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Abstract

The microservice architecture allows applications to be de-

signed in a modular format, whereby each microservice can

implement a single functionality and can be independently

managed and deployed. However, an undesirable side-effect

of this modular design is the large state space of possibly

inter-dependent configuration parameters (of the constituent

microservices) which have to be tuned to improve applica-

tion performance. This workshop paper investigates opti-

mization techniques and dimensionality reduction strategies

for tuning microservices applications, empirically demon-

strating the significant tail latency improvements (as much

as 23%) that can be achieved with configuration tuning.
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1 Introduction

The emerging microservice architecture allows applications

to be decomposed into different, interacting modules, each

of which can then be independently managed for agility,

scalability, and fault isolation [24, 25, 27, 29, 40]. Each mod-

ule or microservice typically implements a single business

capability. The communication between the microservices,

usually stateless, is via well-defined light weight APIs.

The microservice architecture is especially well suited

for designing online, customer-facing applications where

performance and availability are paramount [12, 20, 21, 25].

For example, an online application can be deployed as front-

end microservices (e.g., Nginx), database microservices (e.g.,
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MongoDB), caching microservices (e.g., Memcached), along

with services that implement the logic of the application. The

latter services that implement the logic may each have their

own database and cache microservices. Consequently, an

application can have numerous microservices. Distributed

applications implemented using the microservices architec-

ture are widely replacing existing deployments implemented

using monolithic or multi-tier architectures at Amazon, Net-

flix, Uber, and Twitter [25].

Despite the benefits of the microservice architecture, a

specific challenge that this distributed deployment poses is

that of tuning the configuration parameters of the constituent

microservices. Tuning the parameters of monolithic or N-tier

application deployments for maximizing performance is al-

ready a difficult task [33, 40, 44, 45, 45ś47] (see Section 4).

With microservice applications, configuration tuning is es-

pecially complicated owing to the following challenges:

• Very large configuration space. Microservices applica-

tions have numerous, interacting microservices that each

have several parameters that can be configured. Further,

frameworks that aid microservices development, such as

Apache Thrift [10] and gRPC [28], introduce additional

parameters that impact application performance.

• Inter-dependent parameters. The parameter setting of

a microservice can influence the optimal value of a dif-

ferent parameter of the same microservice. As a result,

the numerous parameters cannot be independently opti-

mized (see Section 3). For example, for MongoDB, a low

value of the cache size parameter can amplify the num-

ber of concurrent read transactions, making it difficult to

independently tune the latter parameter [8].

• Dependency between parameters of differentmicroser-

vices. The dependency between parameter values extends

beyond a single microservice; parameters of upstream ser-

vices are often dependent on the parameter settings of

downstream services [44]. For example, the thread pool

size of a microservice may dictate how many concurrent

requests are sent to the downstream microservice.

• Interference among colocated microservices. Microser-

vices, typically deployed as containers, can be colocated

on the same physical host. Consequently, due to poten-

tial resource contention, the resource configuration of a

microservice can impact the performance of all other colo-

cated microservices.

• Non-linear relationship betweenmicroservices param-

eters and performance. Application performance need
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each configuration to be tested, we run the application under

that configuration three times for a duration of 5 minutes

each, and collect latency metrics across all runs. We next

discuss the optimization algorithms and dimensionality re-

duction strategies we investigate in our evaluation.

3.2.1 Black-box optimization algorithms. We consider

6 optimization algorithms in our evaluation. The first 2 are

representative of heuristic-based probabilistic algorithms, the

next 2 are evolutionary algorithms inspired by population-

based biological evolution, and the last 2 are sequential model-

based optimization algorithms that approximate the objec-

tive function with a cheaper, surrogate function [13] to aid

optimization. We use skopt [9], Hyperopt [14], and Never-

grad [38] libraries to implement the algorithms.

1. SimulatedAnnealing (SA) [36] starts with an initial con-

figuration, 𝑐0, and at each iteration considers a neighbour-

ing configuration, 𝑐𝑛 . It then picks the next configuration

based on the value of the objective function at 𝑐0 and 𝑐𝑛
and a time varying parameter, 𝑇 , whose value slowly de-

creases (annealing) with each iteration leading to more

exploitation and less exploration.

2. Dynamically Dimensioned Search (DDS) starts with an

initial configuration and then perturbs the values of the

parameters of the configuration based on a perturbation

factor [42]. The algorithm moves from a global search

towards a local search as the iterations progress by dy-

namically and probabilistically reducing the number of

parameters that are perturbed.

3. Particle Swarm Optimization (PSO) [32] works by iter-

atively improving the candidate solution with regard to

the objective function. Each candidate solution is known

as a particle and all particles together form a swarm. The

particles are moved around the search-space based on the

best value the particle has seen so far (exploration) and the

global best value seen by the whole swarm (exploitation).

4. Genetic Algorithms (GA) [34] start with an initial ran-

dom population of candidate configurations which is then

pruned based on the value of the objective function at

these configurations. This pruned subset is used to gener-

ate a new set of candidates through mutation (randomly

changing the configurations of some parameters) and

crossover (combining configurations of the candidates).

5. Bayesian Optimization (BO) starts with a prior distri-

bution of the search space guided by the surrogate; we

experiment with the popular Gaussian Process (GP) [13],

Gradient Boosted Regression Trees (GBRT) [22], and Ran-

dom Forests (RF) [23] surrogate models. The posterior

distribution is updated at each step of exploration using

Bayesian method.

6. Tree-structured Parzen Estimator (TPE) is similar to

BO, but models the likelihood and prior instead of the

posterior [13].

3.2.2 Dimensionality reduction strategies. If an appli-

cation has 𝑚 microservices each with 𝑝𝑖 parameters (for

𝑖 = 1, 2, . . . ,𝑚), then the number of dimensions in a configu-

ration vector 𝑐 is 𝑛 =

∑
𝑚

𝑖=1
𝑝𝑖 . For the purpose of illustration,

if each parameter can take 𝑣 different values, then the num-

ber of possible configurations is |𝐶 | = 𝑣𝑛 . Clearly, the search

space of configurations grows exponentially with the num-

ber of microservices. To reduce the search space, we thus

consider strategies that allow us to focus our configuration

tuning effort on only a subset of the microservices. Another

advantage of dimensionality reduction is that not all opti-

mization algorithms work well in high dimensions (number

of tunable parameters, in our case), for example, Bayesian

Optimization (BO) is known to not perform well when the

number of parameters to optimize is more than 20 [35].

1. Critical path. In the call graph of a request, the criti-

cal path is the path formed by microservices that deter-

mines the latency of the request. We employ standard

practices [37] to determine the critical path of a request

and only consider configuration tuning for these microser-

vices. We rely on the service time (or span) measurements

provided by Jaeger for each microservice to determine

the critical path. We also exclude all microservices on the

critical path whose service time is less than 1ms; we find

that such microservices do not contribute significantly to

latency and can be omitted to reduce the configuration

search space (by as much as 33% in our experiments).

2. Known bottlenecks. Prior work on performance diagno-

sis of microservices applications conducted thorough em-

pirical analysis to identify performance bottlenecks [26].

We thus investigate configuration tuning only for the 8

bottleneck microservices identified by these works. Since

this approach requires prior knowledge of bottlenecks, we

consider it an unrealistic approach but one that serves as

ground truth for comparison.

3. Performance variance. Prior works [20, 39, 41] demon-

strated the improvement in performance that can be ob-

tained by redesigning components that cause high perfor-

mance variability. Inspired by this approach, we consider

configuration tuning only for the 7 microservices that

have a significant service time coefficient of variation [17]

(above 0.5 in our experiments).

3.3 Experimental results

In practice, the optimization algorithms cannot be run indef-

initely. Unless otherwise specified, we thus limit the num-

ber of configurations to be explored for each optimization

algorithm to 15. For initialization, the optimization algo-

rithms typically start with a random configuration. Note

that (re)setting the configuration parameters between itera-

tions does incur some overhead and may require restarting

some microservices; during this time, the application may

be momentarily offline.
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Carver [18] employs Latin Hypercube Sampling to explore

the effect of different parameters on storage system perfor-

mance and use the variance in performance caused by a

parameter as an indicator of the parameter’s importance.

As discussed in Section 3, focusing on microservices on the

critical path is a more effective approach than focusing on

microservices that cause the most performance variation.

5 Conclusion

Despite the recent shift in application design to microser-

vices architecture, the fundamental problem of setting the

configuration of individual microservices to improve perfor-

mance has received very little attention, with practitioners

instead settling for sub-optimal performance via default or

ad-hoc configuration settings. This workshop paper makes

the case for configuration tuning of microservices. We formu-

late and investigate the problem, identify the key challenges

(large state space and inter-dependent parameters), and eval-

uate different techniques to address these challenges. Our

experimental results on a popular benchmark application

show that, with moderate effort, the tail latency of microser-

vices applications can be improved by as much 23% by tuning

the configuration parameters of specific microservices.
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