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Abstract—There is a recent surge of interest in the design of
the first-order and the second-order distributed machine learn-
ing algorithms. However, distributed algorithms are sensitive
to Byzantine attackers who can send falsified information to
prevent the convergence of algorithms or lead the algorithms to
converge to value of the attackers’ choice. Some recent works
have proposed algorithms that can defend against Byzantine
attackers for the first-order methods. In this paper, we design two
algorithms that can deal with Byzantine attackers for the second-
order methods. The main idea of the first algorithm, named
median-based approximate Newton’s method (MNM), is to ask
the parameter server to aggregate gradient information and
approximate Newton’s direction from all workers by geometric
median. We show that MNM can converge when up to half of the
workers are Byzantine attackers. To deal with the case with an
arbitrary number of attackers, we then propose a comparison-
based approximate Newton’s method (CNM). The main idea of
CNM is to ask the server to randomly select a small clean dataset
and compute noisy gradient and Newton’s direction using this
small dataset. These noisy information will then be used as an
approximation of the ground truth to filter out bad information
from Byzantine attackers. We show that CNM can converge to
the neighborhood of the population minimizer even when more
than half of the workers are Byzantine workers. We further
provide numerical examples to illustrate the performance of the
proposed algorithms.

I. INTRODUCTION

The big data problems are arising in science, engineer-
ing, Internet, etc, which produce computation and storage
challenge in machine learning. Here we list some of them.
First, as the amount of data keeps growing at a fast pace,
it is challenging to fit all data in one machine [1]–[3].
Second, in certain scenarios, data is naturally collected at
different locations, and it is too costly to move all data to a
centralized location [4], [5]. To address these challenges and
to harness the computing power of multiple machines, there
is a growing interest in the design of distributed optimization
algorithms [6]–[17]. In a typical distributed optimization setup,
there are one parameter server and multiple workers. The
whole dataset is divided into small parts and each part is kept
in each worker. The server and workers exchange information
through a network to collectively compute quantity of interest.
However, the network typically has limited bandwidth and
high latency. Therefore, there is a need to balance the cost
of local computation and communication.
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Various distributed first-order methods, which use gradient
information and are often easy to implement, have been
proposed in many existing works, such as distributed stochastic
gradient descent (SGD) [9], [18], distributed variance re-
duced SGD [10], [19], [20], distributed coordinate descent
method [1], [2] and dual coordinate ascent algorithms [21],
[22] etc. These first-order methods significantly reduce the
amount of local computation. But these algorithms may require
a far greater number of iterations for communication. Some
algorithms also require synchronization in every iteration for
parameter updating.

In order to mitigate the negative impact of the large num-
ber of iterations for distributed optimization, communication-
efficient second-order methods have also been proposed [23]–
[28]. Shamir et al. [23] proposed DANE algorithm to minimize
a cost function consisting of local loss function, local gradient
and global gradient on each worker. AIDE in [24] applies
the generic acceleration scheme (catalyst) in InexactDANE to
improve the performance of DANE. DiSCO in [25] applies
an inexact damped Newton method through preconditioned
conjugated gradient method. Smith et al. [26] proposed Co-
CoA that involves sub-problems which are local quadratic
approximations to the dual objective function. Wang [27]
proposed GIANT that uses the average of inverse Hessian
matrix times global gradient as the approximate Newton’s
direction. ADN in [28] is built on an adaptive block-separable
approximation of the objective function.

Most of the existing works, both the first-order and the
second-order methods, assume that these workers behave
honestly and follow the protocol. However, in practice, there
is a risk that some of the workers are Byzantine attackers.
Byzantine attackers can prevent the convergence of the op-
timization algorithms or lead the algorithms to converge to
values chosen by the attackers by modifying or falsifying
intermediate results when the server require these intermediate
results for updating. For example, as shown in [29], [30],
for the first-order methods, the presence of even a single
Byzantine worker can prevent the convergence of distributed
gradient descent algorithm.

There have been some interesting recent works on designing
distributed machine learning algorithms [29]–[47] that can deal
with Byzantine attacks. The main idea of several works is to
compare information received from all workers which have
no redundant data, and compute a quantity that is robust to
attackers for algorithm update. However, these algorithms only
consider the first-order methods. Another idea is to employ the
redundant data when dealing with Byzantine attackers. In [34],



Chen et al. proposed an algorithm named DRACO that uses
redundant data. Each worker computes redundant gradients,
encodes them and sends the resulting vector to the server.
These vectors will pass through a decoder that detects where
the adversaries are through the encoded redundant gradient
information.

In this paper, we propose two new robust distributed second-
order methods that can converge to the neighborhood of the
population minimizer.

The first method, named median-based approximate New-
ton’s method (MNM), can converge to the neighborhood of
the population minimizer when less than half of the workers
are Byzantine attackers. The main idea is to use geometric
median to aggregate information from workers. The geometric
median enables the server to mitigate the impact of attackers
when up to half of the workers are Byzantine attackers.
Using these, we prove that the algorithm can converge to the
neighborhood of the population minimizer when q, the number
of Byzantine attackers, is less than m/2 with m being the total
number of workers. We show this result by proving that the
distance between the approximate Newton’s direction and true
Newton’s direction can be universally bounded. However, once
q > m/2, MNM fail to converge.

The second method, named comparison-based approximate
Newton’s Method (CNM), can converge to the neighborhood
of the population minimizer server regardless whether q is
larger or smaller than m/2. Compared with MNM, CNM
requires additional computation at the server. The main idea
is to ask server to randomly collect a small clean dataset
and compute noisy value as an approximation of the ground
truth to filter out information from attackers. In particular,
when the server receives gradient from each worker, it will
compute noisy gradient using the collected clean dataset, then
compute the distance of them. If the distance is small, the
server will accept the received gradient. After comparison,
the server will build the global gradient by averaging the
accepted gradients and its own noisy gradient, then broadcast
it to all workers. Then the server will compute a noisy
Newton’s direction from the Hessian matrix using the col-
lected dataset and global gradient. When receiving Newton’s
direction from workers, the server will compute the distance
between received Newton’s direction and the noisy Newton’s
direction and accept the received Newton’s direction if the
distance is small. Finally, the server computes the average of
all accepted Newton’s direction and its own noisy Newton’s
direction for updating. We prove that CNM can converge to
the neighborhood of population minimizer regardless number
of Byzantine attackers.

The paper is organized as follows. In Section II, we describe
the model. In Section III, we describe the proposed algorithms.
In Section IV, we analyze the convergence property of the
proposed algorithms. In Section V, we provide numerical
examples to validate the theoretic analysis. Finally, we offer
several concluding remarks in Section VI. The proofs are
collected in Appendix.

II. MODEL

In this section, we introduce our model. For random variable
X with an unknown distribution D, our goal is to infer the
model parameter θ∗ ∈ Rd of the unknown distribution. It is
popular to formulate this inference problem as an optimization
problem

θ∗ ∈ arg min
θ∈Θ

F (θ) = E{f(X, θ)}, (1)

in which f : X × Θ → R is the loss function, and Θ ∈
Rd is a closed convex set of all possible model parameters,
and the expectation is over the distribution D. F (θ) is called
population risk function.

In this paper, we make the following assumption about the
population risk function F (θ).

Assumption 1. The population risk function F : Θ → R is
h-strongly convex, and differentiable over Θ with M -Lipschitz
gradient. That is, for all θ, θ′ ∈ Θ,

F (θ′) ≥ F (θ) + 〈∇F (θ), θ′ − θ〉+ h ‖ θ′ − θ ‖2 /2, (2)

and
‖ ∇F (θ′)−∇F (θ) ‖≤M ‖ θ′ − θ ‖,

in which ‖ · ‖ is the `2 norm and 0 < h ≤M.

Since the expectation in (1) is over the unknown distribution
D, the population risk function F (θ) is unknown and hence
we cannot solve (1) directly. Instead, one typically aims to
minimize the empirical risk:

min
θ∈Θ

1

N

N∑
i=1

f(Xi, θ), (3)

where X1, X2, ..., XN are data samples generated by the
unknown distribution D. By solving (3), we obtain an estimate
of the true model parameter θ∗.

Fig. 1. Information flow of GIANT algorithm in [27]. 1©: ∇f (j)(θt−1); 2©:
∇f(θt−1); 3© : H−1

j,t−1∇f(θt−1); 4© : θt. In this figure we only draw the
information flow between machine j and the server, all other machines have
similar information flow.

When the number of data points N is large, we can employ
distributed optimization methods, where there are one server
and m workers in the system, to harness the computing power
of multiple machines to solve (3). These N data points are
divided and stored in m workers, and the server can com-
municate with all workers synchronously. Many distributed
first-order [1], [2], [9], [10], [18], [19], [21], [22] and second-
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order optimization methods [23]–[28] have been proposed to
solve (3).

In this paper, we focus on an approximate Newton’s
method, named global improved approximate Newton method
(GIANT) proposed in [27]. We will let Sj be the set of
data samples that are kept by the j-th worker. The GIANT
algorithm solves (3) using approximate Newton’s method by
two-steps computing and communication between the server
and workers. Figure 1 illustrates information flow between the
server and workers during iteration t. In particular, at iteration
t, each worker j ∈ [1,m] first calculates ∇f (j)

(θt−1) based
on local data:

∇f (j)
(θt−1) =

1

|Sj |
∑
i∈Sj

∇f(Xi, θt−1), (4)

and sends it to the server, where |Sj | is the size of data in the
j-th worker and we assume the size of data in each worker is
equal. After receiving information from all workers, the server
computes the gradient information using

∇f(θt−1) =
1

m

m∑
j=1

∇f (j)
(θt−1), (5)

and broadcasts the ∇f(θt−1) to workers. After receiving
∇f(θt−1), each worker j ∈ [1,m] calculates H−1

j,t−1∇f(θt−1)

based on local data and ∇f(θt−1) where

Hj,t−1 = ∇2f
(j)

(θt−1) =
1

|Sj |
∑
i∈Sj

∇2f(Xi, θt−1) (6)

and sends it back to the server. After receiving Newton’s
direction information from all workers, the server updates
model parameter by

θt = θt−1 −
1

m

m∑
j=1

H−1
j,t−1∇f(θt−1), (7)

and broadcasts the updated parameters to the workers.
This process continues until a certain stop criteria is sat-

isfied. Algorithm 1 summarizes steps involves in the GIANT
algorithm.

Note that instead of having multiple steps as discussed
above, each worker can directly send Hj,t−1 to the server and
hence can combine steps 1©- 3©. But the communication cost
of this combined approach will be O(d2) each iteration, while
the communication cost of the process outlined above is only
O(d).

When all workers are honest, this algorithm can converge
fast [27]. However, taking average as in (5) and (7) has no
ability to defend against attacks. In particular, even a single
Byzantine worker can completely change the average value of
gradient and Newton’s direction, and thus foil the algorithm.

In this paper, we consider a system with Byzantine workers,
in which an unknown subset of workers might be compro-
mised. Furthermore, the set of compromised workers might
change over time. In each iteration, if a worker is com-
promised, it can send arbitrary information to the server

Algorithm 1: GIANT algorithm [27]
Parameter server:
Initialize randomly selects θ0 ∈ Θ.
repeat

1: Broadcasts the current model parameter estimator
θt−1 to all workers;
2: Waits to receive gradients from the m workers;
3: Computes ∇f(θt−1) = 1

m

∑m
j=1∇f

(j)
(θt−1);

4: Broadcasts the current gradient estimator ∇f(θt−1)
to all workers;
5: Waits to receive estimators from the m workers;
6:Updates θt = θt−1 − η 1

m

∑m
j=1H

−1
j,t−1∇f(θt−1);

until ‖θt − θ∗‖ ≤ ε.
Worker j:
1: Receives model parameter estimator θt−1, computes
the gradient ∇f (j)

(θt−1), sends it back;
2: Receives gradient estimator ∇f(θt−1), computes the
parameter H−1

j,t−1∇f(θt−1), sends it back;

when sending gradient information and Newton’s direction.
In particular, let Bt denote the set of compromised workers at
iteration t, the server receives data g(j)

1 (θt−1) from the j-th
worker with

g
(j)
1 (θt−1) =

{
∇f (j)

(θt−1) j /∈ Bt
? j ∈ Bt

, (8)

in which ? denotes an arbitrary vector chosen by the attacker.
After receiving g

(j)
1 from workers, the server computes and

broadcasts

g(θt−1) = Aggre1(g
(1)
1 (θt−1), ..., g

(m)
1 (θt−1)), (9)

in which Aggre1(·) depends on how the server aggregates
gradient information from workers. Each worker then com-
putes Newton’s direction based on g(θt−1). After workers send
Newton’s direction, the server receives data g(j)

2 (θt−1) from
j-th worker

g
(j)
2 (θt−1) =

{
H−1
j,t−1g(θt−1) j /∈ Bt

? j ∈ Bt
. (10)

The server finally computes the final update direction using

G(θt−1) = Aggre2(g
(1)
2 (θt−1), ..., g

(m)
2 (θt−1)), (11)

in which in which Aggre2(·) depends on how the server
processes g(j)

2 (θt−1) from workers.

Note that if both Aggre1(·) and Aggre2(·) are mean func-
tions, the algorithm is the same as the GIANT algorithm [27].
But as discussed above, the GIANT algorithm is not robust to
adversary attacks. The goal of our paper is to design robust
Newton’s method algorithms, by designing proper Aggre1(·)
and Aggre2(·), that can tolerate Byzantine attacks.
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Algorithm 2: Median-based Approximate Newton’s
Method (MNM) Algorithm

Parameter server:
Initialize randomly selects θ0 ∈ Θ.
repeat

1: Broadcasts the current model parameter estimator
θt−1 to all workers;
2: Waits to receive gradients from the m workers;
g(j)(θt−1) denote the value received from worker j;
3: Computes
g(θt−1) = med{g(1)

1 (θt−1), ..., g
(m)
1 (θt−1)};

4: Broadcasts the current gradient estimator g(θt−1)
to all workers;
5: Waits to receive estimators from the m workers;
g

(j)
2 (θt−1) denote the value received from worker j;

6: Computes
G(θt−1) = med{g(1)

2 (θt−1), ..., g
(m)
2 (θt−1)};

7:Updates θt = θt−1 − ηG(θt−1);
until ‖θt − θ∗‖ ≤ ε.
Worker j:
1: Receives model parameter estimator θt−1, computes
the gradient ∇f (j)

(θt−1);
2: If worker j is honest, it sends ∇f (j)

(θt−1); If not, it
sends the value determined by the attacker;
3: Receives gradient estimator g(θt−1), computes the
parameter H−1

j,t−1g(θt−1) ;
4: If worker j is honest, it sends H−1

i,t−1g(θt−1) back to
the server; If not, it sends the value determined by the
attacker;

III. ALGORITHMS

In this section, we describe two algorithms that can handle
different number of Byzantine attackers. Let q be the number
of attackers in the system. We will first describe our algorithm
that can deal with q < m/2, i.e., up to half of the total
number of workers are Byzantine attackers. We then describe
our algorithm to deal with an arbitrary number of Byzantine
attackers, i.e., there is no restrict on q. This algorithm requires
additional computations at the server.

A. The Case with q < m/2

In the first scenario, we consider the case where there are
at most q < m/2 Byzantine attackers. We propose a median-
based approximate Newton’s method (MNM). Main steps of
the algorithm are listed in Algorithm 2.

Instead of computing the average, the main idea of our
algorithm is to use geometric median of the received infor-
mation as the aggregation function aggre1(·) and aggre2(·).
In particular, after receiving the gradient information from
workers, the server computes

g(θt−1) = med{g(1)
1 (θt−1), ..., g

(m)
1 (θt−1)}, (12)

in which med{·} is the geometric median of the vectors.
Geometric median is a generalization of median in one-

dimension to multiple dimensions, and has been widely used
in robust statistics. In particular, let xi ∈ Rd, i = 1, · · · , n,
then the geometric median of the set {x1, x2, ..., xn} is define
as

med{x1, x2, ..., xn} := arg min
x

n∑
i=1

‖xi − x‖. (13)

The geometric median has a very nice property that will be
useful for our analysis. For example, when the dimension is
one, then if strictly more than half points are in [−r, r], the
geometric median must lie in [−r, r]. When the dimension is
larger than one, the geometric median has following property.

Lemma 1. ( [48]) Let x1, x2, ..., xn be n points in a Hilbert
space. Let x∗ denote the geometric median of these points.
For any α ∈ (0, 1/2), and given r > 0, if

∑n
i=1 1{‖xi‖≤r} ≥

(1− α)n, then
‖x∗‖ ≤ Cαr, (14)

where
Cα =

2(1− α)

1− 2α
. (15)

From Lemma 1, we can see that, if majority number
(1 − α)n of points are inside the Euclidean ball of radius r
centered at origin, then the geometric median must be inside
the Euclidean ball of radius Cαr. From this property we can
upper bound geometric median by Cαr.

Then the server broadcasts value g(θt−1) to all workers.
After receiving the Newton’s direction information, the server
compute the final Newton’s direction information by geometric
median again,

G(θt−1) = med{g(1)
2 (θt−1), ..., g

(m)
2 (θt−1)}. (16)

Finally, the server uses G(θt−1) to update parameter θt−1,

θt = θt−1 − ηG(θt−1). (17)

B. The Case with an Arbitrary Number of Byzantine Attackers

The MNM algorithm described in Section III-A will con-
verge if q < m/2, which will be shown in Section III.
However, it will fail to converge once q > m/2. In this
subsection, we propose another algorithm, named comparison-
based approximate Newton (CNM) method, that converges for
an arbitrary value of q, regardless whether q is larger or smaller
than m/2. Compared with the MNM algorithm, the CNM
algorithm needs additional computation at the server side. In
particular, we assume that the server keeps a small set of clean
data points from the existing dataset before distributing data
to workers to compute a noisy gradient and a noisy Newton’s
direction. These information, which are noisy version of the
ground truth, will help the server make decision to whether
accept information from each worker or not. To make sure
that the samples chosen by the server capture the population
statistics, we uniformly random pick data points from the
dataset to build the clean data set. Main steps of the algorithm
are listed in Algorithm 3.

More specifically, in our algorithm, the server will randomly
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Algorithm 3: Comparison-based approximate New-
ton’s Method (CNM) Algorithm

Parameter server:
Initialize randomly selects θ0 ∈ Θ.
repeat

1: Broadcasts the current model parameter estimator
θt−1 to all workers;
2: Waits to receive gradients from the m workers;
g(j)(θt−1) denote the value received from worker j;
3: Computes ∇f (0)

(θt−1), then Accepts g(j)
1 (θt−1)

which pass test
‖g(j)

1 (θt−1)−∇f (0)
(θt−1)‖ ≤ ξ1‖∇f

(0)
(θt−1)‖,

consider them in set A(1).
4: Computes g(θt−1) =

1
1+|A(1)| (

∑
i∈A(1) g

(i)
1 (θt−1) +∇f (0)

(θt−1));
4: Broadcasts the current gradient estimator g(θt−1)
to all workers;
5: Receives all g(j)

2 (θt−1), computes H̃−1
0 g(θt−1),

accepts g(j)
2 (θt−1) which pass test

‖g(j)
2 (θt−1)− H̃−1

0 g(θt−1)‖ ≤ ξ2‖H̃−1
0 g(θt−1)‖,

consider them in set A(2).
6: Computes G(θt−1) =

1
1+|A(2)| (

∑
i∈A(2) g

(i)
2 (θt−1) + H̃−1

0 g(θt−1));
7: Update model parameter θt = θt−1 −G(θt−1) ;

until ‖θt − θ∗‖ ≤ ε.
Worker j:
1: Receives model parameter estimator θt−1, computes
the gradient ∇f (j)

(θt−1);
2: If worker j is honest, it sends ∇f (j)

(θt−1); If not,
it sends the value determined by the attacker;
3: Receives gradient estimator g(θt−1), computes the
parameter H̃−1

j,t−1g(θt−1);
4: If worker j is honest, it sends H̃−1

i,t−1g(θt−1) back
to the server; If not, it sends the value determined by
the attacker;

select a small set of data points S0 at the very beginning,
where |S0| ≤ |Sj | and j ∈ [1,m]. Once S0 is selected, it is
fixed throughout the algorithm. Then at each iteration t, the
server calculates a noisy gradient using data points in S0:

∇f (0)
(θt−1) =

1

|S0|
∑
j∈S0

∇f(Xj , θt−1). (18)

After computing ∇f (0)
(θt−1), the server compares

g
(j)
1 (θt−1) received from worker j with ∇f (0)

(θt−1). The
server will accept g(j)

1 (θt−1) as authentic value and use it for
further processing, if

‖g(j)
1 (θt−1)−∇f (0)

(θt−1)‖ ≤ ξ1‖∇f
(0)

(θt−1)‖ (19)

where ξ1 is a constant. The server will collect all accepted
g

(j)
1 (θt−1) in set A(1). The main enabling observation is that,

even though ∇f (0)
(θt−1) is noisy, it is an approximation of

the ground truth and hence can be used to filter out bad
information from Byzantine workers as done in (19).

Then the server computes g(θt−1) based on the accepted
gradient information in set A(1):

g(θt−1) =
1

1 + |A(1)|

 ∑
i∈A(1)

g
(i)
1 (θt−1) +∇f (0)

(θt−1)

 .

The server will broadcast g(θt−1) to all workers, each of which
will compute H̃−1

j,t−1g(θt−1), where H̃j,t−1 = Hj,t−1 + µI
with µ ≥ 0 and I being the identity matrix. Here µI is
added to make sure the matrix is invertible. The server also
computes a noisy Newton’s direction H̃−1

0 g(θt−1), in which
H̃0 is computed using data points in S0:

H̃0 =
1

|S0|
∑
i∈S0

∇2f(Xi, θt−1) + µI. (20)

Then the server compares g(j)
2 (θt−1) received from worker j

with H̃−1
0 g(θt−1). If the following condition is satisfied

‖g(j)
2 (θt−1)− H̃−1

0 g(θt−1)‖ ≤ ξ2‖H̃−1
0 g(θt−1)‖ (21)

the server will collect g(j)
2 (θt−1) in set A(2). Here, ξ2 is a

constant. Then the server computes the final update direction:

G(θt−1) =
1

1 + |A(2)|

 ∑
i∈A(2)

g
(i)
2 (θt−1) + H̃−1

0 g(θt−1)

 .

(22)

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence property of the
proposed algorithms.

A. Convergence of MNM algorithm

In this section, we will prove results that hold simultane-
ously for all θ ∈ Θ with a high probability. Hence, in the
following, we will drop subscript t − 1. Before presenting
detailed analysis, here we describe the high level ideas. If
H−1∇F (θ) is available, where H = ∇2F (θ), the Newton’s
method will converge to θ∗. The main idea of our proof is to
show that the distance between G(θ) computed in (16) and
H−1∇F (θ) is universally bounded in Θ when the number of
attackers is at most m/2. Hence, G(θ) is a good estimate of
H−1∇F (θ). As the result, we can then show that the proposed
algorithm converge to the neighborhood of the population
minimizer.

We first show that ‖G(θ) − H−1∇F (θ)‖ is universally
bounded in Θ. To start with, we first write

‖H−1∇F (θ)−G(θ)‖
= ‖H−1∇F (θ)−med{g(1)

2 (θ), ..., g
(m)
2 (θ)}‖

= ‖Z(θ)−H−1g(θ) +H−1∇F (θ)‖
≤ ‖Z(θ)‖+ ‖H−1(g(θ)−∇F (θ))‖,
≤ ‖Z(θ)‖+ ‖H−1J(θ)‖, (23)
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where

Z(θ) =med{H−1g(θ)− g(1)
2 (θ), ...,H−1g(θ)− g(m)

2 (θ)}
=med{Z1(θ), ..., Zm(θ)}, (24)

and

J(θ) = med{∇F (θ)− g(1)
1 (θ), ...,∇F (θ)− g(m)

1 (θ)}
= med{J1(θ), ..., Jm(θ)}. (25)

To further bound the terms in (23), we need to present sev-
eral assumptions and intermediate results. These assumptions
are similar to those used in [29], [33], [36], and proofs of
some lemmas follow closely that of [29].

Assumption 2. There exist positive constants σ1 and α1

such that for any unit vector v ∈ B, 〈∇f(X, θ∗), v〉 is sub-
exponential with σ1 and α1, that is,

sup
v∈B

E[exp(λ〈∇f(X, θ∗), v〉)] ≤ eσ
2
1λ

2/2, ∀|λ| ≤ 1/α1,

where B denotes the unit sphere {v : ‖v‖2 = 1}.

Second, we define gradient difference w(x, θ) = ∇f(x, θ)−
∇f(x, θ∗) and assume that for every θ, w(x, θ) normalized by
‖ θ − θ∗ ‖ is also sub-exponential.

Assumption 3. There exist positive constants σ2 and α2 such
that for any θ ∈ Θ with θ 6= θ∗ and any unit vector v ∈ B,
〈w(X, θ)−E[w(X, θ)], v〉/ ‖ θ−θ∗ ‖ is sub-exponential with
σ2 and α2, that is,

sup
θ∈Θ,v∈B

E

[
exp

(
λ〈w(X, θ)−E[w(X, θ)], v〉

‖θ − θ∗‖

)]
≤ eσ

2
2λ

2/2, ∀|λ| ≤ 1

α2
. (26)

This allows us to show that 1
|S0|

∑
i∈Si w(Xi, θ) concen-

trates on E[w(X, θ)] for every fixed θ.
Assumptions 2 and 3 ensure that random gradient ∇f(θ)

has good concentration properties, i.e., an average of |Si| i.i.d
random gradients 1

|Si|
∑
i∈Si ∇f(Xi, θ) sharply concentrates

on ∇F (θ) for every fixed θ, which is an assumption on the
upper bound of the variance of the gradient.

We also assume data in each worker j ∈ [1,m] has
following assumption.

Assumption 4. For any δ ∈ (0, 1/|Sj |), there exists an M ′ =
M ′(δ) and h′ = h′(δ) such that

Pr

{
∀θ, θ′ ∈ Θ, h′ ≤ ‖∇f(X, θ)−∇f(X, θ′)‖

‖θ − θ′‖
≤M ′

}
≥ 1− δ

3
. (27)

Assumption 4 ensures that ∇f(X, θ) in each worker is
M ′-Lipschitz and f(X, θ) is h′ strongly convex with high
probability.

Now, we make another standard assumption in analyzing
Newton’s method for population risk.

Assumption 5. The Hessian matrix ∇2F (θ) is L-Lipschitz
continuous,i.e, there exists an L such that for θ, θ′ ∈ Θ

‖∇2F (θ)−∇2F (θ)‖2 ≤ L‖θ − θ′‖,

in which ‖ · ‖2 is the matrix spectral norm.

With these assumptions, we are ready to state our universal
bound for ‖Z(θ)‖ and ‖H−1J(θ)‖.

From (24), we need to bound the geometric median Z(θ)
of Z1(θ), ..., Zm(θ). In order to use property of the geometric
median from [48], we need to show more than half of infor-
mation received by the server are bounded by some quantity.
If majority points are lie in a Euclidean ball at center, then
the geometric median will also lie in a ball.

We first have the following lemma regarding the spectral
norm of Hi −H .

Lemma 2. If Assumption 4 holds, for any δ ∈ (0, 1), with
probability at least 1− δ

3 , |Sj | data satisfy

h′ ≤ ‖∇2f(X, θ)‖2 ≤M ′, (28)

for any δ′3 ∈ (0, 1), let

∆3 =

√
14(M ∨M ′)2 log(2d/δ′3)

3|Si|
, (29)

then
Pr {‖Hi −H‖2 ≤ ∆3} ≥ 1− δ2, (30)

with δ2 = δ′3 + δ
3 and δ2 ∈ (0, 1).

Proof. Please see Appendix A for detail.

Now, with these lemmas and assumptions, when worker i
is honest, we can show the bound for Zi.

Proposition 1. Suppose Assumptions 1-4 hold, and Θ ⊂ {θ :‖
θ − θ∗ ‖≤ r

√
d} for some r > 0. For any δ3 ∈ (0, 1), α ∈

(q/m, 1/2) and δ4 = δ2 + e−mD(α−q/m‖δ3),

Pr

{
∀θ : ‖Zi(θ)‖ ≤

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
‖θ − θ∗‖

+
4Cα∆3∆1

hh′

}
≥ 1− δ4, (31)

where ∆1 =
√

2σ1

√
(d log 6 + log(6/δ3))/|Si|, ∆2 =√

2σ2

√
(τ1 + τ2)/|Si|, with τ1 = d log 18 + d log(M ∨

M ′/σ2), τ2 = 0.5d log(|Si|/d) + log(6/δ3) + log(
2rσ2

2

√
|Si|

α2σ1
),

Cα = 2(1−α)
1−2α and D(δ′‖δ) = δ′ log δ′

δ + (1− δ′) log 1−δ′
1−δ .

Proof. Please see Appendix B for details.

Now we have already shown that for honest workers, the
local Newton’s direction received at the server is uniformly
close to the true Newton’s direction. Now using Lemma 1, we
can show the median Z(θ) is bounded.
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Proposition 2. Suppose Assumptions 1-4 hold, and Θ ⊂ {θ :‖
θ − θ∗ ‖≤ r

√
d} for some r > 0. For any α ∈ (q/m, 1/2)

and 0 < δ4 < α− q/m,

Pr

{
∀θ : ‖Z(θ)‖ ≤

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
Cα‖θ − θ∗‖

+
4C2
α∆3∆1

hh′

}
≥ 1− e−mD(α−q/m‖δ4). (32)

Proof. Please see Appendix C.

With Proposition 2, we are ready to show that G(θ) is a
good approximation of H−1∇F (θ) from (23), and show the
convergence of the proposed MNM algorithm.

Theorem 1. If Assumptions 1-4 hold, and Θ ⊂ {θ :‖ θ −
θ∗ ‖≤ r

√
d} for some r > 0, and θ0 ∈ Θ, by letting |Si|

for each worker j to be sufficiently large such that ∆2 ≤
h

24Cα ,∆3 ≤ hh′

3MCα , then for any 0 < η ≤ 1, α ∈ (q/m, 1/2),
0 < δ3 < α− q/m and 0 < δ4 < α− q/m with probability at
least 1− e−mD(α−q/m‖δ3) − e−mD(α−q/m‖δ4), it holds that

‖θt − θ∗‖ ≤ ρ‖θt−1 − θ∗‖+
ηL‖θt−1 − θ∗‖2

2h

+
4

hh′
C2
α∆3∆1 + η

4

h
Cα∆1, (33)

where

ρ = 1− η + η
8

hh′
C2
α∆3∆2 + η

8

h
Cα∆2 + ηCα

∆3M

hh′
. (34)

Proof. Suppose Assumptions 1-5 hold, and Θ ⊂ {θ :‖ θ −
θ∗ ‖≤ r

√
d} for some r > 0. Following similar steps in [29],

[40], we have the following bound for any α ∈ (q/m, 1/2)
and 0 < δ3 < α− q/m,

Pr{‖J(θ)‖ ≤ 8Cα∆2‖θ − θ∗‖+ 4Cα∆1}
≥ 1− e−mD(α−q/m‖δ3) (35)

From (23), combined with Proposition 2, we have

‖H−1∇F (θ)−G(θ)‖
≤ ‖Z(θ)‖+ ‖H−1J(θ)‖

≤
(

8

hh′
C2
α∆3∆2 +

8

h
Cα∆2 + Cα

∆3M

hh′

)
‖θ − θ∗‖

+
4

hh′
C2
α∆3∆1 +

4

h
Cα∆1. (36)

For the standard Newton method,

‖θt − θ∗‖
=‖θt−1 − θ∗ − ηH−1

t−1∇F (θt−1)‖
=‖θt−1 − θ∗ + ηH−1

t−1(∇F (θ∗)−∇F (θt−1))‖
≤(1− η)‖θt−1 − θ∗‖+ η‖H−1

t−1‖2 ·∥∥∥∥∫ 1

0

(H(θt−1 + τ(θ∗ − θt−1))−H(θt−1))(θ∗ − θt−1)dτ

∥∥∥∥
2

≤(1− η)‖θt−1 − θ∗‖+ η‖H−1
t−1(θt−1)‖2 ·∫ 1

0

‖(H(θt−1 + τ(θ∗ − θt−1))−H(θt−1))(θ∗ − θ)‖dτ

≤(1− η)‖θt−1 − θ∗‖+
ηL‖θt−1 − θ∗‖22

2h
(37)

where the first inequality follows from the triangle inequality,
the second inequality follows from the definition of spectral
norm, the third inequality follows from Fubini’s theorem and
Cauchy–Schwarz inequality.

Then for any 0 < η ≤ 1,α ∈ (q/m, 1/2), 0 < δ3 < α −
q/m and 0 < δ4 < α − q/m with probability at least 1 −
e−mD(α−q/m‖δ3) − e−mD(α−q/m‖δ4), for any t ≥ 1,

‖θt − θ∗‖
=‖θt−1 − ηG(θt−1)− θ∗‖
=‖θt−1 − ηH−1

t−1∇F (θt−1)− θ∗ + ηH−1
t−1∇F (θt−1)

−ηG(θt−1)‖
=‖θt−1 − ηH−1

t−1∇F (θt−1)− θ∗ + ηZ(θt−1)

−ηH−1
t−1g(θt−1) + ηH−1

t−1∇F (θt−1)‖
≤‖θt−1 − ηH−1

t−1∇F (θt−1)− θ∗‖+ η‖Z(θt−1)‖
+‖ηH−1

t−1J(θt−1)‖

≤
(

1− η + η
8

hh′
C2
α∆3∆2 + η

8

h
Cα∆2

+ηCα
∆3M

hh′

)
‖θt−1 − θ∗‖+

ηL‖θt−1 − θ∗‖2

2h

+η
4

hh′
C2
α∆3∆1 + η

4

h
Cα∆1. (38)

When |Si| for each worker j to be sufficently large such that
∆2 ≤ h

24Cα ,∆3 ≤ hh′

3MCα , then we can always have

1− η + η
8

hh′
C2
α∆3∆2 + η

8

h
Cα∆2 + ηCα

∆3M

hh′
< 1. (39)

This theorem shows that under an event that happens
with a high probability, the estimated θ can converge to the
neighborhood of θ∗ with a linear-quadratic rate. The quadratic
term comes from the standard analysis of the Newton method.
The linear term arises owing to the Hessian approximation and
the gradient approximation. Due to the Hessian approximation
and gradient approximation, even though our analysis shows
MNM converges, it is difficult to theoretically establish that the
convergence rate is faster than those of the first order methods.
The main difficulty comes from the fact that, even for the
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case without attackers, there is no theoretical proof showing
that the approximate Newton method has a better convergence
rate than those of first order methods for general case [27],
due to various approximation introduced in the algorithm.
Furthermore, the bound in Theorem 1 may not be optimal and
could possibly be improved by more careful analysis. On the
other hand, we show that MNM indeed converges faster than
those of the first order methods using numerical examples in
Section V. When there is no attacker, the convergence rate of
MNM is slower than GIANT, as the bound of the convergence
rate is dependent on the data in each worker, while GIANT
can benefit from all data. On the other hand, when there are
Byzantine attackers in the model, MNM can converge, but
GIANT does not.

Since the parameter ρ related with the parameter Cα, which
will increase if the number of Byzantine attackers increases,
the number iteration will increase if there are more attackers.

Since we consider θ∗ ∈ arg minθ∈Θ F (θ) and Hessian
approximation, there is always a gap between estimator θ and
θ∗. This gap is due to the approximation error introduced by
solving (3), instead of (1). The gap is ∝ Cα

|Si| , so for a larger
datasize in each worker and a smaller number of Byzantine
attackers, the gap will become smaller.

We now give an example to show that, when the server uses
MNM and more than half of the workers are attackers, Byzan-
tine attackers can easily fool the server. Let B be an arbitrary
direction chosen by the attackers. At each iteration, Byzantine
attacker j sends g(j)

1 (θ), such that ‖g(j)
1 (θ) − B‖ ≤ r. When

more than half of vector satisfy this condition, by property of
geometric median, the geometric median g(θ) should satisfy
the following condition ‖g(θ)−B‖ ≤ Cαr, then the geometric
median g(θ) will be close to B. As B is arbitrary, the attackers
can successfully fool the server.

B. Convergence of CNM algorithm

In this section, we prove the convergence of CNM algorithm
regardless the number of Byzantine attackers. In other words, q
could be larger than m/2. Towards this goal, we will show that
the distance between G(θ) defined in (22) and H−1∇F (θ) is
universally bounded in Θ regardless the number of attackers.
The high level idea is similar to the algorithm in [40].
However, compared with the algorithm in [40], the analysis
here is more complicated as we need to handle impact of both
gradient and Hessian approximation in CNM. In particular, in
addition to analyzing gradient, we need to analyze the impact
of adversary attacks on the Hessian approximation and the
bound for the difference between inverse of Hessian matrices.
As the result, G(θ) is a good estimate of H−1∇F (θ). Finally,
we will show that the proposed algorithm converge to the
neighborhood of minimizer of the population risk.

Lemma 3. For an arbitrary number of attackers, the distance

between G(θ) and H−1∇F (θ) is bounded by

‖H−1∇F (θ)−G(θ)‖
< (1 + ξ2)‖H̃−1

0 ‖2‖g(θ)−∇F (θ)‖
+ ξ2‖H̃−1

0 ‖2‖∇F (θ)‖+ ‖H−1∇F (θ)− H̃−1
0 ∇F (θ)‖.

(40)

Proof. Please see Appendix D.

Now, in order to bound the distance between G(θ) and
H−1∇F (θ), we need to bound the three terms in the right
hand side of (40).

For the second term, from Assumption 1, we have
‖∇F (θ)‖ = ‖∇F (θ) − ∇F (θ∗)‖ ≤ M‖θ − θ∗‖, since
∇F (θ∗) = 0.

For the third term, we have ‖(H−1−H̃−1
0 )∇F (θ)‖ = ‖(I−

H̃−1
0 H)H−1∇F (θ)‖ ≤ ‖I− H̃−1

0 H‖2‖H−1‖2‖∇F (θ)‖.
Then, we use the following lemma to bound ‖I−H̃−1

0 H‖2.

Lemma 4. If ‖H0 −H‖2 ≤ β and β < h(h+µ)
3h+2µ ,

‖I− H̃−1
0 H‖2 ≤

µ

h+ µ
+

2β

h+ µ− β
< 1. (41)

Proof. Please see Appendix E.

From this lemma, we have that ‖I−H̃−1
0 H‖2 is bounded by

a constant value smaller than 1, when ‖H0−H‖2 is bounded.

Proposition 3. Suppose Assumptions 1-4 hold, and Θ ⊂ {θ :‖
θ − θ∗ ‖≤ r

√
d} for some r > 0, and ∆3 <

h(h+µ)
3h+2µ . For any

δ ∈ (0, 1), δ′3 ∈ (0, 1), δ2 ∈ (0, 1) and δ2 = δ
3 + δ′3

Pr

{
∀θ : ‖(H−1 − H̃−1

0 )∇F (θ)‖ ≤ ∆4M

h
‖θ − θ∗‖

}
≥ 1− δ2, (42)

with
∆4 =

µ

h+ µ
+

2∆3

h+ µ−∆3
, (43)

and

∆3 =

√
14M2 log(2d/δ′3)

3|S0|
. (44)

Proof. Please see Appendix F.

Using these intermediate results, we have the following
convergence result.

Theorem 2. If Assumptions 1-5 hold, and Θ ⊂ {θ :‖ θ−θ∗ ‖≤
r
√
d} for some r > 0, µ ≥ 0 and θ0 ∈ Θ. By choosing

ξ1 <
h′+µ
4M , ξ2 < h′+µ

4M and |S0| to be sufficiently large so that
∆2 <

h′+µ
40(1+ξ2) , then for arbitrary number of attackers with

probability at least 1− δ5 − δ2, it holds that

‖θt − θ∗‖ ≤
L

2h
‖θt−1 − θ∗‖2 + γ1‖θt−1 − θ∗‖+ γ2. (45)
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where ∆4 = µ
h+µ + 2∆3

h+µ−∆3
, and

γ1 =

[
(8∆2 + ξ1(8∆2 +M))

1 + ξ2
h′ + µ

+
ξ2M

h′ + µ
+

∆4M

h

]
,

(46)
and

γ2 = (4∆1 + ξ14∆1)
1 + ξ2
h′ + µ

. (47)

Proof. If Assumptions 1-5 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤
r
√
d} for some r > 0 and ∆3 < h(h+µ)

3h+2µ for the first term
in Lemma 3, we already have the following bound from [40],
regardless of the number of attackers, that with probability at
least 1− δ5

‖g(θ)−∇F (θ)‖
≤ (8∆2 + ξ1(8∆2 +M)) ‖θt−1 − θ∗‖+ (4∆1 + ξ14∆1),

in which ∆1 =
√

2σ1

√
(d log 6 + log(3/δ5))/|S0| and

∆2 =
√

2σ2

√
(τ1 + τ2)/|S0|, with τ1 = d log 18 +

d log((M ∨M ′)/σ2), and τ2 = 0.5d log(n/d) + log(3/δ5) +

log(
2rσ2

2

√
|S0|

α2σ1
).

Combine it with Assumption 1 and Proposition 3 and
Lemma 3, fix any t ≥ 1, for any δ2 ∈ (0, 1), and δ5 ∈ (0, 1),
with probability at least 1 − δ2 − δ5, the norm of difference
between Gt(θ) and ∇F (θ) is

‖H−1∇F (θ)−G(θ)‖
< (1 + ξ2)‖H̃−1

0 ‖2‖g(θ)−∇F (θ)‖
+ ξ2‖H̃−1

0 ‖2‖∇F (θ)‖+ ‖H−1∇F (θ)− H̃−1
0 ∇F (θ)‖

≤ γ1‖θ − θ∗‖+ γ2, (48)

where ∆4 = µ
h+µ + 2∆3

h+µ−∆3
,

γ1 =

[
(8∆2 + ξ1(8∆2 +M))

1 + ξ2
h′ + µ

+
ξ2M

h′ + µ
+

∆4M

h

]
,

(49)
and

γ2 = (4∆1 + ξ14∆1)
1 + ξ2
h′ + µ

, (50)

Choosing ξ1 <
h′+µ
4M , ξ2 < h′+µ

4M and |S0| to be sufficiently
large so that ∆2 < h′+µ

40(1+ξ2) , with these conditions, we can
have γ1 < 1. For the standard Newton method,

‖θt − θ∗‖
=‖θt−1 − θ∗ −H−1

t−1∇F (θt−1)‖
=‖θt−1 − θ∗ +H−1

t−1(∇F (θ∗)−∇F (θt−1))‖
≤‖H−1

t−1‖2 ·∥∥∥∥∫ 1

0

(H(θt−1 + τ(θ∗ − θt−1))−H(θt−1))(θ∗ − θt−1)dτ

∥∥∥∥
2

≤‖H−1
t−1(θt−1)‖2 ·∫ 1

0

‖(H(θt−1 + τ(θ∗ − θt−1))−H(θt−1))(θ∗ − θ)‖dτ

≤L‖θt−1 − θ∗‖22
2h

(51)

where the first inequality follows from the triangle inequality,

the second inequality follows from the definition of the spec-
tral norm, the third inequality follows from Fubini’s theorem
and Cauchy–Schwarz inequality.

Fix any t ≥ 1,

‖θt − θ∗‖
= ‖θt−1 −G(θt−1)− θ∗‖
≤ ‖θt−1 −H−1∇F (θt−1)− θ∗‖
+ ‖G(θt−1)−H−1∇F (θt−1)‖

≤ L

2h
‖θt−1 − θ∗‖2 + γ1‖θt−1 − θ∗‖+ ηγ2. (52)

In this theorem, we consider the worst-case scenario, where
all workers are Byzantine attackers and these attackers all pass
the comparison test. This theorem shows that, with a high
probability, the estimated θ can converge to the neighborhood
of θ∗ with a linear-quadratic rate when there are arbitrary
number of Byzantine attackers. This theorem also shows that
the bound will be looser when δ2, δ5 decrease, since this will
increase ∆1,∆2 and ∆3. Similar to MNM, the quadratic term
comes from the standard analysis of the Newton method. The
linear term is due to the Hessian and gradient approximation.
Again, due to the Hessian approximation, gradient approxima-
tion and the comparison scheme, it is difficult to theoretically
show that convergence rate is larger than those of the first order
methods. However, our numerical results empirically illustrate
that the proposed method converges faster than those of the
first order methods.

Since we consider θ∗ ∈ arg minθ∈Θ F (θ), we can only
use empirical risk to approximate population risk, there is
always a gap between estimator θ and θ∗. The error gap is
∝ 1√

|S0|
, so for a sufficiently large |S0|, the error gap will

become negligible. Our numerical results will illustrate that
the actual performance of CNM is better than the case with
using data S0 only and it can benefit from the presence of
honest workers even when more than half of the workers are
Byzantine attackers.

V. NUMERICAL RESULTS

In this section, we provide numerical examples, with both
synthesized data and real data, to illustrate the performance of
the proposed algorithms.

A. Synthesized data

We first use synthesized data. In this example, we focus on
linear regression, in which

Yi = XT
i θ
∗ + εi, i = 1, 2, · · · , N,

where Xi ∈ Rd, θ∗ is a d×1 vector and εi is the noise. We set
X = [X1, · · · , XN ] as d×N data matrix. This model satisfies
all the assumptions mentioned above, as shown in paper [29].

In the simulation, we set the dimension d = 20, the total
number of data N = 50000. We use N (0, 9) to independently
generate each entry of θ∗. Here N (ν, σ2) denotes Gaussian
variables with mean ν and variance σ2. After θ∗ is generated,
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we fix it. The data matrix X is generated randomly by
Gaussian distribution with ν = 0 and fixed known maximal
and minimal eigenvalues of the correlation matrix XTX.
Let λmax(·) and λmin(·) denote the maximal and minimal
eigenvalue of XTX respectively. In the following figures, we
use λmax(XTX) = 200 and λmin(XTX) = 2 to generate
the data matrix X. We set εi as i.i.d. N (0, 1) random variable.
Finally, we generate Yi using the linear relationship mentioned
above. In the simulation, we set the number of workers
m = 50, and evenly distribute data among these machines.
Furthermore, for robust gradient descent in [40] and proposed
algorithm CNM, we set |S0| = 1000, ξ = 1.25|S0|−

1
4 = 0.223

for robust gradient descent in [40], ξ1 = 0.223 and ξ2 = 0.223.
For the GIANT algorithm in [27] and proposed MNM, we set
η = 1. For CNM, we set µ = 0.001. We illustrate our results
with 4 different cases: 1) 20 Inverse attack, in which each
attacker first calculates the gradient and Newton’s direction
based on its local data but sends the inverse version of gradient
information or vector information to the server; 2) 45 Inverse
attack; 3) 20 Random attack, in which the attacker randomly
generates gradient value; and 4) 45 Random attack. In our
simulation, we compare four algorithms: 1) MNM in Table 2;
2) CNM described in Table 3; 3) Algorithm proposed in [40];
and 4) The GIANT algorithm proposed in [27]. The algorithm
proposed in [40] is a first-order method which is robust to
Byzantine attackers.

0 10 20 30 40 50
iteration

0

2

4

6

8

10

‖θ
−
θ

* ‖

20 inverse attack
MNM
Robust gradient method
GIANT
CNM

Fig. 2. Synthesized data: 20 Inverse attack. Robust gradient method in [40],
GIANT in [27]

Figures 2 and 3 plot the value of the norm of distance
between estimated and the true parameter vs iteration with
20 inverse attacks and 20 random attacks respectively. From
Figures 2 and 3, GIANT method does not converge, since
computing average cannot defend Byzantine attacks, but the
proposed MNM, CNM and robust gradient method can still
converge. Furthermore, the proposed two algorithms still
perform better than the robust gradient method in [40] in
iteration, since our proposed algorithms compute Hessian

0 10 20 30 40 50
iteration

0
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6

8

10

‖θ
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θ
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20 random attack
MNM
Robust gradient method
GIANT
CNM

Fig. 3. Synthesized data: 20 Random attack. Robust gradient method in [40],
GIANT in [27]

matrix on each worker, which generate more information in
each communication iteration.
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CNM

Fig. 4. Synthesized data: 45 Inverse attack. Robust gradient method in [40],
GIANT in [27]

Figures 4 and 5 plot the value of the norm of distance
between the estimated and the true parameter vs iteration with
45 inverse attacks and 45 random attacks. From Figures 4
and 5, we can observe that GIANT and MNM do not converge,
as more than half of the workers are compromised. However
the proposed CNM and robust gradient method can still
converge. Furthermore, the proposed CNM can benefit from
Newton’s direction information and outperforms the robust
gradient method in [40] in iteration.

B. Real data

Now we test our algorithms on real datasets MNIST [49]
and compare our algorithms with various existing gradient
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Fig. 5. Synthesized data: 45 Random attack. Robust gradient method in [40],
GIANT in [27]

method work [40] and GIANT. MNIST is a widely used
computer vision dataset that consists of 70,000 28×28 pixel
images of handwritten digits 0 to 9. We use the handwritten
images of 3 and 5, which are the most difficult to distinguish in
this dataset, to build a logistic regression model. After picking
all 3 and 5 images from the dataset, the total number of
images is 13454. It is divided into a training subset of size
12000 and a testing subset of size 1454. For the dataset, we
set the number of workers to be 50. For algorithm in [40]
and algorithm CNM, we uniformly random pick 200 images
from training subsets to build S0, set ξ = 0.9|S0|−

1
4 = 0.239,

ξ1 = 0.239 and ξ2 = 0.239. For the proposed MNM and
GIANT in [27], we set the learning rate η = 1. For CNM,
we set µ = 0.0001. Similar to the synthesized data scenario,
we illustrate our results with four cases, namely 20 inverse
attack, 20 random attack, 45 inverse attack and 45 random
attack, and compare the performance of four algorithms. The
following figures show how the testing accuracy varies with
training iteration.

Figures 6 and 7 illustrate the impact of two cases on dif-
ferent algorithms using MNIST respectively. Figures 6 and 7
show the GIANT fails to predict if there are 20 attackers.
Our proposed algorithm and robust gradient descent still show
high accuracy. Furthermore, the proposed MNM has a better
performance than robust gradient descent in [40].

We plot the impact of 45 attacker case on real data in
Figures 8 and 9 using MNIST respectively. When there are
45 attackers, which is more than half of the total number of
workers, MNM and GIANT can not properly work. CNM
and robust gradient descent [40] still perform well, since
these algorithm are generated to defend arbitrary number of
attackers. Our proposed algorithms outperform the scheme
using robust gradient descent in iteration.

We plot the boxplot figure about testing accuracy of CNM
with different size of S0 and GIANT with S0 only on real data
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Fig. 6. MNIST: 20 Inverse attack. Robust gradient method in [40], GIANT
in [27]
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Fig. 7. MNIST: 20 Random attack. Robust gradient method in [40], GIANT
in [27]

in Figures 10. As the size of S0 increases, the CNM method
has a higher accuracy and lower variance. For different |S0|,
CNM also outperforms the GIANT algorithm with S0 only
both on accuracy and estimate variance, since it can benefit
from the presence of honest workers.

Figures 11 and 12 illustrate the testing accuracy vs training
time under 20 and 45 inverse attacks with different algo-
rithms. MNM, CNM, and robust gradient descent algorithm
can converge when there are 20 inverse attacks. Since the
computing power is limited, the robust gradient algorithm has
a better better performance at the beginning, but after some
time, CNM and MNM have better performance than the robust
gradient algorithm. When there are 45 attacks, only CNM
and the robust gradient algorithm work, since the number of
Byzantine attacker is larger than 25. When given enough time
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Fig. 8. MNIST: 45 Inverse attack. Robust gradient method in [40], GIANT
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Fig. 9. MNIST: 45 Random attack. Robust gradient method in [40], GIANT
in [27]

for training, CNM can benefit from Hessian information and
outperform the robust gradient algorithm.

VI. CONCLUSION

In this paper, we have proposed two robust distributed
approximate Newton’s method that can tolerant Byzantine
attackers. We have shown that the proposed algorithms can
converge to the neighborhood of true parameter and have
provided numerical examples to illustrate the performance of
the proposed algorithm.

In terms of future work, it is of interest to develop better
convergence bounds of the proposed algorithms. It is also of
interest to establish a link between the convergence rates of the
proposed algorithm and the sample complexity in the probably
approximately correct (PAC) learning framework.
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Fig. 10. MNIST: 20 inverse attack with different size of S0 in CNM, GIANT
in [27] with S0 only.
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Fig. 11. MNIST: 20 Inverse attack with limited computing power. Robust
gradient method in [40], GIANT in [27]

APPENDIX A
PROOF OF LEMMA 2

When Assumption 4 holds, from union bound theorem, for
any δ ∈ (0, 1), with probability at least 1− δ

3 , |Sj | data satisfy

h′ ≤ ‖∇2f(X, θ)‖2 ≤M ′, (53)

When ‖∇2f(X, θ)‖2 ≤M ′, we have

Hi −H =
∑
j∈Si

1

|Si|
(∇2f(Xj , θ)−H), (54)

12



0.00 0.02 0.04 0.06 0.08 0.10 0.12
training time(s)

40

50

60

70

80

90
ac
cu
ra
cy

45 inverse attack

MNM
Robust gradient method
GIANT
CNM

Fig. 12. MNIST: 45 Inverse attack with limited computing power. Robust
gradient method in [40], GIANT in [27]

and∥∥∥∥ 1

|Si|
(∇2f(Xj , θ)−H)

∥∥∥∥
2

≤ 1

|Si|
(‖∇2f(Xj , θ)‖2 + ‖H‖2)

≤2(M ∨M ′)
|Si|

. (55)

Before proceed further, we define matrix variance statistic
v(Y ) of a random Hermitian matrix with zero mean Y as

v(Y ) = ‖V ar(Y )‖2 = ‖E[(Y − E[Y ])2]‖2 = ‖E[Y 2]‖2.

Using this definition, we have

v(Hi −H) =

∥∥∥∥∥∥
∑
j∈Si

E

[
1

|Si|
(∇2f(Xj , θ)−H)2

]∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
j∈Si

1

|Si|2
E
[
(∇2f(Xj , θ)−H)2

]∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑
j∈Si

1

|Si|2
E[∇2f(Xj , θ)

2]

∥∥∥∥∥∥
2

≤ 1

|Si|
E
∥∥∇2f(Xj , θ)

2
∥∥

2

=
1

|Si|
E
∥∥∇2f(Xj , θ)

∥∥2

2

≤ (M ∨M ′)2

|Si|
. (56)

Since H = E[Hi], for 0 ≤ γ ≤ 2(M ∨ M ′), we can use

Matrix Bernstein inequality from [50] to get

Pr {‖Hi −H‖2 ≥ γ}

≤ 2d exp

(
−γ2/2

v(Hi −H) + 2(M ∨M ′)γ/3|Si|

)
≤ 2d exp

(
−γ2/2

(M ∨M ′)2/|Si|+ 2(M ∨M ′)γ/3|Si|

)
≤ 2d exp

(
−3γ2|Si|

14(M ∨M ′)2

)
. (57)

By picking ∆3 = γ =
√

14(M∨M ′)2 log(2d/δ′3)
3|Si| , we achieve

Pr {‖Hi −H‖2 ≥ ∆3} ≤ δ′3. (58)

when ‖∇2f(X, θ)‖2 ≤M ′.
From union bound theorem, suppose Assumption 4 holds,

let δ2 = δ
3 + δ′3 and δ2 ∈ (0, 1), we have

Pr {‖Hi −H‖2 ≤ ∆3} ≥ 1− δ2. (59)

APPENDIX B
PROOF OF PROPOSITION 1

Suppose Assumptions 1-3 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤
r
√
d} for some r > 0. From (24), for an honest worker i, we

have

Zi(θ) = (H−1 −H−1
i )g(θ)

= H−1(Hi −H)H−1
i g(θ)

= H−1(Hi −H)H−1
i (J(θ) +∇F (θ)). (60)

Using the properties of the spectral norm, we have

‖Zi(θ)‖
≤ ‖H−1‖2‖Hi −H‖2‖H−1

i ‖2(‖J(θ)‖+ ‖∇F (θ)‖).

Following similar steps in [29], [40], we can show that, for
any α ∈ (q/m, 1/2) and 0 < δ3 < α− q/m, we have

Pr{‖J(θ)‖ ≤ 8Cα∆2‖θ − θ∗‖+ 4Cα∆1}
≥ 1− e−mD(α−q/m‖δ3) (61)

where ∆1 =
√

2σ1

√
(d log 6 + log(6/δ3))/|Si|, ∆2 =√

2σ2

√
(τ1 + τ2)/|Si|, with τ1 = d log 18 + d log(M/σ2),

τ2 = 0.5d log(|Si|/d) + log(6/δ3) + log(
2rσ2

2

√
|Si|

α2σ1
), Cα =

2(1−α)
1−2α and D(δ′‖δ) = δ′ log δ′

δ + (1− δ′) log 1−δ′
1−δ .

Combining it with Assumption 1, Assumption 4, Lemma 2,
we have the following bound

Pr

{
∀θ : ‖Zi(θ)‖ ≤

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
‖θ − θ∗‖

+
4Cα∆3∆1

hh′

}
≥ 1− δ4, (62)

with 1− δ4 = 1− δ2 − e−mD(α−q/m‖δ3).

APPENDIX C
PROOF OF PROPOSITION 2

Suppose Assumptions 1-3 hold, and Θ ⊂ {θ :‖ θ − θ∗ ‖≤
r
√
d} for some r > 0. From Proposition 1, we have the bound
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‖Zi(θ)‖ for honest worker i.
From Lemma 1, in order to bound the geometric median

Z(θ) of Z1(θ), ..., Zm(θ), we need to have more than half of
the workers to be honest.

Then we can define a good event E2,α,ξ1,ξ2 ={∑m
i=1 1{Cα‖Zi(θ)‖2≤ξ3‖θ−θ∗‖+ξ4} ≥ m(1− α) + q

}
, where

ξ3 =

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
Cα,

and
ξ4 =

4C2
α∆3∆1

hh′
.

From proposition 1, for all 1 ≤ i ≤ m, correct Zi satisfied

Pr {Cα‖Zi(θ)‖ ≤ ξ3‖θ − θ∗‖+ ξ4} ≥ 1− δ4, (63)

for any α ∈ (q/m, 1/2) and 0 < δ4 < α − q/m. Then
following similar steps as in [29], we have

Pr{E2,α,ξ1,ξ2} ≥ 1− e−mD(α−q/m‖δ4). (64)

Then using Lemma 1, we obtain an bound for norm of
geometric median Z(θ),

Pr

{
∀θ : ‖Z(θ)‖ ≤

(
8Cα∆3∆2

hh′
+

∆3M

hh′

)
Cα‖θ − θ∗‖

+
4C2
α∆3∆1

hh′

}
≥ 1− e−mD(α−q/m‖δ4). (65)

APPENDIX D
PROOF OF LEMMA 3

‖H−1∇F (θ)−G(θ)‖

=

∥∥∥∥∥∥H−1∇F (θ)− 1

1 + |A(2)|
(
∑
i∈A(2)

g
(i)
2 (θ) + H̃−1

0 g(θ))

∥∥∥∥∥∥
≤ 1

1 + |A(2)|

∥∥∥∥∥∥
∑
i∈A(2)

(g
(i)
2 (θ)− H̃−1

0 g(θ))

∥∥∥∥∥∥
+ ‖H−1∇F (θ)− H̃−1

0 g(θ)‖

≤ ξ2
|A(2)|

1 + |A(2)|
‖H̃−1

0 g(θ)‖

+ ‖H̃−1
0 g(θ)− H̃−1

0 ∇F (θ)‖
+ ‖H−1∇F (θ)− H̃−1

0 ∇F (θ)‖
< (1 + ξ2)‖H̃−1

0 ‖2‖g(θ)−∇F (θ)‖
+ ξ2‖H̃−1

0 ‖2‖∇F (θ)‖+ ‖H−1∇F (θ)− H̃−1
0 ∇F (θ)‖.

APPENDIX E
PROOF OF LEMMA 4

If ‖H0 −H‖2 ≤ β and β < h(h+µ)
3h+2µ , we have

‖I− H̃−1
0 H‖2

= ‖I− (H + µI)−1H + (H + µI)−1H − H̃−1
0 H‖2

≤ µ

h+ µ
+ ‖(H̃−1

0 − (H + µ)−1)H‖2. (66)

Consider H̃−1
0 , let A = H+µI and ∆0 = H0−H , noting that

‖A−1∆0‖2 ≤ ‖A−1‖2‖∆0‖2 ≤ 1
h+µ

h(h+µ)
3h+2µ < 1, we have

H̃−1
0 = (H + µI +H0 −H)−1

= (A+ ∆0)−1

= (A(I +A−1∆0))−1

= (I +A−1∆0)−1A−1

= A−1 +
∞∑
r=1

(−1)r(A−1∆0)rA−1. (67)

Then, we can have

‖(H̃−1
0 − (H + µI)−1)H‖2

= ‖
∞∑
r=1

(−1)r(A−1∆0)rA−1(A− µI)‖2

= ‖
∞∑
r=1

(−1)r(A−1∆0)r(I− µA−1)‖2

≤
∞∑
r=1

‖A−1‖r2‖∆0‖r2‖I− µA−1‖2

≤
∞∑
r=1

βr

(h+ µ)r
(1 +

µ

h+ µ
)

≤ 2β

h+ µ

∞∑
r=0

βr

(h+ µ)r

=
2β

h+ µ− β
. (68)

Then, we have

‖I− H̃−1
0 H‖2 ≤

µ

h+ µ
+

2β

h+ µ− β
< 1, (69)

when β < h(h+µ)
3h+2µ .

APPENDIX F
PROOF OF PROPOSITION 3

From Lemma 4, we have the bound for ‖I − H̃−1
0 H‖2, if

‖H0 −H‖2 ≤ β and β < h(h+µ)
3h+2µ . From Lemma 2, we have

shown when Assumption 4 holds, that for any δ ∈ (0, 1), δ2 ∈
(0, 1), δ′3 ∈ (0, 1) and δ2 = δ′3 + δ/3 with probability at least
1 − δ2, ‖H0 − H‖2 ≤

√
14M2 log(2d/δ′3)

3|S0| . Then if ‖S0‖ is

sufficiently large, we have ∆3 =
√

14M2 log(2d/δ′3)
3|S0| < h(h+µ)

3h+2µ ,
and we have the following bound for any δ2 ∈ (0, 1) with
probability at least 1− δ2

‖(H−1 − H̃−1
0 )∇F (θ)‖

= ‖(I− H̃−1
0 H)H−1∇F (θ)‖

≤ ‖I− H̃−1
0 H‖2‖H−1‖2‖∇F (θ)−∇F (θ∗)‖

≤
(

µ

h+ µ
+

2∆3

h+ µ−∆3

)
M

h
‖θ − θ∗‖. (70)
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