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Abstract: Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes 
were estimated in surface waters using principal component analysis (PCA) of hyperspectral  
and multispectral remote-sensing reflectance data. This involved the development of models  
that employed multilinear correlations between cell abundances across the Atlantic Ocean  
and a combination of PCA scores and sea surface temperatures. The models retrieve high 
Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical 
dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate 
waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. 
Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements 
for the training dataset, which resulted in the successful detection of fine-scale Synechococcus 
patches. Satellite implementation of the models showed good performance (R2 > 0.50) when 
validated against in-situ data from six Atlantic Meridional Transect cruises. The improved 
relative performance of the hyperspectral models highlights the importance of future high spectral 
resolution satellite instruments, such as the NASA PACE mission’s Ocean Color Instrument, to 
extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages. 
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1. Introduction 
Observing spatiotemporal changes in the composition of phytoplankton assemblages over broad 
areas of the ocean increases our understanding of the response of these critical photoautotrophs to 
environmental and climatic processes. The smallest phytoplankton cells, most often categorized 
as picophytoplankton (< 2 µm [1]) or ultraphytoplankton (< 3 µm [2]), are the most abundant 
primary producers in the global ocean. Despite their individually low biomass relative to other 
primary producers [3,4], picophytoplankton are dominant in ~50% of the world’s surface oceans, 
where the reduced availability of inorganic nutrients limits the growth of larger phytoplankton 
cells [5–7]. Composed of the cyanobacteria Prochlorococcus (~0.8 µm) and Synechococcus  
(~1 µm), as well as a polyphyletic group of picoeukaryotes, picophytoplankton are responsible 
for 50 to 90% of all primary production in open ocean ecosystems [8,9]. They therefore play a 
substantial role in the maintenance of the marine food web and contribute up to 30% of the total 
carbon export to the deep ocean [10–12]. 

Given the important ecological and biogeochemical roles of picophytoplankton, the oceano-
graphic community invests substantially in improving our scientific understanding of their 
spatiotemporal patterns. Ship-based in-situ measurements of phytoplankton composition have 
revealed important paradigms in their diversity [13–18]. In the Atlantic Ocean, for example, 
Prochlorococcus inhabits warmer and mostly oligotrophic waters surrounded by spatially adjacent 
fronts of sub-mesoscale Synechococcus patches [8,13,18]. These fronts often reside at boundaries 
where phytoplankton communities start to transition to higher concentrations of larger eukaryotic 
cells, such as picoeukaryotes and nanoeukaryotic flagellates [8,19] (Fig. 1). Hence, identification 
of Prochlorococcus and Synechococcus distributions may conceptually be used to identify trophic 
boundaries in oceanic ecosystems [20], in addition to providing insight into productivity, food 
web regimes, and carbon export.  

Ocean color satellite instruments provide a tool for capturing and retrospectively analyzing 
phytoplankton spatiotemporal patterns on synoptic and long-term scales that are unattainable  
by conventional in-situ methods [21–23]. These instruments measure visible and near-infrared 
radiances at discrete wavelengths at the top-of-the atmosphere. Atmospheric correction algorithms 
are applied to remove contributions of the atmosphere and surface reflection from the total signal, 
leaving estimates of spectral remote-sensing reflectances (Rrs(λ); sr-1), the light exiting the  
water column normalized to the downwelling surface irradiance [24]. Bio-optical algorithms  
are subsequently applied to the Rrs(λ) to produce estimates of near-surface concentrations of  
the photosynthetic pigment chlorophyll-a (Chl; mg m-3) and other metrics of phytoplankton 
community composition [25–27]. Other existing bio-optical algorithms provide abundances or 
biomass of different phytoplankton using unique empirical relationships between cell abundance 
and Rrs(λ), as well as additional satellite observables such as sea surface temperature (SST; oC) 
and photosynthetically active radiation (PAR; µE m-2 s-1) [9,28–30]. 

To date, the majority of bio-optical algorithms that explore phytoplankton community compo-
sition exploit the capabilities of multispectral ocean color satellites, using only a few wavelengths 
of an Rrs(λ) spectrum [21,23,31]. More recent approaches consider increased spectral resolution, 
following the development of commercial off-the-shelf instrumentation allowing the hyperspec-
tral in-situ measurement of Rrs(λ) and the expectation that hyperspectral ocean color satellite 
instruments will be launched in the foreseeable future [32]. Given the higher information content 
of hyperspectral radiometry, sophisticated statistical methods have been successfully applied to 
assess its variability and correlation with phytoplankton attributes of interest [18,33–39]. The 
forthcoming NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is expected to 
increase the interest and demand for hyperspectral methods for global phytoplankton community 
composition assessment [40]. 

In this paper, we present empirical algorithms based on principal component regressions that 
provide estimates of surface abundances of Prochlorococcus, Synechococcus, and autotrophic      
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Fig. 1. a) Carbon concentration estimated from flow-cytometric cell counts across the 
Atlantic Meridional Transect, and b) cell abundance (scaled to group-specific maximum cell 
abundance) of Prochlorococcus (blue), Synechococcus (orange), autotrophic picoeukaryotes 
(green) and autotrophic nanoeukaryotes (red) in surface waters of the frontal  system between 
the South Atlantic Gyre and temperate waters of the South Atlantic (subset of the southern 
portion of the transect in (a)). Data collected during AMT24 (2014). Red circles in 
Prochlorococcus indicate samples that were taken from CTD casts. The remaining samples 
(across the Synechococcus front) were taken from the ship’s underway system. 

 
picoeukaryotes, derived from in-situ datasets of measured cell abundances and hyperspectral 
Rrs(λ). First, we explore the viability of principal component techniques for the identification of 
some of the smallest phytoplankton community members using hyperspectral and multispectral 
Rrs(λ). This exploration includes an assessment of performance enhancement using both  
Rrs(λ) and remotely sensed SST as an additional predictor. Second, we evaluate the relative 
performance of multi- and hyperspectral implementations of these algorithms. These comparisons 
quantify improvements in Prochlorococcus and Synechococcus retrievals when additional spectral 
information is used. Knowledge of such performance differences provides a metric of relative 
uncertainty to be considered when evaluating results from heritage multispectral satellite 
instruments in comparison with forthcoming hyperspectral satellite instruments such as NASA’s 
PACE mission [40]. 

 

2. Material and Methods 
2.1.   Algorithm training in-situ dataset 

Radiometric, hydrographic, and phytoplankton abundance in-situ data for algorithm training 
were collected during the Atlantic Meridional Transect 24 (AMT24) oceanographic expedition, 
which took place between the United Kingdom and the Falkland Islands during boreal autumn 
…



 

 

(September 30th to November 1st, 2014) onboard the RRS James Clark Ross. AMT24 covered most 
biogeochemical provinces of the Atlantic Ocean (Fig. 2), capturing several marine ecosystems 
inclusive of ocean gyres, the highly productive Equatorial Convergence Zone, and the high-latitude 
boundaries of the ocean gyres [8,41].  

 

Fig. 2. a) CTD stations for the training dataset (Atlantic Meridional Transect 24 - AMT24), 
and the validation datasets (AMTs 20, 22, 23, 25 and 28), with the monthly composite  
of chlorophyll (MODerate resolution Imaging Spectroradiometer onboard Aqua - Aqua-
MODIS) in October/2014, and b) magnification of frontal region between the South Atlantic 
Gyre and temperate waters, highlighting the frequent underway samples (dots).   

The sampling strategy to generate an appropriate dataset to develop a predictive algorithm 
targeted to a phytoplankton group must be designed according to the spatial scales of variability 
for this group. As such, consideration of previous knowledge about the biology and ecology of 
this phytoplankton group is useful. With that in mind, we considered two different approaches to 
collect discrete samples for the analysis of picophytoplankton community structure. First, daily 
surface (< 10 m depth) samples were collected at 13:00 (local time) using a Niskin bottle deployed 
as part of the CTD rosette (Fig. 2). Second, additional surface samples were collected every  
30 minutes from the underway system of the ship (Fig. 2) while crossing the front between the 
South Atlantic Gyre and temperate waters (latitude from 25oS to 45oS). This is the region where 
we expect a transition from Prochlorococcus dominance into the sub-mesoscale Synechococcus 
patches. Water temperature was measured using a CTD (Sea-Bird Electronics SBE 9/11) installed 
on the rosette profiler or using the hull-mounted shipboard CTD unit (SBE 3P). More details on 
the underway sampling can be found in Brewin et al. [42]. 

Above-water radiometric data were collected in continuous underway mode using three Sea-
Bird Electronics HyperSAS radiometer systems (measuring total upwelling radiance Lt(λ), 
……..



 

 

sky radiance Lsky(λ), and planar downwelling irradiance Ed(λ)) as described by Brewin et al. [43]. 
The radiometers have nominal spectral resolution of 10 nm and spectral sampling of 3.3 nm. The 
procedure to process radiometric data followed protocols described in the same reference, with 
the following modifications: 1) raw radiometric data were converted to physical quantities using 
calibration coefficients computed as the average between the pre- and post-cruise calibrations; 2) 
corrections for dark counts, interpolated in time and over a common wavelength range, were done 
as in Brewin et al. [43]; 3) continuous measurements of pitch and roll were used to compute tilt 
angles and all radiometric measurements corresponding to tilt angles ≥ 5°, or with solar zenith 
angles ≥ 80° and ≤ 10° were discarded; 4) the relative azimuth angle (Δϕ) between sensor (ϕ) 
and sun (ϕ0) was computed asΔϕ = ϕ – ϕ0 and all radiometric measurements with Δϕ ≥ 170°  
and Δϕ ≤ 50° were discarded; and, 5) an existing technique based on the assumed absence of 
upward radiance in the near infrared in open-ocean waters [44] was adapted to minimize sun 
glint. For the latter, we divided the continuous underway dataset into 1-minute intervals and for 
each interval we only retained the data corresponding to the Lt(λ) spectrum that had the minimum 
Lt(λ) in the near-infrared spectral region as determined by the average of values in the 750-800 
nm range. Water-leaving radiance (Lw(λ)) was computed by subtracting the influence of sky and 
sunlight specularly reflected by the sea surface using the following equation: 

     (1) 
 

where ρsky and LNIR are scalar coefficients that we obtained by minimizing the following cost 
function: 

   (2) 
 

In practice, this minimization routine ensures that the derived 𝐿"(λ) is approximately zero and 
spectrally flat between 750 and 800 nm. Finally, remote-sensing reflectances were computed by 
dividing Lw(λ) by Ed(λ). 

Once processed, Rrs(λ) from 414 to 660 nm were interpolated (2 nm resolution), then quality-
controlled by removing: 1) measurements collected earlier than 09:00 local time or later than 
17:00 local time; 2) spectra that showed negative values in the visible range (400-700 nm); and, 
3) spectra with second derivative values higher than 2 ´ 10-4 sr-1 nm-1 or lower than -2 ´ 10-4   
sr-1 nm-1 in the spectral region from 610 to 660 nm, as a means of noise removal. Coincidence 
between in-situ Rrs(λ) measurements and discrete sampling locations was determined by time 
(date, hour, and minute of sampling). Prior to the numerical analysis, each Rrs(λ) spectrum was 
standardized (Rrs'(λ)) [33,35] following: 

 
     (3) 

 

where Rrs(λ=i) is the Rrs at the ith wavelength, and mean and sd [𝑅()]+,+--. are the average and 
standard deviations of Rrs(λ) of values between 414 and 660 nm in one Rrs(λ) spectrum. This 
standardization of the Rrs(λ) curves highlights spectral features of Rrs(λ) and minimizes variance 
due to amplitude. Within open ocean (case 1) waters, the variability in the shapes of spectral 
features are mostly governed by phytoplankton absorption properties (i.e., pigments and packaging) 
[45], which provide the most useful spectral characteristics to differentiate between taxonomic 
groups. Features caused by changes in the spectral slope of backscattering and absorption by 
colored dissolved organic matter (CDOM) are still reflected in the shape of standardized Rrs’(λ) 
spectra. Less spectrally distinct changes in Rrs(λ) result from backscattering effects driven  
by particle morphological characteristics and refractive indices, and from processing errors in 
underway measured Rrs(λ) such as sea-surface correction and cloud effects. The measured Rrs’(λ) 
spectra from the AMT24 dataset are shown in Fig. 3. 



 

 

 
Fig. 3. Remote-sensing reflectances (Rrs(λ)) measured at discrete sampling locations  
across the Atlantic Ocean during AMT24: a) original hyperspectral measurements; b)  
standardized hyperspectral measurements; c) standardized multiband measurements at the  
central wavelengths of seven Aqua-MODIS bands: 443, 469, 488, 531, 547, 555, and 
645 nm. 

 
Picophytoplankton cell concentrations (cells ml-1) were analyzed in 1.6 ml seawater samples 

preserved with paraformaldehyde using a FACSCalibur (Becton Dickinson) flow cytometer. 
Yellow-green 0.5 and 1.0 µm reference beads (Fluoresbrite Microparticles, Polysciences, War-
rington, PA, USA) were used as an internal standard for both fluorescence and flow rates [46]. 
For Prochlorococcus and Synechococcus, samples were stained with a 1% commercial stock 
solution of SYBR Green 1 (Molecular Probes, Inc.) in Milli-Q water, then mixed with 300  
mol m-3 tripotassium citrate (24.5 mol m-3 final concentration) [47]. This method allows the 
distinction of different populations of microbes based on their DNA content and right-angle light 
scatter (RALS), regardless of their intracellular Chl content (red fluorescence) [46]. Autotrophic 
eukaryotes were quantified based on their red fluorescence and RALS, using the method described 
in Olson et al. [48]. The AMT24 picoplankton dataset is freely available [49]. 

 

2.2.   Validation in-situ datasets 

Radiometric, hydrographic, and phytoplankton abundance in-situ data for algorithm validation 
were collected during several oceanographic expeditions. First, cross-validation (see section 2.4) 
was performed using the same AMT24 dataset that was used for training the model. Then, a 
satellite implementation was tested using flow cytometric counts from five additional AMT 
cruises (AMT20, 22, 23, 25, and 28) [50–53] and coincident Rrs(λ) and SST satellite retrievals (see 
details in section 2.3), provided by the British Oceanographic Data Centre (BODC) [52]. Flow 
cytometric quantification of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes 
was conducted using the method described in Olson et al. [48], except on AMTs 23 and 25 where 
Prochlorococcus was quantified following Zubkov et al. [47]. The collection and processing of 
flow cytometric data on these cruises followed the methods described in Lange et al. [28]. The 
five AMT cruises surveyed similar locations and occurred in similar seasons (late September  
to early November) spanning 2010 to 2018 (detailed information on cruise tracks and dates are 
described in the Atlantic Meridional Transect website [54]).  

 

2.3.   Satellite data 

MODerate resolution Imaging Spectroradiometer onboard Aqua (Aqua-MODIS) data were 
acquired from the NASA Ocean Biology Processing Group [55]. This included Level-3, 4-km 
global maps of Rrs(λ) and SST spanning the following periods: daily and 8-day composites from 
September 30th to November 1st, 2014 (the duration of AMT24); and 8-day composites spanning 
October 12th to November 25th 2010 (AMT20), October 10th to November 24th 2012 (AMT22), 
..



 

 

October 3rd to November 4th 2013 (AMT23), September 11th to November 4th 2015 (AMT25) 
and September 23rd to October 30th 2018 (AMT28). Data from 8-day satellite composites were 
considered to match in-situ sampling locations when the date of the in-situ collection fell within 
the 8-day window of the composite and its location was located inside a valid 4-km satellite pixel. 
The October 2014 monthly cell abundance composites were created by averaging products that 
used 8-day composites from October 2014 as input.  

Although the temporal interval between in-situ and satellite data may be long (for instance 3-4 
days) when using 8-day satellite composites, the abundance of picophytoplankton cells are not 
expected to change abruptly over time in stratified environments where they are most abundant 
(i.e. ocean gyres and Equatorial divergence zone). Phytoplankton community structure in these 
regions gradually changes over the seasons, with a much less dynamic behavior than temperate 
waters and shelf seas. Thus, these operationally-viable retrievals from 8-day satellite composites 
show their distribution patterns in enough detail and an acceptable associated uncertainty led by 
temporal mismatch. Data processing and quality assurance followed the OBPG reprocessing 
configuration 2018.0 [55]. Available visible Aqua-MODIS Rrs(λ) from the OBPG were used at 
443, 469, 488, 531, 547, 555, and 645 nm wavelengths. Satellite Rrs(λ) spectra were standardized 
according to Eq. (3) before being utilized for model implementation.  

2.4.   Model development 

Following Craig et al. [33] and Bracher et al. [35], we used principal component regression  
to derive empirical relationships for the prediction of the abundances of Prochlorococcus, 
Synechococcus and autotrophic picoeukaryotic cells from scores of a principal component 
analysis (PCA) of in-situ Rrs’(λ) from AMT24. We also considered the SST measured in the 
AMT24 stations as an additional predictor to improve the performance of the PCA score-based 
empirical models. The decomposition of standardized Rrs(λ) spectra via PCA was performed  
in R using the function prcomp (package stats [56]), using: 1) hyperspectral Rrs’(λ) spanning 
414-660 nm with 2 nm intervals, hereafter referred to as PCAh, and 2) Rrs(λ) measurements at 
the seven Aqua-MODIS wavelengths (443, 469, 488, 531, 547, 555, 645 nm) available in the 
HyperSAS measurement range, hereafter referred to as PCAm. The matrix X with the Rrs’(λ) 
spectra was decomposed into principal components (PC) via: 

 
   (4) 

 
where the matrix V of loadings (also known as eigenvectors) shows the spectral contributions  
to each PC (or mode), the vector å contains the singular values (square-root of scores), and  
the matrix U of scores (or eigenvalues) consists of the projection of samples at each PC driven 
by the variability of Rrs’(λ) in distinct sections of the spectrum [35]. The values n, w, and p in 
parentheses indicate dimensions of the matrices and correspond to the number of observations, 
number of wavelengths, and number of PCs, respectively, where the number of PCs is equal to 
the smallest number between n and w. Derived PCs with a standard deviation lower than 0.1% of 
the standard deviation of the first PC were discarded, resulting in 20 PCs from PCAh and 5 PCs 
from PCAm. Additional PCs were discarded based on their significance as a predicting variable 
in the empirical model (p-values > 0.05), resulting in 14 PCs for PCAh and 3 PCs for PCAm. 

The PC scores were used as predictors in multilinear regression analyses targeting the 
abundances of Prochlorococcus (Pro) (Eq. (5)), Synechococcus (Syn) (Eq. (6)), and autotrophic 
picoeukaryotes (Apeuk) (Eq. (7)). The initial empirical models were developed using SST and all 
PC scores as predictors. Irrelevant predictors (highest p-value in the regression model) were then 
systematically discarded using backward stepwise selection. As each predictor was discarded, the 
new model (without the discarded predictor) was compared with the previous model (including 
that predictor) using the Akaike Information Criteria (AIC), and the model with the lower AIC 
value was selected. This process was interrupted when the model that included a target predictor 
..



 

 

showed lower AIC than the model where it was removed. Then, the other variables were removed 
one by one, and the AIC was re-calculated to assure the best selection of variables, including 
those with low p-values in the regression. In the final regressions, SST was used as an additional 
predictor for Prochlorococcus and picoeukaryotes, composing the following formulations: 

               (5) 

  and          (6) 

                (7) 

where y is the concentration of cells (cells ml-1), u1,2,…,p is the score of a Rrs’(λ) spectrum in  
the pth PC from the matrix U, a is the intercept, and b0,1,2,…,p are the regression coefficients.  
The explanatory variable SST and the response variables (cell abundances of Synechococcus  
and autotrophic picoeukaryotes) were log-transformed for the multilinear regression analysis to 
achieve a normal distribution. In contrast, cell abundances of Prochlorococcus demonstrated 
normal distribution, thus log-transformation was not required and, when implemented for testing, 
significantly reduced the performance of the empirical model. The workflow of calculations is 
displayed in Fig. 4. 

2.5.   Model uncertainty assessment 

To assess the robustness of the empirical models, cell abundance estimates were compared with 
the in-situ observations using the approach proposed by Seegers et al. [57], which includes two 
statistical metrics for uncertainty: average bias (Eq. (8)) and mean absolute error (MAE, Eq. (9)), 
assuming the normal frequency distribution of the variables. Here, we also calculate the adjusted 
coefficient of determination (R2, Eq. (10)). These metrics were calculated as follows: 

   (8)              

 and         (9) 

 

Fig. 4. Workflow of calculations performed in the predictive models: Model design (yellow  
and blue) and model application to Aqua-MODIS data (grey).



 

 

 

     (10) 
 

where n is the number of observations, XP is the predicted variable, XO is the observed variable, 
and k is the number of independent variables in the equation. For consistency across all 
phytoplankton assemblages, all metrics were calculated in logarithmic space, and reported values 
therefore can be assessed as relative or percentage uncertainties (i.e., Eqs. (3) and (4) from  
Seegers et al. [57]). Uncertainties were calculated using the following dataset arrangements:  

1) Full-fit in-situ predictions: Models trained with the AMT24 dataset were used to compute 
cell abundances from in-situ Rrs(λ) measurements from AMT24 and predictions were 
compared to in-situ observations of cell abundances from AMT24, which were also used 
for developing the models (Tables 1 and 2);  

2) Cross-validation based on in-situ predictions: Models trained with randomly sub-sampled 
training datasets (80% of the original AMT24 dataset) were used to compute cell abundances 
using the remaining 20% of the dataset, and these predictions were compared with 
observations from this 20% sub-dataset (bootstrap method). This process was repeated 
(2000 Monte-Carlo permutations) and the average performance metrics were computed 
(Tables 1 and 2);  

3) Satellite predictions using full-fit multispectral in-situ models: Models trained with the 
AMT24 dataset were used to compute cell abundances from Aqua-MODIS Rrs(λ) and  
SST retrievals (daily and 8-day composites) matching the time and location of sampling 
of AMT24, and predictions were compared to in-situ observations of cell abundances 
which were used to develop the prediction models (Table 3); and, 

4) Validation of satellite predictions with independent datasets: Models trained with the 
AMT24 dataset were used to compute cell abundances from Aqua-MODIS Rrs(λ) and SST 
retrievals (8-day composites) matching the time and location of sampling of five  
AMT cruises (AMTs 20, 22, 23, 25 and 28), and predictions were compared to in-situ 
observations of cell abundances (Table 3).  

Arrangements 1 and 2 assess model performance and robustness against the selection of input 
data, respectively. Arrangement 2 (cross-validation) allows an assessment of whether or not the 
. 
Table 1. Arrangement 1 uncertainty calculations for cell abundance (cells ml-1) model estimates of 
Prochlorococcus, Synechococcus and autotrophic picoeukaryotes during AMT24, with or without 
SST. Bias and MAE were calculated in log10 normal space, thus are expressed in relative values 

corresponding to the percentage deviation from 1 (i.e., 1.09 = +9%, 0.93 = –7%) . R2 was calculated in 
log10 normal space for Synechococcus and picoeukaryotes, but with untransformed data for 

Prochlorococcus because Prochlorococcus abundances naturally show a normal distribution. The 
best performing hyperspectral and multispectral models using either PCs + SST or PCs only are 

indicated in bold, with corresponding results shown in Fig. 6. 

 
a Models chosen to use sea surface temperature (SST) as an additional predictor.



 

 

full-fit model is overtrained (i.e., not generalizable to datasets other than its training dataset). If 
the full-fit and the cross-validation performance metrics show similar results, the model is robust 
(i.e., not overtrained). Arrangements 3 and 4 are used to assess the performance of the model  
in terms of application to satellite data to assess its uncertainty by validation with independent 
datasets. All statistical analyses were performed using the R packages stats [56], MASS [58], and 
devtools [59]. 

Table 2. Arrangement 1 (full-fit) versus 2 (cross-validation) uncertainty calculations for cell 
abundance model estimates of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes 
during AMT24. Bias and MAE were calculated in log10 space, thus are expressed in relative values 
corresponding to the percentage deviation from 1 (i.e., 1.09 = +9%, 0.93 = –7%). R2 was calculated in 

log10 space for Synechococcus and picoeukaryotes, but with untransformed data for 
Prochlorococcus because Prochlorococcus abundances naturally show a normal distribution. 

a Models using sea surface temperature (SST) as an additional predictor. 

 
Table 3. Arrangements 3 and 4 uncertainty calculations for cell abundance model estimates (cells 
ml-1) of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes using Aqua-MODIS  

Rrs(λ) 8-day-composite retrievals for time and location of AMT24 sampling sites and those of AMTs 
20, 22, 23, 25 and 28. Bias and MAE were calculated in log10 normal space, thus are expressed in 
relative values corresponding to the percentage deviation from 1 (i.e., 1.09 = +9%, 0.93 = –7%). R2 

was calculated in log10 normal space for Synechococcus and picoeukaryotes, but with 
untransformed data for Prochlorococcus because Prochlorococcus abundances naturally show a 

normal distribution. 

 
a Models using sea surface temperature (SST) as an additional predictor. 

 

3. Results 
3.1.   Selection of explanatory variables 

The backward selection of explanatory variables resulted in 14 PCs for PCAh and 3 PCs for 
PCAm. The loadings of the first 6 PCs for the PCAh and PCAm datasets are shown in Fig. 5. 
The spectral distribution of PC loadings is akin to results from prior similar approaches [33–35], 
indicating spectral features related to the optical properties of the seawater constituents. The 
spectral variability of the first PC is driven mainly by the particulate backscattering of the in-water 
constituents and the absorption of water molecules, and explained more than 96% of the data 
covariance for both multi- and hyperspectral Rrs’(λ) datasets. The second PC highlights spectral 
features related to the absorption by Chl at the ocean surface, explaining ~3.5% of the dataset 



 

 

covariance; and the third PC is driven by the spectral variation of Rrs’(λ) due to the absorption 
of accessory pigments and explained ~0.16% of the dataset covariance [33–35]. These first three 
PCs were similar between hyperspectral and multispectral models, indicating that the most 
significant Rrs’(λ) features were captured by multispectral data (Fig. 5).  

 

Fig. 5. Spectral distribution of loadings of the first six principal components. Solid lines  
(primary Y axis) show loadings of the PCA using hyperspectral Rrs’(λ) (PCAh), whereas  
dashed lines (secondary Y axis) show those of the PCA using Rrs’(λ) at the Aqua-MODIS  
bands (PCAm). Relative (percentage) explanation of the variability of the data by each PC is  
shown on the bottom right of each plot. 

In the multispectral models, PCs 1 and 2 were strong predictors for all targeted picophy-
toplankton taxa, whereas PC3 was utilized to predict the abundance of Synechococcus and 
picoeukaryotes. For the hyperspectral models, the prediction of Prochlorococcus utilized PCs  
1 and 2 combined with two other PCs, Synechococcus was associated with PCs 1, 2 and 3 in 
association with seven other PCs, and picoeukaryotes were predicted using PCs 2 and 3 with  
five additional PCs. In addition to using the PCs’ scores as predictors, SST was included as a 
predicting variable and the improvement of the models was evaluated. 
 

3.2.   Model performance assessed with the training dataset 
3.2.1.   SST as an additional predictor  

Regardless of differences in performance metrics, both hyperspectral and multispectral models 
are capable of detecting the changes in cell concentrations along the AMT 24 transect. However, 
hyperspectral based models were superior to multispectral ones regardless of the targeted 
picophytoplankton group (Table 1). In addition, for Arrangement 1 (Section 2.4), the inclusion 
of SST as a predictor considerably improved the performance of both the multispectral and 
hyperspectral models to predict Prochlorococcus when compared to models that only used  
PCs as predictors (Table 1). For the hyperspectral approach, the MAE decreased from 1.49  
(49%) to 1.31 (31%) and R2 increased from 0.42 to 0.82 when SST was added to the predictive 
model of Prochlorococcus (Table 1, Fig. 6). Likewise, for the multispectral approach, the  
MAE decreased from 1.46 to 1.33 and R2 increased from 0.50 to 0.76 (Table 1, Fig. 6). The 
inclusion of SST as a predictor did not improve either the multispectral or hyperspectral models 
to predict Synechococcus, with biases and MAEs remaining unchanged (Table 1). For autotrophic 
picoeukaryotes, uncertainty metrics remained effectively unchanged when considering SST for the 
hyperspectral approach and, in the multispectral model, the MAE and R2 showed an improvement 
when adding SST (1.27 to 1.24 and 0.90 to 0.92, respectively) (Table 1). We opted to use SST 
….



 

 

as an additional predictor in the models to estimate the abundance of Prochlorococcus using 
both multi- and hyperspectral Rrs’(λ), and in the model to predict the abundance of autotrophic 
picoeukaryotes using multispectral Rrs’(λ). 
 

 
Fig. 6. Performance of developed models (Arrangement 2) for a-c) Prochlorococcus (first  
row), d-f) Synechococcus (second row) and g-i) autotrophic picoeukaryotes (third row) cell 
abundance, using PCAm and PCAh approaches. In panels d-e and g-h, abundances of 
Synechococcus and picoeukaryotes are plotted in log10 scale as this transformation was 
implemented for model development. SST was used as an additional predictor for both 
Prochlorococcus models and the multispectral picoeukaryotes model since it was found  
to improve performance (Table 1). Regardless of difference in performance metrics, both 
hyperspectral and multispectral in-situ models are capable of detecting the changes in cell 
concentrations along the AMT 24 transect (c,f,i).  

 

3.2.2.   Multispectral versus hyperspectral cross-validation   

Model performance improved when using hyperspectral Rrs’(λ) compared to consideration 
of only Aqua-MODIS bands (see Fig. 6, Tables 1 and 2). For Synechococcus abundance estimation, 
biases were negligible (Table 2) while multispectral MAEs exceeded hyperspectral MAEs in both 
Arrangements 1 (full-fit) and 2 (cross-validation) (1.45 vs. 1.27 and 1.50 vs. 1.36, respectively). 
For the prediction of Prochlorococcus and picoeukaryote abundances, the hyperspectral biases 
and MAEs were also reduced relative to their multispectral counterparts for both Arrangements 1 
and 2 (Table 2). Finally, the R2 for predicting Prochlorococcus, Synechococcus, and autotrophic 
picoeukaryote abundances increased by 6% on average when using hyperspectral approach 
compared to the multispectral approach. Nevertheless, and despite underperforming relative to 
the hyperspectral approach, patterns in the latitudinal variability in the abundance of these groups 



 

 

were still reasonably captured by the multispectral approach, using SST when applicable, across 
the full dynamic range of cell concentrations for each phytoplankton group (see Fig. 6). 

3.3.   Model implementation using satellite data (Aqua-MODIS) 
3.3.1.   Satellite retrievals from AMT cruises 

Assessment of our multispectral model using 8-day Aqua-MODIS Rrs’(λ) and SST imagery 
(September 30th to October 7th, 2014) as input yielded reasonable retrievals of cell concentrations 
when compared to in-situ samples collected during the AMT24 cruise (Table 3). The MAE of 
1.37 for Prochlorococcus, 2.04 for Synechococcus and 1.28 for picoeukaryotes was higher than 
the one encountered for in-situ Rrs’(λ) data (Table 1), indicating a degradation in performance 
when moving to the satellite Rrs’(λ). The bias in Prochlorococcus prediction remained around 
1.09 (9%) when using Aqua-MODIS Rrs(λ), similar to that using in-situ Rrs’(λ) measurements. 
However, increases in the bias of Synechococcus (0.62 (–38%) from Aqua-MODIS and ~ 1 (~ 
0%) from in-situ Rrs’(λ)) and picoeukaryote retrievals (0.91 (–9%) from Aqua-MODIS and 1 
(0%) from in-situ Rrs(λ)) were more evident. These underestimations of cell abundances when 
using satellite data are likely associated with the “patchy” nature of their spatial distribution, 
further augmented by mismatch between in-situ/satellite sampling times and areas (1.6 ml discrete 
sample vs. 8 days/4 km composites) (Fig. 7).  

The temporal portability of multispectral models was assessed using cell abundance predictions 
computed from Aqua-MODIS data retrieved from sampling time/locations of AMTs 20, 22, 23, 
25 and 28. Prochlorococcus abundance was overestimated in these 5 AMT cruises, as indicated 
by the increase in MAE (2.26) and in bias (1.75) when compared to satellite retrievals from 
AMT24 (MAE = 1.37, bias = 1.09), especially in the North Atlantic (Fig. 8). The Synechococcus 
model predictions also showed a higher MAE (2.20) compared to AMT24 (2.04), whereas 
picoeukaryotes MAE increased from 1.28 on AMT24 to 1.53 for the other five AMTs with a bias 
decreasing slightly from 0.91 (– 9%) to 1.05 (5%) (Table 3). 

3.3.2.   Implementation using satellite imagery 

The spatial distribution of these picophytoplankton groups captured by our models is shown  
in Fig. 9. Satellite predictions show highest abundances of Prochlorococcus at the Equatorial 
Convergence Zone and lowest abundances in the ocean gyres (despite still being higher than other 
phytoplankton), with an increase towards the high-latitude edges of both North and South Atlantic 
subtropical gyres. Despite the low abundance, Prochlorococcus numerically dominated the 
picophytoplankton in the gyres. Synechococcus showed highest abundances at the high-latitude 
edges of the ocean gyres. Autotrophic picoeukaryotes were most abundant in higher latitudes (> 
45o N and S) showing similar patterns to the distribution of Chl (see Fig. 2), with the constraint 
of Chl concentrations being lower than 1 mg m-3, since chlorophyll concentrations never reached 
values higher than this in the present dataset. Satellite visualization of model outputs allowed  
us to detect the picophytoplankton community zonation at the high-latitude gyre edges (i.e. 
Prochlorococcus-Synechococcus-picoeukaryotes from the inner gyres towards higher latitudes), 
as observed in in-situ measurements (see Fig. 1), demonstrating the potential use of our approach 
for the evaluation of ecosystem and biogeochemical models. 

 
 



 

 

 
 
 
 
 
 

 
Fig. 7. Performance of developed models (PCAm approach) for a,b) Prochlorococcus (first  
row), c,d) Synechococcus (second row) and e,f) autotrophic picoeukaryotes (third row) cell 
abundance, implemented using Aqua-MODIS retrievals for the cruise AMT24. In panels c  
and e, abundances of Synechococcus and picoeukaryotes are plotted in log10 scale because  
this transformation was implemented for model development. SST was used as an additional 
predictor for models to predict Prochlorococcus and autotrophic picoeukaryotes.



 

 

 

 
 
 
 
 
 
 

 
Fig. 8. Performance of developed models (PCAm approach) for a,b) Prochlorococcus 
 (first row), c,d) Synechococcus (second row) and e,f) autotrophic picoeukaryotes (third row)  
cell abundance, implemented using 8-day Aqua-MODIS retrievals for AMTs 20, 22, 23,  
25 and 28. In panels b, d, and f, black symbols indicate in-situ observations, while red  
markers indicate values retrieved using species-specific model from Aqua-MODIS, and  
specific MAE of modelled values from each cruise is shown. In panels c and e, abundances  
of Synechococcus and picoeukaryotes are shown in log scale, as this transformation was  
used in model development. SST was used as an additional predictor for models to predict 
Prochlorococcus and autotrophic picoeukaryotes.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 9. Aqua-MODIS monthly composites (October 2014) showing cell abundances (cells  
ml-1) of a) Prochlorococcus, b) Synechococcus and c) autotrophic picoeukaryotes at the  
sea surface. 



 

 

4. Discussion 
Principal component regression analysis provides a powerful tool to retrieve optically-significant 
marine variables from hyperspectral radiometry by exploring spectral variations in Rrs(λ)  
[33,35]. With regard to assessing phytoplankton community composition, this method has  
been implemented most frequently in areas of high phytoplankton biomass, where changes in 
phytoplankton composition and biomass provide significant changes in phytoplankton absorption 
that are reflected in spectral variations in Rrs(λ) [33,35,36,60]. The highest picophytoplankton 
abundances occur in the stable oligotrophic ocean, where the spectral signature of water is 
influenced not only by the present cells but also by other seawater constituents that co-vary with 
their abundances such as the absorption of colored dissolved organic matter and backscattering of 
heterotrophic bacteria, both of which alter the magnitude and shape of Rrs(λ). Considering this, 
our analysis captures the associations between changes in ocean color and the abundance of the 
smallest phytoplankton, namely Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes. 
In the PCA made with Rrs(λ) spectra from the Atlantic Ocean (AMT24) and concurrent cell 
counts, the first three principal components displayed spectral features directly or indirectly 
correlated with the abundance of these taxa. For example, PC1 shows Rrs(λ) features likely 
attributed to the backscatter slope and the spectral shape of the absorption of water molecules, 
having similar shape to the first PC of PCAs from hyperspectral Rrs(λ) spectra of meso- and 
eutrophic waters [33–35]. This first PC was highly correlated with highest Prochlorococcus 
abundances and lowest abundances of larger phytoplankton cells, meaning Prochlorococcus is 
most abundant in waters where the shape of the Rrs(λ) spectrum is most similar to that of PC1, 
thus having lower influence of the absorption of Chl, accessory pigments and other in-water 
constituents (i.e., oligotrophic waters). PCs 2 to 4 were associated with the presence of accessory 
pigments and higher Chl absorption, present in Synechococcus and autotrophic picoeukaryotic 
cells. 

Increasing the spectral resolution of Rrs(λ) substantially improved the prediction of all targeted 
groups (see Tables 1 and 2). Hyperspectral Rrs(λ) provides greater information content on  
oceanic constituents contributing to variability in the optical signal, in particular taxon-specific 
light-absorbing photosynthetic pigments. Pigment-specific light absorption imposes spectral 
features of several nanometers in distance, leading to variations in the spectral shape of Rrs(λ) 
signal [23,38]. As a consequence, our hyperspectral approach resulted in a higher number of 
usable principal components (predictors) than our multispectral approach, ultimately increasing 
the performance of the hyperspectral predictive models, in particular for Synechococcus. This 
result agrees with several previous comparisons of hyperspectral and multispectral algorithms 
that demonstrate how increasing the spectral resolution of the Rrs(λ) signal improves predictive 
models for some phytoplankton taxa [33–36,38, 61].  

Remotely-sensed physical ocean properties such as SST can be useful to further constrain 
empirical models that predict algal abundance. SST can be used as a powerful predictor for the 
accumulation of cells when direct or indirect relationships between SST and certain ecological 
conditions that favor the target taxon are well known, as previously demonstrated for the prediction 
of blooms of the harmful dinoflagellate Alexandrium fundyense in the Bay of Fundy [61] and 
blooms of the diatom Pseudo-nitzschia in Chesapeake Bay [62], and in other predicting models 
for the biomass of specific phytoplankton groups [30,63,64]. In our study, the inclusion of SST 
was relevant for predicting the abundances of Prochlorococcus and picoeukaryotes, as ecological 
niches of both taxa are extremely constrained by temperature [65–67]. Prochlorococcus is most 
abundant in environments with high water column stability [68–70], which is usually associated 
with high SST [71], whereas picoeukaryotes grow next to the transition between oligo- and 
mesotrophic waters [41,72], where SST is typically slightly lower than at the center of the gyres 
[73]. The inclusion of SST as a predictor was especially useful for improving multispectral 
models. 



 

 

The performance of empirical models such as the ones presented here are highly dependent on 
the training datasets. For example, inclusion of a dataset collected at higher spatial frequency 
across the frontal region in the South Atlantic allowed for a larger dynamic range in the training 
dataset, yielding better retrievals for phytoplankton taxa that occur in high-abundance patches 
such as Synechococcus at the frontal system of the South Atlantic gyre southern boundary [8,29]. 
When we retrained the multispectral model using only samples collected on CTD casts (sparse 
sampling strategy), Synechococcus cell abundances were underestimated in these patches as 
sparse sampling missed small pockets of high Synechococcus abundances, thus not capturing  
the full range of Synechococcus cell concentrations. The increased number of samples across  
the Synechococcus patch reduced the retrieval bias from 0.71 (–29%) to ~ 1 (~ 0%) when  
using multispectral Rrs(λ) and from 0.84 (–16%) to ~ 1 (~ 0%) when using hyperspectral Rrs(λ), 
whereas MAE was reduced from 1.67 (67%) to 1.45 (45%) in the multispectral model and from 
1.37 (37%) to 1.27 (27%) using the hyperspectral approach. As an empirical model is only  
good at predicting cell abundances within the cell number range of its training dataset, this  
result highlights the importance of understanding the scales of cell abundances and its spatial 
distribution patterns for the targeted phytoplankton taxon when assembling data to train empirical 
models. Proper design of in-situ sampling plans must cover the full dynamic range of cell 
abundances of that particular taxon. Similarly, vertical sampling needs consideration in such 
analyses given that in situ sampling does not always represent the spectrally-dependent depth 
range considered in the satellite retrieval. We considered the top 10 m of the water column in 
these analyses, which does not consider the full euphotic zone in our areas of interest, but does 
encompass a reasonable fraction of the optically weighted signal observed over the first e-folding 
depth [74]. 

Satellite implementation of the empirical models to monthly composites of Aqua-MODIS 
Rrs(λ) and SST provided a qualitative view of the spatial and temporal distributions (see Fig. 9) 
of targeted taxa, if only to provide a visual case study to assess the portability of our model.  
For Prochlorococcus, our model predicts highest surface abundances at the edges of the ocean 
gyres and Equatorial Convergence, showing similar distribution to that of in-situ observations 
from AMT cruises (see Fig. 1) [8,14,52]. This Prochlorococcus distribution pattern agrees  
with predictions of other ocean color-based models, such as Alvain et al. [75], El-Hourany et  
al. [76], and Xi et al. [31], and the model of Lange et al. [28] which combines ocean color 
information with environmental variables. In turn, a model based solely on environmental 
variables (SST, photosynthetically-active radiation - PAR) – i.e. Flombaum et al. [29] – estimates 
highest Prochlorococcus abundances in western boundary currents such as the Gulf Stream and 
the Brazil Current because, in this model, SST is the most important driver of the distribution  
of Prochlorococcus. SST is a powerful predictor of Prochlorococcus [65–67], possibly due  
to its causal relationship with water column stratification [71] which favors the growth of this 
cyanobacterium [70]. Stratification induces oligotrophy, avoiding the growth of microbial 
assemblages that include herbivores of Prochlorococcus [77]. The direct relationship between 
Prochlorococcus and water column stability, rather than temperature, would justify the high 
Prochlorococcus abundances found in the Mediterranean Sea [78], and its absence in polar 
regions where stratification is seasonal or episodic. While SST may fail to predict the presence 
of Prochlorococcus in regions where salinity is important in driving stratification, ocean color 
variables such as Rrs(λ) provide direct observation of the surface water components. Rrs(λ) and 
spectral phytoplankton absorption coefficients (aph(λ)) provide refined information on the presence 
of optically-relevant phytoplankton, which are abundant in the absence of Prochlorococcus. In 
other words, Prochlorococcus is most abundant where the optical influence of phytoplankton on 
the Rrs(λ) spectrum is minimal. However, concurrent high abundances of Prochlorococcus and 
other phytoplankton groups (such as diatoms, nano- and picoeukaryotes) occur in areas where 
nutrient input is high despite high stratification levels (i.e., high SST), such as the Equatorial 
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Convergence Zone [8,79]. This explains the best performance of our Prochlorococcus model 
when using ocean color information and SST as predictors. 

Regarding Synechococcus estimates, our ocean color-based model finds highest abundances 
at the high-latitude edges of the ocean gyres, especially the South Atlantic gyre, surrounding 
possible blooms of larger phytoplankton cells such as coccolithophorids [19], similar to predictions 
based on SST and PAR [29]. Highest abundances of autotrophic picoeukaryotes were found at 
the higher latitude edges of the ocean gyres (> 45o N and S), mimicking patterns seen in the Chl 
distribution. However, picoeukaryotic populations slightly decrease where Chl concentrations 
reach values of ~ 1 mg m-3. Such spatial and temporal patterns highlight the importance  
of these picophytoplankton taxa as proxies for certain ecosystems or trophic conditions. For 
example, high abundances of Prochlorococcus delineate the extension of the ocean gyres, and 
Synechococcus becomes abundant in a narrow band at the transition between oligotrophic (i.e. 
South Atlantic gyre) and mesotrophic waters (i.e. temperate waters of higher latitudes where pico- 
and nanophytoplankton bloom), as also observed in several studies [8,14,18,41]. It is important 
to note that our model estimates cell abundances, which are highly correlated with group-specific 
carbon biomass but not always with pigment concentrations because of photophysiological 
adaptations of picophytoplankton cells to the different environmental conditions found across 
oceanic fronts [8,41,80–83]. 

In a similar way, we hypothesize that the inclusion of datasets from other parts of the  
ocean outside the Atlantic would improve the global model and allow for basin-specific tuning. 
Such models could allow for a segregated assessment of the photophysiological and optical 
characteristics of basin-specific ecotypes of the picocyanobacteria and picoeukaryotic flora, 
ultimately improving the performance of these empirical models. Furthermore, the ability  
of models to retrieve abundances of Synechococcus and autotrophic picoeukaryotes could be 
improved by including datasets from coastal and/or high Chl areas (> 1 mg m-3), allowing for  
a merged approach (similar to NASA’s current operational Chl algorithm). In these waters,  
the contribution of CDOM and carotenoids in large phytoplankton to the spectral variability of 
Rrs(λ) is higher, diminishing the relative influence of picophytoplankton cells. However, the 
spectral characteristics of these two groups are different in complex waters: Synechococcus 
ecotypes display different concentrations of accessory pigments to adapt to different optical 
niches [84–87], although they all contain phycobiliprotein complexes which are rather unique and 
likely to be detected by the PCA; and the taxonomic composition of autotrophic picoeukaryote 
communities is highly variable according to nutrient availability, temperature and stratification 
[41,88]. This could also deteriorate finding robust models for the specific groups. Xi et al.  
[31] used a large global matchup dataset for setting up similar Empirical Orthogonal Function 
(EOF) models with pigments (measured using HPLC) and satellite Rrs(λ) data. While eukaryotic 
phytoplankton groups were very well predicted globally, the prediction skill of Prochlorococcus 
and Synechococcus was rather poor. 

Observed changes in model performance between ocean basins or different Atlantic cruises 
may be expected and could stem from multiple sources. First, the occurrence of distinct  
ecotypes of Prochlorococcus and Synechococcus and combinations of picoeukaryotic taxa in each 
ocean basin, and their associated optical properties (due to the physiological acclimation and/or 
evolutionary adaptation) might have made our model specific to the Atlantic Ocean during the 
AMT sampling season(s) only. Second, the relationships between group-specific cell abundances 
and the Rrs(λ) signature can be influenced by the structure of the ecosystem itself – that is, the 
presence of other phytoplankton cells (e.g., diatoms in the Equatorial Convergence Zone), or 
other optically-active water constituents (e.g., CDOM and non-algal particles). Differences  
in ecosystem structure, specifically in the top-down control and other loss pathways for these 
phytoplankton populations, could also potentially influence model predictions. In addition, flow 
cytometric cell counts enable a precise determination of the abundance of picophytoplankton 
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groups, which can be converted to carbon biomass [81,82], and do not depend on models  
and their associated uncertainties to attribute group-specific biomass from marker pigments. 
However, the use of marker pigments as proxies for phytoplankton taxa is most directly linked to 
the observed change in the Rrs(λ) spectrum, and also provide estimates of the contribution of 
larger phytoplankton to the total phytoplankton biomass and its influence in the Rrs(λ) spectrum, 
which can be useful for analysis interpretation. Lastly, while methods used to collect Rrs(λ) for 
this study followed similar community-approved procedures, approaches used to quantify the 
cell abundances on different oceanographic expeditions differ, potentially adding to differing 
validation performances when comparing outputs of the model with alternate datasets where 
different flow cytometric procedures were adopted (i.e., Olson et al. [48] versus Zubkov et al. 
[47] for quantifying Prochlorococcus and Synechococcus).  

Since the goal of the model is to detect the large-scale spatial variability in open ocean waters, 
where picophytoplankton cells are most abundant, the model has not been tested in shelf seas 
and coastal waters. We expect that the models will need to be retuned for such waters because 
the presence of suspended sediments and CDOM will change the spectral distribution of the 
eigenvectors of each principal component. 
 

5. Summary and conclusions 
Cell abundances of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes were 
estimated in surface waters of the Atlantic Ocean using empirical models based on a combination 
of SST and the scores of an Rrs(λ) principal component analysis, which captured the association 
between changes in ocean color and the abundance of these picophytoplankton groups. These 
models were implemented using satellite data (Aqua-MODIS), which allowed us to estimate cell 
abundances on a basin scale. Although these phytoplankton types occur in high abundances in 
oligotrophic oceans, the spectral signature of waters inhabited by these cells is highly influenced 
by their optical attributes and other water constituents that co-vary with their abundance, such  
as the absorption of CDOM and backscattering of heterotrophic bacteria, which modify the 
magnitude and shape of the Rrs(λ) spectrum, being expressed in different PCs of the PCA.  

The extension of the predictive models to a basin scale is feasible because of the broad  
swath of the reference AMT in-situ dataset, which covers a large range of marine environments, 
including the North and South Atlantic gyres where picoplankton are dominant, and the 
Equatorial Convergence Zone where pico-sized cells are abundant but share the environment 
with larger phytoplankton. Along the AMT transect, model estimates successfully demonstrate 
the expected distributions of Prochlorococcus in gyres, with higher cell concentrations at the 
Equatorial Convergence and near the gyre edges. The model shows the emergence of autotrophic 
picoeukaryotes where Chl concentrations increase, and latitudinal changes in the abundance of 
Synechococcus showing high-abundance patches in areas of trophic transition such as between 
the ocean gyres and mesotrophic waters of higher latitudes.  

Our model successfully predicts the abundance of Prochlorococcus, Synechococcus and 
autotrophic picoeukaryotic cells in the surface oceans using remote-sensing reflectance and  
sea surface temperature. The models using hyperspectral Rrs(λ) substantially improved the 
prediction of Prochlorococcus when compared to the multispectral model. The sampling strategy 
to generate an appropriate dataset to develop a predictive algorithm targeted to a phytoplankton 
group must be designed according to the scale of spatial variability of this group; for example, 
in the case of Synechococcus accurate algorithm retrievals necessitate fine spatial sampling to 
detect the full abundance range including elevated cell concentrations along transition zones 
between oligotrophic and mesotrophic waters. Thus, consideration of previous knowledge about 
the biology and ecology of the target phytoplankton group is required.  
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