
Practical Eye Tracking with iTrace

Bonita Sharif ∗, Cole S. Peterson∗, Drew T. Guarnera†, Corey A. Bryant†, Zachary Buchanan†,
Vlas Zyrianov†, and Jonathan I. Maletic†

∗Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA 68588
†Department of Computer Science, Kent State University, Kent, Ohio, USA 44242

Emails: bsharif@unl.edu, cole.scott.peterson@huskers.unl.edu, {dguarner, cbryan20, zbuchana, vzyriano, jmaletic}@kent.edu

Abstract—The evolution and effort in designing and imple-
menting iTrace, an infrastructure for integrating eye tracking
into developer environments, is presented. The goal is to make
eye tracking practical for various stakeholders in software
engineering namely researchers, practitioners, and educators.
An overview of iTrace and the general process involved in
conducting an eye tracking study with human subjects using
iTrace is presented in this tool demo paper. Upcoming features
and ongoing plans for community involvement are also presented.

Index Terms—eye tracking, practical solution, integrated devel-
opment environments, program comprehension, empirical studies

I. INTRODUCTION

Eye tracking is gaining popularity in the software engi-

neering community as a method to understand how software

developers work [1]. Here, we provide an overview of iTrace,

our eye tracking infrastructure. iTrace makes conducting eye

tracking studies accessible to software engineering researchers

as it alleviates many of the pain points involved in conducting

eye tracking studies. One major obstacle prior to iTrace is

that program comprehension studies can realistically only be

conducted on short code snippets. This is due to software

limitations in determining what elements of the code are

being observed if the view of the code editor changes during

scrolling or switching files. Much tedious post processing is

involved including video processing of screen recordings and

manually mapping gazes to semantic elements in a long video

recording. iTrace overcomes this limitation by keeping track

of the information being looked at when the screen contents

change and then automatically maps those coordinates to the

syntactic features in the code during a post-processing phase.

Researchers can then focus on more interesting analysis and

drastically reduce the time spent post-processing.

The goal of this tool demo paper is two-fold. We first present

the current state of iTrace as it has evolved over its early

development years. The second goal is to introduce the general

set of steps to follow when using iTrace during an eye tracking

study. For additional details on tool setup and usage we direct

the reader to our web portal at http://www.i-trace.org.

II. ITRACE HISTORY AND OVERVIEW

iTrace is a community infrastructure for performing eye

tracking studies within an integrated development environment

(IDE) such Visual Studio or Eclipse to more closely resemble

realistic software development conditions. Code is not written

in isolation within the IDE and to better fit the process of

how developers work, we are also working on supporting eye

tracking within Chrome via a plugin named iTrace-Chrome.

This extends eye tracking capabilities to websites such as

Stack Overflow, Bugzilla and GitHub. Such infrastructure

facilitates new directions for conducting research studies.

The first iTrace prototype was created in 2012 where it

existed only as an Eclipse plugin. In 2018, we introduced

a new and completely refactored version of iTrace [2]. The

application is now split into several different plugins to easily

facilitate extension and reuse. The main plugins are iTrace-
Core, iTrace-VisualStudio, iTrace-Eclipse, and iTrace-Chrome.

The system is designed in a manner that facilitates extensions

for other IDE platforms such as Visual Studio Code and

IntelliJ. iTrace-Core is responsible for interfacing with the

eye tracker, managing session data, and broadcasting the gaze

coordinates to the plugins. Plugins are created for a specific

IDE and use the gaze coordinates sent by the core application

in conjunction with APIs provided by the IDE to map the

screen position of the user’s gaze to an interface element. If

the IDE element contains source code, a gaze can be mapped

down to the line and column of the source code element. All

mappings are collected and written to an XML file where line

and column mappings are used with srcML (www.srcML.org)

to process the eye tracking data and gain useful insights into

developer’s eye movements. We are also working on support

tools such as iTrace-PostProcessing and iTrace-Analysis that

will be released in the near future. The complete set of tools

are hosted on GitHub at https://github.com/iTrace-Dev.

New Features: Since the 2018 refactored version [2],

we added the ability for iTrace-Core to communicate with

plugins via TCP socket or WebSocket connections. This al-

lows plugins to be developed for several additional platforms

such as Google Chrome and VS Code. Socket settings are

user configurable to avoid port conflicts, and iTrace supports

multiple plugin clients running simultaneously. Along with

enhancements for plugin communication, iTrace has support

for more trackers including the GazePoint GP3 series tracker

alongside the Tobii Pro and Tobii 4C (with Pro upgrade).

See Figure 1 for the iTrace-Core interface. To better assist

in the analysis of eye tracking data generated by iTrace,

we have greatly extended the post-processing features of the

infrastructure to allow for all gaze data and analysis to be

recorded in a single SQLite database. Moreover, this data need

not be from only one participant’s session, but encompass a

complete study package, facilitating researchers in creating

41

2019 IEEE/ACM 6th International Workshop on Eye Movements in Programming (EMIP)

978-1-7281-2243-4/19/$31.00 ©2019 IEEE
DOI 10.1109/EMIP.2019.00015

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 21:26:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. iTrace-Core Interface showing the eye trackers currently connected.
The GazePoint GP3 tracker and the Tobii X3-120 trackers are visible. The
mouse tracker can also be used as a proxy for testing when an eye tracker
is not readily available. Recording the screen is also an option for replaying
gaze overlays.

artifacts for their accepted papers. It also allows for the easy

exchange of data between collaborators. Any analysis of the

data external to iTrace can use standard SQL commands or

exported for later manipulation in external applications.

Upcoming Features: A current limitation of iTrace is

its inability to map gaze data accurately as source code is

edited during an eye tracking session. The ability to study

software development in the context of editing, such as bug

fixing or refactoring is of great research significance. This is a

challenging problem, and the iTrace team is actively exploring

solutions to support eye tracking for live source code editing.

Another upcoming feature involves recording the screen during

the eye tracking sessions. This feature allows session playback

with an overlay of eye fixations and saccades as they occur -

a useful aide for qualitative analysis. Additional features for

data validation and correction are also being designed.

III. RUNNING YOUR EYE-TRACKING STUDY

In order to run an eye tracking study, you first need to install

iTrace and one of the plugins and have access to a supported

eye tracker. We have successfully used iTrace in two published

studies [3, 4].

• Session setup: The first step is to set up the session in

iTrace-Core. There are four fields that must be populated:

Study Name, Researcher Name, Participant ID, and Data

Directory. It is important to be consistent with the Study

Name and Data Directory and to use distinct Participant

IDs as that makes processing easier after the study.

• Calibration: Next, the participant goes through a 9-point

calibration screen. Results are reported visually and writ-

ten to file for later use.

• Plugin Setup: In each plugin, there is a button to establish

a connection to Core. See Figure 2. Once this connection

is established, the core will alert the plugin of any new

recording session that starts.

• Start Tracking: Once the above steps are successfully

completed, tracking is started from iTrace-Core. With the

Core running, data from the eye tracker is transmitted to

the plugins.

IV. COMMUNITY

We are actively working to help develop a community

around iTrace. Our website at http://www.i-trace.org/ fea-

tures downloads for iTrace-Core and our post-processing tool

for detecting fixations. The source code repositories for our

Fig. 2. Plugin Views. Visual Studio’s view is shown to the left with Eclipse’s
view shown to the right. We provide feature parity between plugins. Currently,
both can connect to the server and highlight tokens in code given where the
developer is looking.

Eclipse and Visual Studio plugins are open source (with

installers for each being released in the near future). All avail-

able tools and feature documentation to help with installation

and usage will be posted to our web portal and YouTube

channel. Our site also tracks analytics to better help us gauge

interest in certain content and tools that have been released.

We plan to make all of our GitHub repositories public not

only to receive feedback in the form of bugs and feature

requests, but also to encourage community contribution and

engagement. Presently, feedback and issues are reported via

email (itracedev@gmail.com) on our contact page. We will be

expanding this to allow for feature requests, bug reports, and

questions to submitted directly from the site. A community

workshop session has been scheduled at ICSE 2019.

V. CONCLUSIONS

This tool paper reports on the current state of iTrace in-

cluding the background and motivation of why it is important.

The effort of community building is presented along with a

set of steps on how to start using iTrace to conduct a study.

As part of our future work, we plan on adding short tutorials

and videos to increase the adoption of this framework among

software engineering researchers.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation

under grant numbers CCF 18-55756, CCF 15-53573, and CNS

17-30307/30181.

REFERENCES

[1] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey

on the usage of eye-tracking in computer programming,”

ACM Comput. Surv., vol. 51, no. 1, pp. 5:1–5:58, Jan.

2018.

[2] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic,

and B. Sharif, “itrace: Eye tracking infrastructure for

development environments,” in Proc. of ETRA, 2018, pp.

105:1–105:3.

[3] N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I.

Maletic, “Developer reading behavior while summarizing

java methods : Size and context matters,” in Proceedings
of the 41st International Conference on Software Engi-
neering (ICSE), 2019.

[4] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, T. Fritz,

and D. C. Shepherd, “Tracing software developers eyes

and interactions for change tasks,” Proc. of ESEC/FSE,

2015.

42

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 21:26:29 UTC from IEEE Xplore. Restrictions apply.

