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1. Introduction

All the graphs considered here will be finite and undirected, with no loops nor multiple
edges. We briefly review the key definitions and basic results involving distance-regular
graphs. For other notations and definitions, see [5,6,14]. Let I be a connected graph with
vertex set X. For x,y € X, the distance between x and y is denoted by 9(x,y), and any
path between z and y of length d(x,y) is called geodesic. The diameter max, yex 0(x,y)
of T is denoted by d. For an integer k > 0, I is said to be regular with valency k whenever
each vertex of I' is adjacent to exactly k vertices of I'. The graph T is called distance-
regular whenever for all integers 0 < h,7,j < d there exists a nonnegative integer pfj
such that for all z,y € X with 9(x,y) = h,

p?j =|{z€X:9(z,2) =14,0(2,y) = 7}

For the rest of this paper we assume that I' is distance-regular of diameter d > 2. Note
that T is regular with valency k = p{;; to avoid trivialities we always assume k > 3. Let
Ag, Ay, ..., A; denote the distance matrices of T' (see [5, p.127]). Then Ag, A1,..., A4
form a basis for a commutative semisimple R-algebra M known as the Bose-Mesner
algebra of T'. The algebra M has a second basis Fy, 1, ..., E4 such that

E,E; =6;E; (0<i,j<d),
I=Ey+- -+ Ey,
Eq = |X|71J>

where I is the identity matrix and J is the all ones matrix (see [5, Thm 2.6.1]). We
refer to Ey, E1,...,Ey as the primitive idempotents of I'. The primitive idempotent
Ey is called trivial. The ordering Ey, E1, ..., E4 is said to be Q-polynomial whenever
for 0 < i < d there exists a polynomial ¢; of degree ¢ such that E; = ¢;(E;) (where
the matrix multiplication is done entry-wise). For a primitive idempotent F of T, we
say that I' is Q-polynomial with respect to E whenever there exists a @-polynomial
ordering Fy, F1, ..., E4 of the primitive idempotents such that £ = FE;. The graph T is
called @-polynomial whenever it is Q-polynomial with respect to at least one primitive
idempotent.

We now recall the antipodal property. Define a binary relation ~ on X such that for
all z,y € X, © ~ y whenever x = y or d(x,y) = d. The graph T' is called antipodal
whenever ~ is an equivalence relation. The graph I' is said to be primitive whenever I’
is not bipartite nor antipodal (see [5, Thm 4.2.1]). A long-standing conjecture of Bannai
and Tto [1, p. 312] states that if T is primitive and d is sufficiently large, then I' is
Q-polynomial. For more information about the @Q-polynomial property, see [1,5] or [14,
Chapter 5].

For 0 <i<dand v € X, let T';() denote the set of vertices in I" at distance ¢ from
~. The subgraph induced by T';(v) is called the i-th subconstituent of T' with respect to
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~. Combinatorial and algebraic properties of these subconstituents have been studied
by several authors (see [9,10,16] for example). The graph T is called strongly-regular
whenever d = 2. If T is strongly-regular and primitive, then with respect to any vertex
the second subconstituent of T" is connected. See [6, p. 126] for an algebraic proof, and
[16] for a combinatorial proof. Answering a question of Brouwer [4], Cioabd and Koolen
[10] generalized this result in the following way. Consider the dual eigenvalue sequence
65,61, ....,65 for the second largest eigenvalue of I' (see equation (2.1) for a definition).
By [5, Ch. 4] there exists a unique integer s (1 < s < d) such that 6_; > 0 and 6% < 0.
Then for any vertex v of I' the subgraph induced on U T;(v) is connected [10]. In [10]
the authors also prove that s > d/2 and pose the following problem.

Problem 1.1 (Cioabd-Koolen [10]). Assume that I' is primitive and d > 3. Is it true that
for any vertex -, the subgraph induced on I'y_1(y) UT4(7) is connected?

In [10], this was shown to be true if d € {3,4}. In this note, we show that it is true
for all d > 3, provided that I' is @Q-polynomial. We now state our main result.

Theorem 1.1. Let I' be a Q-polynomial distance-reqular graph of diameter d > 3. Then
for any vertex v of T' the subgraph induced on T'q_1(y) UT4(7y) is connected.

The main tool for our proof is Terwilliger’s balanced set condition (see [21,22] or
Theorem 2.1 in the next section). This condition has been used by Lewis [20] to prove
that the girth is at most 6 for any @-polynomial distance-regular graph of valency at
least 3.

2. Proof of the main result

For a primitive idempotent E of I', there exist real numbers 6,67, ..., 6} (called the
dual eigenvalues of I with respect to E) such that

d
E=|X|""Y 65 An. (2.1)
h=0

We equip the vector space RX with an inner product such that (u,v) = ufv for all
u,v € RX. For z € X, let & denote the vector in R¥ with z-coordinate 1 and all other
coordinates 0. Equation (2.1) implies that

(B2, By) = | X[, (2.2)
where i = 9(z,y). The main tool for our proof is the following theorem.

Theorem 2.1 (Terwilliger [21,22]). Let T be a distance-regular graph with diameter
d > 3, and let E denote a nontrivial primitive idempotent of ' with dual eigenvalues
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05,07, ...,05. Then T is Q-polynomial with respect to E if and only if 0§ ¢ {07,...,05}
and
0r — 0%

~ ~ __ h j R “
Z Bz — Z Ew = pj; o — o (E% — E9) (2.3)
z€T;(x)NT; (y) weT; (z)NTs (y)

for all integers h,i,j with 1 < h < d and 0 < i,j < d and all vertices x,y with d(z,y) =
h. Furthermore, if the conditions above hold, then 05,07, ...,0% are mutually distinct.

The equation (2.3) is usually called the balanced set condition. We are now ready to
give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let E be a primitive idempotent of I" with respect to which I’
is @-polynomial. We will use a proof by contradiction, and assume that there exists
v € X such that the subgraph induced on T'y_1(7) UT'4(7) is disconnected. Let C be the
vertex set of a connected component of the subgraph induced on I'y_1(y) UT4(y). Let
the set A consist of the vertices in X that lie on a geodesic from v to C. The set A is
properly contained in X since C' # T'y_1(v) UT4(y). We partition A = U?zOAj where
A; = ANTj(y) for 0 < j < d. Note that for 0 < j < d — 1, each vertex in A; has at
least one neighbor in Aj;.

A vertex in A will be called a border whenever it is adjacent to a vertex in X \ A.
Since A # X and I is connected, A contains at least one border vertex. Let ¢ denote the
maximal integer j (0 < j < d) such that A; contains a border vertex. By the construction
1<t<d-2.

Pick a border vertex z € A;. There exists © € Ao such that 9(z,z) = 2. Let y € X\A
be a neighbor of z. Define £ = 9(7,y). By the triangle inequality & € {t — 1,¢,t + 1}.
Note that £ # ¢t — 1; otherwise y is on a geodesic from v to C' passing through z, forcing
y € A for a contradiction. Therefore £ =t or £ =t + 1.

We next show that d(x,y) = 3. Because d(z,z) = 2 and 9(z,y) = 1, the triangle
inequality implies that 9(z,y) < 3. By the maximality of ¢ and since x € A1 o, we see
that x is not a border and not adjacent to a border. Therefore A contains all the vertices
of " that are at distance at most 2 from x. The vertex y is not in A, so d(z,y) > 3. We
have shown that d(x,y) = 3.

Note that I’y (z) NTa(y) C T'epa1(y) and Ta(x) NT1(y) C T'e(y). We apply the balanced
set condition (2.3) to x and y using h = 3,7 = 1,j = 2 and then take the inner product
of each side with E#; this gives

p§2(9t+1 —0;) = P?2—91 — 93( t+2 95)- (2.4)
0 3

There exists ¥’ € T'y—1(y) NT1(z). We have d(x,y’) = 3 and T'1(z) NT2(y’") C Trp1(7)
and T'a(2) NT(y") C T'y(y). We apply the balanced set condition (2.3) to = and y' using
h=3,i=1,j =2 and then take the inner product of each side with E4; this gives
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* * 07 — 03 * *
P?Q(atﬂ —0;) = p?2—91 — 93 (0f42 — 0_1) (2.5)
0 3

Comparing (2.4) and (2.5) we obtain 0 = 0;_;. We have { = ¢ —1 since 05,07, ...,0; are
mutually distinct. We mentioned earlier that £ # ¢ — 1, for a contradiction. We conclude
that the subgraph induced on I'q_1(y) UT'4(7y) is connected. O

To see how Theorem 1.1 is best possible, assume that I' is the Odd graph O441 with
d > 3. Recall that the vertices of I" are the d-subsets of a set  of size 2d+ 1. Two vertices
a and 3 are adjacent whenever o N 3 = (). The diameter of I" is d and its intersection
numbers are known (see [2] or [5, Prop 9.1.7]). For 0 < h < d, we have p?, =0 if h < d
and pl, = [%] if h = d. So with respect to any vertex of I, the h-th subconstituent

has no edges if h < d and is regular with valency (%1 if h =d.

Lemma 2.2. Assume that ' is the Odd graph Og4y1 with d > 3. For any v € X, the
number of connected components in the d-th subconstituent of I' with respect to =y is
equal to (QHT)/Q, where m = d/2 if d is even and m = (d+ 1)/2 if d is odd. Moreover,
this d-th subconstituent is not connected.

Proof. From the intersection numbers of I' we obtain |Ty4(y)| = (i) (d;rll). Using the
results of Biggs [2], each connected component of I';(y) is isomorphic to the bipartite
double (see [5, Section 1.11]) of O,41, where r = d/2 if d is even and r = (d — 1)/2 if d
is odd. This bipartite double has 2(2T:1) vertices. The result follows after some routine
algebra. Note that the lemma also follows by observing that I'4(«y) consists of the vertices

at distance m from + in the Johnson graph J(2d + 1,d). O

Note also that for Og441 the subgraph induced on I'y () UTs(7) is disconnected. Next
assume that I' is the folded (2d + 1)-cube. It has diameter d and for 1 < h < d — 1,
the h-subconstituent of I" with respect to any vertex has no edges (see [5, p. 264]),
and consequently not connected. Gardiner, Godsil, Hensel and Royle [16] proved that
the diameter of the second subconstituent of a primitive strongly-regular graph is at
most three. It would be interesting to extend this result to distance-regular graphs with
diameter d > 3. For example, if ' is a distance-regular with d = 3, then what is the
diameter of T's(y) when I's(y) is connected? Another related problem from [10] is to
classify the distance-regular graphs I' of diameter 3 such that I'3(y) is disconnected for
some vertex . See [19] for related results.

The vertex-connectivity of a primitive distance-regular graph is equal to its valency, as
proved by Brouwer and Mesner [8] for diameter d = 2, and by Brouwer and Koolen [7] for
d > 3. Brouwer and Haemers [6, p. 127] observed that for certain strongly-regular graphs
constructed by Haemers [17, p. 76] the vertex-connectivity of their second subconstituent
is strictly less than the valency. It would be interesting to determine lower bounds for the
vertex-connectivity and edge-connectivity of the subconstituents for a distance-regular
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graph with d > 3. See [3,11-13,15,18] for related connectivity results concerning distance-
regular graphs and association schemes.
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