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1. Introduction

Throughout this paper all graphs are simple, undirected, and finite. Let G be a graph. 
The adjacency matrix of graph G with vertex set V = {v1, . . . .vn} is denoted by A =
[aij ]1≤i,j≤n, where aij = 1 if vi and vj are adjacent, and aij = 0 otherwise. Denote by 
Jn the all-ones n × n matrix and by In the identity matrix of order n. The Seidel matrix
of G, denoted by S, is defined by S = Jn − In − 2A. There are close connections between 
Seidel matrices, equiangular lines and two-graphs [3,5,11].

It is known that rank S ≥ n − 1, see [2, Lemma 3.3] or [6, p.6]. Assume rank S =
n − 1. Because all elements of the Seidel matrix are integers, there exists an eigenvector 
corresponding to 0 with rational entries. Therefore, there exists an integral vector in 
the nullspace of S such that the greatest common divisor of its entries is 1, and since 
null S = 1, this vector is unique up to multiplying by −1. We choose that vector whose 
first non-zero entry is positive, and denote it by φ(G) or φ(S) or simply φ. The following 
problem on the nullspace of singular Seidel matrices was proposed by Haemers in 2011 
(see [4, Problem 3.36]).

Problem 1. If S is the Seidel matrix of a graph of order n and rank S = n −1, does there 
exist an eigenvector of S corresponding to 0 which has only ±1 elements?

This problem is equivalent to finding out whether φ(S) only has ±1 entries or not.
In this paper, we construct infinite families of graphs which give a negative answer to 

Problem 1. Moreover, we show that for every natural number N , there exists a graph 
whose Seidel matrix is singular, and the absolute value of every entry of φ is more than 
N . Furthermore, we investigate some properties of φ, and using these properties, we 
obtain some necessary conditions for singularity of the Seidel matrix. Finally, we study 
the graphs having singular Seidel matrices with φ ∈ {±1}n, and obtain some properties 
of such graphs.

2. Preliminaries

In this section, we introduce some notations, concepts, and results which are needed 
for the next sections.

By a 
m≡ b, we mean a and b are congruent modulo m. Let G be a graph with vertex 

set V (G) and edge set E(G). By order and size of G, we mean |V (G)| and |E(G)|, 
respectively. The open neighborhood of a vertex v is denoted by NG(v) or N(v), and is 
the set of all vertices adjacent to v. The closed neighborhood of v, which is N(v) ∪ {v}, 
is denoted by NG[v] or N [v]. We denote the degree of a vertex v in a graph G by dG(v)
or simply d(v). A vertex v is called even if d(v) is even, and odd if d(v) is odd. A graph 
is called even if all vertices are even. The complement of G is denoted by G. We denote 
the path and the cycle on n vertices by Pn and Cn, respectively.
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By switching the graph G with respect to a vertex v, we mean deleting all the edges 
from v to its neighbors in G and making v adjacent to its non-neighbors in G. If G′ is the 
graph obtained by switching with respect to v, then NG′(v) = V (G)\NG[v]. Two graphs 
are called switching-equivalent if one can be transformed to the other one by a sequence 
of switchings. This is an equivalence relation on the set of all graphs, and therefore, 
it partitions the graphs into equivalence classes called switching classes. The switching 
class of a graph G is denoted by [G].

For G and A ⊆ V (G), switching with respect to the vertices in A in any order gives 
a unique graph G′, which could also be obtained by applying switchings with respect 
to the vertices in B = V (G)\A in any order. In either case, G′ is obtained from G by 
removing all edges between A and B, and adding all non-edges between A and B as 
edges. Therefore, applying some switchings to a graph G is equivalent to partitioning its 
vertex set into two parts and then complementing the edges between them. When doing 
so, the parity of the degree of a vertex changes if and only if the number of neighbors this 
vertex loses does not have the same parity as the number of neighbors it gains, which 
only happens if the part not including this vertex has an odd number of vertices. In a 
graph of odd order, there would be one part with odd and one with even cardinality; 
hence the parity of degrees of all the vertices in the part with even size changes, and the 
parity of degrees of the remaining vertices remains unchanged.

Remark 2.1. For any graph of odd order, switching with respect to the odd vertices 
transforms it into an even graph. Seidel [10, Theorem 3.5] proved that if G is a graph 
of odd order, then G contains a unique even graph in its switching class (also see [7, 
Theorem 3.17]).

Remark 2.2. Let G be a graph, and let λ1, . . . , λn be the eigenvalues of S with α1, . . . , αn

as their corresponding eigenvectors. If S′ is the Seidel matrix of G after applying a 
switching to vertex vk, then S′ = RkSRk, where Rk is a diagonal matrix obtained 
by negating the kth main diagonal entry of the identity matrix. Since Rk = R−1

k , we 
have S′Rk = RkS, and therefore, S′Rkαi = RkSαi = λiRkαi. Hence, λ1, . . . , λn and 
α′

1, . . . , α′
n are the eigenvalues and the corresponding eigenvectors of S′, where α′

i = Rkαi

is obtained by negating the kth entry of αi. Therefore, applying switchings does not 
change the spectrum of the Seidel matrix, and only negates the entries of eigenvectors 
corresponding to the switched vertices. Thus, all switching-equivalent graphs have the 
same Seidel spectrum.

3. Some properties of φ(S) and necessary conditions for singularity of S

In this section, we study the properties of φ(S) and obtain some necessary conditions 
for the singularity of the Seidel matrix.

Let S be a singular Seidel matrix. Because Sφ = 0, we deduce that for every 1 ≤ i ≤ n, 
the following holds:
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∑
j:vj∈N(vi)

φj −
∑

�:v� /∈N [vi]

φ� = 0. (1)

We use equation (1) to obtain some properties of φ.

Lemma 3.1. Every entry of φ is odd.

Proof. By equation (1), for i = 1, . . . , n, the multiset { φj | j �= i } can be partitioned into 
two multisets with equal sum. Hence, for i = 1, . . . , n, 

∑
j �=i φj is even. Therefore, all 

the entries φ1, . . . , φn have the same parity. Since the greatest common divisor of these 
entries is 1, each of them must be odd. �
Theorem 3.2. Let G be a graph with vertex set V = {v1, . . . , vn}, and singular Seidel 
matrix S. For 1 ≤ i, j ≤ n the following hold:
(i) φi − φj

4≡ 2(d(vi) − d(vj)),
(ii) If G is an even graph, then φi − φj

8≡ 2(d(vi) − d(vj)).

Proof. (i) Let M = { a | va /∈ N [vi] ∪ N [vj ] }, Ni\j = { b | vb ∈ N(vi)\N [vj ] }, Nj\i =
{ c | vc ∈ N(vj)\N [vi] }, and Nij = { d | vd ∈ N(vi) ∩ N(vj) }. Using equation (1) for 
vertices vi and vj , we get that

±φj +
∑

b∈Ni\j

φb +
∑

d∈Nij

φd −
∑

c∈Nj\i

φc −
∑
a∈M

φa = 0,

and

±φi +
∑

c∈Nj\i

φc +
∑

d∈Nij

φd −
∑

b∈Ni\j

φb −
∑
a∈M

φa = 0.

If vi and vj are adjacent, then both φi and φj have negative signs above. If vi and vj are 
not adjacent, then φi and φj have positive signs in the previous two equations. Either 
way, by subtracting these equations we get that

±(φi − φj) = 2

⎛
⎝ ∑

b∈Ni\j

φb −
∑

c∈Nj\i

φc

⎞
⎠ . (2)

From Lemma 3.1 we know that all the entries of φ are odd. Therefore, we obtain that 
φi − φj

4≡ ±(φi − φj) and 
∑

b∈Ni\j
φb −

∑
c∈Nj\i

φc
2≡ |Ni\j | − |Nj\i|. So

φi − φj
4≡ ±(φi − φj) = 2

⎛
⎝ ∑

b∈Ni\j

φb −
∑

c∈Nj\i

φc

⎞
⎠ 4≡ 2(|Ni\j | − |Nj\i|).

Since d(vi) − d(vj) = |Ni\j | − |Nj\i|, we obtain that



198 S. Akbari et al. / Linear Algebra and its Applications 615 (2021) 194–206
φi − φj
4≡ 2(d(vi) − d(vj)).

(ii) Since G is even, by part (i), φ1
4≡ · · · 4≡ φn

4≡ r for some r ∈ {0, 1, 2, 3}. Lemma 3.1
implies that r ∈ {1, 3}. Consequently,

∑
b∈Ni\j

φb −
∑

c∈Nj\i

φc
4≡ (|Ni\j | − |Nj\i|)r = (d(vi) − d(vj))r 4≡ d(vi) − d(vj),

where the last one holds because d(vi) − d(vj) is even and r ∈ {1, 3}. So by equation (2), 
we have that

φi − φj
8≡ ±(φi − φj) = 2

⎛
⎝ ∑

b∈Ni\j

φb −
∑

c∈Nj\i

φc

⎞
⎠ 8≡ 2(d(vi) − d(vj)),

where the first one is true because φi − φj
4≡ 0. The proof is complete. �

Corollary 3.3. If G is a graph of order n with singular Seidel matrix, then n 
4≡ 1.

Proof. From Lemma 3.1 and equation (1), we conclude that for i = 1, . . . , n, dG(vi) −
(n − 1 − dG(vi)) 

2≡ 0, hence n 
2≡ 1. By Seidel’s result mentioned in Remark 2.1, G is 

switching equivalent to an even graph G′. From Remark 2.2, we know that switching does 
not change the Seidel spectrum of a graph, so S(G′) is also singular. Let φ′ = φ(G′). By 

Theorem 3.2, part (i), we conclude φ′
1

4≡ · · · 4≡ φ′
n

4≡ r, where r ∈ {1, 3}. Using equation 
(1), we deduce that for any i = 1, . . . , n,

dG′(vi)r
4≡

∑
j∈NG′ (vi)

φ′
j

4≡
∑

�/∈NG′ [vi]

φ′
�

4≡ (n − 1 − dG′(vi))r.

Since gcd(r, 4) = 1 and dG′(vi) is even, we get that n 
4≡ 1 + 2dG′(vi) 

4≡ 1. �
Note that Corollary 3.3 can also be derived from [5, Corollary 3.6].

Lemma 3.4. Let G be an even graph of order n and size m. If the Seidel matrix of G is 
singular, then

m
4≡ n − 1

4 .

Proof. By Corollary 3.3, we have n 
4≡ 1. Since G is an even graph, by Theorem 3.2, Part 

(i) and Lemma 3.1, we conclude that φ1
4≡ · · · 4≡ φn

4≡ r, for some r ∈ {1, 3}. We define 
φ′ as follows:
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φ′ :=
{

φ r = 1
−φ r = 3.

So we have φ′
1

4≡ · · · 4≡ φ′
n

4≡ 1. Also, since φ′ ∈ {−φ, φ}, equation (1) holds for φ′. If we 
add these equations for i = 1, . . . , n, we find that,

n∑
i=1

(
∑

j:vj∈N(vi)

φ′
j −

∑
�:v� /∈N [vi]

φ′
�) = 0.

Since for i = 1, . . . , n, φ′
i appears d(vi) times with positive sign and n − 1 − d(vi) times 

with negative sign, we conclude that,

n∑
i=1

d(vi)φ′
i −

n∑
i=1

(n − 1 − d(vi))φ′
i = 0,

thus

n∑
i=1

d(vi)φ′
i = n − 1

2

n∑
i=1

φ′
i. (3)

Because φ′
i

4≡ 1 and d(vi) is even for i = 1, . . . , n, we deduce that d(vi)φ′
i

8≡ d(vi). Hence, 
by equation (3),

n∑
i=1

d(vi)
8≡ n − 1

2

n∑
i=1

φ′
i.

Therefore,

m = 1
2

n∑
i=1

d(vi)
4≡ n − 1

4

n∑
i=1

φ′
i

4≡ n − 1
4 n

4≡ n − 1
4 ,

where the last one is true since n 
4≡ 1. The proof is complete. �

Theorem 3.5. Let G be a graph of order n and size m. If the Seidel matrix of G is 
singular, then the following holds:

m + nodd
4≡ n − 1

4 , (4)

where nodd is the number of odd vertices of G.

Proof. Let O(G) be the set of odd vertices of G. Suppose that G′ is the graph obtained 
from G by switching with respect to the vertices in O(G). Let m′ be the size of G′. By 
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Remark 2.1, G′ is an even graph, and by Remark 2.2, the Seidel matrix of G′ is singular. 
Lemma 3.4 implies that n 

4≡ 1 and m′ 4≡ n−1
4 . Let neven be the number of even vertices 

of G and let eG(v) be the number of even vertices adjacent to v in G. Since G′ is obtained 
from G by switching the edges and non-edges of G between O(G) and V (G)\O(G), we 
have that

m′ − m =
∑

v:v∈O(G)

(neven − eG(v)) −
∑

v:v∈O(G)

eG(v) =
∑

v:v∈O(G)

(neven − 2eG(v)).

Thus,

m′ = m + noddneven − 2
∑

v:v∈O(G)

eG(v) = m + nodd(n − nodd) − 2moe,

where moe is the number of edges of G between O(G) and V (G)\O(G). The Handshaking 
lemma implies that nodd is even. Also, by adding up the degrees of the vertices in O(G)
or in its complement, we deduce that moe is also even. Therefore,

m′ = m + noddn − n2
odd − 2moe

4≡ m + noddn
4≡ m + nodd,

and the proof is complete. �
Now, we have an immediate corollary.

Corollary 3.6. Let G be a graph of order n and size m. If the Seidel matrix of G is 
singular, then m 

2≡ n−1
4 .

It is worth mentioning that Corollary 3.6 is weaker than Theorem 3.5. For example, 
for each k ≥ 0, non-singularity of the Seidel matrix of P16k+1 can be deduced from 
Theorem 3.5 but cannot be derived from Corollary 3.6. Note that Corollary 3.6 can also 
be concluded from [5, Theorem 3.5].

Corollary 3.6 implies that if G is a tree with singular Seidel matrix, then n 
8≡ 1. By 

a computer search, we noted that there is no tree of order 9, whose Seidel matrix is 
singular. Among 48629 non-isomorphic trees of order 17 (see [8]), there are 15 trees with 
singular Seidel matrix. Also, we checked that Problem 1 has an affirmative answer for 
only 2 of these trees. These two trees can be seen in Fig. 1. In every labeling of these 
trees that v1 is an even vertex, φi = (−1)d(vi), for i = 1, . . . , 17. Our program, along 
with the other 13 trees with singular Seidel matrices, are available in GitHub [1].

4. Graph families with unbounded entries of φ

Let G be a graph of order n with a singular Seidel matrix. By Corollary 3.3, we know 
that n = 4k+1, for some k ≥ 0. By a computer search, we verified that for every graph of 
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T1 T2

Fig. 1. The only two trees of order 17 with singular Seidel matrices, where φ ∈ {±1}17.

Gk

v1 v2 v4k+1

v4k+2 v4k+3 v4k+4 v4k+5

Fig. 2. Structure of Graph Gk+1.

order 5, Problem 1 has an affirmative answer. However, the following theorem shows that 
for k ≥ 2, there is a graph of order 4k+1, which gives a negative answer to Problem 1. The 
presented family of graphs also shows the unboundedness of entries of φ. Furthermore, 
in Theorem 4.3, we show that there is no upper bound for the minimum absolute value 
of the entries of φ either. Thus, for every positive integer N , there exists a graph whose 
Seidel matrix is singular, and the absolute value of every entry of φ is at least N .

Theorem 4.1. For every k ≥ 2, there exists a graph of order 4k + 1 with singular Seidel 
matrix, which gives a negative answer to Problem 1.

Proof. For k ≥ 1, we construct a graph Gk of order 4k+1 with singular Seidel matrix for 
which the maximum entry of φ is 5k−1. Hence, Gk gives a negative answer to Problem 1
for k ≥ 2. The construction is recursive. Let G1 = C5, so S(G1) = 2J5 − I5 − A(C5) and 
φ(G1) = j5, the all-ones vector of dimension 5. The structure of Gk+1 in terms of Gk is 
represented in Fig. 2. Also, the structures of S(Gk+1) and φ(Gk+1) in terms of S(Gk)
and φ(Gk) are as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(Gk)

−1 +1 +1 −1
−1 +1 +1 −1
...

...
...

...
−1 +1 +1 −1

−1 −1 · · · −1
+1 +1 · · · +1
+1 +1 · · · +1
−1 −1 · · · −1

0 −1 +1 +1
−1 0 −1 +1
+1 −1 0 −1
+1 +1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S(Gk+1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(Gk)

ck

ck

ck

ck

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ(Gk+1)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,
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where ck is the sum of the entries of φ(Gk). Clearly, the greatest common divisor of 
entries of [ φ(Gk) | ck ck ck ck ]T is 1 and its first entry is positive; thus, it is consistent 
with the definition of φ. It can be seen that ck+1 = 5ck, and since c1 = 5, we have 
ck+1 = 5k+1. Furthermore, it is clear that the maximum entry of φ(Gk+1) is ck, and the 
proof is complete. �
Remark 4.2. In the graphs Gk constructed in the proof of Theorem 4.1, while the min-
imum absolute value of the entries of φ is 1, the maximum absolute value of its entries 
tends to infinity as k tends to infinity.

Theorem 4.3. There is no constant upper bound for the minimum absolute value of the 
entries of φ.

Proof. By induction on k ≥ 0, we construct a graph Hk of order 8k + 5 with singular 
Seidel matrix such that the minimum absolute value of the entries of φ(Hk) is 3k, and 
the sum of its entries is 5 × 7k. Thus, for any natural number N , there is k such that 
the minimum absolute value of entries of the vector φ of Hk is greater than N .

Let H0 = C5. As before, φ(H0) = j5, where j5 is the all-ones vector of order 5, so the 
minimum absolute value of the entries of φ(H0) is 1, and the sum of its entries is 5. The 
structure of graph Hk+1 in terms of Hk is shown in Fig. 3.

Also, the structures of S(Hk+1) and φ(Hk+1) in terms of S(Hk) and φ(Hk) are as 
follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(Hk)

+1 +1 +1 −1 −1 +1 +1 +1
+1 +1 +1 −1 −1 +1 +1 +1
...

...
...

...
...

...
...

...
+1 +1 +1 −1 −1 +1 +1 +1

+1 +1 · · · +1
+1 +1 · · · +1
+1 +1 · · · +1
−1 −1 · · · −1
−1 −1 · · · −1
+1 +1 · · · +1
+1 +1 · · · +1
+1 +1 · · · +1

0 +1 +1 +1 +1 −1 −1 −1
+1 0 +1 +1 +1 +1 −1 −1
+1 +1 0 +1 +1 +1 +1 −1
+1 +1 +1 0 +1 +1 +1 +1
+1 +1 +1 +1 0 +1 +1 +1
−1 +1 +1 +1 +1 0 +1 +1
−1 −1 +1 +1 +1 +1 0 +1
−1 −1 −1 +1 +1 +1 +1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S(Hk+1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3φ(Hk)

5ck

−ck

−3ck

ck

ck

−3ck

−ck

5ck

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ(Hk+1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ck is the sum of the entries of φ(Hk). Note that ck = 5 ×7k, so the greatest common 
divisor of entries of [ 3φ(Hk) | 5ck −ck −3ck ck ck −3ck −ck 5ck ]T is gcd(3, ck) = 1 and 
its first entry is positive. Hence, it is consistent with the definition of φ. The structure 
of φ(Hk+1) indicates that ck+1 = 7ck, thus ck+1 = 5 × 7k+1. Furthermore, the minimum 
absolute value of entries of φ(Hk+1) is equal to the minimum absolute value of 3φ(Hk), 
which is 3k+1, and it tends to infinity as k tends to infinity. �
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Hk

v1 v2 v8k+5

v8k+9 v8k+10

v8k+6 v8k+13v8k+11 v8k+8

v8k+12 v8k+7

Fig. 3. Structure of Graph Hk+1.

5. Properties of graphs with φ(S) ∈ {±1}n

In this section, we study the graphs G which give an affirmative answer to the Prob-
lem 1. This means that φ(S) ∈ {±1}n. By Corollary 3.3, we know that if G is a graph 
of order n with singular Seidel matrix, then n = 4k + 1, for some non-negative inte-
ger k. Hence, we only consider graphs of order n = 4k + 1. Our first result gives a 
characterization of the switching class of such graphs.

Theorem 5.1. Let G be a graph of order n = 4k +1. The Seidel matrix S of G is singular 
and φ(S) ∈ {±1}n if and only if G belongs to the switching class of a 2k-regular graph.

Proof. Suppose that G is a graph with Seidel matrix S such that φ(S) ∈ {±1}n. We 
define L := { vi | (φ(S))i = −1 }. By switching G with respect to L, we obtain a graph G′, 
with S′ and A′ as its Seidel matrix and adjacency matrix, respectively. By Remark 2.2, 
S′ is singular and φ(S′) = jn, where jn is the all-ones vector of dimension n. Therefore,

0 = S′jn = (Jn − In − 2A′)jn = (4k + 1)jn − jn − 2A′jn.

Thus, A′jn = 2kjn, and so G′ is a 2k-regular graph.
To prove the other direction, suppose that H is a 2k-regular graph in the switching 

class of G. We have that

S(H)jn = (Jn − In − 2A(H))jn = (4k + 1)jn − jn − 2(2k)jn = 0.

So jn is an eigenvector of S(H) corresponding to 0, and therefore φ(H) = jn. The graph 
G is obtained from H by some switching. Since switching with respect to any subset of 
vertices only negates the corresponding entries of its Seidel eigenvectors, it follows that 
φ(S) ∈ {±1}n, which finishes the proof. �
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Theorem 5.1 provides a way for constructing graphs with singular Seidel matrices, 
which are rare in general. It is shown in [9] that the proportion of graphs of order n with 
singular Seidel matrices tends to zero as n tends to infinity.

The next results present some structural properties of graphs with φ(S) ∈ {±1}n.

Lemma 5.2. Let G be a graph of order n = 4k + 1 with singular Seidel matrix S, and 
φ(S) ∈ {±1}n. If G has a leaf, then G has exactly 2k or 2k + 2 odd vertices.

Proof. By Theorem 5.1, there exists a 2k-regular graph H such that G is obtained from 
H by some switching. Let v be a leaf of G, and u be its neighbor in G. There are two 
cases to consider.

Case 1: The vertices u and v are adjacent in H. In this case, H is transformed into 

G by switching with respect to A = NH(v)\{u} or B = V \A. Because |A| = 2k − 1 
2≡ 1

and |B| = 2k + 2 
2≡ 0, complementing the edges between A and B changes the parity of 

the degree of vertices in B. Therefore, in G, the vertices in B are odd and the vertices 
in A are even. So G has 2k + 2 odd vertices.

Case 2: The vertices u and v are not adjacent in H. In this case, H is transformed 
into G by switching with respect to A = NH(v) ∪ {u} or B = V \A. In this case, 
|A| = 2k + 1 

2≡ 1 and |B| = 2k
2≡ 0. Thus, G has |B| = 2k odd vertices. �

Corollary 5.3. If G is a tree of order n = 16k + r (0 ≤ r ≤ 15) with a singular Seidel 
matrix, then G has exactly 8k + s odd vertices, where (r, s) is either (1, 0) or (9, 6).

Proof. Let nodd be the number of odd vertices of G. By Theorem 3.5 and Corollary 3.3, we 

conclude that nodd
4≡ n−1

4 . By Lemma 5.2, nodd is either n−1
2 or n+3

2 . Thus, nodd = n−1
2 , if 

n−1
2

4≡ n−1
4 , which means n 

16≡ 1, and nodd = n+3
2 , if n+3

2
4≡ n−1

4 , which means n 
16≡ 9. �

Theorem 5.4. Let G be a graph of order n = 4k + 1. If the Seidel matrix S of G is 
singular, and φ(S) ∈ {±1}n, then 3k ≤ |E(G)| ≤ 8k2 − k, and both given bounds are 
tight.

Proof. Let δ(G) denote the minimum degree of G. If δ(G) ≥ 2, then |E(G)| ≥ 4k+1 > 3k. 
Suppose that δ(G) < 2, and let v be a vertex of minimum degree. By Theorem 5.1, there 
exists a 2k-regular graph H such that G is obtained from H by some switching. Let V
be the vertex set of G and H. There are two possibilities for dG(v):

• dG(v) = 0. Let α be the number of edges in H with endpoints in NH(v), β be the 
number of edges in H with endpoints in V \NH [v], and γ be the number of edges in 
H with one endpoint in NH(v) and the other one in V \NH [v]. The 2k edges adjacent 
to v are the only edges of H that are not counted in neither α, β nor γ. Thus, we 
have
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Fig. 4. Graph Hk.

α + β + γ = 2k(4k + 1)
2 − 2k = 4k2 − k. (5)

Every vertex u in NH(v) has at most 2k −1 neighbors in V \NH [v], so γ ≤ (2k)(2k −
1) = 4k2 − 2k. Thus, we have

4k2 − 2γ ≥ 4k2 − 2(4k2 − 2k) = 4k − 4k2. (6)

There exists a set A ⊆ V such that switching with respect to A transforms H into 
G. This switching makes v an isolated vertex. Therefore, A is equal to either NH(v)
or V \NH(v). By applying this switching, the edges with endpoints in NH(v) and the 
edges with endpoints in V \NH [v] remain as they were, and the edges and non-edges 
between the two sets are switched. Since |NH(v)| = |V \ NH [v]| = 2k, by equations 
(5) and (6), we get that

|E(G)| = α + β + 4k2 − γ = (α + β + γ) + (4k2 − 2γ) ≥ 4k2 − k + 4k − 4k2 = 3k.

• dG(v) = 1. By Lemma 5.2, there are at most 2k + 2 odd and at least 2k − 1 even 
vertices in G. Since there is no vertex of degree 0, the degree of any even vertex in 
G is at least 2. As a result,

|E(G)| = 1
2

∑
v∈V

dG(v) ≥ 1
2(1(2k + 2) + 2(2k − 1)) = 3k.

Since S(G) = −S(G), we have φ(G) = φ(G), so by the first inequality for graph G, 
|E(G)| ≥ 3k, and therefore, |E(G)| ≤ 8k2 − k.

In the sequel, we show that the given lower bound and upper bound are tight. Let 
k be a natural number and Gk be the disjoint union of k copies of P4 and one isolated 
vertex. Note that the order and size of Gk are 4k + 1 and 3k, respectively. By switching 
with respect to the 2k leaves of Gk, we obtain a 2k-regular graph of order 4k + 1. By 
Theorem 5.1, the Seidel matrix of Gk is singular, and φ(Gk) ∈ {±1}n. The tightness of 
the upper bound can be shown by considering Gk. �
Remark 5.5. For any natural number k ≥ 3, we construct a graph Hk of order 4k + 1
and size 3k, shown in Fig. 4, containing one Ck, 2k leaves, and k + 1 isolated vertices. It 
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can be checked that switching the leaves transforms this graph into a 2k-regular graph, 
and so by Theorem 5.1, φ(Hk) ∈ {±1}n.

The structure given in Remark 5.5 indicates that there are some graphs with φ ∈
{±1}n and minimum possible size, which are not a forest. Also, it shows that for any 
k ≥ 3, there is a graph containing Ck, which has an affirmative answer to the Problem 1.
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