

Linking genotype, cell behavior, and phenotype: multidisciplinary perspectives with a basis in zebrafish patterns

Alexandria Volkening^{1,2}

Zebrafish are characterized by dark and light stripes, but mutants display a rich variety of altered patterns. These patterns arise from the interactions of brightly colored pigment cells, making zebrafish a self-organization problem. The diversity of patterns present in zebrafish and other emerging fish models provides an excellent system for elucidating how genes, cell behavior, and visible animal characteristics are related. With the goal of highlighting how experimental and mathematical approaches can be used to link these scales, I overview current descriptions of zebrafish patterning, describe advances in the understanding of the mechanisms underlying cell communication, and discuss new work that moves beyond zebrafish to explore patterning in evolutionary relatives.

Addresses

¹ NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA

² Department of Engineering Sciences and Applied Mathematics, Evanston, IL 60208, USA

Corresponding author:

Volkening, Alexandria (alexandria.volkening@northwestern.edu)

Current Opinion in Genetics & Development 2020, 63:78–85

This review comes from a themed issue on **Developmental mechanisms, patterning and evolution**

Edited by **Richard W Carthew** and **Amy Shyer**

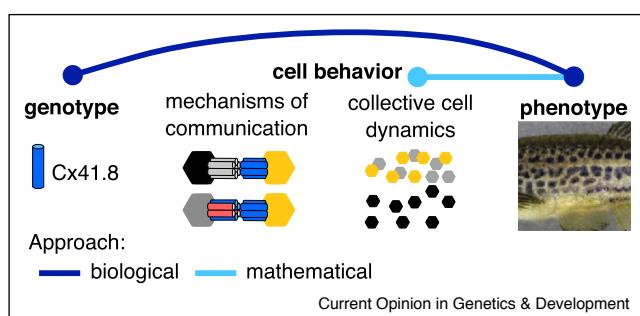
For a complete overview see the [Issue](#) and the [Editorial](#)

Available online 27th June 2020

<https://doi.org/10.1016/j.gde.2020.05.010>

0959-437X/© 2020 Elsevier Ltd. All rights reserved.

Introduction


Because alterations in cellular dynamics lead to differences in organism appearance, pattern formation on animal skin is a useful system for studying cell behavior. Amenable to many experimental techniques and widely used for its biomedical applications, the zebrafish (*Danio rerio*) is a model organism for exploring pattern formation [1–4]. Zebrafish are characterized by dark stripes and light interstripes, but diverse patterns are found in mutant fish [1,2,5]. These patterns form due to the interactions of tens of thousands of brightly colored pigment cells.

Writing for an interdisciplinary audience, in this review I discuss how experimental and mathematical-modeling approaches are being used to identify the genetic and cellular differences that underlie different phenotypes, linking scales that span from intracellular to evolutionary (Figure 1). With a focus on the literature from the last three years, I review self-organization in zebrafish, describe different modeling approaches to collective cell dynamics, highlight findings on the mechanisms that underlie cell communication, and discuss multidisciplinary perspectives on new pattern formation frontiers, including zebrafish's siblings in the *Danio* genus [9,10^{••},11], clownfish [12[•]], and lizards [13^{••}].

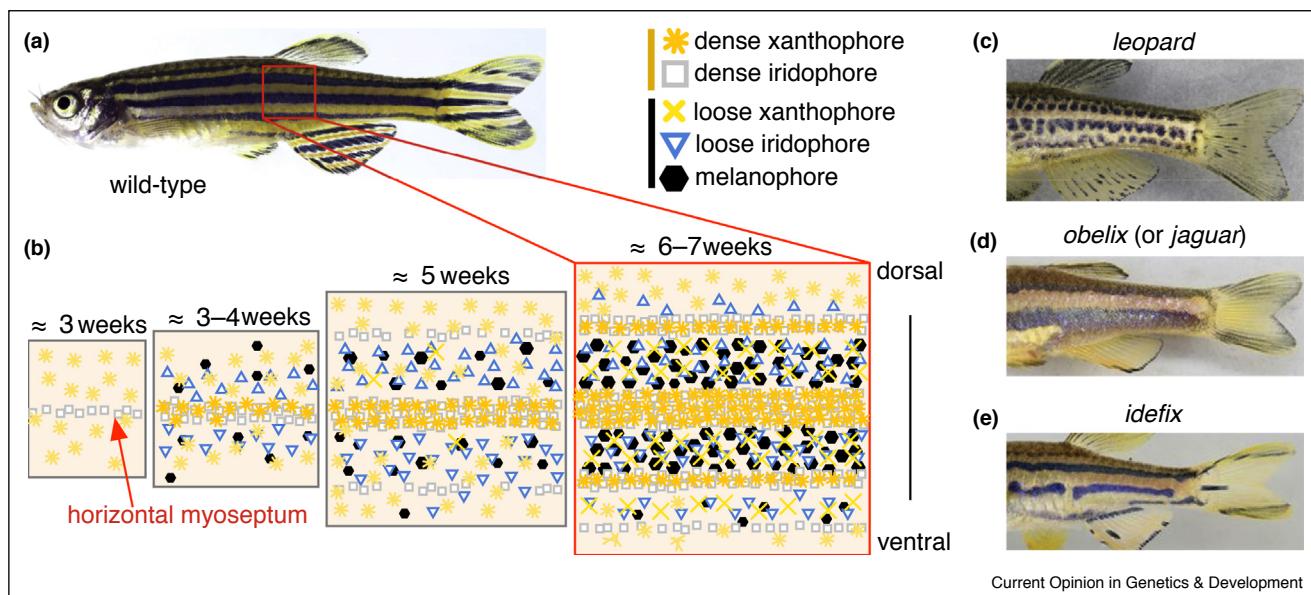
Biology of self-organization

There are three main types of pigment cells that are involved in pattern formation in zebrafish: black melanophores (or melanocytes), yellow/orange xanthophores, and iridescent silver/blue iridophores. These cells belong to a wider set of chromatophores that are present in fish (and other cold-blooded animals) and also includes red erythrophores, white leucophores, and blue cyanophores [1,12[•]]. Interestingly, Lewis *et al.* [17^{••}] recently showed that a subclass of leucophores develops from melanophores through transdifferentiation (meaning they transform from fully developed melanophores into a new cell type) and lines the edges of zebrafish's dorsal and caudal fins. While humans have one only one type of pigment cell (melanocytes, the originating cell for melanoma [3]), these six chromatophores form the basis of the patterns that are present across many fish and reptiles.

On zebrafish skin, adult patterning starts when the fish is approximately 3 weeks old [18,19]. As the fish nearly doubles in length over the next several weeks, chromatophores organize to produce stripes and interstripes sequentially from the horizontal myoseptum outward on the growing body (stripes also appear on two fins) [20]. Iridophores, which first appear along the horizontal myoseptum, help align the body pattern [19–21] (Figure 2b,c). As they disperse dorsally and ventrally, these iridescent cells take on different shapes and colors, providing signals to melanophores and xanthophores [19]. Experimentalists have employed diverse techniques, including mutational analysis, ablation, and transplantation, (e.g. [20,21,22[•],23[•],24,25]) to search for the cellular mechanisms that are involved in wild-type and mutant

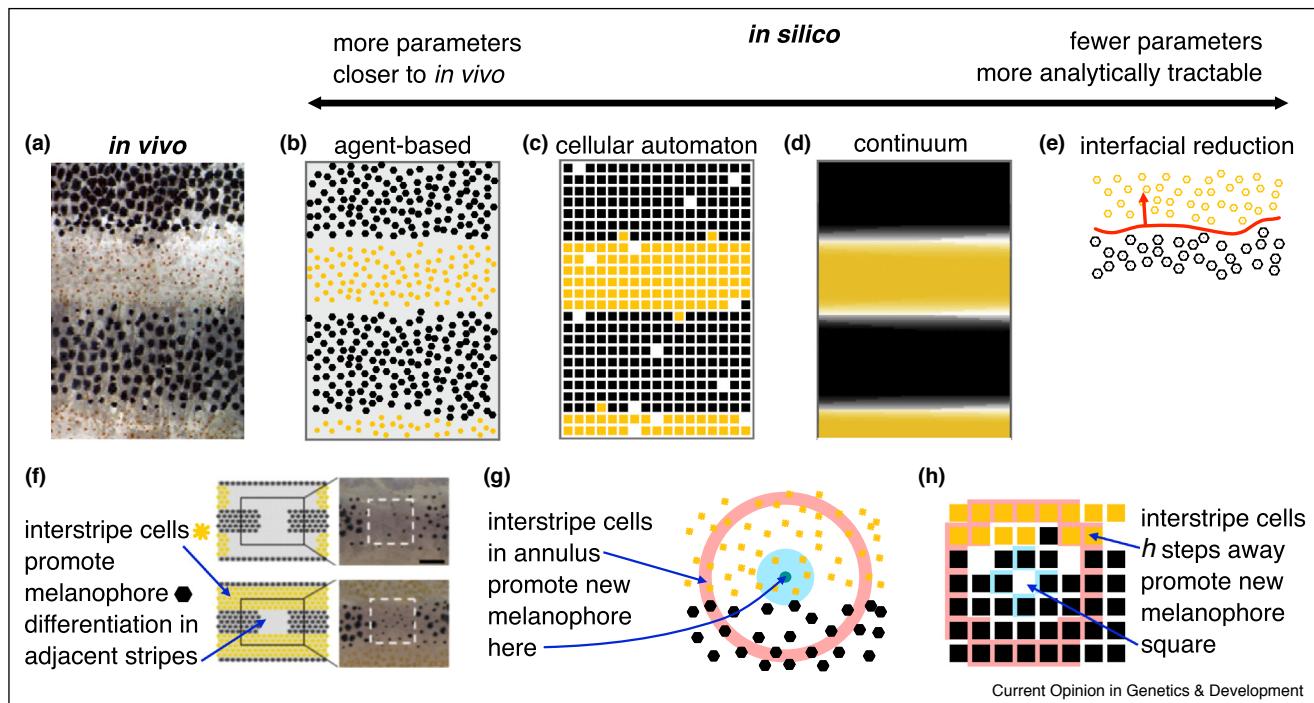
Figure 1

Overview and one example of how experimental and mathematical approaches can be used in tandem to link genotype [6,7], cell behavior, and phenotype. In this review, I describe biological and mathematical views on self-organization, discuss mechanisms of cell communication, and highlight pattern variability in mutant zebrafish and evolutionary relatives. Phenotype image adapted from [8] with permission from Elsevier, Copyright (2015) Elsevier Ltd.


patterning (Figure 2c–e). Together these approaches have uncovered an interaction network that includes local and long-range dynamics [24,26]. Cells interact through migration (repulsion or attraction), birth and differentiation, competition, and transitions in shape [19,21,25,27,28], and several recent models [16,29,30] have accounted for these behaviors phenomenologically.

Mathematics of self-organization

Mathematical biologists have used three main approaches to describe wild-type and mutant pattern formation in zebrafish (Figure 3). On the microscopic side, agent-based models treat cells as individuals and track the (x, y) -coordinate of each cell's center (Figure 3b). Cells move continuously in space on growing domains according to differential equations, and stochastic rules govern differentiation, competition, and transitions in form [16,30]. Cellular automaton models [29,31], in comparison, treat space as a lattice and specify all cell behaviors using stochastic rules (Figure 3c).


On the macroscopic side, continuum models [24,29,32–34] describe cell (or morphogen) densities (Figure 3d). Although zebrafish have traditionally been studied using reaction–diffusion equations [24,29], recent models include non-local terms [33,34]. Motivated by *in vitro* observations [28], Woolley [32] also showed that patterns can arise through chase–run behavior with rotation in a system of partial differential equations (PDEs). As an alternative means of describing patterns that is, like continuum approaches, amenable to mathematical analysis, McCalla and von Brecht [35] studied the evolution of stripe–interstripe interfaces in a general model.

Models can be used to suggest wild-type cell interactions, and, by changing parameters, we can make experimentally

Figure 2

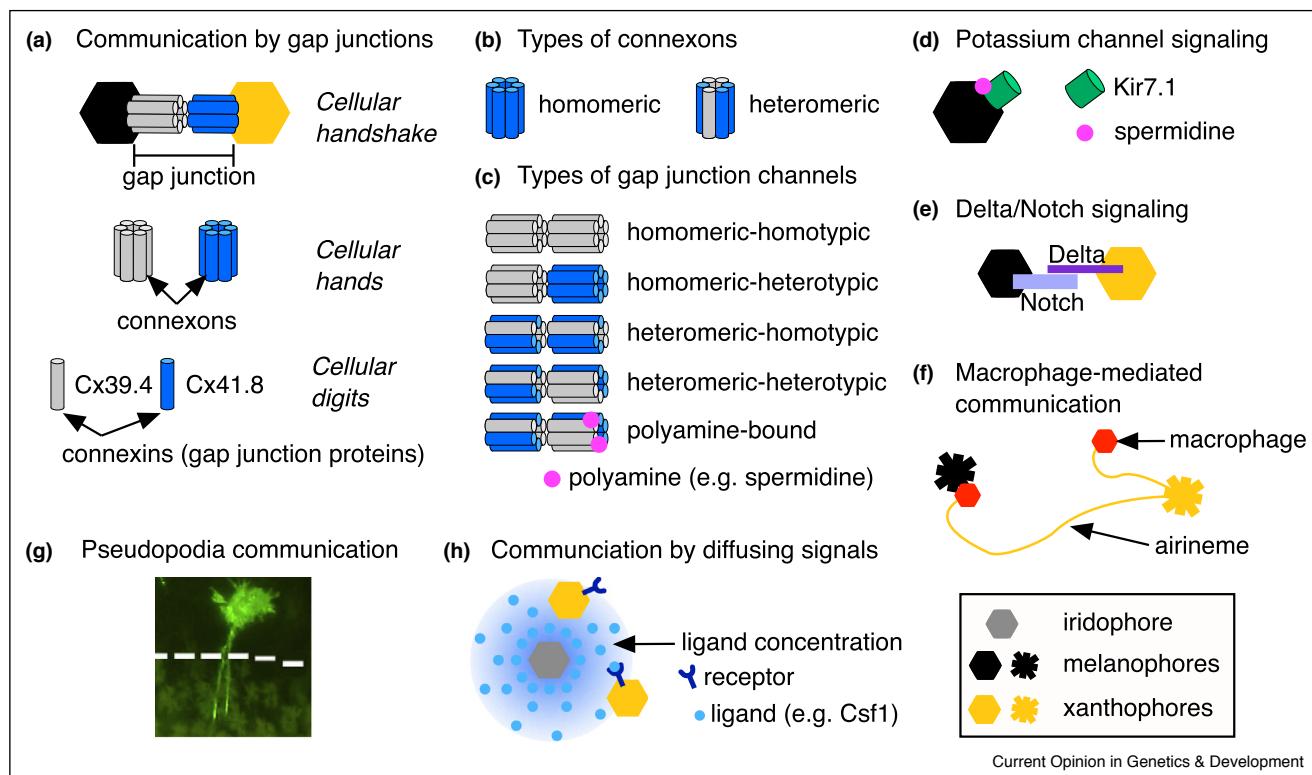
Stripe and mutant zebrafish patterns. (a) Wild-type zebrafish have stripe patterns that (b) form sequentially outward from the horizontal myoseptum due to the interactions of pigment cells [20]. (c) *leopard* (encoding Cx41.8) [6,7], (d) *obelix* or *jaguar* (encoding Kir7.1) [6,14], and (e) *idefix* (encoding spermidine synthase) [15] patterns arise due to cell interactions that have been altered (often in unknown ways); see Figure 4. Images (a, c) adapted from [8] with permission from Elsevier, Copyright (2015) Elsevier Ltd.; image (b) adapted from [16], published by Springer Nature, and based on a schematic in [8]; and images (d, e) adapted from [15] and published by The Company of Biologists Ltd. Image (b) licensed under CC-BY 4.0 (<https://creativecommons.org/licenses/by/4.0/>) and images (d, e) licensed under CC-BY 3.0 (<https://creativecommons.org/licenses/by/3.0/>).

Figure 3

Mathematical (*in silico*) perspectives on pattern formation. Melanophores and xanthophores are shown, but the model [16] also includes iridophores. (a) *In vivo* pattern shows pigment cells. (b) Agent-based models describe the behavior of individual cells through stochastic rules and/or differential equations [16]. (c) In cellular automaton models, space is discretized, and rules govern the color of grid spaces [29]. (d) Continuum models describe cell (or morphogen) densities [32,33]. (e) Through an interfacial reduction, one tracks the evolution of stripe–interstripe boundaries (red curve) [35]. (f) Ablation experiments [24] have shown that interstripe cells promote melanophore differentiation at long range. (g) Agent-based [16] and (h) cellular automaton models [29] account for these long-range interactions phenomenologically. Image (a) reproduced from [20], licensed under CC-BY 3.0 (<http://creativecommons.org/licenses/by/3.0>) and published by The Company of Biologists Ltd.; image (g) adapted from [16] and licensed under CC-BY 4.0 (<https://creativecommons.org/licenses/by/4.0/>); image (f) adapted from [24].

testable predictions about the cell behaviors that may be altered in mutant patterns. Importantly, prior zebrafish models do so at a phenomenological — rather than mechanistic — level. For instance, the microscopic models [16,29] account for long-range interactions [21,24] by considering the types of cells that appear in an annulus around the position of interest (Figure 3f–h).

Mechanisms of cell communication


Down a scale from collective dynamics and phenomenological models, we can ask about the mechanisms that underlie how cells communicate, change their shape, and determine their fate. This is a complex and exciting problem, and I overview some of the ways that chromatophores interact in zebrafish.

Gap junctions are a form of communication between adjacent cells that can be thought of as cellular handshakes (Figure 4a–c). Each cell offers a connexon (e.g. hand) to form the channel, and individual connexons are composed of six connexins (e.g. fingers) [36[•],37,38]. Two connexin proteins, Cx39.4 and Cx41.8, are required

for melanophore–xanthophore communication, and mutations in the genes encoding these proteins produce the *luchs* and *leopard* phenotypes, respectively (Figure 2c) [36[•],37,43]. Puzzling out what connexins make up connexons and what connexons form gap junctions is difficult, particularly because connexons can be either homomeric or heteromeric, meaning made up of the same or different connexins (Figure 4b). Moreover, pairs of connexons may come together with like or unlike connexons, forming a wide range of possible channels [36[•],37]. In an exciting study, Usui *et al.* [36[•]] recently identified a minimal network of gap junctions that may regulate communication between melanophores and xanthophores.

Potassium channels provide another means of signaling (Figure 4d), and *obelix* (or *jaguar*; Figure 2d) zebrafish have a mutation in the gene encoding for an inwardly rectifying potassium channel (Kir7.1) [14]. Adding further complexity, polyamines may bind to gap junctions and potassium channels to regulate their function [15,36[•]]. The polyamine spermidine affects potassium channels as

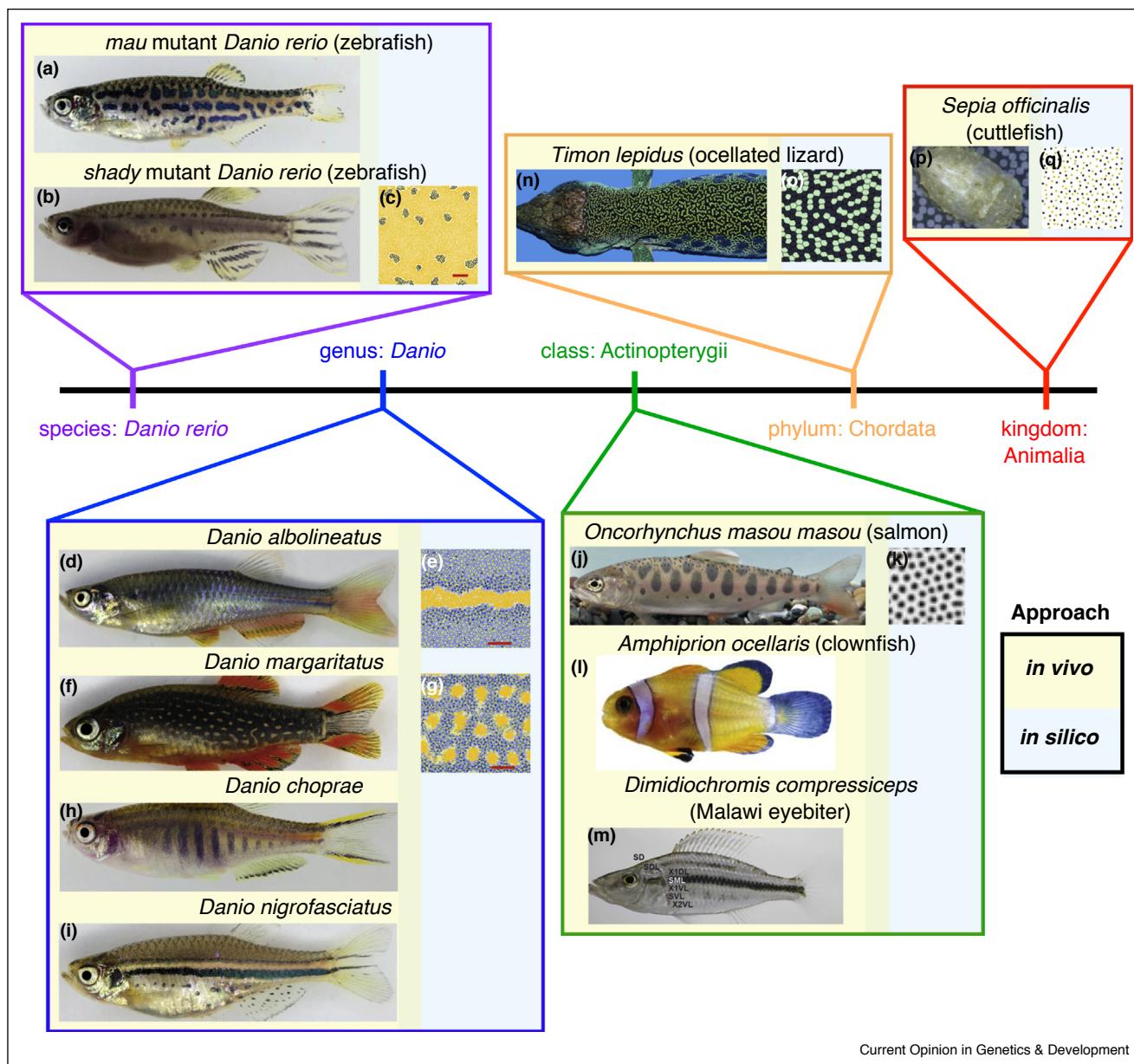
Figure 4

Current Opinion in Genetics & Development

Mechanisms of cell communication. (a) Gap junctions provide a means of communication between adjacent cells [36^{••},37,38]. (b) Connexons are homomeric (consisting of identical connexin proteins) or heteromeric (consisting of a mix of connexins). (c) Pairs of connexons form channels, and polyamines (small diffusing factors) bind to gap junctions to regulate their function [15,36^{••}]. (d) The *obelix* mutation (Figure 2f) encodes the Kir7.1 potassium channel [6,14]. Images (b, c, d) are based on schematics in [36^{••}]. (e) Delta/Notch signaling may involve protrusions including (f) airinemes and (g) pseudopodia [2,26,39,40^{••}]. Asterisk shapes denote cells in an early form, as airineme communication is state-dependent [39]. (h) Diffusing signals and secreted factors, expressed by pigment cells or the tissue environment, are involved in cell proliferation and fate [21,27,41,42[•]]; see [2] for a review. Image (g) adapted from [26], licensed under CC-BY 3.0 (<http://creativecommons.org/licenses/by/3.0>) and published by The Company of Biologists Ltd.

well as Cx39.4 gap junctions [36^{••}], and the *idefix* mutant (Figure 2e) is associated with reduced spermidine levels [15].

Cellular extensions make it possible for Delta/Notch signaling (a form of receptor-ligand communication that requires cellular contact; Figure 4e) to occur at long range [2,26,39,40^{••}] (see the recent review [44]). In two novel studies, Eom *et al.* [39,40^{••}] showed that early xanthophores extend fast projections (called airinemes) toward early melanophores with the help of macrophages (Figure 4f). Stable, long pseudopodia from melanophores have also been observed *in vivo* [26] (Figure 4g).


A variety of diffusing signals, external ligands, and receptors, including thyroid hormone [42[•],45], Endothelin-3 [10^{••}], colony-stimulating factor [27], and leukocyte tyrosine kinase [41,46,47] are involved in cell proliferation and differentiation (Figure 4h; see [1,2] for more

comprehensive reviews). For example, Saunders *et al.* [42[•]] showed that thyroid hormone helps melanophores mature (to a non-dividing state) and causes xanthophores to acquire pigment. Interestingly, reduced levels of galanin lead to increased thyroid hormone, and a mutation that affects galanin signaling in the brain has recently been shown to have a global impact on the pigment cells across zebrafish [48[•]]. As I discuss next, mutations that involve some of these signals [10^{••},27,42[•]] have been associated with evolutionary relatives of zebrafish.

Diversity of patterns

There are several lines of new work that involve taking a broader view of pattern formation. If we look at zebrafish as a whole, there are differences in the patterns that appear in different regions of the fish [8,9,21]. For example, Eskova *et al.* [23[•]] recently showed that chromatophores from *mau* mutant zebrafish (encoding Aqp3a) can produce stripes when transplanted to a wild-type

Figure 5

Pattern diversity. I indicate *in vivo* patterns in yellow and their *in silico* counterparts in blue, noting that many organisms remain to be described mathematically. (a–c) Zebrafish mutants feature altered patterns, and distinct patterns may form in different regions of the fish [20]. (d–i) The *Danio* genus is becoming a newly accessible frontier in patterning [1,2,10[•],11,16,17[•]]. (j–m) The Actinopterygii class contains many fish with horizontal stripe, vertical bar, or spotted patterns [5,12[•],53,54[•],56]. (n–o) Lizards have the same chromatophores as fish, and their patterns were modeled on [13[•]]. (p–q) The Animalia kingdom also contains cuttlefish, which change color depending on their environment [57[•]]. Image (a) reproduced from [23[•]] under CC-BY 3.0 (<http://creativecommons.org/licenses/by/3.0>) and published by The Company of Biologists Ltd.; images (b, d, f, h, i) reproduced from [8] with permission from Elsevier, Copyright (2015) Elsevier Ltd.; images (c, e, g) and (m) reproduced from [16] and [54[•]], respectively, published by Springer Nature, and licensed under CC-BY 4.0 (<http://creativecommons.org/licenses/by/4.0/>); images (n, o) and (p, q) adapted from [13[•]] and [57[•]] by permission from Springer Nature, Copyright (2017) and (2018) Springer Nature, respectively; images (j, k) reproduced from [53], Copyright (2010) Springer Nature, and licensed under CC BY-NC-SA 3.0 (<http://creativecommons.org/licenses/by-nc-sa/3.0/>); image (l) reproduced from [12[•]] with permission from John Wiley & Sons, Copyright (2019) John Wiley & Sons A/S.

environment, highlighting the role of the tissue environment in pattern formation [21] (Figure 5a). Moreover, the *shady* mutant [20,47] features a spotted body with striped fins (Figure 5b). Using an approach that could be applied to *shady* zebrafish in the future, Kozák *et al.* [49] analyzed a general reaction–diffusion model with spatially varying reaction parameters. New work [50–52] has also explored countershading, a pattern (separate from the fish's namesake stripes) that consists of a dark dorsal region and a light belly ventrally (see [1] for a review).

At the evolutionary scale, a collection of recent studies [10^{••},16,17^{••}] (Figure 5d–i) have explored sibling species in the *Danio* genus (see reviews [1,2]). The agent-based model [16] describes zebrafish stripe formation and identifies specific cell behaviors that, when removed, produce *Danio margaritatus* patterns (Figure 5g). In a novel study, Spiewak *et al.* [10^{••}] showed that differences between zebrafish and *Danio nigrofasciatus* (Figure 5i) involve changes in Endothelin-3, a ligand that is expressed by the skin and impacts the number of iridophores present. This work further highlights the role of the tissue environment on cell proliferation and dynamics [10^{••},23[•]].

If we widen our perspective further, we reach the taxonomic class that contains all of the fish that have rays in their fins, including zebrafish as well as clownfish [12[•]], salmon [53], cichlids [54[•],55], and trout [56]. Along with the *Danio* genus, reef fish are emerging as exciting research frontiers [5]. In a new study, Salis *et al.* [12[•]] found that the white bars in clownfish contain iridophores (similar to the iridophores in interstripes in zebrafish). It has also been shown that two regulatory proteins (Sox5 and Sox10) have different roles in specifying cell fate in medaka and zebrafish [58[•]]. Lastly, Hendrick *et al.* suggested that differences in melanophore differentiation and migration help determine whether vertical or horizontal stripes form in cichlids [54[•]].

Beyond fish, two novel studies have combined experimental and modeling approaches to explore patterns in lizards and cephalopods (Figure 5n–q). First, Manukyan *et al.* [13^{••}] linked a reaction–diffusion model to a cellular automaton description of scale color. The authors changed the diffusion coefficients in the reaction–diffusion system at scale boundaries, obtaining patterns with uniformly colored scales and reproducing *in vivo* results well. Second, Reiter *et al.* [57^{••}] tracked features of individual chromatophores in time in cuttlefish. These authors also developed a minimal mathematical model for light and dark cells that change their color in the growing skin.

Conclusions

The zebrafish (*Danio rerio*) is a widely studied, experimentally tractable fish with important biomedical applications [1–3,46]. Within this species, there is a broad range of mutant patterns that form as the fish grows due to

cell interactions that have been altered (often in unknown ways). Because they have been extensively studied in the lab, there is a wealth of biological literature available on zebrafish, and mathematicians [16,31,33] have used this to build models that make experimentally testable predictions about cell behavior. Although experimentalists have identified many of the genes involved in pattern formation in *Danio rerio*, much less is known about other fish.

Zebrafish patterning is an inherently multiscale, multidisciplinary problem that gives researchers the opportunity to uncover how genes, cell behavior, and organism appearance are related (Figure 1). Through a combination of experimental and mathematical-modeling approaches, some of the exciting challenges going forward will be continuing to uncover the detailed structure of communication channels [36^{••}], the role of long extensions in cellular interactions [40^{••}], and the impact of the tissue environment on pattern formation [23[•]]. At the phenotype scale, the rich diversity of patterns in fish of the *Danio* genus [10^{••},17^{••}], as well as in more distant relatives of zebrafish like clownfish [12[•]], represent emerging pattern frontiers.

Conflict of interest statement

Nothing declared.

Acknowledgements

I am especially grateful to Uwe Irion and Richard Carthew for answering my questions from a biological perspective and for their comments on a draft of this review. More broadly, I also thank the community of zebrafish experimentalists that I have been fortunate to meet and learn from for invaluable conversations that have added to my perspective on zebrafish over time. This work has been supported by the National Science Foundation under grant no. DMS-1764421 and by the Simons Foundation/SFARI under grant no. 597491-RWC.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Irion U, Nüsslein-Volhard C: **The identification of genes involved in the evolution of color patterns in fish.** *Curr Opin Genet Dev* 2019, **57**:31–38.
2. Patterson LB, Parichy DM: **Zebrafish pigment pattern formation: insights into the development and evolution of adult form.** *Annu Rev Genet* 2019, **53**:505–530.
3. Cooper CD: **Insights from zebrafish on human pigment cell disease and treatment.** *Dev Dyn* 2017, **246**:889–896.
4. Kelsh RN, Sosa KC, Owen JP, Yates CA: **Zebrafish adult pigment stem cells are multipotent and form pigment cells by a progressive fate restriction process.** *BioEssays* 2017, **39**:1600234.
5. Salis P, Lorin T, Laudet V, Frédéric B: **Magic traits in magic fish: understanding color pattern evolution using reef fish.** *Trends Genet* 2019, **35**:265–278.
6. Maderspacher F, Nüsslein-Volhard C: **Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions.** *Development* 2003, **130**:3447–3457.

7. Watanabe M, Iwashita M, Ishii M, Kurachi Y, Kawakami A, Kondo S, Okada N: **Spot pattern of leopard *Danio* is caused by mutation in the zebrafish connexin41.8 gene.** *EMBO Rep* 2006, **7**:893-897.
8. Singh AP, Nüsslein-Volhard C: **Zebrafish stripes as a model for vertebrate colour pattern formation.** *Curr Biol* 2015, **25**:R81-R92.
9. Nüsslein-Volhard C, Singh AP: **How fish color their skin: a paradigm for development and evolution of adult patterns.** *BioEssays* 2017, **39**:1600231.
10. Spiewak JE, Bain EJ, Liu J, Kou K, Sturiale SL, Patterson LB, Diba P, Eisen JS, Braasch I, Ganz J, Parichy DM: **Evolution of Endothelin signaling and diversification of adult pigment pattern in *Danio* fishes.** *PLOS Genet* 2018, **14**:e1007538.
- Spiewak *et al.* showed that reduced levels of Endothelin-3, which is expressed by the skin, are one of the features that distinguished *Danio nigrofasciatus* and *Danio rerio* during evolution.
11. McCluskey BM, Postlethwait JH: **Phylogeny of zebrafish, a "Model Species", within *Danio*, a "Model Genus".** *Mol Biol Evol* 2015, **32**:635-652.
12. Salis P, Lorin T, Lewis V, Rey C, Marcionetti A, Escande ML, Roux N, Besseau L, Salamin N, Sémon M, Parichy D, Volff JN, Laudet V: **Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish.** *Pigment Cell Melanoma Res* 2019, **32**:391-402.
- Salis *et al.* determined that iridophores (not leucophores) are responsible for the white color in the vertical bars of clownfish.
13. Manukyan L, Montandon SA, Fofonka A, Smirnov S, Miliukovitch MC: **A living mesoscopic cellular automaton made of skin scales.** *Nature* 2017, **544**:173-179.
- In this article that is both biologically and mathematically rich, Manukyan *et al.* quantitatively analyzed patterns in ocellated lizards and developed a cellular automaton model of scale color. They also showed how to achieve *in silico* patterns that agree with *in vivo* images using a reaction-diffusion model by adjusting its diffusion parameters at scale boundaries.
14. Iwashita M, Watanabe M, Ishii M, Chen T, Johnson SL, Kurachi Y, Okada N, Kondo S: **Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement.** *PLOS Genet* 2006, **2**:e197.
15. Frohnhofer HG, Geiger-Rudolph S, Pattky M, Meixner M, Huhn C, Maischein HM, Geisler R, Gehring I, Maderspacher F, Nüsslein-Volhard C, Irion U: **Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish.** *Biol Open* 2016, **5**:736-744.
16. Volkening A, Sandstede B: **Iridophores as a source of robustness in zebrafish stripes and variability in *Danio* patterns.** *Nat Commun* 2018, **9**:3231.
17. Lewis VM, Saunders LM, Larson TA, Bain EJ, Sturiale SL, Gur D, Chowdhury S, Flynn JD, Allen MC, Deheyn DD, Lee JC, Simon JA, Lippincott-Schwartz J, Raible DW, Parichy DM: **Fate plasticity and reprogramming in genetically distinct populations of *Danio* leucophores.** *Proc Natl Acad Sci U S A* 2019, **116**:11806-11811.
- Lewis *et al.* showed that two separate classes of leucophores arise in zebrafish and several other *Danio* fish. One class seems to arise from xanthophores or their progenitors and the other (melanoleucophores) develops because adult melanophores transdifferentiate. Interestingly, melanoleucophores appear in prominent places on two fins, and experiments suggest other fish socially respond to the presence or absence of these cells.
18. Mahalwar P, Walderich B, Singh AP, Nüsslein-Volhard C: **Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish.** *Science* 2014, **345**:1362-1364.
19. Singh AP, Schach U, Nüsslein-Volhard C: **Proliferation, dispersal and patterned aggregation of iridophores in the skin prefigure striped colouration of zebrafish.** *Nat Cell Biol* 2014, **16**:604-611.
20. Frohnhofer HG, Krauss J, Maischein HM, Nüsslein-Volhard C: **Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish.** *Development* 2013, **140**:2997-3007.
21. Patterson LB, Parichy DM: **Interactions with iridophores and the tissue environment required for patterning melanophores and**

xanthophores during zebrafish adult pigment stripe formation.

PLOS Genet 2013, **9**:e1003561.

22. Aramaki T, Kondo S: **Method for disarranging the pigment pattern of zebrafish by optogenetics.** *Dev Biol* 2020, **460**:12-19.
- Laser ablation, used in prior mathematical models for development and testing, may affect the tissue environment beyond pigment cells. In this study, Aramaki and Kondo developed a less invasive technique for temporarily altering chromatophore arrangement through blue light. This approach can be emulated *in silico* in the future.
23. Eskova A, Chauvigné F, Maischein HM, Ammelburg M, Cerdà J, Nüsslein-Volhard C, Irion U: **Gain-of-function mutations in Aqp3a influence zebrafish pigment pattern formation through the tissue environment.** *Development* 2017, **144**:2059-2069.
- Eskova *et al.* described *mau* mutant zebrafish, which feature spotty, broken stripes and short fins due to a gain-of-function mutation in the gene encoding for Aquaporin 3a. Transplantation experiments showed that mutant pigment cells are able to form stripes in a wild-type environment, highlighting the role of the tissue environment in pattern formation. These effects could be built into future mathematical models.
24. Nakamasu A, Takahashi G, Kanbe A, Kondo S: **Interactions between zebrafish pigment cells responsible for the generation of Turing patterns.** *Proc Natl Acad Sci U S A* 2009, **106**:8429-8434.
25. Yamaguchi M, Yoshimoto E, Kondo S: **Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism.** *Proc Natl Acad Sci U S A* 2007, **104**:4790-4793.
26. Hamada H, Watanabe M, Lau HE, Nishida T, Hasegawa T, Parichy DM, Kondo S: **Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning.** *Development* 2014, **141**:318-324.
27. Patterson LB, Bain EJ, Parichy DM: **Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and *Danio* pattern evolution.** *Nat Commun* 2014, **5**:5299.
28. Yamanaka H, Kondo S: **In vitro analysis suggests that difference in cell movement during direct interaction can generate various pigment patterns in vivo.** *Proc Natl Acad Sci U S A* 2014, **111**:1867-1872.
29. Bullara D, De Decker Y: **Pigment cell movement is not required for generation of Turing patterns in zebrafish skin.** *Nat Commun* 2015, **6**:6971.
30. Volkening A, Sandstede B: **Modelling stripe formation in zebrafish: an agent-based approach.** *J R Soc Interface* 2015, **12**:20150812.
31. Slater FC, Bauer WM, Renier CM, Pastor J, Liang JO, Welsh CA: **Mathematical analysis of melanocyte patterns on *Danio rerio*.** *Zebrafish* 2020, **17**:59-72.
32. Woolley TE: **Pattern production through a chiral chasing mechanism.** *Phys Rev E* 2017, **96**:032401.
33. Kondo S: **An updated kernel-based Turing model for studying the mechanisms of biological pattern formation.** *J Theor Biol* 2017, **414**:120-127.
34. Painter KJ, Bloomfield JM, Sherratt JA, Gerisch A: **A nonlocal model for contact attraction and repulsion in heterogeneous cell populations.** *Bull Math Biol* 2015, **77**:1132-1165.
35. McCalla SG, von Brecht JH: **Consistent dynamics of stripes formed by cell-type interfaces.** *SIAM J Appl Dyn Syst* 2018, **17**:2615-2633.
36. Usui Y, Aramaki T, Kondo S, Watanabe M: **The minimal gap-junction network among melanophores and xanthophores required for stripe pattern formation in zebrafish.** *Development* 2019, **146**:dev181065.
- The authors developed a range of mutant and transgenic zebrafish, allowing them to study the structure of gap-junction channels. Usui *et al.* identified a minimal network of gap junctions, made up of Cx39.4 and Cx41.8 proteins, that may regulate communication between melanophores and xanthophores. They also observed spermidine dependence in communication channels that include Cx39.4.
37. Irion U, Frohnhofer HG, Krauss J, Champollion TC, Maischein HM, Geiger-Rudolph S, Weiler C, Nüsslein-Volhard C: **Gap junctions**

composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish. *elife* 2014, 3:e05125.

38. Watanabe M: **Gap junction in the teleost fish lineage: duplicated connexins may contribute to skin pattern formation and body shape determination.** *Front Cell Dev Biol* 2017, 5:13.

39. Eom DS, Bain EJ, Patterson LB, Grout ME, Parichy DM: **Long-distance communication by specialized cellular projections during pigment pattern development and evolution.** *elife* 2015, 4:e12401.

40. Eom DS, Parichy DM: **A macrophage relay for long-distance signaling during postembryonic tissue remodeling.** *Science* 2017, 355:1317-1320

Eom and Parichy showed that macrophages are involved in the extension and delivery of airnemes, a new type of fast, cell-state dependent extensions from early xanthophores to early melanophores.

41. Mo ES, Cheng Q, Reshetnyak AV, Schlessinger J, Nicoli S: **Alk and Ltk ligands are essential for iridophore development in zebrafish mediated by the receptor tyrosine kinase Ltk.** *Proc Natl Acad Sci U S A* 2017, 114:12027-12032.

42. Saunders LM, Mishra AK, Aman AJ, Lewis VM, Toomey MB, Packer JS, Qiu X, McFadie-Figueroa JL, Corbo JC, Trapnell C, Parichy DM: **Thyroid hormone regulates distinct paths to maturation in pigment cell lineages.** *elife* 2019, 8:e45181

Saunders *et al.* showed that thyroid hormone limits the number of melanophores present by helping them mature to an adult (non-dividing) state. In comparison, this hormone causes xanthophores to accumulate enough pigment to become visible. This highlights how one signaling factor can have different effects on the maturation of different pigment cells.

43. Watanabe M, Sawada R, Aramaki T, Skerrett IM, Kondo S: **The physiological characterization of Connexin41.8 and Connexin39.4 which are involved in the striped pattern formation of zebrafish.** *J Biol Chem* 2016, 291:1053-1063.

44. Caviglia S, Ober EA: **Non-conventional protrusions: the diversity of cell interactions at short and long distance.** *Curr Opin Cell Biol* 2018, 54:106-113.

45. McMenamin SK, Bain EJ, McCann AE, Patterson LB, Eom DS, Waller ZP, Hamill JC, Kuhlman JA, Eisen JS, Parichy DM: **Thyroid hormone-dependent adult pigment cell lineage and pattern in zebrafish.** *Science* 2014, 345:1358-1361.

46. Fadeev A, Mendoza-Garcia P, Irion U, Guan J, Pfeifer K, Wiessner S, Serluca F, Singh AP, Nüsslein-Volhard C, Palmer RH: **ALKALs are in vivo ligands for ALK family receptor tyrosine kinases in the neural crest and derived cells.** *Proc Natl Acad Sci U S A* 2018, 115:E630-E638.

47. Lopes SS, Yang X, Müller J, Carney TJ, McAdow AR, Rauch GJ, Jacoby AS, Hurst LD, Delfino-Machín M, Haffter P, Geisler R, Johnson SL, Ward A, Kelsh RN: **Leukocyte tyrosine kinase functions in pigment cell development.** *PLOS Genet* 2008, 4: e1000026.

48. Eskova A, Frohnhofer HG, Nüsslein-Volhard C, Irion U: **Galatin signaling in the brain regulates color pattern formation in zebrafish.** *Curr Biol* 2020, 30:298-303.e3

Eskova *et al.* described the *nepomuk* mutant, which features a reduced number of stripes, as well as pigment cells that take on different shapes and densities than in wild-type. Interestingly, this phenotype arises because of a mutation that affects galatin signaling in the brain, leading to changes in the level of thyroid hormone, which plays a role in cell development.

49. Kozák M, Gaffney EA, Klika V: **Pattern formation in reaction-diffusion systems with piecewise kinetic modulation: an example study of heterogeneous kinetics.** *Phys Rev E* 2019, 100:042220.

50. Cal L, Suarez-Bregua P, Braasch I, Irion U, Kelsh R, Cerdá-Reverter JM, Rotllant J: **Loss-of-function mutations in the melanocortin 1 receptor cause disruption of dorso-ventral countershading in teleost fish.** *Pigment Cell Melanoma Res* 2019, 32:817-828.

51. Cal L, Suarez-Bregua P, Comesáñ P, Owen J, Braasch I, Kelsh R, Cerdá-Reverter JM, Rotllant J: **Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation.** *Sci Rep* 2019, 9:3449.

52. Cal L, Megías M, Cerdá-Reverter JM, Postlethwait JH, Braasch I, Rotllant J: **BAC recombineering of the agouti loci from spotted gar and zebrafish reveals the evolutionary ancestry of dorsal-ventral pigment asymmetry in fish.** *J Exp Zool B Mol Dev Evol* 2017, 328:697-708.

53. Miyazawa S, Okamoto M, Kondo S: **Blending of animal colour patterns by hybridization.** *Nat Commun* 2010, 1:66.

54. Hendrick LA, Carter GA, Hilbrands EH, Heubel BP, Schilling TF, Le Pabic P: **Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi.** *EvoDevo* 2019, 10:18

Focusing on two types of cichlid fish, Hendrick *et al.* described the cellular processes involved in producing vertical bar and horizontal stripe patterns. Their results suggest that stripe formation may depend on melanophore differentiation *in situ*, whereas bar patterns require migration of melanophore precursors.

55. Liang Y, Gervin J, Meyer A, Kratochwil CF: **Developmental and cellular basis of vertical bar color patterns in the East African cichlid fish *Haplochromis latifasciatus*.** *Front Cell Dev Biol* 2020, 8:62.

56. Djurdjević I, Furmanek T, Miyazawa S, Sušnik Bajec S: **Comparative transcriptome analysis of trout skin pigment cells.** *BMC Genom* 2019, 20:359.

57. Reiter S, Hülsdunk P, Woo T, Lauterbach MA, Eberle JS, Akay LA, Longo A, Meier-Credo J, Kretschmer F, Langer JD, Kaschube M, Laurent G: **Elucidating the control and development of skin patterning in cuttlefish.** *Nature* 2018, 562:361-366

In this novel study with applications to neuroscience, Reiter *et al.* carefully tracked characteristics of individual pigment cells in time in cuttlefish. They also developed a minimal mathematical model of light and dark chromatophores that change their color as the skin grows.

58. Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H: **Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish.** *PLOS Genet* 2018, 14:e1007260

Nagao *et al.* analyzed the role of two transcription factors (Sox5 and Sox10) in specifying chromatophore fate in evolutionary relatives. They found that xanthophores, melanophores, and iridophores (but not leucophores) depend on Sox10. Moreover, these factors have different effects in different types of fish: while Sox5 represses xanthophore fate in zebrafish, it promotes specification of xanthophores and inhibits leucophore fate in medaka.