
Journal of Combinatorial Theory, Series A 177 (2021) 105325
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

www.elsevier.com/locate/jcta

Connectivity concerning the last two 

subconstituents of a Q-polynomial distance-regular 

graph

S.M. Cioabă a,∗, J.H. Koolen b, P. Terwilliger c

a Department of Mathematical Sciences, University of Delaware, Newark, DE 
19716-2553, USA
b School of Mathematical Sciences, University of Science and Technology of China, 
Wen-Tsun Wu Key Laboratory of the Chinese Academy of Sciences, Anhui, 230026, 
China
c Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, 
Madison, WI 53706-1388, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 December 2019
Received in revised form 13 July 
2020
Accepted 21 August 2020
Available online xxxx

Keywords:
Distance-regular graph
Connectivity
Subconstituent
Q-polynomial
Primitive idempotent
Balanced set condition
Eigenvalue
Strongly regular graph
Association scheme
Diameter

Let Γ be a Q-polynomial distance-regular graph of diameter 
d ≥ 3. Fix a vertex γ of Γ and consider the subgraph induced 
on the union of the last two subconstituents of Γ with respect 
to γ. We prove that this subgraph is connected.

© 2020 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: cioaba@udel.edu (S.M. Cioabă), koolen@ustc.edu.cn (J.H. Koolen), 

terwilli@math.wisc.edu (P. Terwilliger).
https://doi.org/10.1016/j.jcta.2020.105325
0097-3165/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcta.2020.105325
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcta.2020.105325&domain=pdf
mailto:cioaba@udel.edu
mailto:koolen@ustc.edu.cn
mailto:terwilli@math.wisc.edu
https://doi.org/10.1016/j.jcta.2020.105325


2 S.M. Cioabă et al. / Journal of Combinatorial Theory, Series A 177 (2021) 105325
1. Introduction

All the graphs considered here will be finite and undirected, with no loops nor multiple 
edges. We briefly review the key definitions and basic results involving distance-regular 
graphs. For other notations and definitions, see [5,6,14]. Let Γ be a connected graph with 
vertex set X. For x, y ∈ X, the distance between x and y is denoted by ∂(x, y), and any 
path between x and y of length ∂(x, y) is called geodesic. The diameter maxx,y∈X ∂(x, y)
of Γ is denoted by d. For an integer k ≥ 0, Γ is said to be regular with valency k whenever 
each vertex of Γ is adjacent to exactly k vertices of Γ. The graph Γ is called distance-
regular whenever for all integers 0 ≤ h, i, j ≤ d there exists a nonnegative integer ph

ij

such that for all x, y ∈ X with ∂(x, y) = h,

ph
ij = |{z ∈ X : ∂(z, x) = i, ∂(z, y) = j}|.

For the rest of this paper we assume that Γ is distance-regular of diameter d ≥ 2. Note 
that Γ is regular with valency k = p0

11; to avoid trivialities we always assume k ≥ 3. Let 
A0, A1, . . . , Ad denote the distance matrices of Γ (see [5, p.127]). Then A0, A1, . . . , Ad

form a basis for a commutative semisimple R-algebra M known as the Bose-Mesner 
algebra of Γ. The algebra M has a second basis E0, E1, . . . , Ed such that

EiEj = δijEi (0 ≤ i, j ≤ d),

I = E0 + · · · + Ed,

E0 = |X|−1J,

where I is the identity matrix and J is the all ones matrix (see [5, Thm 2.6.1]). We 
refer to E0, E1, . . . , Ed as the primitive idempotents of Γ. The primitive idempotent 
E0 is called trivial. The ordering E0, E1, . . . , Ed is said to be Q-polynomial whenever 
for 0 ≤ i ≤ d there exists a polynomial qi of degree i such that Ei = qi(E1) (where 
the matrix multiplication is done entry-wise). For a primitive idempotent E of Γ, we 
say that Γ is Q-polynomial with respect to E whenever there exists a Q-polynomial 
ordering E0, E1, . . . , Ed of the primitive idempotents such that E = E1. The graph Γ is 
called Q-polynomial whenever it is Q-polynomial with respect to at least one primitive 
idempotent.

We now recall the antipodal property. Define a binary relation ∼ on X such that for 
all x, y ∈ X, x ∼ y whenever x = y or ∂(x, y) = d. The graph Γ is called antipodal
whenever ∼ is an equivalence relation. The graph Γ is said to be primitive whenever Γ
is not bipartite nor antipodal (see [5, Thm 4.2.1]). A long-standing conjecture of Bannai 
and Ito [1, p. 312] states that if Γ is primitive and d is sufficiently large, then Γ is 
Q-polynomial. For more information about the Q-polynomial property, see [1,5] or [14, 
Chapter 5].

For 0 ≤ i ≤ d and γ ∈ X, let Γi(γ) denote the set of vertices in Γ at distance i from 
γ. The subgraph induced by Γi(γ) is called the i-th subconstituent of Γ with respect to 
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γ. Combinatorial and algebraic properties of these subconstituents have been studied 
by several authors (see [9,10,16] for example). The graph Γ is called strongly-regular
whenever d = 2. If Γ is strongly-regular and primitive, then with respect to any vertex 
the second subconstituent of Γ is connected. See [6, p. 126] for an algebraic proof, and 
[16] for a combinatorial proof. Answering a question of Brouwer [4], Cioabă and Koolen 
[10] generalized this result in the following way. Consider the dual eigenvalue sequence 
θ∗

0 , θ∗
1 , . . . , θ∗

d for the second largest eigenvalue of Γ (see equation (2.1) for a definition). 
By [5, Ch. 4] there exists a unique integer s (1 ≤ s ≤ d) such that θ∗

s−1 > 0 and θ∗
s ≤ 0. 

Then for any vertex γ of Γ the subgraph induced on ∪d
i=sΓi(γ) is connected [10]. In [10]

the authors also prove that s ≥ d/2 and pose the following problem.

Problem 1.1 (Cioabă-Koolen [10]). Assume that Γ is primitive and d ≥ 3. Is it true that 
for any vertex γ, the subgraph induced on Γd−1(γ) ∪ Γd(γ) is connected?

In [10], this was shown to be true if d ∈ {3, 4}. In this note, we show that it is true 
for all d ≥ 3, provided that Γ is Q-polynomial. We now state our main result.

Theorem 1.1. Let Γ be a Q-polynomial distance-regular graph of diameter d ≥ 3. Then 
for any vertex γ of Γ the subgraph induced on Γd−1(γ) ∪ Γd(γ) is connected.

The main tool for our proof is Terwilliger’s balanced set condition (see [21,22] or 
Theorem 2.1 in the next section). This condition has been used by Lewis [20] to prove 
that the girth is at most 6 for any Q-polynomial distance-regular graph of valency at 
least 3.

2. Proof of the main result

For a primitive idempotent E of Γ, there exist real numbers θ∗
0, θ∗

1 , . . . , θ∗
d (called the 

dual eigenvalues of Γ with respect to E) such that

E = |X|−1
d∑

h=0

θ∗
hAh. (2.1)

We equip the vector space RX with an inner product such that 〈u, v〉 = utv for all 
u, v ∈ RX . For x ∈ X, let x̂ denote the vector in RX with x-coordinate 1 and all other 
coordinates 0. Equation (2.1) implies that

〈Ex̂, Eŷ〉 = |X|−1θ∗
i , (2.2)

where i = ∂(x, y). The main tool for our proof is the following theorem.

Theorem 2.1 (Terwilliger [21,22]). Let Γ be a distance-regular graph with diameter 
d ≥ 3, and let E denote a nontrivial primitive idempotent of Γ with dual eigenvalues 
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θ∗
0 , θ∗

1 , . . . , θ∗
d. Then Γ is Q-polynomial with respect to E if and only if θ∗

0 /∈ {θ∗
1 , . . . , θ∗

d}
and

∑

z∈Γi(x)∩Γj(y)

Eẑ −
∑

w∈Γj(x)∩Γi(y)

Eŵ = ph
ij

θ∗
i − θ∗

j

θ∗
0 − θ∗

h

(Ex̂ − Eŷ) (2.3)

for all integers h, i, j with 1 ≤ h ≤ d and 0 ≤ i, j ≤ d and all vertices x, y with ∂(x, y) =
h. Furthermore, if the conditions above hold, then θ∗

0, θ∗
1 , . . . , θ∗

d are mutually distinct.

The equation (2.3) is usually called the balanced set condition. We are now ready to 
give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let E be a primitive idempotent of Γ with respect to which Γ
is Q-polynomial. We will use a proof by contradiction, and assume that there exists 
γ ∈ X such that the subgraph induced on Γd−1(γ) ∪ Γd(γ) is disconnected. Let C be the 
vertex set of a connected component of the subgraph induced on Γd−1(γ) ∪ Γd(γ). Let 
the set Δ consist of the vertices in X that lie on a geodesic from γ to C. The set Δ is 
properly contained in X since C 	= Γd−1(γ) ∪ Γd(γ). We partition Δ = ∪d

j=0Δj where 
Δj = Δ ∩ Γj(γ) for 0 ≤ j ≤ d. Note that for 0 ≤ j ≤ d − 1, each vertex in Δj has at 
least one neighbor in Δj+1.

A vertex in Δ will be called a border whenever it is adjacent to a vertex in X \ Δ. 
Since Δ 	= X and Γ is connected, Δ contains at least one border vertex. Let t denote the 
maximal integer j (0 ≤ j ≤ d) such that Δj contains a border vertex. By the construction 
1 ≤ t ≤ d − 2.

Pick a border vertex z ∈ Δt. There exists x ∈ Δt+2 such that ∂(x, z) = 2. Let y ∈ X\Δ
be a neighbor of z. Define ξ = ∂(γ, y). By the triangle inequality ξ ∈ {t − 1, t, t + 1}. 
Note that ξ 	= t − 1; otherwise y is on a geodesic from γ to C passing through z, forcing 
y ∈ Δ for a contradiction. Therefore ξ = t or ξ = t + 1.

We next show that ∂(x, y) = 3. Because ∂(x, z) = 2 and ∂(z, y) = 1, the triangle 
inequality implies that ∂(x, y) ≤ 3. By the maximality of t and since x ∈ Δt+2, we see 
that x is not a border and not adjacent to a border. Therefore Δ contains all the vertices 
of Γ that are at distance at most 2 from x. The vertex y is not in Δ, so ∂(x, y) ≥ 3. We 
have shown that ∂(x, y) = 3.

Note that Γ1(x) ∩ Γ2(y) ⊂ Γt+1(γ) and Γ2(x) ∩ Γ1(y) ⊂ Γt(γ). We apply the balanced 
set condition (2.3) to x and y using h = 3, i = 1, j = 2 and then take the inner product 
of each side with Eγ̂; this gives

p3
12(θ∗

t+1 − θ∗
t ) = p3

12
θ∗

1 − θ∗
2

θ∗
0 − θ∗

3
(θ∗

t+2 − θ∗
ξ ). (2.4)

There exists y′ ∈ Γt−1(γ) ∩ Γ1(z). We have ∂(x, y′) = 3 and Γ1(x) ∩ Γ2(y′) ⊂ Γt+1(γ)
and Γ2(x) ∩ Γ1(y′) ⊂ Γt(γ). We apply the balanced set condition (2.3) to x and y′ using 
h = 3, i = 1, j = 2 and then take the inner product of each side with Eγ̂; this gives
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p3
12(θ∗

t+1 − θ∗
t ) = p3

12
θ∗

1 − θ∗
2

θ∗
0 − θ∗

3
(θ∗

t+2 − θ∗
t−1). (2.5)

Comparing (2.4) and (2.5) we obtain θ∗
ξ = θ∗

t−1. We have ξ = t −1 since θ∗
0 , θ∗

1 , . . . , θ∗
d are 

mutually distinct. We mentioned earlier that ξ 	= t − 1, for a contradiction. We conclude 
that the subgraph induced on Γd−1(γ) ∪ Γd(γ) is connected. �

To see how Theorem 1.1 is best possible, assume that Γ is the Odd graph Od+1 with 
d ≥ 3. Recall that the vertices of Γ are the d-subsets of a set Ω of size 2d +1. Two vertices 
α and β are adjacent whenever α ∩ β = ∅. The diameter of Γ is d and its intersection 
numbers are known (see [2] or [5, Prop 9.1.7]). For 0 ≤ h ≤ d, we have ph

1h = 0 if h < d

and ph
1h = 
d+1

2 � if h = d. So with respect to any vertex of Γ, the h-th subconstituent 
has no edges if h < d and is regular with valency 
d+1

2 � if h = d.

Lemma 2.2. Assume that Γ is the Odd graph Od+1 with d ≥ 3. For any γ ∈ X, the 
number of connected components in the d-th subconstituent of Γ with respect to γ is 
equal to 

(2m
m

)
/2, where m = d/2 if d is even and m = (d + 1)/2 if d is odd. Moreover, 

this d-th subconstituent is not connected.

Proof. From the intersection numbers of Γ we obtain |Γd(γ)| =
(

d
m

)(
d+1
m

)
. Using the 

results of Biggs [2], each connected component of Γd(γ) is isomorphic to the bipartite 
double (see [5, Section 1.11]) of Or+1, where r = d/2 if d is even and r = (d − 1)/2 if d
is odd. This bipartite double has 2

(2r+1
r

)
vertices. The result follows after some routine 

algebra. Note that the lemma also follows by observing that Γd(γ) consists of the vertices 
at distance m from γ in the Johnson graph J(2d + 1, d). �

Note also that for Od+1 the subgraph induced on Γ1(γ) ∪ Γ2(γ) is disconnected. Next 
assume that Γ is the folded (2d + 1)-cube. It has diameter d and for 1 ≤ h ≤ d − 1, 
the h-subconstituent of Γ with respect to any vertex has no edges (see [5, p. 264]), 
and consequently not connected. Gardiner, Godsil, Hensel and Royle [16] proved that 
the diameter of the second subconstituent of a primitive strongly-regular graph is at 
most three. It would be interesting to extend this result to distance-regular graphs with 
diameter d ≥ 3. For example, if Γ is a distance-regular with d = 3, then what is the 
diameter of Γ3(γ) when Γ3(γ) is connected? Another related problem from [10] is to 
classify the distance-regular graphs Γ of diameter 3 such that Γ3(γ) is disconnected for 
some vertex γ. See [19] for related results.

The vertex-connectivity of a primitive distance-regular graph is equal to its valency, as 
proved by Brouwer and Mesner [8] for diameter d = 2, and by Brouwer and Koolen [7] for 
d ≥ 3. Brouwer and Haemers [6, p. 127] observed that for certain strongly-regular graphs 
constructed by Haemers [17, p. 76] the vertex-connectivity of their second subconstituent 
is strictly less than the valency. It would be interesting to determine lower bounds for the 
vertex-connectivity and edge-connectivity of the subconstituents for a distance-regular 
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graph with d ≥ 3. See [3,11–13,15,18] for related connectivity results concerning distance-
regular graphs and association schemes.
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