
Towards Optimal Configuration of Microservices

Gagan Somashekar and Anshul Gandhi
PACE Lab, Stony Brook University

Stony Brook, New York, USA

{gsomashekar,anshul}@cs.stonybrook.edu

Abstract

The microservice architecture allows applications to be de-

signed in a modular format, whereby each microservice can

implement a single functionality and can be independently

managed and deployed. However, an undesirable side-effect

of this modular design is the large state space of possibly

inter-dependent configuration parameters (of the constituent

microservices) which have to be tuned to improve applica-

tion performance. This workshop paper investigates opti-

mization techniques and dimensionality reduction strategies

for tuning microservices applications, empirically demon-

strating the significant tail latency improvements (as much

as 23%) that can be achieved with configuration tuning.

Keywords: ML for systems, microservices, configuration

tuning, optimization, tail latency

ACM Reference Format:

Gagan Somashekar and Anshul Gandhi. 2021. Towards Optimal
Configuration of Microservices. In The 1st Workshop on Machine

Learning and Systems (EuroMLSys ’21), April 26, 2021, Online, United

Kingdom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

1145/3437984.3458828

1 Introduction

The emerging microservice architecture allows applications

to be decomposed into different, interacting modules, each

of which can then be independently managed for agility,

scalability, and fault isolation [24, 25, 27, 29, 40]. Each mod-

ule or microservice typically implements a single business

capability. The communication between the microservices,

usually stateless, is via well-defined light weight APIs.

The microservice architecture is especially well suited

for designing online, customer-facing applications where

performance and availability are paramount [12, 20, 21, 25].

For example, an online application can be deployed as front-

end microservices (e.g., Nginx), database microservices (e.g.,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroMLSys ’21, April 26, 2021, Online, United Kingdom

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8298-4/21/04. . . $15.00

https://doi.org/10.1145/3437984.3458828

MongoDB), caching microservices (e.g., Memcached), along

with services that implement the logic of the application. The

latter services that implement the logic may each have their

own database and cache microservices. Consequently, an

application can have numerous microservices. Distributed

applications implemented using the microservices architec-

ture are widely replacing existing deployments implemented

using monolithic or multi-tier architectures at Amazon, Net-

flix, Uber, and Twitter [25].

Despite the benefits of the microservice architecture, a

specific challenge that this distributed deployment poses is

that of tuning the configuration parameters of the constituent

microservices. Tuning the parameters of monolithic or N-tier

application deployments for maximizing performance is al-

ready a difficult task [33, 40, 44, 45, 45ś47] (see Section 4).

With microservice applications, configuration tuning is es-

pecially complicated owing to the following challenges:

• Very large configuration space. Microservices applica-

tions have numerous, interacting microservices that each

have several parameters that can be configured. Further,

frameworks that aid microservices development, such as

Apache Thrift [10] and gRPC [28], introduce additional

parameters that impact application performance.

• Inter-dependent parameters. The parameter setting of

a microservice can influence the optimal value of a dif-

ferent parameter of the same microservice. As a result,

the numerous parameters cannot be independently opti-

mized (see Section 3). For example, for MongoDB, a low

value of the cache size parameter can amplify the num-

ber of concurrent read transactions, making it difficult to

independently tune the latter parameter [8].

• Dependency between parameters of differentmicroser-

vices. The dependency between parameter values extends

beyond a single microservice; parameters of upstream ser-

vices are often dependent on the parameter settings of

downstream services [44]. For example, the thread pool

size of a microservice may dictate how many concurrent

requests are sent to the downstream microservice.

• Interference among colocated microservices. Microser-

vices, typically deployed as containers, can be colocated

on the same physical host. Consequently, due to poten-

tial resource contention, the resource configuration of a

microservice can impact the performance of all other colo-

cated microservices.

• Non-linear relationship betweenmicroservices param-

eters and performance. Application performance need

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Gagan Somashekar and Anshul Gandhi

each configuration to be tested, we run the application under

that configuration three times for a duration of 5 minutes

each, and collect latency metrics across all runs. We next

discuss the optimization algorithms and dimensionality re-

duction strategies we investigate in our evaluation.

3.2.1 Black-box optimization algorithms. We consider

6 optimization algorithms in our evaluation. The first 2 are

representative of heuristic-based probabilistic algorithms, the

next 2 are evolutionary algorithms inspired by population-

based biological evolution, and the last 2 are sequential model-

based optimization algorithms that approximate the objec-

tive function with a cheaper, surrogate function [13] to aid

optimization. We use skopt [9], Hyperopt [14], and Never-

grad [38] libraries to implement the algorithms.

1. SimulatedAnnealing (SA) [36] starts with an initial con-

figuration, 𝑐0, and at each iteration considers a neighbour-

ing configuration, 𝑐𝑛 . It then picks the next configuration

based on the value of the objective function at 𝑐0 and 𝑐𝑛
and a time varying parameter, 𝑇 , whose value slowly de-

creases (annealing) with each iteration leading to more

exploitation and less exploration.

2. Dynamically Dimensioned Search (DDS) starts with an

initial configuration and then perturbs the values of the

parameters of the configuration based on a perturbation

factor [42]. The algorithm moves from a global search

towards a local search as the iterations progress by dy-

namically and probabilistically reducing the number of

parameters that are perturbed.

3. Particle Swarm Optimization (PSO) [32] works by iter-

atively improving the candidate solution with regard to

the objective function. Each candidate solution is known

as a particle and all particles together form a swarm. The

particles are moved around the search-space based on the

best value the particle has seen so far (exploration) and the

global best value seen by the whole swarm (exploitation).

4. Genetic Algorithms (GA) [34] start with an initial ran-

dom population of candidate configurations which is then

pruned based on the value of the objective function at

these configurations. This pruned subset is used to gener-

ate a new set of candidates through mutation (randomly

changing the configurations of some parameters) and

crossover (combining configurations of the candidates).

5. Bayesian Optimization (BO) starts with a prior distri-

bution of the search space guided by the surrogate; we

experiment with the popular Gaussian Process (GP) [13],

Gradient Boosted Regression Trees (GBRT) [22], and Ran-

dom Forests (RF) [23] surrogate models. The posterior

distribution is updated at each step of exploration using

Bayesian method.

6. Tree-structured Parzen Estimator (TPE) is similar to

BO, but models the likelihood and prior instead of the

posterior [13].

3.2.2 Dimensionality reduction strategies. If an appli-

cation has 𝑚 microservices each with 𝑝𝑖 parameters (for

𝑖 = 1, 2, . . . ,𝑚), then the number of dimensions in a configu-

ration vector 𝑐 is 𝑛 =

∑
𝑚

𝑖=1
𝑝𝑖 . For the purpose of illustration,

if each parameter can take 𝑣 different values, then the num-

ber of possible configurations is |𝐶 | = 𝑣𝑛 . Clearly, the search

space of configurations grows exponentially with the num-

ber of microservices. To reduce the search space, we thus

consider strategies that allow us to focus our configuration

tuning effort on only a subset of the microservices. Another

advantage of dimensionality reduction is that not all opti-

mization algorithms work well in high dimensions (number

of tunable parameters, in our case), for example, Bayesian

Optimization (BO) is known to not perform well when the

number of parameters to optimize is more than 20 [35].

1. Critical path. In the call graph of a request, the criti-

cal path is the path formed by microservices that deter-

mines the latency of the request. We employ standard

practices [37] to determine the critical path of a request

and only consider configuration tuning for these microser-

vices. We rely on the service time (or span) measurements

provided by Jaeger for each microservice to determine

the critical path. We also exclude all microservices on the

critical path whose service time is less than 1ms; we find

that such microservices do not contribute significantly to

latency and can be omitted to reduce the configuration

search space (by as much as 33% in our experiments).

2. Known bottlenecks. Prior work on performance diagno-

sis of microservices applications conducted thorough em-

pirical analysis to identify performance bottlenecks [26].

We thus investigate configuration tuning only for the 8

bottleneck microservices identified by these works. Since

this approach requires prior knowledge of bottlenecks, we

consider it an unrealistic approach but one that serves as

ground truth for comparison.

3. Performance variance. Prior works [20, 39, 41] demon-

strated the improvement in performance that can be ob-

tained by redesigning components that cause high perfor-

mance variability. Inspired by this approach, we consider

configuration tuning only for the 7 microservices that

have a significant service time coefficient of variation [17]

(above 0.5 in our experiments).

3.3 Experimental results

In practice, the optimization algorithms cannot be run indef-

initely. Unless otherwise specified, we thus limit the num-

ber of configurations to be explored for each optimization

algorithm to 15. For initialization, the optimization algo-

rithms typically start with a random configuration. Note

that (re)setting the configuration parameters between itera-

tions does incur some overhead and may require restarting

some microservices; during this time, the application may

be momentarily offline.

Towards Optimal Configuration of Microservices EuroMLSys ’21, April 26, 2021, Online, United Kingdom

Carver [18] employs Latin Hypercube Sampling to explore

the effect of different parameters on storage system perfor-

mance and use the variance in performance caused by a

parameter as an indicator of the parameter’s importance.

As discussed in Section 3, focusing on microservices on the

critical path is a more effective approach than focusing on

microservices that cause the most performance variation.

5 Conclusion

Despite the recent shift in application design to microser-

vices architecture, the fundamental problem of setting the

configuration of individual microservices to improve perfor-

mance has received very little attention, with practitioners

instead settling for sub-optimal performance via default or

ad-hoc configuration settings. This workshop paper makes

the case for configuration tuning of microservices. We formu-

late and investigate the problem, identify the key challenges

(large state space and inter-dependent parameters), and eval-

uate different techniques to address these challenges. Our

experimental results on a popular benchmark application

show that, with moderate effort, the tail latency of microser-

vices applications can be improved by as much 23% by tuning

the configuration parameters of specific microservices.

Acknowledgment: This work was supported by NSF grants

CSN-1750109 and CNS-1717588.

References
[1] [n.d.]. Beginner’s Guide. http://nginx.org/en/docs/beginners_guide.

html.

[2] [n.d.]. DeathStarBench. https://github.com/delimitrou/

DeathStarBench.

[3] [n.d.]. Elastic Search: The heart of the free and open Elastic Stack.

https://www.elastic.co/elasticsearch/.

[4] [n.d.]. Jaeger: open source, end-to-end distributed tracing. https:

//www.jaegertracing.io/.

[5] [n.d.]. memcached(1) - Linux man page. https://linux.die.net/man/1/

memcached.

[6] [n.d.]. MongoDB Server Parameters. https://docs.mongodb.com/

manual/reference/parameters/.

[7] [n.d.]. Redis configuration. https://redis.io/topics/config.

[8] [n.d.]. Set wiredTigerConcurrentReadTransactions based on machine

specs? https://jira.mongodb.org/browse/SERVER-19911.

[9] [n.d.]. SkOpt. https://scikit-optimize.github.io.

[10] Randy Abernethy. 2018. The Programmer’s Guide to Apache Thrift.

Manning publications.

[11] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adap-

tively Unearthing the Best Cloud Configurations for Big Data Analytics.

In Proceedings of the 14th USENIX Conference on Networked Systems

Design and Implementation (Boston, MA, USA) (NSDI’17). USENIX

Association, USA, 469ś482.

[12] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The

Datacenter as a Computer: An Introduction to the Design of

Warehouse-Scale Machines, Second Edition. http://dx.doi.org/10.2200/

S00516ED2V01Y201306CAC024

[13] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.

2011. Algorithms for Hyper-Parameter Optimization. In Advances

in Neural Information Processing Systems, J. Shawe-Taylor, R. Zemel,

P. Bartlett, F. Pereira, and K. Q. Weinberger (Eds.), Vol. 24. Cur-

ran Associates, Inc. https://proceedings.neurips.cc/paper/2011/file/

86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[14] J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a Science of Model

Search: Hyperparameter Optimization in Hundreds of Dimensions for

Vision Architectures. In Proceedings of the 30th International Conference

on International Conference on Machine Learning - Volume 28 (Atlanta,

GA, USA) (ICML’13). JMLR.org, Iś115śIś123.

[15] Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues. 2020. Finding

the Right Cloud Configuration for Analytics Clusters. In Proceedings

of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)

(SoCC ’20). Association for Computing Machinery, New York, NY, USA,

208ś222. https://doi.org/10.1145/3419111.3421305

[16] Muhammad Bilal, Marco Serafini, Marco Canini, and Rodrigo Ro-

drigues. 2020. Do the Best Cloud Configurations Grow on Trees?

An Experimental Evaluation of Black Box Algorithms for Optimizing

Cloud Workloads. Proc. VLDB Endow. 13, 12 (July 2020), 2563ś2575.

https://doi.org/10.14778/3407790.3407845

[17] Charles E. Brown. 1998. Coefficient of Variation. Springer Berlin

Heidelberg, Berlin, Heidelberg, 155ś157. https://doi.org/10.1007/978-

3-642-80328-4_13

[18] Zhen Cao, Geoff Kuenning, and Erez Zadok. 2020. Carver: Finding

Important Parameters for Storage System Tuning. In 18th USENIX Con-

ference on File and Storage Technologies (FAST 20). USENIX Association,

Santa Clara, CA, 43ś57. https://www.usenix.org/conference/fast20/

presentation/cao-zhen

[19] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018. To-

wards Better Understanding of Black-box Auto-Tuning: A Comparative

Analysis for Storage Systems. In 2018 USENIX Annual Technical Con-

ference (USENIX ATC 18). USENIX Association, Boston, MA, 893ś907.

https://www.usenix.org/conference/atc18/presentation/cao

[20] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.

ACM 56, 2 (Feb. 2013), 74ś80. https://doi.org/10.1145/2408776.2408794

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s

Highly Available Key-Value Store. In Proceedings of Twenty-First ACM

SIGOPS Symposium on Operating Systems Principles (Stevenson, Wash-

ington, USA) (SOSP ’07). Association for Computing Machinery, New

York, NY, USA, 205ś220. https://doi.org/10.1145/1294261.1294281

[22] J. Elith, J. R. Leathwick, and T. Hastie. 2008. A working guide

to boosted regression trees. Journal of Animal Ecology 77, 4

(2008), 802ś813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

arXiv:https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-

2656.2008.01390.x

[23] Khaled Fawagreh, Mohamed Medhat Gaber, and Eyad Elyan.

2014. Random forests: from early developments to recent

advancements. Systems Science & Control Engineering 2, 1

(2014), 602ś609. https://doi.org/10.1080/21642583.2014.956265

arXiv:https://doi.org/10.1080/21642583.2014.956265

[24] Y. Gan and C. Delimitrou. 2018. The Architectural Implications of

Cloud Microservices. IEEE Computer Architecture Letters 17, 2 (2018),

155ś158. https://doi.org/10.1109/LCA.2018.2839189

[25] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,

Nayantara Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Bren-

don Jackson, Kelvin Hu, Meghna Pancholi, Brett Clancy, Chris Colen,

Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo

Espinosa, Yuan He, and Christina Delimitrou. 2019. An Open-Source

Benchmark Suite for Microservices and Their Hardware-Software Im-

plications for Cloud and Edge Systems. In Proceedings of the Twenty

Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS) (Providence, RI).

[26] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun

Cheng, and Christina Delimitrou. 2019. Seer: Leveraging Big Data

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Gagan Somashekar and Anshul Gandhi

to Navigate the Complexity of Performance Debugging in Cloud Mi-

croservices. In Proceedings of the Twenty Fourth International Confer-

ence on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS) (Providence, RI).

[27] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen

Lwakatare, Claus Pahl, Stefan Schulte, and Johannes Wettinger. 2017.

Performance Engineering for Microservices: Research Challenges and

Directions. In Proceedings of the 8th ACM/SPEC on International Con-

ference on Performance Engineering Companion (L’Aquila, Italy) (ICPE

’17 Companion). Association for Computing Machinery, New York, NY,

USA, 223ś226. https://doi.org/10.1145/3053600.3053653

[28] Kasun Indrasiri and Danesh Kuruppu. 2020. gRPC: Up and Running.

O’Reilly Media.

[29] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. 2018. Mi-

croservices: The Journey So Far and Challenges Ahead. IEEE Software

35, 3 (2018), 24ś35. https://doi.org/10.1109/MS.2018.2141039

[30] Matthijs Kaminski, Eddy Truyen, Emad Heydari Beni, Bert Lagaisse,

and Wouter Joosen. 2019. A Framework for Black-Box SLO Tuning

of Multi-Tenant Applications in Kubernetes. In Proceedings of the 5th

International Workshop on Container Technologies and Container Clouds

(Davis, CA, USA) (WOC ’19). Association for Computing Machinery,

New York, NY, USA, 7ś12. https://doi.org/10.1145/3366615.3368352

[31] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram

Venkataraman. 2020. Too Many Knobs to Tune? Towards Faster

Database Tuning by Pre-selecting Important Knobs. In 12th USENIX

Workshop on Hot Topics in Storage and File Systems (HotStorage

20). USENIX Association. https://www.usenix.org/conference/

hotstorage20/presentation/kanellis

[32] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In

Proceedings of ICNN’95 - International Conference on Neural Networks,

Vol. 4. 1942ś1948 vol.4. https://doi.org/10.1109/ICNN.1995.488968

[33] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Sub-

rata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020.

OPTIMUSCLOUD: Heterogeneous Configuration Optimization for

Distributed Databases in the Cloud. In 2020 USENIX Annual Tech-

nical Conference (USENIX ATC 20). USENIX Association, 189ś203.

https://www.usenix.org/conference/atc20/presentation/mahgoub

[34] Seyedali Mirjalili. 2019. Genetic Algorithm. Springer International

Publishing, Cham, 43ś55. https://doi.org/10.1007/978-3-319-93025-

1_4

[35] R. Moriconi, M.P. Deisenroth, and K.S. Sesh Kumar. 2020. High-

dimensional Bayesian optimization using low-dimensional feature

spaces. Mach Learn 109, 1925ś1943 (2020). https://doi.org/10.1007/

s10994-020-05899-z

[36] Panos M. Pardalos and Thelma D. Mavridou. 2009. Simulated an-

nealingSimulated Annealing. Springer US, Boston, MA, 3591ś3593.

https://doi.org/10.1007/978-0-387-74759-0_617

[37] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbar-

czyk, and Ravishankar K. Iyer. 2020. FIRM: An Intelligent Fine-

grained Resource Management Framework for SLO-Oriented Mi-

croservices. In 14th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 20). USENIX Association, 805ś825.

https://www.usenix.org/conference/osdi20/presentation/qiu

[38] J. Rapin andO. Teytaud. 2018. Nevergrad - A gradient-free optimization

platform. https://GitHub.com/FacebookResearch/Nevergrad.

[39] D. Skinner and W. Kramer. 2005. Understanding the causes of per-

formance variability in HPC workloads. In IEEE International. 2005

Proceedings of the IEEE Workload Characterization Symposium, 2005.

137ś149. https://doi.org/10.1109/IISWC.2005.1526010

[40] Akshitha Sriraman and Thomas F. Wenisch. 2018. µTune: Auto-Tuned

Threading for OLDI Microservices. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18). USENIX As-

sociation, Carlsbad, CA, 177ś194. https://www.usenix.org/conference/

osdi18/presentation/sriraman

[41] Amoghavarsha Suresh and Anshul Gandhi. 2019. Using Variability

as a Guiding Principle to Reduce Latency in Web Applications via OS

Profiling. In The World Wide Web Conference (San Francisco, CA, USA)

(WWW ’19). Association for Computing Machinery, New York, NY,

USA, 1759ś1770. https://doi.org/10.1145/3308558.3313406

[42] Bryan A. Tolson and Christine A. Shoemaker. 2007. Dy-

namically dimensioned search algorithm for computationally

efficient watershed model calibration. Water Resources Re-

search 43, 1 (2007). https://doi.org/10.1029/2005WR004723

arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005WR004723

[43] Muhammad Wajahat, Salman Masood, Abhinav Sau, and Anshul

Gandhi. 2017. Lessons Learnt from Software Tuning of a Memcached-

Backed, Multi-Tier, Web Cloud Application. In Proceedings of the 8th

International Green and Sustainable Computing Conference (IGSC ’17).

Orlando, FL, USA.

[44] Qingyang Wang, Shungeng Zhang, Yasuhiko Kanemasa, Calton Pu,

Balaji Palanisamy, Lilian Harada, and Motoyuki Kawaba. 2019. Opti-

mizing N-Tier Application Scalability in the Cloud: A Study of Soft

Resource Allocation. ACM Trans. Model. Perform. Eval. Comput. Syst.

4, 2, Article 10 (June 2019), 27 pages. https://doi.org/10.1145/3326120

[45] Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William Sentosa, and

Achmad Imam Kistijantoro. 2018. Understanding and Auto-Adjusting

Performance-Sensitive Configurations. SIGPLAN Not. 53, 2 (March

2018), 154ś168. https://doi.org/10.1145/3296957.3173206

[46] Bohan Zhang, Dana Van Aken, JustinWang, Tao Dai, Shuli Jiang, Jacky

Lao, Siyuan Sheng, Andrew Pavlo, and Geoffrey J. Gordon. 2018. A

Demonstration of the Ottertune Automatic Database Management Sys-

tem Tuning Service. Proc. VLDB Endow. 11, 12 (Aug. 2018), 1910ś1913.

https://doi.org/10.14778/3229863.3236222

[47] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong

Ma, Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. 2017. Best-

Config: Tapping the Performance Potential of Systems via Auto-

matic Configuration Tuning. In Proceedings of the 2017 Symposium

on Cloud Computing (Santa Clara, California) (SoCC ’17). Associa-

tion for Computing Machinery, New York, NY, USA, 338ś350. https:

//doi.org/10.1145/3127479.3128605

	Abstract
	1 Introduction
	2 Problem Formulation and System Design
	2.1 Microservices configuration setting problem
	2.2 Automated framework to aid optimization

	3 Evaluation
	3.1 Experimental setup
	3.2 Evaluation methodology
	3.3 Experimental results

	4 Related Work
	5 Conclusion
	References

