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The toughness t(G) of a graph G is a measure of its connectivity that is closely related 
to Hamiltonicity. Xiaofeng Gu, confirming a longstanding conjecture of Brouwer, recently 
proved the lower bound t(G) ≥ �/λ −1 on the toughness of any connected �-regular graph, 
where λ is the largest nontrivial absolute eigenvalue of the adjacency matrix. Brouwer had 
also observed that many families of graphs (in particular, those achieving equality in the 
Hoffman ratio bound for the independence number) have toughness exactly �/λ. Cioabă 
and Wong confirmed Brouwer’s observation for several families of graphs, including Kneser 
graphs K (n, 2) and their complements, with the exception of the Petersen graph K (5, 2). In 
this paper, we extend these results and determine the toughness of Kneser graphs K (n, k)
when k ∈ {3, 4} and n ≥ 2k +1 as well as for k ≥ 5 and sufficiently large n (in terms of k). In 
all these cases, the toughness is attained by the complement of a maximum independent 
set and we conjecture that this is the case for any k ≥ 5 and n ≥ 2k + 1.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let n and k be two natural numbers such that n ≥ 2k + 1. The vertex set 
([n]
k

)
of the Kneser graph K (n, k) consists of 

the k-subsets of [n] = {1, 2, . . . , n}. Two vertices A and B are adjacent if and only if A ∩ B = ∅. The study of Kneser graphs 
is intertwined with the combinatorial study of intersecting sets. An intersecting family F ⊆ ([n]

k

)
satisfies F1 ∩ F2 �= ∅ for 

any F1, F2 ∈ F and corresponds to an independent set in K (n, k). The famous Erdös-Ko-Rado theorem [12] states that the 
independence number of K (n, k) is 

(n−1
k−1

)
and that any independent set of maximum size must consist of the k-subsets 

containing some given element of [n]. This theorem is widely seen as a cornerstone of extremal combinatorics and has 
connections to other areas of mathematics including representation theory, algebraic combinatorics, and spectral graph 
theory [5,13]. Lovász [27] used topological methods to prove that the chromatic number of Kneser graphs is n − 2k +
2 for n ≥ 2k (see also [2,15,28]). There are also several interesting results proving that the Kneser graphs and bipartite 
Kneser graphs are Hamiltonian in certain ranges of parameters [8,30,31], but this problem is not completely solved for all 
parameters n and k.

In this paper, we investigate the toughness of Kneser graphs, which is a measure of graph connectivity. The toughness of 
a connected graph G is defined as
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t(G) = min
S

|S|
c(G \ S)

,

where S ranges over all vertex cuts of G , and c(G \ S) denotes the number of components remaining in G after deleting S . 
We will use G \ S to denote both the resulting graph and its corresponding vertex set. No confusion will arise. A graph G is 
called t-tough if t(G) ≥ t .

Chvátal [9] introduced the study of toughness in connection with the cycle structure of a graph. He observed that every 
Hamiltonian graph is 1-tough and conjectured that there exists some t such that any t-tough graph is Hamiltonian. Bauer, 
Broersma and Veldman [4] later showed that if such a t exists, then it must be at least 9

4 . Though Chvátal’s conjecture 
remains open, it has spurred significant work on the close connection between Hamiltonicity and toughness [3].

Let � = λ1 > λ2 ≥ · · · ≥ λN denote the eigenvalues of the adjacency matrix of a connected �-regular graph G on N
vertices. Brouwer [6] (see also Alon [1] for related results) showed that if λ = max{|λ2|, |λN |}, then

t(G) >
�

λ
− 2.

This eigenvalue bound led Alon [1] to disprove a conjecture of Chvátal that a graph of sufficiently large toughness must be 
pancyclic (contain a cycle of every length). Brouwer [7] conjectured that the bound above can be improved to t(G) ≥ �/λ −1, 
which was recently verified by Gu [16]. He also stated his belief that many interesting �-regular graphs satisfy t(G) = �/λ. 
We explain the intuition behind this assertion below. The following result is known as the Hoffman ratio bound for the 
independence number of an �-regular graph (see Chapter 9 of [13] or [23] for more information).

Theorem 1 (Hoffman [23]). Let G be a connected �-regular graph on N vertices with eigenvalues � = λ1 > λ2 ≥ · · · ≥ λN . If α(G)

denotes the independence number of G, then

α(G) ≤ N|λN |
� + |λN | .

Since |λN | ≤ λ, the Hoffman ratio bound implies that α(G) ≤ Nλ
�+λ

. If equality occurs and Q is an independent set of 
maximum size, then the complement of Q is a vertex cut in G whose removal creates Nλ

�+λ
singletons. A simple calculation 

yields that t(G) ≤ �/λ. Cioabă and Wong [10] confirmed Brouwer’s intuition for several classes of regular graphs attaining 
equality in the Hoffman ratio bound including complements of point graphs of generalized quadrangles, lattice graphs (2-
dimensional Hamming graphs), Kneser graphs K (n, 2) and their complements, with the sole exception of the Petersen graph 
K (5, 2).

In this paper, we extend these results and determine t(K (n, 3)) for every n ≥ 7 and t(K (n, 4)) for every n ≥ 9. In the 
case of Kneser graphs K (n, k), �/λ = n/k − 1 (see Theorem 5).

Theorem 2. Let k ∈ {3, 4}. The toughness of the Kneser graph K (n, k) equals

t(K (n,k)) = n

k
− 1,

for any n ≥ 2k + 1. Moreover, any subset of vertices S satisfying t(K (n, k)) = |S|
c(K (n,k)\S) must be the complement of a maximum 

independent set in K (n, k).

We also prove that for k ≥ 5, t(K (n, k)) = n/k − 1 for n sufficiently large as a function of k.

Theorem 3. Let k ≥ 5 be a natural number. If

n ≥ 2

ln2
k2 +

(
2− 3

ln2

)
k + 1

ln2
≥ 2

1
k−1 (2k) − 1

2
1

k−1 − 1
,

then

t(K (n,k)) = n

k
− 1.

Any subset of vertices S such that t(K (n, k)) = |S|
c(K (n,k)\S) must be the complement of a maximum independent set in K (n, k).

We believe that the toughness of Kneser graphs is exactly �/λ = n/k − 1. Using the explicit expression for the spectrum 
of Kneser graphs from Theorem 5, we obtain the following conjecture.
2
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Conjecture 4. Let k ≥ 5 and n ≥ 2k + 1. The Kneser graph K (n, k) has toughness

t(K (n,k)) = n

k
− 1.

If S is a subset of vertices of K (n, k) such that t(K (n, k)) = |S|
c(K (n,k)\S) , then S is the complement of a maximum independent set in 

K (n, k).

In Section 2 we will collect some important spectral bounds on vertex cuts and results on extremal intersecting families. 
In Section 3 we will prove Theorem 3, and in Sections 4 and 5 we will prove Theorem 2. Sections 3 and 4 follow from an 
author’s Ph.D. thesis [33]. Recent developments have allowed us to shorten and improve the presentation.

2. Tools

For two disjoint subsets S, T of the vertices of a graph G , we denote by e(S, T ) to be the number of edges with one 
endpoint in S and the other in T . Also, we use e(S) for the number of edges with both endpoints in S . Determining the 
toughness for small n values will require a mix of theoretical and computational arguments, such as counting e(S, K (n, k) \ S)
in two ways. Classic results on intersecting families provide an upper bound on c(K (n, k) \ S) and thus |S|. We then apply a 
spectral lower bound on the size of a vertex cut to either obtain a contradiction or restrict the possible values of |S|, which 
will be eliminated through other techniques.

2.1. Spectral bounds

We will frequently use the spectrum of the adjacency matrix of the Kneser graph.

Theorem 5. [14, Ch. 9]The eigenvalues of the adjacency matrix of K (n, k) are (−1) j
(n−k− j

k− j

)
with multiplicities 

(n
j

) − ( n
j−1

)
for j =

0, ..., k.

By definition, the Laplacian eigenvalues of K (n, k) can be calculated by subtracting the above eigenvalues from the degree 
of regularity 

(n−k
k

)
. The following provides a bound on e(S, K (n, k) \ S).

Lemma 6 (Mohar [29]). Let G be a connected graph of order n and T be a subset of vertices of G. Let 0 = μ1 < μ2 ≤ ... ≤ μn denote 
the eigenvalues of the Laplacian matrix of G. Then

μ2|T |(n − |T |)
n

≤ e(T ,G \ T ) ≤ μn|T |(n − |T |)
n

.

The following result was proved independently by Haemers [17] and Helmberg, Mohar, Poljak and Rendl [20].

Theorem 7 ([17,20]). Let G be a connected �-regular graph on N vertices, and let � = λ1 > λ2 ≥ · · · ≥ λN denote the eigenvalues of 
the adjacency matrix. If G \ S separates into vertex sets S1 and S2 , then

|S| ≥ 4(� − λ2)(� − λN)|S1||S2|
N(λ2 − λN)2

.

Using the explicit expression for the spectrum of K (n, k) in Theorem 5, this bound specializes to

|S| ≥ 8(n − 4)(n − 6)|S1||S2|
3(n − 2)3

, k = 3, (2.1)

|S| ≥ 6(n − 8)(n − 5)|S1||S2|
(n − 3)(n − 2)3

, k = 4. (2.2)

2.2. Vertex partitions

In order to apply Theorem 7, we need to guarantee the existence of two vertex sets S1, S2 with orders as close to equal 
as possible, in order to maximize the quadratic bound. This is the purpose of Lemma 8, which can easily be proven by 
induction on c. Details can be found in [33, Lemma 5.4.2].

Lemma 8. Let c ≥ 2 and 1 ≤ n1 ≤ n2 ≤ ... ≤ nc be integers. If 
∑c

i=1 ni ≥ 2c, then there exists a partition S1 ∪ S2 = [c], S1 ∩ S2 = ∅
such that
3



D. Park, A. Ostuni, N. Hayes et al. Discrete Mathematics 344 (2021) 112484
min

⎛
⎝∑

i∈S1

ni,
∑
i∈S2

ni

⎞
⎠ ≥ c − 1.

2.3. Intersecting families

The classic Erdös-Ko-Rado theorem gives an upper bound on the size of an intersecting family.

Theorem 9 (Erdös-Ko-Rado [12]). Let n ≥ 2k ≥ 2. If F ⊆ ([n]
k

)
is intersecting, then

|F | ≤
(
n − 1

k − 1

)
.

Equality occurs if and only if F =F(x) for some x ∈ [n], where

F(x) = {A ∈
([n]

k

)
: x ∈ A}.

Intersecting families of the form F(x) are called trivial. The next significant result in this direction is the Hilton-Milner 
theorem showing that nontrivial intersecting set families are significantly smaller.

Theorem 10 (Hilton-Milner [22]). Let n ≥ 2k + 1 ≥ 5. If F ⊆ ([n]
k

)
is intersecting and ∩F∈F F = ∅, then

|F | ≤
(
n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
+ 1.

Furthermore, for k �= 3, equality occurs if and only if F =F(A, x) for some A ∈ ([n]
k

)
and x /∈ A, where

F(A, x) = {A} ∪ {B ∈
([n]

k

)
: x ∈ B, B ∩ A �= ∅}.

If k = 3, equality occurs if and only if F =F(A, x) as above or F = G(A) for some A ∈ ([n]
k

)
, where

G(A) = {B ∈
([n]

k

)
: |A ∩ B| ≥ 2}.

We define the diversity γ (F) of an intersecting family F as follows:

γ (F) = |F | −max
i∈[n]

|{X ∈ F : i ∈ X}|.

All i ∈ [n] that maximize |{X ∈F : i ∈ X}| are referred to as central in F .
Note that γ (F(x)) = 0 (defined as in Theorem 9) and γ (F(A, x)) = 1 (as in Theorem 10). The following theorem focuses 

on families of higher diversity, and also includes a characterization of the extremal families which we omit.

Theorem 11 (Han–Kohayakawa [19]). Let n ≥ 2k +1 ≥ 7. Suppose F ⊆ ([n]
k

)
is intersecting and F is not a subfamily of F(x), F(A, x), 

or G(A). Then

|F | ≤
(
n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
−

(
n − k − 2

k − 2

)
+ 2.

Another celebrated result from extremal set theory is the Kruskal-Katona theorem, which provides a lower bound on the 
number of particular subsets of a family.

Theorem 12 (Kruskal–Katona [26,24]). Let n ≥ i ≥ r be natural numbers and F ⊆ ([n]
i

)
. Denote by F1 the family of all (i − r)−size 

subsets of the sets in F ,

F1 = {B ∈
( [n]
i − r

)
: B ⊆ A, for some A ∈ F}.

If we uniquely expand

|F | =
(
ni

)
+

(
ni−1

)
+ · · · +

(
n j

)
,

i i − 1 j

4
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where ni > ni−1 > . . . > n j ≥ j ≥ 1 are natural numbers, then

|F1| ≥
(

ni
i − r

)
+

(
ni−1

i − r − 1

)
+ · · · +

(
n j

j − r

)
.

For a graph G = (V , E) and a subset of vertices Q ⊆ V , the neighborhood N(Q ) consists of the vertices not in Q that are 
adjacent to a vertex in Q .

Lemma 13. Let n ≥ 2k + 1 ≥ 5 and let Q be an independent set in K (n, k). If we uniquely expand

|Q | =
(
qn−k

n − k

)
+

(
qn−k−1

n − k − 1

)
+ · · · +

(
q j

j

)
,

where qn−k > qn−k−1 > . . . > q j ≥ j ≥ 1 are natural numbers, then

|N(Q )| ≥
(
qn−k

k

)
+

(
qn−k−1

k − 1

)
+ · · · +

(
q j

j − (n − 2k)

)
.

Proof. Define F = {Ac : A ∈ Q }, where Ac = [n] \ A. Note F ⊆ ( [n]
n−k

)
, and clearly for all X ∈ F , we have that X is disjoint 

from A ∈ Q for some A, namely the A such that X = Ac . Therefore, all k-size subsets of X are in N(Q ). Then if F1 is the 
family of k-size subsets of the elements of F , F1 ⊆ N(Q ) and thus |F1| ≤ |N(Q )|. Note that |F | = |Q |. The result then 
follows from Theorem 12 with i = n − k and r = n − 2k. �
Lemma 14. Suppose n ≥ 2k + 1 ≥ 5. Let Q be an independent set of vertices in K (n, k). Suppose x1x2 is an edge such that x1 ∈ Q . If 
N({x1, x2}) and Q are disjoint, then |Q | ≤ (n−1

k−1

) − (n−k−1
k−1

) + 1.

Proof. Assume to the contrary that |Q | ≥ (n−1
k−1

)−(n−k−1
k−1

)+2. By the contrapositive of Theorem 10, we must have γ (Q ) = 0. 
Let Q ′ = Q ∪ {x2} \ {x1}. Again we have γ (Q ′) = 0. Since x1 and x2 are adjacent and thus disjoint, Q and Q ′ cannot share 
a central element. Let y1 be a central element of Q . Then y1 cannot be an element of x2, and so there exists another 
central element y2 in Q ′ . Thus, all elements in Q \ {x1} must contain y1 and y2, both central elements. This gives us that 
|Q | ≤ (n−2

k−2

) + 1. However,
(
n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
+ 2 =

(
n − 2

k − 2

)
+

(
n − 2

k − 1

)
−

(
n − k − 1

k − 1

)
+ 2 >

(
n − 2

k − 2

)
+ 1,

a contradiction. �
Lemma 15. Suppose n ≥ 2k + 1 ≥ 9. Let Q be an independent set of vertices in K (n, k). Suppose x1, x2, x3, x4 induce a 4-cycle, and 
that x1, x3 ∈ Q . If N({x1, x2, x3, x4}) and Q are disjoint, then

|Q | ≤
(
n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
−

(
n − k − 2

k − 2

)
+ 2. (2.3)

Moreover, if x1, x2, x3, x4 instead induce two K2 ’s, then we again have (2.3).

Proof. Assume to the contrary that |Q | ≥ (n−1
k−1

)− (n−k−1
k−1

)− (n−k−2
k−2

)+3. By the contrapositive of Theorem 11 and with k ≥ 4
by assumption, Q is a set of the form F(x) or F(A, x). Let Q ′ = Q ∪ {x2, x4} \ {x1, x3}. By the contrapositive of Theorem 11, 
γ (Q ), γ (Q ′) ≤ 1. Let y1 be a central element of Q . Since x1, x3 are adjacent to both x2 and x4, y1 cannot be a central 
element of Q ′ . So there must be some y2 as a central element of Q ′ . We find that for all A ∈ Q \ {x1, x3}, necessarily 
y1, y2 ∈ A. Thus |Q | ≤ (n−2

k−2

) + 2. However, noting that n ≥ 2k + 1 ≥ 9, we have
(
n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
−

(
n − k − 2

k − 2

)
+ 3

=
(
n − 2

k − 2

)
+

(
n − 2

k − 1

)
−

(
n − k − 1

k − 1

)
−

(
n − k − 2

k − 2

)
+ 3

=
(
n − 2

k − 2

)
+

((
n − 3

k − 1

)
−

(
n − k − 1

k − 1

))
+

((
n − 3

k − 2

)
−

(
n − k − 2

k − 2

))
+ 3

>

(
n − 2

k − 2

)
+ 2,
5
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a contradiction.
Now suppose x1x4 and x2x3 are two induced edges. Assume to the contrary that |Q | ≥ (n−1

k−1

)−(n−k−1
k−1

)−(n−k−2
k−2

)+3, with 
x1, x3 ∈ Q . By the contrapositive of Theorem 11, we have γ (Q ) ≤ 1. Let y1 be a central element in Q . We see that y1 ∈ x1
or y1 ∈ x3. Furthermore, if y1 ∈ x1, then y1 /∈ x4 due to adjacency. Similiarly, if y1 ∈ x3, then y1 /∈ x2. It follows that there 
exists a z1 ∈ {x1, x4} and z2 ∈ {x2, x3} such that y1 /∈ z1 and y1 /∈ z2. Define H = Q \ {x1, x3} and Q ′′ = H ∪ {z1, z2}. Now 
|Q | = |Q ′′|, so by the contrapositive of Theorem 11, γ (Q ′′) ≤ 1, and thus y1 cannot be a central element in Q ′′ . So there 
exists some other central element y2 in Q ′′ . Hence, every element in H must contain y1 and y2, implying |Q | ≤ (n−2

k−2

) + 2. 
By the inequality above, we again have a contradiction. �
2.4. Structural properties

Some properties of K (n, k) follow as a consequence of the Kneser graph being vertex and edge-transitive ([14, Ch. 3], 
[18], and [32]).

Lemma 16. For any vertex u in K (n, k), the graph obtained by deleting u and its neighborhood is connected.

Lemma 17. Let G be a non-bipartite �-regular graph. Assume the edge-connectivity of G is �, and the only edge cuts of � edges are the 
� edges incident to a vertex. Then for any vertex cut S, |S| > c(G \ S). In particular, t(K (n, k)) > 1 for any n ≥ 2k + 1.

Proof. We have c(G \ S)� ≤ e(S, G \ S) for any vertex cut S , since the edge-connectivity is equal to the degree �. Equality 
occurs if and only if the components of G \ S are singletons. Furthermore, e(S, G \ S) ≤ �|S|, with equality occurring if and 
only if S is an independent set. Combining yields |S|

c(G\S) ≥ 1, with equality if and only if G is bipartite. The last statement 
holds since the edge-connectivity of K (n, k) is � (see [14, Ch. 3] or [11]) and χ(K (n, k)) ≥ 3. �
Lemma 18. Let S be a vertex cut achieving the toughness of K (n, k). Then every component in K (n, k) \ S is either a singleton, K2, or 
is biconnected.

Proof. The previous lemma guarantees that

|S|
c(K (n,k) \ S)

> 1.

Let C be a component in K (n, k) \ S on at least 3 vertices. Assume to the contrary that deleting vertex v in C disconnects 
C . Then by adding v to S ,

|S ∪ {v}|
c(K (n,k) \ (S ∪ {v})) ≤ |S| + 1

c(K (n,k) \ S) + 1
<

|S|
c(K (n,k) \ S)

,

contradicting S achieving the toughness. �
In particular, Lemma 18 implies that K (n, k) \ S cannot contain a tree on more than two vertices.

3. Quadratic upper bound

We will first show that our toughness conjecture holds for fixed k and sufficiently large n.

Theorem 19. Let n ≥ 2k + 1 and k ≥ 3. Let S be a vertex cut of K (n, k) and c = c(K (n, k) \ S). Then either(
n − k − 1

k − 1

)
+ 1 ≤ c ≤

(
n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
+ 1,

or

|S|
c

≥ n

k
− 1,

with equality if and only if S is the complement of a maximum independent set.

Proof. Let S be a vertex cut and c = c(K (n, k) \ S). Assume first that c ≤ (n−k−1
k−1

)
. If |S| = (n−k

k

)
, then structural properties 

mentioned above tell us that S = N(u) for some vertex u, and so Lemma 16 implies

|S| =
(n−k

k

)
>

n − 1

c(K (n,k) \ S) 2 k

6
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for n ≥ 2k + 1 and k ≥ 3. If instead |S| > (n−k
k

)
, then

|S|
c(K (n,k) \ S)

>

(n−k
k

)
c

≥ n

k
− 1,

and we are done. Now assume c >
(n−1
k−1

) − (n−k−1
k−1

) + 1. If K (n, k) \ S contains a non-singleton component, then choosing 
one vertex from each component to be in Q gives a contradiction by Lemma 14. Hence by Theorem 9, K (n, k) \ S contains 
at most 

(n−1
k−1

)
singletons. Then

|S|
c

≥
(n
k

) − (n−1
k−1

)
(n−1
k−1

) =
(n
k

)
(n−1
k−1

) − 1 = n

k
− 1.

Note that equality can only occur when c >
(n−1
k−1

) − (n−k−1
k−1

) + 1, in which case it follows by Theorem 9 that S is the 
complement of a maximum independent set of size 

(n−1
k−1

)
. �

Corollary 20. For k ≥ 3 and

n >
2

ln(2)
k2 +

(
2− 3

ln(2)

)
k + 1

ln(2)
≥ 2

1
k−1 (2k) − 1

2
1

k−1 − 1
,

we have

t(K (n,k)) = n

k
− 1.

Moreover, if S is a vertex cut of K (n, k) such that |S|
c(K (n,k)\S) = n

k − 1, then S is the complement of a maximum independent set.

Proof. For k ≥ 3, we have

n >
2

1
k−1 (2k) − 1

2
1

k−1 − 1
.

This is equivalent to

2(n − 2k)k−1 > (n − 1)k−1. (3.1)

For k ≥ 3,

2

(
n − k − 1

k − 1

)
>

2(n − 2k)k−1

(k − 1)! and
(n − 1)k−1

(k − 1)! >

(
n − 1

k − 1

)
.

Equation (3.1) now implies

2

(
n − k − 1

k − 1

)
>

(
n − 1

k − 1

)
.

This is equivalent to
(
n − k − 1

k − 1

)
+ 1 >

(
n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
+ 1.

Note these are the bounds for c in Theorem 19. It can be verified using a two term Taylor approximation that

2

ln(2)
k2 +

(
2− 3

ln(2)

)
k + 1

ln(2)
≥ 2

1
k−1 (2k) − 1

2
1

k−1 − 1
,

finishing the proof. �

7
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4. Toughness of K (n, 3)

Theorem 21. For n ≥ 9, t(K (n, 3)) = n
3 − 1. Moreover, if S is a vertex cut of K (n, 3) such that |S|

c(K (n,3)\S) = n
3 − 1, then S is the 

complement of a maximum independent set of K (n, 3).

Proof. First, the bounds for c in Theorem 19 do not agree for n ≥ 12. Consider when 8 ≤ n ≤ 11. In all cases, we assume 
there exists a vertex cut S that is not the complement of a maximum independent set such that |S|

c(K (n,3)\S) ≤ n
3 −1 to obtain 

a contradiction.
For n = 11, by Theorem 19, we have that 22 ≤ c(K (11, 3) \ S) ≤ 25. Therefore, |S|

c(K (11,3)\S) ≤ 8
3 implies 56 ≤ |S| ≤ 66. If S

is the neighborhood of a vertex, then c(K (11, 3) \ S) = 2, contradicting the lower bound on c(K (11, 3) \ S). Therefore, S is 
not the neighborhood of a vertex, and thus by Lemma 16, |S| �= 56. Thus 57 ≤ |S| ≤ 66. Furthermore, we have |K (11, 3) \ S| =
165 − |S| ≥ 165 − 66 = 99 > 2(25) ≥ 2c(K (11, 3) \ S), so we can apply Lemma 8. There exist subsets of vertices S1 and S2
of K (11, 3) \ S with no edges between them, such that min(|S1|, |S2|) ≥ 21. Equation (2.1) implies

|S| ≥ 280

2187
|S1||S2| ≥ 280

2187
(21)(99− 21) > 209,

which is a contradiction with |S| ≤ 66.
The graph K (10, 3) is 35-regular and has 120 vertices. By Theorem 19, we have that 16 ≤ c(K (10, 3) \ S) ≤ 22. As S is 

not the neighborhood of a vertex, |S|
c(K (10,3)\S) ≤ 7

3 implies 36 ≤ |S| ≤ 51. Furthermore, we have |K (10, 3) \ S| = 120 − |S| ≥
120 −51 = 69 > 2(22) ≥ 2c(K (10, 3) \ S), so we can apply Lemma 8. There exist subsets of vertices S1 and S2 of K (10, 3) \ S
with no edges between them, such that min(|S1|, |S2|) ≥ 15. Equation (2.1) implies

|S| ≥ |S1||S2|
8

≥ 1

8
(15)(69− 15) > 101,

a contradiction with |S| ≤ 51.
The graph K (9, 3) is 20-regular and has 84 vertices. By Theorem 19, we have that 11 ≤ c(K (9, 3) \ S) ≤ 19. As S is not 

the neighborhood of a vertex, |S|
c(K (9,3)\S) ≤ 2 implies 21 ≤ |S| ≤ 38. Furthermore, we have |K (9, 3) \ S| = 84 −|S| ≥ 84 −38 =

46 > 2(19) ≥ 2c(K (9, 3) \ S), so we can apply Lemma 8. There exist subsets of vertices S1 and S2 of K (9, 3) \ S with no 
edges between them, such that min(|S1|, |S2|) ≥ 10. Equation (2.1) implies

|S| ≥ 40

343
|S1||S2| ≥ 40

343
(10)(46 − 10) > 41,

a contradiction with |S| ≤ 38. �
For K (8, 3), we must split into casework on c.

Theorem 22. We have t(K (8, 3)) = 5
3 . Moreover, if S is a vertex cut of K (8, 3) such that |S|

c(K (8,3)\S) = 5
3 , then S is the complement of 

a maximum independent set of K (8, 3).

Proof. The graph K (8, 3) is 10-regular and has 56 vertices. Assume there exists a vertex cut S achieving toughness such 
that S is not the complement of a maximum independent set and |S|

c(K (8,3)\S) ≤ 5
3 . By Theorem 19, we have that 7 ≤

c(K (8, 3) \ S) ≤ 16. As S is not the neighborhood of a vertex, |S|
c(K (8,3)\S) ≤ 5

3 implies 11 ≤ |S| ≤ 26.
If c(K (8, 3) \ S) = 7, then |S| = 11. Furthermore, we have |K (8, 3) \ S| = 56 − 11 = 45 > 2(7) = 2c(K (8, 3) \ S), so we 

can apply Lemma 8. There exist subsets of vertices S1 and S2 of K (8, 3) \ S with no edges between them, such that 
min(|S1|, |S2|) ≥ 6. Equation (2.1) implies

|S| ≥ 8

81
|S1||S2| ≥ 8

81
(6)(45− 6) > 23,

a contradiction with |S| = 11. A similar argument shows a contradiction for 8 ≤ c(K (8, 3)) ≤ 14.
If c(K (8, 3) \ S) = 15, then 16 ≤ |S| ≤ 25. Let a and b denote the number of singletons and K2’s in K (8, 3) \ S , respectively. 

Let C be a component of K (8, 3) \ S . Note the girth of K (8, 3) is 4 [21]. If |C| = 1, 2, 4, then e(C, S) ≥ 10, 18, 32. By 
Lemma 18, there are no components of order 3. As each component must contain at least one vertex, we find that |C| ≤
|K (8, 3) \ S| − 14 ≤ 26. The lower bound in Lemma 6 is increasing for |C| ≤ 28. Thus if |C| ≥ 4, then

e(C, S) ≥
⌈
7 · 4(56− 4)

56

⌉
≥ 26.

Since there are 10 edges from each singleton, 18 edges from each K2, and at least 28 edges for each other component, we 
have
8
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10a + 18b + 26(15− a − b) ≤ e(S, K (8,3) \ S) ≤
⌊
16|S|(56− |S|)

56

⌋
≤ 221.

Finally, if a ≥ 7, Lemma 13 implies the neighborhood contains at least 26 vertices, contradicting |S| ≤ 25. This reduces to 
the system⎧⎪⎨

⎪⎩
0 ≤ a ≤ 6,

0 ≤ b ≤ 15− a,

10a + 18b + 26(15− a − b) ≤ 221,

which has no integer solutions.
If c(K (8, 3) \ S) = 16, then 17 ≤ |S| ≤ 26. Let a, b denote the number of singletons and K2’s in K (8, 3) \ S . By a similar 

analysis of e(C, S) for a component C of K (8, 3) \ S , we have the system,⎧⎪⎨
⎪⎩
0 ≤ a ≤ 8,

0 ≤ b ≤ 16− a,

10a + 18b + 26(16− a − b) ≤ 222,

which has no integer solutions. �
For K (7, 3), we appeal to an edge-counting argument and computer search.

Theorem 23. We have t(K (7, 3)) = 4
3 . Moreover, if S is a vertex cut of K (7, 3) such that |S|

c(K (7,3)\S) = 4
3 , then S is the complement of 

a maximum independent set of K (7, 3).

Proof. Assume there exists a vertex cut S achieving toughness such that S is not the complement of a maximum inde-
pendent set and |S|

c(K (7,3)\S) ≤ 4
3 . By Theorem 19, we have that 5 ≤ c(K (8, 3) \ S) ≤ 13. By Lemma 17, |S|

c(K (7,3)\S) ≤ 4
3 implies 

6 ≤ |S| ≤ 17.
Since K (7, 3) is 4-regular, we have that e(S, K (7, 3) \ S) ≤ 4|S|. By Lemma 6, we may improve this upper bound to

e(S, K (7,3) \ S) ≤ min

(
4|S|,

⌊
7|S|(35− |S|)

35

⌋)
. (4.1)

Now for any component C of K (7, 3) \ S , we will bound e(C, S) from below. By Lemma 6, we have

e(C, S) ≥ 2|C|(35− |C|)
35

.

We will require tighter bounds for small |C|. When |C| = 1, 2, we trivially obtain e(C, S) = 4, 6. Since K (7, 3) has girth 6
[21], if 3 ≤ |C| ≤ 5, then C is a tree violating Lemma 18. Hence we do not consider when 3 ≤ |C| ≤ 5. For |C| = 6, 7, e(C) is 
maximized when C is a cycle. Since K (7, 3) is 4-regular,

e(C, S) = 4|C| − 2e(C).

Thus e(C, S) ≥ 12, 14 for |C| = 6, 7. We combine this into a single function f1(|C|) which provides a lower bound for e(C, S). 
Define

f1(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 if t = 1

6 if t = 2

12 if t = 6

14 if t = 7

� 2t(35−t)
35 
 if t ≥ 8

. (4.2)

Let X1, . . . , Xc denote the components of K (7, 3) \ S . Let pi = |Xi |, and without loss of generality assume p1 ≤ · · · ≤ pc . 
Let P(m, j, T ) denote the set of integer partitions of m into j parts such that the size of each part is not an element of T . 
By (4.1) and (4.2), (p1, . . . , pc) is a partition in P(35 − |S|, c, {3, 4, 5}) satisfying

c∑
i=1

f1(pi) ≤
c∑

i=1

e(Xi, S) = e(S, K (7,3) \ S) ≤ min

(
4|S|,

⌊
7|S|(35− |S|)

35

⌋)
. (4.3)

Let a and b be the number of components of size 1 and 2 respectively. The size of the neighborhood of the a singletons 
and b K2’s must be at most |S|. A computer search over all possible values of c and |S| confirms that no partitions satisfy 
these two conditions among other trivial conditions on a, b. See Section 7.2 for more details. �
9
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5. Toughness of K (n, 4)

Theorem 24. If n ≥ 13, then t(K (n, 4)) = n
4 − 1. Moreover, if S is a vertex cut of K (n, 4) such that |S|

c(K (n,4)\S) = n
4 − 1, then S is the 

complement of a maximum independent set of K (n, 4).

Proof. Suppose S is a vertex cut of K (n, 4) that is not the complement of a maximum independent set such that 
|S|

c(K (n,4)\S) ≤ n
4 − 1. Let c = c(K (n, 4) \ S). By Theorem 19, we have 

(n−5
3

) + 1 ≤ c ≤ (n−1
3

) − (n−5
3

) + 1. Also,

|S| ≤ n − 4

4
c, (5.1)

|K (n,4) \ S| ≥
(
n

4

)
− n − 4

4
c. (5.2)

We would like |K (n, 4) \ S| ≥ 2c in order to apply Lemma 8. By the upper bound on c, this is satisfied when(
n

4

)
≥ n + 4

4

((
n − 1

3

)
−

(
n − 5

3

)
+ 1

)
.

The above equation holds if and only if n ≥ 13. Thus we may apply Lemma 8 to create a vertex partition of K (n, 4) \ S into 
two vertex sets S1, S2 with no edges between S1, S2 and min(|S1|, |S2|) ≥ c − 1. Now by (2.2),

|S| ≥ 6(n − 8)(n − 5)

(n − 3)(n − 2)3
|S1||S2| ≥ 6(n − 8)(n − 5)

(n − 3)(n − 2)3
(c − 1) (|K (n,4) \ S| − (c − 1)) .

Using the bounds on c and (5.2), we can rewrite the above lower bound on |S| as

|S| ≥ 6(n − 8)(n − 5)

(n − 3)(n − 2)3
(c − 1)

((
n

4

)
− n

4
c + 1

)

= 6(n − 8)(n − 5)

(n − 3)(n − 2)3
n

4
(c − 1)

((
n − 1

3

)
+ 4

n
− 1− (c − 1)

)
.

Notice c − 1 ∈ [(n−5
3

)
, 
(n−1

3

) − (n−5
3

)] and 
(n−1

3

) + 4
n − 1 <

(n−1
3

)
. Then the lower bound of |S| above is a quadratic in c − 1

that is minimized when c − 1 = (n−1
3

) − (n−5
3

)
. Thus,

|S| ≥ 6(n − 8)(n − 5)

(n − 3)(n − 2)3
n

4

((
n − 1

3

)
−

(
n − 5

3

))(
4

n
− 1+

(
n − 5

3

))
.

Now from the upper bound on c and (5.1), we have the upper bound

|S| ≤ n − 4

4

((
n − 1

3

)
−

(
n − 5

3

)
+ 1

)
.

For n ≥ 13, the lower bound of |S| is strictly greater than the upper bound of |S|, yielding a contradiction. �
For K (12, 4), we will require Lemmas 13 and 15.

Theorem 25. We have t(K (12, 4)) = 2. Moreover, if S is a vertex cut of K (12, 4) such that |S|
c(K (12,4)\S) = 2, then S is the complement 

of a maximum independent set of K (12, 4).

Proof. Suppose S is a vertex cut of K (12, 4) that is not the complement of a maximum independent set such that 
|S|

c(K (12,4)\S) ≤ 2. Let c = c(K (12, 4) \ S). By Theorem 19, 36 ≤ c ≤ 131. Then |K (12, 4) \ S| ≥ 495 − 2c. For 36 ≤ c ≤ 123, 
we have 495 − 2c ≥ 2c, from which Lemma 8 gives a vertex partition S1, S2 with at least c − 1 vertices in each subset. 
Therefore

|S| ≥ 7

375
|S1||S2| ≥ 7

375
(c − 1) (495− 2c − (c − 1)) = 7

375
(c − 1)(496− 3c).

For 36 ≤ c ≤ 129, this lower bound contradicts |S| ≤ 2c. It is left to check when c = 130, 131. By Lemma 15, at most one 
component of K (12, 4) \ S is not a singleton. There are at least 129 singletons in K (12, 4) \ S , whose neighborhood must lie 
in S . By Lemma 13, the neighborhood contains at least 329 vertices, contradicting |S| ≤ 2c ≤ 262. �

For K (11, 4), we will need a vertex of high degree to form an independent set large enough to use Lemma 15.
10
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Theorem 26. We have t(K (11, 4)) = 7
4 . Moreover, if S is a vertex cut of K (11, 4) such that |S|

c(K (11,4)\S) = 7
4 , then S is the complement 

of a maximum independent set of K (11, 4).

Proof. Suppose S is a vertex cut of K (11, 4) that is not the complement of a maximum independent set such that 
|S|

c(K (11,4)\S) ≤ 7
4 . Let c = c(K (11, 4) \ S). By Theorem 19, 21 ≤ c ≤ 101. Then |K (11, 4) \ S| ≥ 330 − 7

4 c. For 21 ≤ c ≤ 85, 
we have 330 − 7

4 c ≥ 2c, from which Lemma 8 gives a vertex partition S1, S2 with at least c − 1 vertices in each subset. 
Therefore

|S| ≥ 1

54
|S1||S2| ≥ 1

54
(c − 1)

(
330− 7

4
c − (c − 1)

)
= 1

54
(c − 1)

(
331− 11

4
c

)
.

For 21 ≤ c ≤ 85, this lower bound of |S| contradicts |S| ≤ 7
4 c. It is left to check 86 ≤ c ≤ 101. Let X1, . . . , Xc denote the 

components of K (11, 4) \ S . Let �(Xi) denote the maximum degree of the induced subgraph of component Xi and d =
maxi∈[c] �(Xi). Then each vertex in K (11, 4) \ S contributes at least 35 − d edges into S . Thus,

e(S, K (11,4) \ S) ≥ (35 − d)|K (11,4) \ S|.
From Lemma 6, we also have the upper bound

e(S, K (11,4) \ S) ≤ 55|S|(330− |S|)
330

.

Combining the two bounds on e(S, K (11, 4) \ S) and |S| ≤ 7
4 c gives

d ≥ 35− |S|
6

≥ 35− 7

24
c. (5.3)

Let v be a vertex of degree d in component C . Since K (11, 4) is triangle-free, the neighborhood NC(v) within component 
C forms an independent set of vertices. Let H be an independent set formed by taking a vertex from each component except 
C . Then NC(v) ∪ H is an intersecting family of d + c − 1 vertices. By (5.3) and c ≥ 86,

|NC(v) ∪ H| = d + c − 1 ≥ 34+ 17

24
c ≥ 94,

which exceeds the bound given by Lemma 15, so by the moreover part of the lemma, there cannot exist two components 
other than C that are not singletons. Then at most one component other than C is not a singleton. Thus K (11, 4) \ S contains 
at least c − 2 ≥ 84 singletons whose neighborhood must be contained in S . By Lemma 13, there are at least 203 vertices in 
the neighborhood, a contradiction with |S| ≤ 7

4 c < 177. �
For K (10, 4), we use a similar edge counting argument from K (7, 3).

Theorem 27. We have t(K (10, 4)) = 3
2 . Moreover, if S is a vertex cut of K (10, 4) such that |S|

c(K (10,4)\S) = 3
2 , then S is the complement 

of a maximum independent set of K (10, 4).

Proof. Suppose S is a vertex cut of K (10, 4) achieving toughness such that S is not the complement of a maximum inde-
pendent set and |S|

c(K (10,4)\S) ≤ 3
2 . Let c = c(K (10, 4) \ S). By Theorem 19, 11 ≤ c ≤ 75. It follows that, |K (10, 4) \ S| ≥ 210 − 3

2 c. 
For 11 ≤ c ≤ 47, we have 210 − 3

2 c ≥ 2c, from which Lemma 8 gives a vertex partition S1, S2 with at least c − 1 vertices in 
each subset. Therefore

|S| ≥ 15

896
|S1||S2| ≥ 15

896
(c − 1)

(
210− 3

2
c − (c − 1)

)
= 15

896
(c − 1)

(
211− 5

2
c

)
.

For 11 ≤ c ≤ 47, this lower bound of |S| contradicts |S| ≤ 3
2 c. It is left to check 48 ≤ c ≤ 75. Since K (10, 4) is 15-regular, we 

have that e(S, K (10, 4) \ S) ≤ 15|S|. By Lemma 6, we may improve this upper bound to

e(S, K (10,4) \ S) ≤ min

(
15|S|,

⌊
25|S|(210− |S|)

210

⌋)
. (5.4)

Now for any component C of K (10, 4) \ S , we will bound e(C, S) from below. By Lemma 6, we have

e(C, S) ≥ 9|C|(210− |C|)
210

.

We will require tighter bounds for small |C|. When |C| = 1, 2, we obtain e(C, S) = 15, 28. Since K (10, 4) has girth 4 [21], 
if |C| = 3, then C is a tree violating Lemma 18. For |C| = 4, 5, the maximum of e(C) will be 4 and 6, respectively. Since 
K (10, 4) is 15-regular,
11
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e(C, S) = 15|C| − 2e(C).

Thus e(C, S) ≥ 52, 63 for |C| = 4, 5. We combine this into a single function f2(|C|) which provides a lower bound for e(C, S). 
Define

f2(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

15 if t = 1

28 if t = 2

52 if t = 4

63 if t = 5

� 9t(210−t)
210 
 if t ≥ 6

. (5.5)

Let X1, . . . , Xc denote the components of K (10, 4) \ S . Let pi = |Xi |, and without loss of generality assume p1 ≤ · · · ≤ pc . By 
(5.4) and (5.5), (p1, . . . , pc) is a partition in P(210 − |S|, c, {3}) satisfying

c∑
i=1

f2(pi) ≤
c∑

i=1

e(Xi, S) = e(S, K (10,4) \ S) ≤ min

(
15|S|,

⌊
25|S|(210− |S|)

210

⌋)
. (5.6)

Let a and b be the number of components of size 1 and 2 respectively. Again, the size of the neighborhood of the a
singletons and b K2’s must be at most |S|. A computer search in Section 7.2 over all possible values of c and |S| confirms 
that no partitions satisfy these two conditions among other trivial conditions on a, b. �
Theorem 28. We have t(K (9, 4)) = 5

4 . Moreover, if S is a vertex cut of K (9, 4) such that |S|
c(K (9,4)\S) = 5

4 , then S is the complement of 
a maximum independent set of K (9, 4).

Proof. Suppose S is a vertex cut of K (9, 4) achieving toughness such that S is not the complement of a maximum in-
dependent set and |S|

c(K (9,4)\S) ≤ 5
4 . Let c = c(K (9, 4) \ S). By Theorem 19, 5 ≤ c ≤ 53. By Lemma 6 and the regularity of 

K (9, 4),

e(S, K (9,4) \ S) ≤ min

(
5|S|,

⌊
9|S|(126− |S|)

126

⌋)
. (5.7)

Now for any component C of K (10, 4) \ S , Lemma 6 implies

e(C, S) ≥ 2|C|(126− |C|)
126

.

We will require tighter bounds on e(C, S) for small |C|. By Lemma 18, C may not be a tree. Since K (9, 4) has girth 6
[21], we do not consider when 3 ≤ |C| ≤ 5. For 6 ≤ |C| ≤ 16, the bounds on e(C, S) were found by the computer search in 
Section 7.1 on all possible components of order |C|. Define

f3(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 if t = 1

8 if t = 2

18 if t = 6

21 if t = 7

22 if t = 8

25 if t = 9

26 if t = 10

27 if t = 11

28 if t = 12

29 if t = 13

28 if t = 14

31 if t = 15

32 if t = 16

� 2t(126−t)
126 
 if t ≥ 17

. (5.8)

Let X1, . . . , Xc denote the components of K (9, 4) \ S . Let pi = |Xi | and without loss of generality assume p1 ≤ · · · ≤ pc . 
By (5.7) and (5.8), (p1, . . . , pc) is a partition in P(126 − |S|, c, {3, 4, 5}) satisfying
12
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c∑
i=1

f3(pi) ≤
c∑

i=1

e(Xi, S) = e(S, K (9,4) \ S) ≤ min

(
5|S|,

⌊
9|S|(126− |S|)

126

⌋)
. (5.9)

Let a and b be the number of components of size 1 and 2 respectively. Again, the neighborhood of the a singletons and b
K2’s must be at most |S|. A computer search in Section 7.2 over all possible values of c and |S| confirms that no partitions 
satisfy these two conditions among other trivial conditions on a, b. �
6. Final remarks

In this paper, we show that the toughness of the Kneser graph K (n, k) equals n/k −1 for k ∈ {3, 4} and any n ≥ 2k +1 and 
for given k ≥ 5 and sufficiently large n (as a function of k). We conjecture that this result holds for any k ≥ 5 and n ≥ 2k +1. 
It would be interesting to determine the toughness of other families of regular graphs such as the Johnson graphs, Paley 
graphs, block graphs of Steiner systems, and q-analogs of Kneser graphs.

7. Appendix

See https://github .com /aostuni /kneser-toughness for source files, including program outputs.

7.1. Calculation of lower bounds of e(C, S)

For 6 ≤ |C| ≤ 16, we rely on lower bounds of e(C, S) where C is a component of K (9, 4) to create the function f3 in 
(5.8). Here, we describe in detail how these values were determined.

With geng, we generate biconnected graphs with maximum degree 5 and girth at least 5 (the geng tool does not allow 
generation of graphs of girth above 5). With countg, we remove graphs of girth 5 and find an upper bound on e(C).

$ geng -CtfD5 p | countg -g6: --e

The total execution time took at most 15 seconds on our machine. Upper bounds on e(C) are shown below.

|C| e(C)

6 6
7 7
8 9
9 10
10 12
11 14
12 16
13 18
14 21
15 22
16 24

Lower bounds on e(C, S) can be calculated using e(C, S) = 5|C| − 2e(C).

7.2. Partition searching algorithm

We describe the algorithm used to check the partitions of vertices into the c components for a vertex cut S of each of 
K (7, 3), K (10, 4), and K (9, 4). Denote g and � to be the girth and degree of K (n, k) respectively. Recall the functions f1, 
f2, and f3 defined for each K (7, 3), K (10, 4), and K (9, 4), respectively. Let f denote this function for general n, k. In our 
implementation, we store values of f in an array up to a max component size of

|K (n,k) \ S| − (c − 1) ≤
(
n

k

)
− |S| − c + 1 ≤

(
n

k

)
− 2c.

The last inequality follows by Lemma 17. Let L and U be the lower and upper bounds of the inequality on e(S, K (n, k) \ S), 
namely (4.3), (5.6), and (5.9). For general n, k, define

L((p1 . . . , pc)) =
c∑

f (pi), (7.1)

i=1

13
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Algorithm 1 Partition algorithm for K (n, k).
1: procedure PartitionSearch(c)
2: for |S| = c + 1 to �( n

k − 1
)
c� do

3: for all a, b ≥ 0 satisfying (7.3), (7.4), (7.5), (7.7), (7.8) do
4: for all p ∈ P(

(n
k

) − |S| − a − 2b, c − a − b, {1, . . . , g − 1}) do
5: if L(p) + da + (2d − 2)b ≤ U (|S|) then
6: print (1a, 2b) ∪ p

U (|S|) = min

⎛
⎝(

n − k

k

)
|S|,

⎢⎢⎢⎣
((n−k

k

) + (n−k−1
k−1

)) |S| ((nk) − |S|)(n
k

)
⎥⎥⎥⎦

⎞
⎠ . (7.2)

Let a and b be the number of singletons and K2’s respectively in K (n, k) \ S . The next largest component size must be g by 
Lemma 18. By counting the components and vertices in K (n, k) \ S , we immediately have

a + b ≤ c, (7.3)

a + 2b + g(c − a − b) ≤ |K (n,k) \ S| =
(
n

k

)
− |S|. (7.4)

Now count the edges coming out of each component. Trivially f (1) = � and f (2) = 2� − 2. By inspecting the values of f for 
each of K (7, 3), K (10, 4), and K (9, 4), we find that f (g) ≤ f (t) for all g ≤ t ≤ (n

k

) − 2c. Thus,

�a + (2� − 2)b + f (g)(c − a − b) ≤ e(S, K (n,k) \ S) ≤ U (|S|). (7.5)

More generally, for a partition p = (p1, . . . , pc) of the K (n, k) \ S vertices into c components,

L(p) ≤ e(S, K (n,k) \ S) ≤ U (|S|). (7.6)

Note (7.6) is exactly (4.3), (5.6), and (5.9). Finally, we count the size of the induced neighborhood of the singletons and 
K2’s in S . First, the neighborhood of any r of the a singletons lies in S . Define K K (|Q |) to be the lower bound of N(Q ) in 
Lemma 13. Then for all 1 ≤ r ≤ a,

K K (r) ≤ |S|. (7.7)

Let H be the set of a singletons. For 1 ≤ r ≤ b, choose a vertex from r of the b K2’s, and add these to H . Now the 
neighborhood of H consists of r vertices in K (n, k) \ S and vertices in S . For all 1 ≤ r ≤ b,

K K (a + r) − r ≤ |S|. (7.8)

Finally, we present our Algorithm 1 for finding all partitions for some c which satisfy all the conditions above. We iterate 
this algorithm over all possible values of c from the spectral bounds.

Note the check in line 5 is exactly condition (7.6). The generation of partitions with minimum part g can be easily 
implemented by a slight modification to Knuth’s co-lexicographic partition generation algorithm [25]. The algorithm took 
less than a second to run on our machine for each of K (7, 3), K (10, 4), and K (9, 4). No partitions were found.
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