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Zebrafish are characterized by dark and light stripes, but mutants

display a rich variety of altered patterns. These patterns arise from

the interactions of brightly colored pigment cells, making zebrafish

a self-organization problem. The diversity of patterns present in

zebrafish and other emerging fish models provides an excellent

system for elucidating how genes, cell behavior, and visible animal

characteristics are related. With the goal of highlighting how

experimental and mathematical approaches can be used to link

these scales, I overview current descriptions of zebrafish

patterning, describe advances in the understanding of the

mechanisms underlying cell communication, and discuss new

work that moves beyond zebrafish to explore patterning in

evolutionary relatives.
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Introduction
Because alterations in cellular dynamics lead to differences

in organism appearance, pattern formation on animal skin is

a useful system for studying cell behavior. Amenable to

many experimental techniques and widely used for its

biomedical applications, the zebrafish (Danio rerio) is a

model organism for exploring pattern formation [1–4].

Zebrafish are characterized by dark stripes and light inter-

stripes, but diverse patterns are found in mutant fish [1,2,5].

These patterns form due to the interactions of tens of

thousands of brightly colored pigment cells.
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Writing for an interdisciplinary audience, in this review I

discuss how experimental and mathematical-modeling

approaches are being used to identify the genetic and

cellular differences that underlie different phenotypes,

linking scales that span from intracellular to evolutionary

(Figure 1). With a focus on the literature from the last

three years, I review self-organization in zebrafish,

describe different modeling approaches to collective

cell dynamics, highlight findings on the mechanisms that

underlie cell communication, and discuss multidisciplin-

ary perspectives on new pattern formation frontiers,

including zebrafish’s siblings in the Danio genus

[9,10��,11], clownfish [12�], and lizards [13��].

Biology of self-organization
There are three main types of pigment cells that are

involved in pattern formation in zebrafish: black

melanophores (or melanocytes), yellow/orange xantho-

phores, and iridescent silver/blue iridophores. These

cells belong to a wider set of chromatophores that are

present in fish (and other cold-blooded animals) and also

includes red erythrophores, white leucophores, and blue

cyanophores [1,12�]. Interestingly, Lewis et al. [17��]
recently showed that a subclass of leucophores develops

from melanophores through transdifferentiation (mean-

ing they transform from fully developed melanophores

into a new cell type) and lines the edges of zebrafish’s

dorsal and caudal fins. While humans have one only one

type of pigment cell (melanocytes, the originating cell

for melanoma [3]), these six chromatophores form the

basis of the patterns that are present across many fish and

reptiles.

On zebrafish skin, adult patterning starts when the fish is

approximately 3 weeks old [18,19]. As the fish nearly

doubles in length over the next several weeks, chroma-

tophores organize to produce stripes and interstripes

sequentially from the horizontal myoseptum outward

on the growing body (stripes also appear on two fins)

[20]. Iridophores, which first appear along the horizontal

myoseptum, help align the body pattern [19–21]

(Figure 2b,c). As they disperse dorsally and ventrally,

these iridescent cells take on different shapes and colors,

providing signals to melanophores and xanthophores [19].

Experimentalists have employed diverse techniques,

including mutational analysis, ablation, and transplanta-

tion, (e.g. [20,21,22�,23�,24,25]) to search for the cellular

mechanisms that are involved in wild-type and mutant
www.sciencedirect.com
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Figure 1
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Overview and one example of how experimental and mathematical

approaches can be used in tandem to link genotype [6,7], cell

behavior, and phenotype. In this review, I describe biological and

mathematical views on self-organization, discuss mechanisms of cell

communication, and highlight pattern variability in mutant zebrafish

and evolutionary relatives. Phenotype image adapted from [8] with

permission from Elsevier, Copyright (2015) Elsevier Ltd.
patterning (Figure 2c–e). Together these approaches

have uncovered an interaction network that includes local

and long-range dynamics [24,26]. Cells interact

through migration (repulsion or attraction), birth and

differentiation, competition, and transitions in shape

[19,21,25,27,28], and several recent models [16,29,30]

have accounted for these behaviors phenomenologically.
Figure 2
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myoseptum due to the interactions of pigment cells [20]. (c) Leopard (encod

idefix (encoding spermidine synthase) [15] patterns arise due to cell interact

Figure 4. Images (a, c) adapted from [8] with permission from Elsevier, Cop

Springer Nature, and based on a schematic in [8]; and images (d, e) adapte

licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) an

org/licenses/by/3.0/).

www.sciencedirect.com 
Mathematics of self-organization
Mathematical biologists have used three main approaches

to describe wild-type and mutant pattern formation in

zebrafish (Figure 3). On the microscopic side, agent-

based models treat cells as individuals and track the

ðx; yÞ-coordinate of each cell’s center (Figure 3b). Cells

move continuously in space on growing domains

according to differential equations, and stochastic rules

govern differentiation, competition, and transitions in

form [16,30]. Cellular automaton models [29,31], in

comparison, treat space as a lattice and specify all cell

behaviors using stochastic rules (Figure 3c).

On the macroscopic side, continuum models [24,29,32–34]

describe cell (or morphogen) densities (Figure 3d).

Although zebrafish have traditionally been studied using

reaction–diffusion equations [24,29], recent models

include non-local terms [33,34]. Motivated by in vitro
observations [28], Woolley [32] also showed that patterns

can arise through chase–run behavior with rotation in a

system of partial differential equations (PDEs). As an

alternative means of describing patterns that is, like

continuum approaches, amenable to mathematical

analysis, McCalla andvon Brecht [35] studied theevolution

of stripe–interstripe interfaces in a general model.

Models can be used to suggest wild-type cell interactions,

and, by changing parameters, we can make experimentally
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tterns that (b) form sequentially outward from the horizontal

ing Cx41.8) [6,7], (d) obelix or jaguar (encoding Kir7.1) [6,14], and (e)

ions that have been altered (often in unknown ways); see

yright (2015) Elsevier Ltd.; image (b) adapted from [16], published by

d from [15] and published by The Company of Biologists Ltd. Image (b)

d images (d, e) licensed under CC-BY 3.0 (https://creativecommons.
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Mathematical (in silico) perspectives on pattern formation. Melanophores and xanthophores are shown, but the model [16] also includes

iridophores. (a) In vivo pattern shows pigment cells. (b) Agent-based models describe the behavior of individual cells through stochastic rules and/

or differential equations [16]. (c) In cellular automaton models, space is discretized, and rules govern the color of grid spaces [29]. (d) Continuum

models describe cell (or morphogen) densities [32,33]. (e) Through an interfacial reduction, one tracks the evolution of stripe–interstripe boundaries

(red curve) [35]. (f) Ablation experiments [24] have shown that interstripe cells promote melanophore differentiation at long range. (g) Agent-based

[16] and (h) cellular automaton models [29] account for these long-range interactions phenomenologically. Image (a) reproduced from [20],

licensed under CC-BY 3:0 (http://creativecommons.org/licenses/by/3.0) and published by The Company of Biologists Ltd.; image (g) adapted from

[16] and licensed under CC-BY 4:0 (https://creativecommons.org/licenses/by/4.0/); image (f) adapted from [24].
testable predictions about the cell behaviors that may be

altered in mutant patterns. Importantly, prior zebrafish

models do so at a phenomenological — rather than

mechanistic — level. For instance, the microscopic models

[16,29] account for long-range interactions [21,24] by

considering the types of cells that appear in an annulus

around the position of interest (Figure 3f–h).

Mechanisms of cell communication
Down a scale from collective dynamics and phenomeno-

logical models, we can ask about the mechanisms that

underlie how cells communicate, change their shape, and

determine their fate. This is a complex and exciting

problem, and I overview some of the ways that

chromatophores interact in zebrafish.

Gap junctions are a form of communication between

adjacent cells that can be thought of as cellular

handshakes (Figure 4a–c). Each cell offers a connexon

(e.g. hand) to form the channel, and individual connexons

are composed of six connexins (e.g. fingers) [36��,37,38].
Two connexin proteins, Cx39:4 and Cx41:8, are required
Current Opinion in Genetics & Development 2020, 63:78–85 
for melanophore–xanthophore communication, and

mutations in the genes encoding these proteins produce

the luchs and leopard phenotypes, respectively (Figure 2c)

[36��,37,43]. Puzzling out what connexins make up

connexons and what connexons form gap junctions is

difficult, particularly because connexons can be either

homomeric or heteromeric, meaning made up of the same

or different connexins (Figure 4b). Moreover, pairs of

connexons may come together with like or unlike

connexons, forming a wide range of possible channels

[36��,37]. In an exciting study, Usui et al. [36��] recently

identified a minimal network of gap junctions that may

regulate communication between melanophores and

xanthophores.

Potassium channels provide another means of signaling

(Figure 4d), and obelix (or jaguar; Figure 2d) zebrafish

have a mutation in the gene encoding for an inwardly

rectifying potassium channel (Kir7.1) [14]. Adding further

complexity, polyamines may bind to gap junctions and

potassium channels to regulate their function [15,36��].
The polyamine spermidine affects potassium channels as
www.sciencedirect.com
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Mechanisms of cell communication. (a) Gap junctions provide a means of communication between adjacent cells [36��,37,38]. (b) Connexons are

homomeric (consisting of identical connexin proteins) or heteromeric (consisting of a mix of connexins). (c) Pairs of connexons form channels, and

polyamines (small diffusing factors) bind to gap junctions to regulate their function [15,36��]. (d) The obelix mutation (Figure 2f) encodes the Kir7.1

potassium channel [6,14]. Images (b, c, d) are based on schematics in [36��]. (e) Delta/Notch signaling may involve protrusions including (f)

airinemes and (g) pseudopodia [2,26,39,40��]. Asterisk shapes denote cells in an early form, as airineme communication is state-dependent [39].

(h) Diffusing signals and secreted factors, expressed by pigment cells or the tissue environment, are involved in cell proliferation and fate

[21,27,41,42�]; see [2] for a review. Image (g) adapted from [26], licensed under CC-BY 3:0 (http://creativecommons.org/licenses/by/3.0) and

published by The Company of Biologists Ltd.
well as Cx39:4 gap junctions [36��], and the idefix mutant

(Figure 2e) is associated with reduced spermidine

levels [15].

Cellular extensions make it possible for Delta/Notch

signaling (a form of receptor–ligand communication that

requires cellular contact; Figure 4e) to occur at long range

[2,26,39,40��] (see the recent review [44]). In two novel

studies, Eom et al. [39,40��] showed that early xantho-

phores extend fast projections (called airinemes) toward

early melanophores with the help of macrophages

(Figure 4f). Stable, long pseudopodia from melanophores

have also been observed in vivo [26] (Figure 4g).

A variety of diffusing signals, external ligands, and recep-

tors, including thyroid hormone [42�,45], Endothelin-3

[10��], colony-stimulating factor [27], and leukocyte tyro-

sine kinase [41,46,47] are involved in cell proliferation

and differentiation (Figure 4h; see [1,2] for more
www.sciencedirect.com 
comprehensive reviews). For example, Saunders et al.
[42�] showed that thyroid hormone helps melanophores

mature (to a non-dividing state) and causes xanthophores

to acquire pigment. Interestingly, reduced levels of gala-

nin lead to increased thyroid hormone, and a mutation

that affects galanin signaling in the brain has recently

been shown to have a global impact on the pigment cells

across zebrafish [48�]. As I discuss next, mutations that

involve some of these signals [10��,27,42�] have been

associated with evolutionary relatives of zebrafish.

Diversity of patterns
There are several lines of new work that involve taking a

broader view of pattern formation. If we look at zebrafish

as a whole, there are differences in the patterns that

appear in different regions of the fish [8,9,21]. For

example, Eskova et al. [23�] recently showed that chro-

matophores from mau mutant zebrafish (encoding Aqp3a)

can produce stripes when transplanted to a wild-type
Current Opinion in Genetics & Development 2020, 63:78–85
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Figure 5
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Pattern diversity. I indicate in vivo patterns in yellow and their in silico counterparts in blue, noting that many organisms remain to be described

mathematically. (a–c) Zebrafish mutants feature altered patterns, and distinct patterns may form in different regions of the fish [20]. (d–i) The Danio

genus is becoming a newly accessible frontier in patterning [1,2,10��,11,16,17��]. (j–m) The Actinopterygii class contains many fish with horizontal

stripe, vertical bar, or spotted patterns [5,12�,53,54�,56]. (n–o) Lizards have the same chromatophores as fish, and their patterns were modeled in

[13��]. (p–q) The Animalia kingdom also contains cuttlefish, which change color depending on their environment [57��]. Image (a) reproduced from

[23�] under CC-BY 3:0 (http://creativecommons.org/licenses/by/3.0) and published by The Company of Biologists Ltd.; images (b, d, f, h, i)

reproduced from [8] with permission from Elsevier, Copyright (2015) Elsevier Ltd.; images (c, e, g) and (m) reproduced from [16] and [54�],
respectively, published by Springer Nature, and licensed under CC-BY 4:0 (http://creativecommons.org/licenses/by/4.0/); images (n, o) and (p, q)

adapted from [13��] and [57��] by permission from Springer Nature, Copyright (2017) and (2018) Springer Nature, respectively; images (j, k)

reproduced from [53], Copyright (2010) Springer Nature, and licensed under CC BY-NC-SA 3:0 (http://creativecommons.org/licenses/by-nc-sa/3.0/

); image (l) reproduced from [12�] with permission from John Wiley & Sons, Copyright (2019) John Wiley & Sons A/S.
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environment, highlighting the role of the tissue environ-

ment in pattern formation [21] (Figure 5a). Moreover, the

shady mutant [20,47] features a spotted body with striped

fins (Figure 5b). Using an approach that could be applied

to shady zebrafish in the future, Kozák et al. [49] analyzed a

general reaction–diffusion model with spatially varying

reaction parameters. New work [50–52] has also explored

countershading, a pattern (separate from the fish’s

namesake stripes) that consists of a dark dorsal region

and a light belly ventrally (see [1] for a review).

At the evolutionary scale, a collection of recent studies

[10��,16,17��] (Figure 5d–i) have explored sibling species

in the Danio genus (see reviews [1,2]). The agent-based

model [16] describes zebrafish stripe formation and identi-

fies specific cell behaviors that, when removed, produce

Danio margaritatus patterns (Figure 5g). In a novel study,

Spiewak et al. [10��] showed that differences between

zebrafish and Danio nigrofasciatus (Figure 5i) involve changes

in Endothelin-3, a ligand that is expressed by the skin and

impacts the number of iridophores present. This work

further highlights the role of the tissue environment on

cell proliferation and dynamics [10��,23�].

If we widen our perspective further, we reach the taxo-

nomic class that contains all of the fish that have rays in

their fins, including zebrafish as well as clownfish [12�],
salmon [53], cichlids [54�,55], and trout [56]. Along with

the Danio genus, reef fish are emerging as exciting

research frontiers [5]. In a new study, Salis et al. [12�]
found that the white bars in clownfish contain iridophores

(similar to the iridophores in interstripes in zebrafish). It

has also been shown that two regulatory proteins (Sox5

and Sox10) have different roles in specifying cell fate in

medaka and zebrafish [58�]. Lastly, Hendrick et al.
suggested that differences in melanophore differentiation

and migration help determine whether vertical or

horizontal stripes form in cichlids [54�].

Beyond fish, two novel studies have combined experimen-

tal and modeling approaches to explore patterns in lizards

and cephalopods (Figure 5n–q). First, Manukyan et al.
[13��] linkeda reaction–diffusion model toa cellular autom-

aton description of scale color. The authors changed the

diffusion coefficients in the reaction–diffusion system at

scale boundaries,obtaining patternswith uniformlycolored

scales and reproducing in vivo results well. Second, Reiter

et al. [57��] tracked featuresof individual chromatophores in

time in cuttlefish. These authors also developed a minimal

mathematical model for light and dark cells that change

their color in the growing skin.

Conclusions
The zebrafish (Danio rerio) is a widely studied,

experimentally tractable fish with important biomedical

applications [1–3,46]. Within this species, there is a broad

range of mutant patterns that form as the fish grows due to
www.sciencedirect.com 
cell interactions that have been altered (often in unknown

ways). Because they have been extensively studied in the

lab, there is a wealth of biological literature available on

zebrafish, and mathematicians [16,31,33] have used

this to build models that make experimentally testable

predictions about cell behavior. Although experimental-

ists have identified many of the genes involved in pattern

formation in Danio rerio, much less is known about other

fish.

Zebrafish patterning is an inherently multiscale, multi-

disciplinary problem that gives researchers the opportu-

nity to uncover how genes, cell behavior, and organism

appearance are related (Figure 1). Through a combination

of experimental and mathematical-modeling approaches,

some of the exciting challenges going forward will be

continuing to uncover the detailed structure of commu-

nication channels [36��], the role of long extensions in

cellular interactions [40��], and the impact of the tissue

environment on pattern formation [23�]. At the pheno-

type scale, the rich diversity of patterns in fish of the

Danio genus [10��,17��], as well as in more distant relatives

of zebrafish like clownfish [12�], represent emerging

pattern frontiers.
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Cerdá-Reverter JM, Rotllant J: Countershading in zebrafish
results from an Asip1 controlled dorsoventral gradient of
pigment cell differentiation. Sci Rep 2019, 9:3449.
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