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1. Introduction

Throughout this paper all graphs are simple, undirected, and finite. Let G be a graph.
The adjacency matrix of graph G with vertex set V = {v1,....v,} is denoted by A =
[aijl1<i,j<n, where a;; = 1 if v; and v; are adjacent, and a;; = 0 otherwise. Denote by
Jy, the all-ones n x n matrix and by I,, the identity matrix of order n. The Seidel matrix
of G, denoted by S, is defined by S = J,, — I, — 2A. There are close connections between
Seidel matrices, equiangular lines and two-graphs [3,5,11].

It is known that rankS > n — 1, see [2, Lemma 3.3] or [6, p.6]. Assume rank S =
n — 1. Because all elements of the Seidel matrix are integers, there exists an eigenvector
corresponding to 0 with rational entries. Therefore, there exists an integral vector in
the nullspace of S such that the greatest common divisor of its entries is 1, and since
null S = 1, this vector is unique up to multiplying by —1. We choose that vector whose
first non-zero entry is positive, and denote it by ¢(G) or ¢(S) or simply ¢. The following
problem on the nullspace of singular Seidel matrices was proposed by Haemers in 2011
(see [4, Problem 3.36]).

Problem 1. If S is the Seidel matrix of a graph of order n and rank S = n—1, does there
exist an eigenvector of S corresponding to 0 which has only +1 elements?

This problem is equivalent to finding out whether ¢(S) only has +1 entries or not.

In this paper, we construct infinite families of graphs which give a negative answer to
Problem 1. Moreover, we show that for every natural number N, there exists a graph
whose Seidel matrix is singular, and the absolute value of every entry of ¢ is more than
N. Furthermore, we investigate some properties of ¢, and using these properties, we
obtain some necessary conditions for singularity of the Seidel matrix. Finally, we study
the graphs having singular Seidel matrices with ¢ € {1}", and obtain some properties
of such graphs.

2. Preliminaries

In this section, we introduce some notations, concepts, and results which are needed
for the next sections.

By a = b, we mean a and b are congruent modulo m. Let G be a graph with vertex
set V(G) and edge set E(G). By order and size of G, we mean |V (G)| and |E(G)],
respectively. The open neighborhood of a vertex v is denoted by Ng(v) or N(v), and is
the set of all vertices adjacent to v. The closed neighborhood of v, which is N(v) U {v},
is denoted by Ng[v] or N[v]. We denote the degree of a vertex v in a graph G by dg(v)
or simply d(v). A vertex v is called even if d(v) is even, and odd if d(v) is odd. A graph
is called even if all vertices are even. The complement of G is denoted by G. We denote
the path and the cycle on n vertices by P, and C,,, respectively.
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By switching the graph G with respect to a vertex v, we mean deleting all the edges
from v to its neighbors in G and making v adjacent to its non-neighbors in G. If G’ is the
graph obtained by switching with respect to v, then Ng/(v) = V(G)\Ng[v]. Two graphs
are called switching-equivalent if one can be transformed to the other one by a sequence
of switchings. This is an equivalence relation on the set of all graphs, and therefore,
it partitions the graphs into equivalence classes called switching classes. The switching
class of a graph G is denoted by [G].

For G and A C V(G), switching with respect to the vertices in A in any order gives
a unique graph G’, which could also be obtained by applying switchings with respect
to the vertices in B = V(G)\A in any order. In either case, G’ is obtained from G by
removing all edges between A and B, and adding all non-edges between A and B as
edges. Therefore, applying some switchings to a graph G is equivalent to partitioning its
vertex set into two parts and then complementing the edges between them. When doing
S0, the parity of the degree of a vertex changes if and only if the number of neighbors this
vertex loses does not have the same parity as the number of neighbors it gains, which
only happens if the part not including this vertex has an odd number of vertices. In a
graph of odd order, there would be one part with odd and one with even cardinality;
hence the parity of degrees of all the vertices in the part with even size changes, and the
parity of degrees of the remaining vertices remains unchanged.

Remark 2.1. For any graph of odd order, switching with respect to the odd vertices
transforms it into an even graph. Seidel [10, Theorem 3.5] proved that if G is a graph
of odd order, then G contains a unique even graph in its switching class (also see [7,
Theorem 3.17]).

Remark 2.2. Let G be a graph, and let A1, ..., A, be the eigenvalues of S with a1, ..., a5,
as their corresponding eigenvectors. If S’ is the Seidel matrix of G after applying a
switching to vertex vy, then S’ = RpSRy, where R is a diagonal matrix obtained
by negating the kth main diagonal entry of the identity matrix. Since Ry = R,;l, we
have S'R;, = RS, and therefore, S'Rpa; = RipSa; = N\ Rpoy. Hence, A\i,...,\, and
af, ..., ol are the eigenvalues and the corresponding eigenvectors of S/, where o, = Ry
is obtained by negating the kth entry of «y;. Therefore, applying switchings does not
change the spectrum of the Seidel matrix, and only negates the entries of eigenvectors
corresponding to the switched vertices. Thus, all switching-equivalent graphs have the
same Seidel spectrum.

3. Some properties of ¢(.S) and necessary conditions for singularity of S

In this section, we study the properties of ¢(.5) and obtain some necessary conditions
for the singularity of the Seidel matrix.

Let S be a singular Seidel matrix. Because S¢ = 0, we deduce that for every 1 < i < n,
the following holds:
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Yoodi— Y, de=0 (1)

Jivj €N (v;) ¢ Nv;]
We use equation (1) to obtain some properties of ¢.

Lemma 3.1. Fvery entry of ¢ is odd.

Proof. By equation (1), fori=1,...,n, the multiset { ¢; | j # i } can be partitioned into
two multisets with equal sum. Hence, for i = 1,... n, Zj;éi ¢; is even. Therefore, all
the entries ¢1, ..., ¢, have the same parity. Since the greatest common divisor of these
entries is 1, each of them must be odd. O

Theorem 3.2. Let G be a graph with vertex set V.= {vy,...,v,}, and singular Seidel
matrixz S. For 1 <1i,j <n the following hold:

(i) & — 6y = 2d(v:) — d(vy)).
(it) If G is an even graph, then ¢; — ¢, 2 2(d(v;) — d(vj)).

Proof. (i) Let M = {a|va ¢ N[vJ U Nv;]}, No; = {b|ve € N(v;)\N[v;]}, Nj\; =
{c|ve € N(v;)\N[v;] }, and N;; = {d|vg € N(v;) N N(v;) }. Using equation (1) for
vertices v; and v;, we get that

£+ Y bt > ba— D be— Y $a=0,

bEN,i\j deN;; cENj\; acM

and

it Y bet Y, ba— D, - Y, da=0.

CEN;\; dEN;; bENi\j acM

If v; and v; are adjacent, then both ¢; and ¢; have negative signs above. If v; and v; are
not adjacent, then ¢; and ¢; have positive signs in the previous two equations. Either
way, by subtracting these equations we get that

tdi—d) =2 D - Y, o |- (2)
bEN;\ ; cENj\;

From Lemma 3.1 we know that all the entries of ¢ are odd. Therefore, we obtain that
4 2
¢i — 5 = £(¢i — ¢;) and ZbeNm b — ZceNN be = |Niyj| — [Nj\il- So

IlES

Gi—d=xdi—d)=2( > - Y o

bENG\; CEN;\i

2(INing| = [Njil)-

Since d(v;) — d(vj) = [Np ;| — [Nj\l, we obtain that
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i — 65 = 2(d(v;) — d(vy)).

4 4

(ii) Since G is even, by part (i), ¢1 On 2 r for some r € {0,1,2,3}. Lemma 3.1

implies that r € {1,3}. Consequently,

Y= > ¢

bEN; cENj\;

IIES

(INa | = [Njyilr = (d(wr) = d(vy))r = d(w:) - d(vy),

where the last one holds because d(v;) —d(v;) is even and r € {1, 3}. So by equation (2),
we have that

i —dj = (¢ — ¢;) =2 Sod— > ¢ 2 2(d(v;) — d(v))),

bEN cENj\;
4
where the first one is true because ¢; — ¢; = 0. The proof is complete. O

Corollary 3.3. If G is a graph of order n with singular Seidel matriz, then n 2.

Proof. From Lemma 3.1 and equation (1), we conclude that for i = 1,...,n, dg(v;) —
(n—1-dg(v;)) 2 0, hence n 2. By Seidel’s result mentioned in Remark 2.1, G is
switching equivalent to an even graph G’. From Remark 2.2, we know that switching does

not change the Seidel spectrum of a graph, so S(G’) is also singular. Let ¢/ = ¢(G’). By

4 4 4
Theorem 3.2, part (i), we conclude ¢} = --- = ¢}, = r, where r € {1, 3}. Using equation

(1), we deduce that for any i = 1,...,

S

&
B
=
[l
]
N
e
]

¢

JENGs (vi) L¢Ngr[vi]

4

Since ged(r,4) = 1 and dgr(v;) is even, we get that n 214 2dei(v;) =1. O

Note that Corollary 3.3 can also be derived from [5, Corollary 3.6].

Lemma 3.4. Let G be an even graph of order n and size m. If the Seidel matrix of G is
singular, then

4 n—1
m =
4

Proof. By Corollary 3.3, we have n 2. Since G is an even graph, by Theorem 3.2, Part

(i) and Lemma 3.1, we conclude that ¢, 4.2 On = r, for some r € {1,3}. We define
@' as follows:
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- 10} r=1
(b._{d) r=3.
4

= ¢ 2. Also, since ¢’ € {—¢, ¢}, equation (1) holds for ¢'. If we
add these equations for i = 1,...,n, we find that,

4
So we have ¢} = ---

n

XY - Y @-o

i=1 jw,EN(v;) L:vp & Nv;]

Since for i = 1,...,n, ¢, appears d(v;) times with positive sign and n — 1 — d(v;) times
with negative sign, we conclude that,

D d(w)dh = > (n—1—d(v:))¢; =0,
i=1 i=1
thus
& / n—1 - /
>_dwi)dl = =3 i 3)
i=1 i=1
Because ¢ £ 1 and d(v;) is even for i = 1,...,n, we deduce that d(v;)®} 2 d(v;). Hence,
by equation (3),
zn:d(vi) % n-l i:ﬂ%
i=1 2 =

Therefore,

4
where the last one is true since n = 1. The proof is complete. O

Theorem 3.5. Let G be a graph of order n and size m. If the Seidel matrix of G is
singular, then the following holds:

a4 n—1
m+nodd£ 1 y (4)

where noqq s the number of odd vertices of G.

Proof. Let O(G) be the set of odd vertices of G. Suppose that G’ is the graph obtained
from G by switching with respect to the vertices in O(G). Let m’ be the size of G'. By
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Remark 2.1, G’ is an even graph, and by Remark 2.2, the Seidel matrix of G’ is singular.
Lemma 3.4 implies that n 29 andm' = "T_l.
of G and let e (v) be the number of even vertices adjacent to v in G. Since G’ is obtained
from G by switching the edges and non-edges of G between O(G) and V(G)\O(G), we

have that

m —m= Z (Neven — e (V) — Z eq(v) = Z (Neven — 2ec(v)).

v:weO(G) v:weO(G) viweO(G)

Let neyen, be the number of even vertices

Thus,

A
m’ =m + NoddNeven — 2 E ec(v) = m + noaa(n — Nodd) — 2Moe,
vweO(G)

where my, is the number of edges of G between O(G) and V(G)\O(G). The Handshaking
lemma implies that n,qq is even. Also, by adding up the degrees of the vertices in O(G)
or in its complement, we deduce that m,. is also even. Therefore,

4

4
m = m + negan — ngdd — 2Moe = M+ Nogd™ = M+ Nodd,

and the proof is complete. O
Now, we have an immediate corollary.

Corollary 3.6. Let G be a graph of order n and size m. If the Seidel matriz of G is

singular, then m = "T_l.

It is worth mentioning that Corollary 3.6 is weaker than Theorem 3.5. For example,
for each k£ > 0, non-singularity of the Seidel matrix of Pjgry1 can be deduced from
Theorem 3.5 but cannot be derived from Corollary 3.6. Note that Corollary 3.6 can also
be concluded from [5, Theorem 3.5].

Corollary 3.6 implies that if G is a tree with singular Seidel matrix, then n 29 By
a computer search, we noted that there is no tree of order 9, whose Seidel matrix is
singular. Among 48629 non-isomorphic trees of order 17 (see [8]), there are 15 trees with
singular Seidel matrix. Also, we checked that Problem 1 has an affirmative answer for
only 2 of these trees. These two trees can be seen in Fig. 1. In every labeling of these
trees that v, is an even vertex, ¢; = (—1)4¥), for 4 = 1,...,17. Our program, along
with the other 13 trees with singular Seidel matrices, are available in GitHub [1].

4. Graph families with unbounded entries of ¢

Let G be a graph of order n with a singular Seidel matrix. By Corollary 3.3, we know
that n = 4k+1, for some k > 0. By a computer search, we verified that for every graph of
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Fig. 1. The only two trees of order 17 with singular Seidel matrices, where ¢ € {£1}'7.

Vak+2 Vak+3 Vak+4 Vak+5

Fig. 2. Structure of Graph Gr41.

order 5, Problem 1 has an affirmative answer. However, the following theorem shows that
for k > 2, there is a graph of order 4k+1, which gives a negative answer to Problem 1. The
presented family of graphs also shows the unboundedness of entries of ¢. Furthermore,
in Theorem 4.3, we show that there is no upper bound for the minimum absolute value
of the entries of ¢ either. Thus, for every positive integer N, there exists a graph whose
Seidel matrix is singular, and the absolute value of every entry of ¢ is at least N.

Theorem 4.1. For every k > 2, there exists a graph of order 4k + 1 with singular Seidel
matriz, which gives a negative answer to Problem 1.

Proof. For k > 1, we construct a graph Gy, of order 4k+1 with singular Seidel matrix for
which the maximum entry of ¢ is 5*~!. Hence, G}, gives a negative answer to Problem 1
for k > 2. The construction is recursive. Let G1 = C5, so S(G1) = 2J5 — Is — A(C5) and
#(G1) = Js, the all-ones vector of dimension 5. The structure of Gy in terms of Gy, is
represented in Fig. 2. Also, the structures of S(Gg+1) and ¢(Gg1) in terms of S(Gy)
and ¢(Gy) are as follows:

I ~1 41 +1 -17] |
-1 +1 41 -1 [0
5(Gx) oo ¢(Gr) 0
-1 +1 41 -1 _
1 1 -~ 1] 0 -1 +1 +1 o
1 41 - 41| -1 0 -1 +1 o
41 41 - 41|41 -1 0 -1 o 0 |
-1 -1 - =141 41 -1 0 ]| .

———
5(Grt1) 3 (Gr1)
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where ¢, is the sum of the entries of ¢(Gy). Clearly, the greatest common divisor of
entries of [¢(G) | ck ek cx cx]T is 1 and its first entry is positive; thus, it is consistent
with the definition of ¢. It can be seen that cx11 = 5ck, and since ¢; = 5, we have
cr+1 = 5*FL. Furthermore, it is clear that the maximum entry of ¢(Gy1) is cx, and the
proof is complete. O

Remark 4.2. In the graphs Gy constructed in the proof of Theorem 4.1, while the min-
imum absolute value of the entries of ¢ is 1, the maximum absolute value of its entries
tends to infinity as k tends to infinity.

Theorem 4.3. There is no constant upper bound for the minimum absolute value of the
entries of ¢.

Proof. By induction on k& > 0, we construct a graph Hy of order 8k + 5 with singular
Seidel matrix such that the minimum absolute value of the entries of ¢(Hj,) is 3%, and
the sum of its entries is 5 x 7%. Thus, for any natural number N, there is k such that
the minimum absolute value of entries of the vector ¢ of Hy is greater than V.

Let Hy = Cs. As before, ¢(Hp) = js, where js5 is the all-ones vector of order 5, so the
minimum absolute value of the entries of ¢(Hy) is 1, and the sum of its entries is 5. The
structure of graph Hj1 in terms of Hy is shown in Fig. 3.

Also, the structures of S(Hg41) and ¢(Hg41) in terms of S(Hy) and ¢(Hy) are as
follows:

i +1 41 41 -1 -1 +1 +1 417 1
+1 41 +1 -1 —1 +1 +1 +1
S(Hy) S 3eHR) | To]
: 0
+1 41 +1 -1 —1 +1 +1 +1
41 41 - a1 o +1 41 +1 41 -1 -1 -1 5¢k
+1 41 - 41|41 0 41 41 41 41 -1 -1 —cp | = ;
+1 41 -+ 41|41 41 0 +1 +1 +1 +1 -1 —3cp
1 =1 -+ —1|41 +1 41 0 41 +1 +1 +1 o
~1 =1 -+ —1|+41 +1 41 41 0 +1 +1 +1 ch
+1 41 -+ 41| -1 41 41 +1 +1 0 +1 +1 3¢k L O]
+1 +1 -+ 41| -1 -1 41 +1 +1 41 0 +1 —cp
L +1 41 - 41| -1 -1 —1 41 41 +1 41 0 | 5y,
S(Hy+1) ¢(Hiy1)

where ¢y, is the sum of the entries of ¢(Hy,). Note that ¢, = 5% 7%, so the greatest common
divisor of entries of [3¢(Hy) | 5er, —cx —3ck cx cx —3ck —ck ey T is ged(3,¢) = 1 and
its first entry is positive. Hence, it is consistent with the definition of ¢. The structure
of ¢(Hy1) indicates that cp1 = Teg, thus cgpp =5 % Tht1, Furthermore, the minimum
absolute value of entries of ¢p(Hy11) is equal to the minimum absolute value of 3¢(Hy),
which is 3¥*1, and it tends to infinity as k tends to infinity. O
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V8k+9 U8k+10

Vsk+11 V8k+6 V8k+13 V8k+8

be e

Usk+12 Vsk4T

Fig. 3. Structure of Graph Hy1.

5. Properties of graphs with ¢(S) € {£1}"

In this section, we study the graphs G which give an affirmative answer to the Prob-
lem 1. This means that ¢(S) € {£1}". By Corollary 3.3, we know that if G is a graph
of order n with singular Seidel matrix, then n = 4k + 1, for some non-negative inte-
ger k. Hence, we only consider graphs of order n = 4k + 1. Our first result gives a
characterization of the switching class of such graphs.

Theorem 5.1. Let G be a graph of order n = 4k+ 1. The Seidel matriz S of G is singular
and ¢(S) € {£1}"™ if and only if G belongs to the switching class of a 2k-reqular graph.

Proof. Suppose that G is a graph with Seidel matrix S such that ¢(S) € {£1}". We
define L := {v; | (#(S)); = —1}. By switching G with respect to L, we obtain a graph G’,
with S’ and A’ as its Seidel matrix and adjacency matrix, respectively. By Remark 2.2,
S’ is singular and ¢(S’) = j,, where j, is the all-ones vector of dimension n. Therefore,

0=2.5"j,=(Jn— I, — 245, = (4k + 1)j,, — jn — 24 4.

Thus, A'j, = 2kj,, and so G’ is a 2k-regular graph.
To prove the other direction, suppose that H is a 2k-regular graph in the switching
class of G. We have that

S<H).7n = (Jn - In - 2A(H)).7n = (4k + 1)]71 - ]n - 2(2k).7n = 0.

So jn is an eigenvector of S(H) corresponding to 0, and therefore ¢(H) = j,,. The graph
G is obtained from H by some switching. Since switching with respect to any subset of
vertices only negates the corresponding entries of its Seidel eigenvectors, it follows that
¢(S) € {£1}"™, which finishes the proof. O
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Theorem 5.1 provides a way for constructing graphs with singular Seidel matrices,
which are rare in general. It is shown in [9] that the proportion of graphs of order n with
singular Seidel matrices tends to zero as n tends to infinity.

The next results present some structural properties of graphs with ¢(S) € {+1}".

Lemma 5.2. Let G be a graph of order n = 4k 4+ 1 with singular Seidel matriz S, and
d(S) € {x1}™. If G has a leaf, then G has exactly 2k or 2k + 2 odd vertices.

Proof. By Theorem 5.1, there exists a 2k-regular graph H such that G is obtained from
H by some switching. Let v be a leaf of G, and u be its neighbor in G. There are two
cases to consider.

Case 1: The vertices u and v are adjacent in H. In this case, H is transformed into
G by switching with respect to A = Ny (v)\{u} or B = V\A. Because |A| =2k — 1 21
and |B| =2k + 2 = 0, complementing the edges between A and B changes the parity of
the degree of vertices in B. Therefore, in G, the vertices in B are odd and the vertices
in A are even. So G has 2k + 2 odd vertices.

Case 2: The vertices v and v are not adjacent in H. In this case, H is transformed
into G by switching with respect to A = Ny(v) U {u} or B = V\A. In this case,
|Al =2k +1 21 and |B| = 2k 20. Thus, G has |B| = 2k odd vertices. O

Corollary 5.3. If G is a tree of order n = 16k +r (0 < r < 15) with a singular Seidel
matriz, then G has exactly 8k + s odd vertices, where (r,s) is either (1,0) or (9,6).

Proof. Let n,44 be the number of odd vertices of G. By Theorem 3.5 and Corollary 3.3, we
TLT-H’)_ Thus, Nodd = %_1, if

4 . . —
conclude that n,qq = "T_l. By Lemma 5.2, n,qq is either ”Tl or

14 ,_ . 16 . 4
n=l = 2=l which means n = 1, and nogq = 22, if 252 = 221

. 16
5 1 which meansn =9. O

Theorem 5.4. Let G be a graph of order n = 4k + 1. If the Seidel matriz S of G is
singular, and ¢(S) € {£1}", then 3k < |E(G)| < 8k* — k, and both given bounds are
tight.

Proof. Let 6(G) denote the minimum degree of G. If §(G) > 2, then |E(G)| > 4k+1 > 3k.
Suppose that 6(G) < 2, and let v be a vertex of minimum degree. By Theorem 5.1, there
exists a 2k-regular graph H such that G is obtained from H by some switching. Let V'
be the vertex set of G and H. There are two possibilities for dg(v):

o dg(v) = 0. Let a be the number of edges in H with endpoints in Ny (v), 5 be the
number of edges in H with endpoints in V\Ng[v], and v be the number of edges in
H with one endpoint in Ny (v) and the other one in V\ N [v]. The 2k edges adjacent
to v are the only edges of H that are not counted in neither «, 8 nor . Thus, we
have
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[ o [ [

Fig. 4. Graph Hy,.

2%k(4k + 1)

5 — 2k = 4k* — k. (5)

atf+y=
Every vertex u in Ny (v) has at most 2k — 1 neighbors in V\Ng[v], so v < (2k)(2k —
1) = 4k* — 2k. Thus, we have

4k? — 2y > 4k* — 2(4k? — 2k) = 4k — 4K>. (6)

There exists a set A C V such that switching with respect to A transforms H into
G. This switching makes v an isolated vertex. Therefore, A is equal to either Ny (v)
or V\Npg(v). By applying this switching, the edges with endpoints in Ny (v) and the
edges with endpoints in V'\ Ng[v] remain as they were, and the edges and non-edges
between the two sets are switched. Since [Ny (v)| = |V \ Ng[v]| = 2k, by equations
(5) and (6), we get that

|B(G)| =a+B+4k* —v = (a+ B +7) + (4k* — 2v) > 4k* — k + 4k — 4k = 3k.
e dg(v) = 1. By Lemma 5.2, there are at most 2k + 2 odd and at least 2k — 1 even

vertices in G. Since there is no vertex of degree 0, the degree of any even vertex in
G is at least 2. As a result,

(1(2k + 2) + 2(2k — 1)) = 3k.

DN | =

B@) =5 Y dal) >

veV

Since S(G) = —S(G), we have ¢(G) = ¢(G), so by the first inequality for graph G,
|E(G)| > 3k, and therefore, |E(G)| < 8k? — k.

In the sequel, we show that the given lower bound and upper bound are tight. Let
k be a natural number and Gy be the disjoint union of k£ copies of P, and one isolated
vertex. Note that the order and size of Gy, are 4k 4+ 1 and 3k, respectively. By switching
with respect to the 2k leaves of G, we obtain a 2k-regular graph of order 4k + 1. By
Theorem 5.1, the Seidel matrix of Gy, is singular, and ¢(Gy) € {£1}". The tightness of
the upper bound can be shown by considering Gi. O

Remark 5.5. For any natural number £ > 3, we construct a graph Hy of order 4k + 1
and size 3k, shown in Fig. 4, containing one C%, 2k leaves, and k + 1 isolated vertices. It



206 S. Akbari et al. / Linear Algebra and its Applications 615 (2021) 194—206

can be checked that switching the leaves transforms this graph into a 2k-regular graph,
and so by Theorem 5.1, ¢(Hy) € {£1}™.

The structure given in Remark 5.5 indicates that there are some graphs with ¢ €
{£1}" and minimum possible size, which are not a forest. Also, it shows that for any
k > 3, there is a graph containing C, which has an affirmative answer to the Problem 1.
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