAMPLING) proposed in Section 3 and
the ATTP Chain Misra Gries (CMG) that maintains elementwise
checkpoints as proposed in Section 4.1, we also include the persis-
tent Count-Min sketch (PCM_HH) in [82], where a dyadic range

0 500 1000
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Figure 3: ATTP heavy hitter memory usage against stream
size on Client-ID (left) and Object-ID (right) datasets.
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sum technique is required to efficiently query heavy hitters. We
set the universe size to be the range of the ID numbers and thus
we need to build 22 and 17 levels of persistent Count-Min sketches
for the Client-ID and Object-ID datasets respectively. We set the
parameters so that their memory usages are comparable if possible
but there are some cases where it is infeasible because of either
the restrictions on the range of the parameters or intractable run-
ning times. More specifically, we set ¢ = 2, 1, 0.8, 0.6, 0.4, 0.2, 0.1
(x10™%) for CMG, the sample size k = 1, 5, 10, 20, 50, 100 (x10%) for
SAMPLING, and ¢ = 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.008, 0.005 for
PCM_HH, on the Client-ID dataset. On the Object-ID dataset, we
sete =1,0.8,0.6,0.4, 0.2, 0.1 (x1072) for CMG, the sample sizes k =
1,25, 5, 10, 25, 50 (x10%) for SAMPLING and ¢ = 0.04, 0.02, 0.01,
0.007, 0.003, 0.001 for PCM_HH. In all the PCM_HH sketches in
all the following experiments, we set § = 0.01 and A = 2000 for
PCM_HH, because further decreasing § and/or A do not result in
significant improvements without incurring unacceptable running
time and/or memory usage. Our algorithms (CMG and SAMPLING)
do not require these extra parameters.
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Results. Figure 2 shows the average precision and recall against
the total memory usage of the three sketches. Figure 3(left) show
the trend of memory usage increase when the stream size increases
for a select parameter setting of each type of sketch. Figure 4 shows
the total update time and query time against the total memory
usage. Over the more uniform Client-ID dataset, we find that CMG
generally can achieve the highest precision at the same memory
usage and is guaranteed to have a recall of 1. Meanwhile, SAM-
PLING’s precision and recall is not much lower than CMG and is
faster in updates. Query times are all sub-second for both CMG
and SAMPLING in our experiments. We find PCM_HH’s precision,
recall, memory consumption and update time are inferior to any of
the ATTP sketches we proposed in this paper. Note that our dataset
is 192 times larger than the one in [82], which may explain its poor
performance in our study, despite strong performance for theirs
on similar evaluations. As shown in Figure 3, PCM_HH’s memory
usage scales linearly to the stream size while sampling and CMG
scales logarithmically. To achieve the same level of precision and
recall when the data size increases, PCM_HH tends to consume
much more memory as well as CPU time compared to the proposed
ATTP sketches. PCM_HH’s update time is also at least an order of
magnitude slower than CMG and SAMPLING, making it unsuitable
for very large datasets.

Figure 5, 3(right), 6 show the same set of experiments on the
more skewed Object-ID dataset. The findings are similar but CMG
is more favored in this case. The reason is that CMG rarely needs
to make checkpoints once all the heavy items have sufficiently
large counts in the sketch and that happens much earlier when the
dataset is more skewed.

6.2 BITP Heavy Hitters

We use the same dataset as in the ATTP heavy hitter experiments.
For BITP, we experimented with the Tree Misra Gries (TMG) in
Section 5 and the batched BITP priority sampling (SAMPLING)
proposed in Section 3.2 and their competitor is still PCM_HH. For
SAMPLING and TMG, since their memory usages are not mono-
tonic, we report the maximum memory they used as their memory
usages. The parameter settings are similar between TMG/SAM-
PLING and their ATTP counterparts but we use some lower values
for PCM_HH to showcase what results in a non-trivial precision.
On the Client-ID dataset, we set ¢ = 2, 1, 0.7, 0.5, 0.3, 0.1 (x10™%) for
TMG, the sample size k =1, 2.5, 5, 10, 50, 100 (x10%) for SAMPLING
and ¢ = 0.01, 0.005, 0.002, 0.001m, 0.0006, 0.0003 for PCM_HH. On
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Figure 7: BITP heavy hitter average precision and recall
against total memory usage on the Client-ID dataset.
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Figure 8: BITP heavy hitter memory usage against stream
size on Client-ID (left) and Object-ID (right) datasets.
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Figure 9: BITP heavy hitter running time against total mem-
ory usage on Client-ID dataset.
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Figure 10: BITP heavy hitter average precision and recall
against total memory usage on the Object-ID dataset.

the Object-ID dataset, we set € = 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.08, 0.04,
0.02 (x1072) for TMG, the sample size k = 1, 2.4, 5, 7.5, 10, 25, 50,
75, 100 (X104) for SAMPLING and ¢ = 0.1, 0.07, 0.03, 0.01, 0.001,
0.0005 for PCM_HH.

Figures 7, 8(left), 9 show the same set of experiments as in
the ATTP heavy hitters on the Client-ID dataset. We find that
SAMPLING-BITP works the best in the sense that it can achieve
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Figure 11: BITP heavy hitter running time against total
memory usage on Object-ID dataset.

80% precision and recall using merely a reasonably small memory of
67MB. TMG, on the other hand, requires at least 14 GB of memory
to achieve a precision of 80%. Note that it only takes 18.26 GB to
store the entire log in memory. Hence, it is better off to either use
SAMPLING to save space or just store the entire data to ensure
high precision and recall on a uniform dataset. This is expected
because TMG has to maintain separate MG sketches instead of
making elementwise checkpoints in CMG, which accounts for an
additional O(1/¢) factor in space. The scalability, update and query
time are similar for both sketches. The only advantage of TMG
in this case is its guarantee of no false negative. Comparing them
to the baseline PCM_HH, we find that PCM_HH often has a poor
precision which never exceeded 50% in our experiments. While we
can expect a higher precision for PCM_HH if we set ¢ to be even
lower, that can result in a significantly higher update latency as
its slope of increase in update time is much steeper than TMG and
SAMPLING.

On the more skewed Object-ID dataset, the findings are similar
but the memory usage of TMG is now comparable to the other
two, thanks to the higher ¢ it can set to. Hence, it actually makes
sense to use TMG on a skewed dataset if we want to save space
and ensure high precision and recall at the same time. Other than
that, the trade-offs among the sketches remain the same.

6.3 ATTP matrix estimation

Datasets. For ATTP Frequent Direction, we generated three datasets
with low dimension (d = 100), medium dimension (d = 1,000) and
high dimension (d = 10,000). Each datasets contains 50,000 vec-
tors assigned to integer timestamps in [1, 1000]. Half of the vectors
are uniformly spread across all the timestamps. Each of them is
independently generated from a random orthogonal basis of R4,
and the length of each direction follows a Gaussian distribution
with a mean of 0 and a random scale drawn from a Beta(1, 10)
distribution. These vectors mimic random noises in the data. The
timestamps of the other half are distributed according to a Gaussian
distribution with a mean of 500 and a scale of 20. Each vector is
independently generated from d/10 orthogonal random directions,
and the length of each follows a Gaussian distribution with a mean
of 0 and a random scale drawn from Beta(1, 10) X 10. The second
half of the vectors represent special events or anomalies in the data
to be detected.

Experiment settings. For ATTP matrix estimation, there were no
established baselines in the literature to our best knowledge. Hence,

we only compare the following algorithms proposed in this pa-
per: Norm Sampling (NS) which is essentially a weighted sampling
without replacement (Section 3.1), Norm Sampling With Replace-
ment (NSWR), which is a weighted sampling with replacement
(Section 3.1), and the elementwise at-the-time-Persistent Frequent
Direction (PFD) (Section 4.2). We set £ = 10, 20, 40, 60, 80, 100, 150,
200 for PFD (except for the low-dimension dataset where £ = 150
and 200 are > d), the sample size as 10, 25, 50, 100, 150, 200, 400,
600 for NS and the same sample sizes with an additional sample
size 700 for NSWR.

Results. We first tested how effective the sketches are when we
increase the memory usage of the sketches, where the relative error
of an estimation B for matrix A is measured as ||[AT A— BT B|;/ ||A||}2,.
Due to the cost of computing AT A exactly, we only empirically mea-
sured error with the low-dimension and the medium-dimension
datasets, as shown in Figure 13. Generally, PFD gives the best es-
timations followed by NS. NSWR works worse than NS in the
low-dimension dataset while on the medium-dimension dataset
NSWR produces a similar quality sample to NSWR. Because our
data sets do not have outliers in the weights (the squared norms
of the rows), the NSWR loses its advantage. To achieve the same
error, PFD uses the lowest amount of memory.

Figure 12 shows the scalability of the sketches when the stream
size increases. PFD has the best scalability as it only needs to make
checkpoints when the frequent directions are significantly changed.
For our dataset, it often happens at the beginning of the data when
there are checkpoints made and in the middle when the Gaussian
distributed signals start to appear. For NR and NSWR, they are
similar to SAMPLING in heavy hitters in terms of scalability.

Finally, Figures 14, 15, 16 show a comparison of update and
query time of the sketches on the three datasets. PFD is often
orders of magnitude slower than NS or NSWR because it needs to
perform SVD to compute the frequent directions. The higher the
dimension is, the gap is larger. Hence, there is a trade-off between
memory usage and running time when deciding between PFD and
NS/NSWR.

7 RELATED WORK

Constructing data summaries, especially in a streaming or dis-
tributed streaming setting [6, 19, 20, 23, 23-25, 27, 39, 42, 59, 64, 71,
72,76, 78, 85], has been a long-standing problem and many variants
exist. Excellent survey on building various sketches and synopses is
available [21, 67]. All of these summaries discussed are maintained
for the entire data set and are non-persistent. While paradigms like
sampling [32, 81], linearity [11, 22, 69], and mergeability [1] have
emerged, these have not extended to temporal queries.

Few works exist on temporal queries over time-order data streams.
We have already reviewed the baseline of the persistent count-min
sketch [82], and one for quantiles summary [77]; they are not gen-
eral, so they do not discuss extending to the many other possible
sketching problems. Another recent work is on persistent bloom fil-
ters [65], but is also specific to that problem. In contrast, this paper
discusses general techniques to build time persistent summaries.

A closely related area is on persistent data structures [31], that
always preserves the previous version of itself when it is modi-
fied. Many efforts have been made to extend a base structure to a
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persistent data structure, including Time-Split B-tree [55] and Mul-
tiversion B-tree [8, 10, 80]. Persistent data structures are also used
in multiversion databases such as Microsoft Immortal DB [53, 54],
SNAP [74], Ganymed [68], Skippy [73] and LIVE [70].

Another similar area is approximate query processing [2, 12, 21,
28, 41, 44, 50, 87], which also rely on sampling, and similar ideas,
including BlinkDB [3], DBO [41], G-OLA [86], Quickr [44], and
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Figure 16: ATTP matrix estimation running time against to-
tal memory usage on the high-dimension dataset.

XDB [51]. Yet again, these store the entire data set; replacing the
internal summaries in these systems with ATTP and BITP sketches
may allow them to more easily offer temporal refinement queries
and update to new data.

8 CONCLUSION

In this paper, we define the concept of ATTP sketches and BITP
sketches. An ATTP sketch supports queries on time ranges starting
at the beginning of history and captures the state of a streaming
summary at that time. A BITP sketch supports queries on time
ranges ending at the current timestamp, and related to a flexible
sliding window form of query. We describe the ATTP and BITP
versions of random sampling, as well as a general framework for
making sketches ATTP/BITP that build on concepts like linearity
and mergeability of sketches. In many cases, our framework allows
us to uncover sketches where space is provably almost as small
as for standard streaming algorithms. We state theoretical results
for 8 different types of sketching problems, but many more should
be direct consequences, or possible following our framework. Ex-
perimental results show that our sketches can answer ATTP/BITP
queries with low error rate in a small space, either significantly
improving on baselines or resulting in the first sketches of this type
for other scenarios.
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