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Minimax Optimal Estimation of KL Divergence
for Continuous Distributions
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Abstract—Estimating Kullback-Leibler divergence from
identical and independently distributed samples is an important
problem in various domains. One simple and effective estimator
is based on the k nearest neighbor distances between these
samples. In this paper, we analyze the convergence rates of the
bias and variance of this estimator. Furthermore, we derive a
lower bound of the minimax mean square error and show that
kNN method is asymptotically rate optimal.

Index Terms—KNN, Kullback-Leibler Divergence, Func-
tional Approximation, Convergence Rate

I. INTRODUCTION

Kullback-Leibler (KL) divergence has a broad range of
applications in information theory, statistics and machine
learning. For example, KL divergence can be used in hy-
pothesis testing [2], text classification [3], outlying sequence
detection [4], multimedia classification [5], speech recogni-
tion [6], etc. In many applications, we hope to know the
value of KL divergence, but the distributions are unknown.
Therefore, it is important to estimate KL divergence based
only on some identical and independently distributed (i.i.d)
samples. Such problem has been widely studied [7–14].

The estimation method is different depending on whether
the underlying distribution is discrete or continuous. For
discrete distributions, an intuitive method is called plug-in
estimator, which first estimates the probability mass function
(PMF) by simply counting the number of occurrences at
each possible value and then calculates the KL divergence
based on the estimated PMF. However, since it is always
possible that the number of occurrences at some locations is
zero, this method has infinite bias and variance for arbitrarily
large sample size. As a result, it is necessary to design
some new estimators, such that both the bias and variance
converge to zero. Several methods have been proposed in
[12–14]. These methods perform well for distributions with
fixed alphabet size. Recently, there is a growing interest
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in designing estimators that are suitable for distributions
with growing alphabet size. [7] provided an ‘augmented
plug-in estimator’, which is a modification of the simple
plug-in method. The basic idea of this method is to add
a term to both the numerator and the denominator when
calculating the ratio of the probability mass. Although this
modification will introduce some additional bias, the overall
bias is reduced. Moreover, a minimax lower bound has also
been derived in [7], which shows that the augmented plug-in
estimator proposed in [7] is rate optimal.

For continuous distributions, there are also many inter-
esting methods. A simple one is to divide the support into
many bins, so that continuous values can be quantized, and
then the distribution can be converted to a discrete one.
As a result, the KL divergence can be estimated based on
these two discrete distributions. However, compared with
other methods, this method is usually inefficient, especially
when the distributions have heavy tails, as the probabil-
ity mass of a bin at the tail of distributions is hard to
estimate. An improvement was proposed in [8], which is
based on data dependent partitions on the densities with an
appropriate bias correction technique. Comparing with the
direct partition method mentioned above, this adaptive one
constructs more bins at the regions with higher density, and
vice versa, to ensure that the probability mass in each bins
are approximately equal. It is shown in [8] that this method
is strongly consistent. Another estimator was designed in
[15], which uses a kernel based approach to estimate the
density ratio. There are also some previous works that focus
on a more general problem of estimating f -divergence, with
KL divergence being a special case. For example, [16]
constructed an estimator based on a weighted ensemble of
plug in estimators, and the parameters need to be tuned
properly to get a good bias and variance tradeoff. Another
method of estimating f -divergence in general was proposed
in [11], under certain structural assumptions.

Among all the methods for the estimation of KL diver-
gence between two continuous distributions, a simple and
effective one is k nearest neighbor (kNN) method based
estimator. kNN method, which was first proposed in [17],
is a powerful tool for nonparametric statistics. Kozachenko
and Leonenko [18] designed a kNN based method for the
estimation of differential entropy, which is convenient to



2

use and does not require too much parameter tuning. Both
theoretical analysis and numerical experiments show that this
method has desirable accuracy [19–25]. In particular, [24]
shows that this estimator is nearly minimax rate optimal
under some assumptions. The estimation of KL divergence
shares some similarity with that of entropy estimation, since
KL divergence between f and g, which denotes the probabil-
ity density functions (pdf) of two distributions, is actually
the difference of the entropy of f and the cross entropy
between f and g. As a result, the idea of Kozachenko-
Leonenko entropy estimator can be used to construct a kNN
based estimator for KL divergence, which was first proposed
in [9]. The basic idea of this estimator [9] is to obtain an
approximate value of the ratio between f and g based on
the ratio of kNN distances. It has been discussed in [9] that,
compared with other KL divergence estimators, the kNN
based estimator has a much lower sample complexity, and
is easier to generalize and implement for high dimensional
data. Moreover, it was proved in [9] that the kNN based
estimator is consistent, which means that both the bias and
the variance converge to zero as sample sizes increase.
However, the convergence rate remains unknown.

In this paper, we make the following two contributions.
Our first main contribution is the analysis of the convergence
rates of bias and variance of the kNN based KL divergence
estimator proposed in [9]. For the bias, we discuss two
significantly different types of distributions separately. In
the first type of distributions analyzed, both f and g have
bounded support, and are bounded away from zero. One such
example is when both distributions are uniform distributions.
This implies that the distribution has boundaries, where
the pdf suddenly changes. There are two main sources of
estimation bias of kNN method for this case. The first
source is the boundary effect, as the kNN method tends to
underestimate the pdf values at the region near the boundary.
The second source is the local non-uniformity of the pdf.
It can be shown that the bias caused by the second source
converges fast enough and thus can be negligible. As a result,
the boundary bias is the main cause of bias of the kNN based
KL divergence estimator for the first type of distributions
considered. In the second type of distributions analyzed, we
assume that both f and g are continuous everywhere. For
example, a pair of two Gaussian distributions with different
mean or variance belong to this case. For this type of
distributions, the boundary effect does not exist. However,
as the density values can be arbitrarily close to zero, we
need to consider the bias caused by the tail region, in which
f or g is too low and thus kNN distances are too large for
us to obtain an accurate estimation of the density ratio f/g.
For the variance of this estimator, we bound the convergence
rate under a unified assumption, which holds for both two
cases discussed above. The convergence rate of the mean

square error can then be obtained based on that of the bias
and variance. In this paper, we assume that k is fixed. We
will show that with fixed k, the convergence rate of the
mean square error over the sample sizes is already minimax
optimal.

Our second main contribution is to derive a minimax
lower bound of the mean square error of KL divergence
estimation, which characterizes the theoretical limit of the
convergence rates of any methods. For discrete distributions,
the minimax lower bound has already been derived in [26]
and [7]. However, for continuous distributions, the minimax
lower bound has not been established. In fact, there exists
no estimators that are uniformly consistent for all continuous
distributions. For example, let f =

∑m
i=1 pi1((i − 1)/m <

x ≤ i/m), in which 1 is the indicator function, and g is
uniform in [0, 1]. Then the estimation error of KL divergence
between f and g equals the estimation error of the entropy
of p = (p1, . . . , pm). Since m can be arbitrarily large,
according to the lower bound derived in [27], there exists no
uniformly consistent estimator. As a result, to find a minimax
lower bound, it is necessary to impose some restrictions
on the distributions. In this paper, we analyze the minimax
lower bound for two cases that match our assumptions for
deriving the upper bound, i.e. distributions with bounded
support and densities bounded away from zero, and distri-
butions that are smooth everywhere and densities can be
arbitrarily close to zero. For each case, we show that the
minimax lower bound nearly matches our upper bound using
kNN method. This result indicates that the kNN based KL
divergence estimator is nearly minimax optimal.

There are some previous works that have analyzed the
estimation of a class of functionals including KL divergence,
such as [28–31]. Most of these works focus on the case in
which the pdf is bounded away from zero, and the support
is bounded and known to us. When the support is unknown,
previous boundary correction methods can not be used,
hence both the upper bound and minimax lower bound of
the convergence rate become slower. Moreover, the case in
which pdfs can approach zero still needs further study. To
the best of our knowledge, our work is the first attempt to
analyze the KL divergence estimation for cases in which the
pdf is bounded away from zero with unknown support, and
the first attempt to analyze the KL divergence estimation
for cases in which the pdf can approach zero with matching
upper and lower bounds in general.

The remainder of this paper is organized as follows. In
Section II, we provide the problem statements. In Sections
III and IV, we characterize the convergence rates of the bias
and variance of the kNN based KL divergence estimator
respectively. In Section V, we show the minimax lower
bound. We then provide numerical examples in Section VI,
and concluding remarks in Section VII.
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II. PROBLEM STATEMENT

Consider two pdfs f, g : Rd → R where f(x) > 0 only
if g(x) > 0. The KL divergence between f and g is defined
as

D(f ||g) =

∫
f(x) ln

f(x)

g(x)
dx. (1)

f and g are unknown. However, we are given a set of
samples {X1, . . . ,XN} drawn i.i.d from pdf f , and another
set of samples {Y1, . . . ,YM} drawn i.i.d from pdf g. The
goal is to estimate D(f ||g) based on these samples.

[9] proposed a kNN based estimator:

D̂(f ||g) =
d

N

N∑
i=1

ln
νi
εi

+ ln
M

N − 1
, (2)

in which εi is the distance between Xi and its k-th nearest
neighbor in {X1, . . . ,Xi−1,Xi+1, . . . ,XN}, while νi is
the distance between Xi and its k-th nearest neighbor in
{Y1, . . . ,YM}, d is the dimension. The distance between
any two points u,v is defined as ‖u− v‖, in which ‖·‖ can
be an arbitrary norm. The basic idea of this estimator is using
kNN method to estimate the density ratio. An estimation of
f at Xi is

f̂(Xi) =
k

N − 1

1

V (B(Xi, εi))
, (3)

in which V (S) is the volume of set S. (3) can be under-
stood as follows. Apart from Xi, there are another N − 1
samples from X1, . . . ,XN , among which k points fall
in V (B(Xi, εi)). Therefore, k/(N − 1) is an estimate of
Pf (B(Xi, εi)), in which Pf is the probability mass with
respect to the distribution with pdf f . As the distribution is
continuous, we have Pf (B(Xi, εi)) ≈ f(Xi)V (B(Xi, εi)).
We can then use (3) to estimate f̂(Xi). Similarly, as there are
M samples Y1, . . . ,YM generated from g, we can obtain
an estimate ĝ by

ĝ(Xi) =
k

M

1

V (B(Xi, νi))
. (4)

As

D(f ||g) = EX∼f

[
ln
f(X)

g(X)

]
≈ 1

N

N∑
i=1

ln
f(Xi)

g(Xi)
, (5)

by replacing f(Xi), g(Xi) with (3) and (4) respectively, we
can get the expression of the KL divergence estimator in (2).

[9] has proved that this estimator is consistent, but the
convergence rate remains unknown. In this paper, we analyze
the convergence rates of the bias and variance of this
estimator, and derive the minimax lower bound.

III. BIAS ANALYSIS

In this section, we derive convergence rate of the bias
of the estimator (2). We will consider two different cases
depending on whether the support is bounded or not, as they
have different sources of biases.

A. The Cases with Densities Bounded Away from Zero

We first discuss the case in which the distributions have
bounded support and the densities are bounded away from
zero. The main source of bias of this case is boundary
effects. Define Sf and Sg as the support of pdf f and
g, respectively, and define

∥∥∇2f
∥∥
op

and
∥∥∇2g

∥∥
op

as the
operator norm of the Hessian of f and g respectively. We
make the following assumptions.

Assumption 1. Assume the following conditions:
(a) Sf ⊆ Sg;
(b) There exist constants Lf , Uf , Lg , Ug such that Lf ≤

f(x) ≤ Uf for all x ∈ Sf and Lg ≤ g(x) ≤ Ug for all
x ∈ Sg;

(c) The Hausdorff measure of Sf and Sg are bounded by
Hf and Hg respectively;

(d) The diameters of Sf and Sg are bounded by R, i.e.
sup

x1,x2∈Sg
‖x2 − x1‖ < R;

(e) There exists a constant 0 < a < 1 such that for all
r ≤ R and x ∈ Sf , V (B(x, r) ∩ Sf ) ≥ aV (B(x, r)), and
for all x ∈ Sg , V (B(x, r) ∩ Sg) ≥ aV (B(x, r)), in which
V denotes the volume of a set;

(f) There exists a constant C0, such that
∥∥∇2f

∥∥
op
≤ C0,∥∥∇2g

∥∥
op
≤ C0.

Assumption (a) is necessary to ensure that the definition
of KL divergence in (1) is valid. (b) bounds both the lower
and upper bound of the pdf value. (c) restricts the surface
area of the supports of f and g. Since the kNN divergence
estimator tends to cause significant bias at the region near
to the boundary, the estimation bias for distributions with
irregular supports with large surface area are usually large.
(d) requires the boundedness of the support. The case with
unbounded support will be considered in Section III-B. (e)
ensures that the angles at the corners of the support sets have
a lower bound, so that there will not be significant bias at
the corner region. (f) ensures the smoothness of distribution
in the support set. Note that (3) and (4) actually estimate
the average density f and g over the ball B(Xi, εi) and
B(Xi, νi). If the f and g are smooth, then the average values
will not deviate too much from the pdf value at the center
of the balls, i.e. f(Xi) and g(Xi).

Based on the above assumptions, we have the following
theorem regarding the bias of estimator (2).
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Theorem 1. Under Assumption 1, the convergence rate of
the bias of kNN based KL divergence estimator with fixed k
is bounded by:

|E[D̂(f ||g)]−D(f ||g)| = O

((
ln min{M,N}
min{M,N}

) 1
d

)
. (6)

Proof. (Outline) Considering that

D(f ||g) = −h(f)−
∫
f(x) ln g(x)dx, (7)

in which h denotes the differential entropy, we decompose
the KL divergence estimator to an estimator of the differ-
ential entropy of f , as well as an estimator of the cross
entropy between f and g. We then bound the bias of these
two estimators. In particular, we can write

E[D̂(f ||g)]−D(f ||g) = −I1 + I2 + I3, (8)

with

I1 = −ψ(k) + ψ(N) + ln cd + dE[ln ε]− h(f),

I2 = −ψ(k) + ψ(M + 1) + ln cd

+dE[ln ν] + E[ln g(X)],

I3 = lnM − ψ(M + 1)− ln(N − 1) + ψ(N), (9)

in which ψ is the digamma function, ψ(u) = d(ln Γ(u))/du,
with Γ being the Gamma function. Due to the property of
Gamma distribution, we know that | lnM − ψ(M + 1)| ≤
1/M , and | ln(N − 1) − ψ(N)| ≤ 1/N . Hence I3 decays
sufficiently fast and can be negligible for large sample sizes
N and M .
I1 has the same form as the bias of Kozachenko-Leonenko

entropy estimator [18], which has been analyzed in many
previous literatures [20, 22–24, 32]. With some modifica-
tions, the proofs related to the entropy estimator can also
be used to bound I2, which is actually the bias of a cross
entropy estimator. However, as the assumptions are different
from the assumptions made in previous literatures, we need
to derive (6) in a different way.

In our proof, for both the entropy estimator and the cross
entropy estimator, we divide the support into two parts, the
central region and the boundary region. In the central region,
B(x, ε) will be within Sf and B(x, ν) will be within Sg with
high probability. Since f and g are smooth, the expected
estimate f̂ and ĝ are very close to the truth, and thus will
not cause significant bias. The main bias comes from the
boundary region, in which the density estimator f̂ and ĝ
are no longer accurate, as B(x, ε) or B(x, ν) exceeds the
supports Sf and Sg . We bound the boundary bias by letting
the boundary region to shrink with a proper speed.

The detailed proof is shown in Appendix A.

For distributions under Assumption 1, the boundary bias
dominates the bias due to the local nonuniformity of the

pdf. We would like to remark that this finding relies on the
smoothness level of the pdf f and g. If instead of assuming
that f and g have bounded Hessian, we only require f and
g to satisfy some weak smoothness conditions, for example,
f and g may be Hölder with smoothness parameter less
than 1, then the dominant cause of bias becomes the local
nonuniformity of pdf instead of the boundary.

Our convergence rate in (6) appears to be slower than [28]
and [31]. [28] studies nonparametric estimation of Renyi di-
vergence Dα(f ||g) = (1/(α − 1)) ln

(∫
fα(x)g1−α(x)dx

)
,

which becomes KL divergence when α→ 1. [31] focus on
another class of functionals, also with KL divergence as a
special case. However, in these works, the support sets are
assumed to be known, while in our work, we do not assume
the knowledge of the support set.

B. The Case with Density Approaching Zero

We now consider the second case where the density is
smooth everywhere and the density can be arbitrarily close
to zero. For this case, the main source of bias is tail effects.
Note that in this case, the support can be either bounded
or unbounded. For example, f(x) ∼ 1 + cos(x) in [−π, π]
is an example of distribution with bounded support, while
Gaussian distribution is an example with unbounded support.
We make the following assumptions:

Assumption 2. Assume the following conditions:
(a) If f(x) > 0, then g(x) > 0;
(b) P(f(X) ≤ t) ≤ µtγ and P(g(X) ≤ t) ≤ µtγ for some

constants µ and γ ∈ (0, 1], in which X follows a distribution
with pdf f ;

(c)
∥∥∇2f

∥∥
op
≤ C0,

∥∥∇2g
∥∥
op
≤ C0 for some constant C0,

in which ‖·‖op is the operator norm;
(d) E[‖X‖s] ≤ K, and E[‖Y‖s] ≤ K for some constants

s > 0, K > 0.

Assumption (a) ensures that the definition of KL diver-
gence in (1) is valid. (b) is the tail assumption. A lower γ
indicates a stronger tail, and thus the convergence of bias of
the KL divergence estimator will be slower. For example,
for any distributions with bounded support, γ ≥ 1. For
Gaussian distribution with dimensionality d ≤ 2, γ = 1. For
high dimensional Gaussian distributions, γ can be arbitrarily
close to 1. For tn distribution, γ = n/(n+ 1). For Cauchy
distribution, γ = 1/2. If f and g have different tail strength,
i.e. P(f(X) < t) ≤ µtγf and P(g(X) < t) ≤ µtγg , then
the convergence rate depends on the smaller γ value. For
example, if γf > γg , then f must also satisfy Assumption
2(b) with γg , for another constant µ′. Therefore we can just
use γ = γg in (b). (c) is the smoothness assumption. (d) is an
additional tail assumption, which is actually very weak and
holds for almost all of the common distributions, since s can
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be arbitrarily small. However, this assumption is important
since it prevents very large ε and ν. Based on the above
assumptions, we have the following theorem regarding the
bias of estimator (2).

Theorem 2. Under Assumption 2, the convergence rate of
the bias of kNN based KL divergence estimator with fixed k
is bounded by:∣∣∣E[D̂(f ||g)]−D(f ||g)

∣∣∣
= O

(
(min{M,N})−

2γ
d+2 ln min{M,N}

)
. (10)

Proof. (Outline) Similar to the proof of Theorem 1, we still
decompose the KL divergence estimator to two estimators
that estimate the entropy of f and the cross entropy between
f and g, separately. In particular, we can still decompose
the bias using (8). For simplicity, we only provide the
convergence bound of I2, which is the error of the cross
entropy estimator. The bound of the entropy estimator holds
similarly.

For the cross entropy estimator, we divide the support
into two parts, including a central region S1, in which f or
g is relatively high, and a tail region S2, in which f or g is
relatively low. According to the results of order statistics [32,
33], E[lnPg(B(x, ν))] = ψ(k)−ψ(M+1), in which Pg(S)
is the probability mass of S with respect to the distribution
with pdf g. Therefore, I2 can be bounded by

|I2| =

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)

]∣∣∣∣
≤

2∑
i=1

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ Si)

]∣∣∣∣ . (11)

We bound two terms in (11) separately. To derive the
bound of bias in S1, we find a high probability upper bound
of νi, denoted as ρ. The bound of bias can be obtained
by bounding the local non-uniformity of g in B(νi, ρ) if
νi ≤ ρ. On the contrary, if νi > ρ, we use assumption (d) to
ensure that νi will not be too large, and thus will not cause
significant estimation error. We let ρ to decay with M at a
proper speed, to maximize the overall convergence rate of
the bias.

To bound the bias in S2, we let the threshold between S1

and S2 to decay with sample size M , so that the probability
mass of S2 also decreases with M . We then combine the
bound of S1 and S2, and adjust the rate of the decay of the
threshold between S1 and S2 properly.

The detailed proof can be found in Appendix B.

The convergence rate for distributions with densities ap-
proaching zero in (10) appears to be slower than that in [30],
which analyzes a class of two sample functionals including
KL divergence. However, [30] requires the derivatives of the

pdf to decay simultaneously with the pdf itself, while our
assumption only have a uniform bound on the Hessian. As
a result, the estimation bias at the tail can be larger under
our assumptions.

IV. VARIANCE ANALYSIS

We now discuss the variance of this divergence estimator.
Define

f̃(x, r) = Pf (B(x, r))/V (B(x, r)) (12)

as the average pdf f over B(x, r). g̃ is similarly defined.
Then we make the following assumptions.

Assumption 3. Assume that the following conditions hold:
(a) f and g are continuous almost everywhere;
(b) ∃r0 > 0, such that∫

f(x)

(
inf
r<r0

f̃(x, r)

)2

dx <∞; (13)∫
f(x)

(
sup
r<r0

f̃(x, r)

)2

dx <∞; (14)∫
f(x)

(
inf
r<r0

g̃(x, r)

)2

dx <∞; (15)∫
f(x)

(
sup
r<r0

g̃(x, r)

)2

dx <∞; (16)

(c) E[‖X‖s] ≤ K and E[‖Y‖s] ≤ K for two finite
constants s,K > 0;

(d) There exist two constants C and Ug , such that for all
x, f(x) ≤ Cg(x) and g(x) ≤ Ug .

Assumption 3 (a)-(c) are satisfied if either Assumption 1
or Assumption 2 is satisfied. (a) only requires that the pdf
is continuous almost everywhere, and thus holds not only
for distributions that are smooth everywhere, but also for
distributions that have boundaries. (b) is obviously satisfied
under Assumption 1, since it requires that the densities are
both upper and lower bounded. From Assumption 2, it is
also straightforward to show that

∫
f(x) ln2 f(x)dx < ∞

and
∫
f(x) ln2 g(x) < ∞. This property combining with

the smoothness condition (Assumption 2 (c)) imply that (16)
holds for sufficiently small r0. (c) is the same as Assumption
2 (d) and weaker than Assumption 1 (d). Therefore, (a)-(c)
are weaker than both previous assumptions on the analysis
of bias. (d) is a new assumption which restricts the density
ratio. This is important since if the density ratio can be
too large, which means that there exists a region on which
there are too many samples from {X1, . . . ,XN}, but much
fewer samples from {Y1, . . . ,YM}, then νi will be large
and unstable for too many i ∈ {1, . . . , N}. Therefore we
use assumption (d) to bound the density ratio.

Under these assumptions, the variance of the divergence
estimator can be bounded using the following theorem.
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Theorem 3. Under Assumption 3, the convergence rate of
the variance of estimator (2) with fixed k can be bounded
by:

Var[D̂(f ||g)] = O
((

1

M
+

1

N

)
ln2(M +N)

)
. (17)

Proof. (Outline) From (2), we have

Var[D̂(f ||g)]

= Var

[
d

N

N∑
i=1

ln νi −
d

N

N∑
i=1

ln εi

]

≤ 2 Var

[
d

N

N∑
i=1

ln εi

]
+ 2 Var

[
d

N

N∑
i=1

ln νi

]
.(18)

Our proof uses some techniques from [32], which proved the
O(1/N) convergence of variance of Kozachenko-Leonenko
entropy estimator with k = 1 for one dimensional distribu-
tions, and [24], which generalizes the result to arbitrary fixed
dimension and k, without restrictions on the boundedness of
the support. The basic idea is that if one sample is replaced
by another i.i.d sample, then it can be shown that the k-NN
distance will change only for a tiny fraction of the samples.

The first term in (18) is just the variance of Kozachenko-
Leonenko entropy estimator. Therefore we can use similar
proof procedure as was already used in the proof of Theorem
2 in [24]. [24] analyzed a truncated Kozachenko-Leonenko
entropy estimator, which means that εi is truncated by an
upper bound aN . We prove the same convergence bound for
the estimator without truncation.

For the second term in (18), the analysis becomes much
harder, since the k-NN distance may change for much
more samples from {X1, . . . ,XN}, instead of only a tiny
fraction of samples. For this term, we design a new method
to obtain the high probability bound of the deviation of
(d/N)

∑N
i=1 ln νi from its mean. The basic idea of our new

methods can be briefly stated as following: Define two sets
S1 and S′1, in which S1 is a subset of Rd such that for
any x ∈ S1, Y1 is among the k nearest neighbors of x
in {Y1, . . . ,YM}. Similarly, define S′1 to be a set such
that for all x ∈ S′1, Y′1 is among the k nearest neighbors
of x. If we replace Y1 with Y′1, the kNN distance of
Xi, i = 1, . . . , N will only change if Xi ∈ S1 or Xi ∈ S′1.
With this observation, we give a high probability bound of
the number of samples from {X1, . . . ,XN} that are in S1

and S′1 respectively, and then bound the maximum difference
of the estimated result caused by replacing Y1 with Y′1.
Based on this bound, we can then bound the second term in
(18) using Efron-Stein inequality.

The detailed proof can be found in Appendix C.

Remark 1. Assumption 3 (d) does not hold for certain
scenarios. For example, for two Gaussian distributions with
same variances but different means, the density ratio f/g
is not bounded. In the following, we slightly weaken this
assumption:

(d’) For all δ > 0, there exists a constant Cδ that depends
on δ, such that

sup
S:Pg(S)≤t

Pf (S) ≤ Cδt1−δ, (19)

in which Pf (S) =
∫
S
f(x)dx and Pg(S) =

∫
S
g(x)dx are

the probability masses of S under f and g respectively. If
Assumption 3 holds, except that Assumption 3 (d) is replaced
by (d’), then for arbitrarily small δ,

Var[D̂(f ||g)] = O

((
1

M
+

1

N

)1−δ
)
. (20)

This result indicates that if f/g is not bounded, but the
region such that f/g is large has a small probability mass,
then the convergence rate becomes slightly slower, but the
effect is smaller than any polynomial factor. The proof of
this argument is shown in Appendix D. In Appendix D, we
also show that (d’) is satisfied for two Gaussian distributions
with same variances and different means.

In the analysis above, we have derived the convergence
rate of bias and variance. With these results, we can then
bound the mean square error of kNN based KL divergence
estimator. For distributions that satisfy Assumptions 1 and
3, the mean square error can be bounded by

E[(D̂(f ||g)−D(f ||g))2]

= O
(
M−

2
d ln

2
d M +N−

2
d ln

2
d N

+

(
1

M
+

1

N

)
ln2(M +N)

)
. (21)

For distributions that satisfy Assumptions 2 and 3, the
corresponding bound is

E[(D̂(f ||g)−D(f ||g))2]

= O
(
M−

4γ
d+2 ln2M +N−

4γ
d+2 ln2N

+

(
1

M
+

1

N

)
ln2(M +N)

)
. (22)

V. MINIMAX ANALYSIS

In this section, we derive the minimax lower bound of the
mean square error of KL divergence estimation, which holds
for all methods (not necessarily kNN based) that do not have
the knowledge of the distributions f and g. The minimax
analysis also considers two cases, i.e. the distributions whose
densities are bounded away from zero, and those who has
approaching zero densities.
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For the first case, the following theorem holds.

Theorem 4. Define Sa as set of pairs (f, g) that satisfies
Assumptions 1 and 3, and

Ra(N,M) := inf
D̂

sup
(f,g)∈Sa

E[(D̂(N,M)−D(f ||g))2], (23)

in which D̂(N,M) is the estimation of KL divergence using
N,M samples drawn respectively from the distributions
whose densities are f and g. Then for sufficiently large Uf ,
Ug and sufficiently small Lf and Lg , we have

Ra(N,M)

= Ω

(
1

N
+N−

2
d (1+ 2

ln lnN ) ln−2N ln−(2− 2
d )(lnN)

+
1

M
+M−

2
d (1+ 2

ln lnM ) ln−2M ln−(2− 2
d )(lnM)

)
.

(24)

Proof. (Outline) The minimax lower bound of functional
estimation can be bounded using Le Cam’s method [34]. For
the proof of Theorem 4, we use some techniques from [27],
which derived the minimax bound of entropy estimation
for discrete distributions. The main idea is to construct a
subset of distributions that satisfy Assumptions 1 and 3,
and then conduct Poisson sampling. These operations can
help us calculate the distance between two distributions
in a more convenient way, which is important for using
Le Cam’s method. Details of the proof can be found in
Appendix E.

In Theorem 4, ‘sufficiently large’ means that a quantity is
larger than a universal constant or a constant depending only
on dimension d, and ‘sufficiently small’ is just the opposite.

(24) can be simplified as

Ra(N,M) = Ω

(
1

N
+

1

M
+N−( 2

d+δ) +M−( 2
d+δ)

)
, (25)

for arbitrarily small δ > 0.
Our minimax lower bound (24) is slower than that in

[29], which holds for a class of functionals including the
KL divergence. The reason is that the support Sf and Sg
of pdfs f and g are fixed in [29], while in our Theorem
4, Sa contains distributions with a broad range of different
support sets, as long as these support sets are restricted by
Assumption 1 (c) and (d), which only require that the surface
area of these supports are bounded by Hf and Hg , and
the diameters are bounded by R. As a result, the minimax
convergence rate becomes slower. In other words, [29] and
our work provide the theoretical limit of KL divergence
estimation with known and unknown support, respectively. If
the supports are known, then there is some gap between the
upper bound in Theorem 1 and the lower bound in Theorem
4, indicating that the convergence rate can be improved by

some boundary correction methods. One example of such
improvement is mirror reflection method in [35]. On the
contrary, if the support is unknown, then our result shows
that the kNN method with no boundary correction is already
nearly optimal, and it is impossible to design a boundary
correction method to achieve a better convergence rate, up
to a factor that is asymptotically smaller than any polynomial
of sample sizes.

For the second case, the corresponding result is shown in
Theorem 5.

Theorem 5. Define Sb as set of pairs (f, g) that satisfies
Assumptions 2 and 3, and

Rb(N,M) := inf
D̂

sup
(f,g)∈Sb

E[(D̂(N,M)−D(f ||g))2], (26)

then for sufficiently large µ,C0,K,

Rb(N,M) = Ω

(
1

M
+M−

4γ
d+2 (lnM)−

4d+8−4γ
d+2

+
1

N
+N−

4γ
d+2 (lnN)−

4d+8−4γ
d+2

)
. (27)

Proof. (Outline) The minimax convergence rate of differ-
ential entropy estimation under similar assumptions was
derived in [24]. We can extend the analysis to the minimax
convergence rate of cross entropy estimation between f and
g. Combine the bound for entropy and cross entropy, we can
then obtain the minimax lower bound of the mean square
error of KL divergence estimation. The detailed proof is
shown in Appendix F.

In Theorem 5, ‘sufficiently large’ and ‘sufficiently small’
have the same meaning as in Theorem 4.

Comparing (25) with (21), as well as (27) with (22), we
observe that the convergence rate of the upper bound of
mean square error of kNN based KL divergence estimator
nearly matches the minimax lower bound for both cases.
These results indicate that the kNN method with fixed k is
nearly minimax rate optimal. If we use a growing k, the
constant factor may improve and the logarithm factor may
be removed.

VI. NUMERICAL EXAMPLES

In this section, we provide numerical experiments to
illustrate the theoretical results in this paper. In the simu-
lation, we plot the curve of the estimated bias and variance
over sample sizes. For illustration simplicity, we assume
that the sample sizes for two distributions are equal, i.e.
M = N . For each sample size, the bias and variance are
estimated by repeating the simulation T times, and then
calculate the sample mean and the sample variance of all
these trials. For low dimensional distributions, the bias is
relatively small, therefore it is necessary to conduct more
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trials comparing with high dimensional distributions. In the
following experiments, we repeat T = 100, 000 times if
d = 1, and 10, 000 times if d > 1. In all of the figures, we
use log-log plots with base 10. In all of the trials, we fix
k = 3.

Figure 1 shows the convergence rate of kNN based KL
divergence estimator for two uniform distributions with
different support. This case is an example that satisfies
Assumption 1. In Figure 2, f and g are two Gaussian
distributions with different mean but equal variance. In
Figure 3, f and g are two Gaussian distributions with the
same mean but different variance. These two cases are
examples that satisfy Assumption 2.
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Fig. 1: Convergence of bias and variance of kNN based
KL divergence estimator for two uniform distributions with
different support sets. f = 1 in [0.5, 1.5]d, and g = 2−d in
[0, 2]d.
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Fig. 2: Convergence of bias and variance of kNN based
KL divergence estimator for two Gaussian distributions with
different means. f is the pdf of N (0, Id), and g is the pdf of
N (1, Id), in which Id denotes d dimensional identity matrix,
and 1 = (1, . . . , 1).

For all of these distributions above, we compare the
empirical convergence rates of the bias and variance with
the theoretical prediction. The empirical convergence rates
are calculated by finding the negative slope of the curves in
these figures by linear regression, while the theoretical ones
come from Theorems 1, 2 and 3 respectively. The results
are shown in Table I. For the convenience of expression, we
say that the theoretical convergence rate of bias or variance
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Fig. 3: Convergence of bias and variance of kNN based
KL divergence estimator for two Gaussian distributions with
different variances. f is the pdf of N (0, Id), and g is the
pdf of N (0, 2Id).

is β, if it decays with either O(N−β) or O(N−β+δ) for
arbitrarily small δ > 0, given the condition M = N .

In Table I, we observe that for the distribution used in
Figure 1, the empirical convergence rates of both bias and
variance agree well with the theoretical prediction, in which
the theoretical bound of bias comes from Theorem 1, while
the variance comes from Theorem 3.

For the distribution in Figure 2, Assumption 3 no longer
holds since f/g can reach infinity. However, this case
satisfies assumption (d’) in (19). For this case, the theoretical
and empirical result also match well, in which the bias and
variance come from Theorem 2 and (20), respectively. Note
that for Gaussian distributions with different mean, it can be
shown that for any γ < 1, there exists a constant µ, such that
Assumption 2 (b) holds. Therefore, according to Theorem 2,
the convergence rate of bias is O(N−

2
d+2+δ) for arbitrarily

small δ > 0, hence the theoretical rate in the second line of
Table I is 0.67, 0.50 and 0.40, respectively.

For the distribution in Figure 3, the empirical and theoret-
ical convergence rate of the variance matches well, while the
empirical rate of bias is faster than the theoretical prediction.
Note that the bound we have derived holds universally for all
distributions that satisfy the assumptions. For certain specific
distribution, the convergence rate can probably be faster. In
particular, there is an uniform bound on the Hessian of f and
g in Assumption 2 (c). However, for Gaussian distributions,
the Hessian is lower where the pdf value is small. Therefore,
the local non-uniformity is not as serious as the worst case
that satisfies the assumptions.

VII. CONCLUSION

In this paper, we have analyzed the convergence rates
of the bias and variance of the kNN based KL divergence
estimator proposed in [9]. For the bias, we have discussed
two types of distributions depending on the main causes
of the bias. In the first case, the distribution has bounded
support, and the pdf is bounded away from zero. In the
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TABLE I: Theoretical and empirical convergence rate comparison

Bias, Empirical/Theoretical Variance, Empirical/Theoretical
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

Fig.1 1.01/1.00 0.51/0.50 0.34/0.33 1.00/1.00 0.98/1.00 0.96/1.00
Fig.2 0.72/0.67 0.61/0.50 0.44/0.40 0.99/1.00 0.99/1.00 0.97/1.00
Fig.3 0.90/0.67 0.68/0.50 0.45/0.40 0.99/1.00 1.00/1.00 0.99/1.00

second case, the distribution is smooth everywhere and the
pdf can approach zero arbitrarily close. For the variance,
we have derived the convergence rate under a more general
assumption. Furthermore, we have derived the minimax
lower bound of KL divergence estimation. The bound holds
for all possible estimators. We have shown that for both types
of distributions, the kNN based KL divergence estimator is
nearly minimax rate optimal. We have also used numerical
experiments to illustrate that the practical performances of
kNN based KL divergence estimator are consistent with our
theoretical analysis.

APPENDIX A
PROOF OF THEOREM 1

In the following steps, cd is the volume of unit ball,
depending on the norm we use, and ψ is the digamma
function, ψ(u) = d ln Γ(u)/du, with Γ being the Gamma
function. Moreover, since E[ln νi] and E[ln εi] are the same
for different i, we omit the index i for convenience. Accord-
ing to (2),

E[D̂(f ||g)]−D(f ||g)

=
d

N
E[ln ν − ln ε] + ln

M

N − 1
−E[ln f(X)] + E[ln g(X)]

= − [−ψ(k) + ψ(N) + ln cd + dE[ln ε] + E[ln f(X)]]

+ [−ψ(k) + ψ(M + 1) + ln cd

+dE[ln ν] + E[ln g(X)]]

+ lnM − ψ(M + 1)− ln(N − 1) + ψ(N)

:= −I1 + I2 + I3, (28)

in which

I1 = −ψ(k) + ψ(N) + ln cd

+dE[ln ε] + E[ln f(X)], (29)
I2 = −ψ(k) + ψ(M + 1) + ln cd

+dE[ln ν] + E[ln g(X)], (30)
I3 = lnM − ψ(M + 1)− ln(N − 1) + ψ(N). (31)

In the following, we provide details on how to bound I2.
I1 can then be bounded using similar method.

To begin with, we denote Pg(S) as the probability mass
of S under pdf g, i.e. Pg(S) =

∫
S
g(x)dx. We have the

following lemma.

Lemma 1. According to Assumption 1 (f), which requires
that

∥∥∇2f
∥∥
op

and
∥∥∇2g

∥∥
op

are both bounded by C0, there
exists a constant C1, such that, if B(x, r) ⊂ Sg , we have

|Pg(B(x, r))− cdrdg(x)| ≤ C1r
d+2.

Proof.

|Pg(B(x, r))− g(x)cdr
d|

=

∣∣∣∣∣
∫
B(x,r)

(g(u)− g(x))du

∣∣∣∣∣
≤

∣∣∣∣∣
∫
B(x,r)

∇g(x)(u− x)du

+

∫
B(x,r)

C0(u− x)T (u− x)du

∣∣∣∣∣
≤ C0r

2V (B(x, r))

= C0cdr
d+2, (32)

in which the first inequality uses Assumption 1 (f).

From order statistics [33], E[lnPg(B(x, r))] = ψ(k) −
ψ(M + 1), therefore

I2 = −E
[
ln
Pg(B(X, ν))

cdνdg(X)

]
. (33)

Define

S1 = {x|B(x, aM ) ⊂ Sg}, (34)
S2 = Sg \ S1, (35)

in which aM = A(lnM/M)1/d, and A = (2/(Lgcd))
1/d.

From (33), we observe that the bias is determined by the
difference between the average pdf in B(x, ν) and the pdf
at its center g(x). S1 is the region that is relatively far
from the boundary. For all x ∈ S1, with high probability,
B(x, ν) ⊂ Sg . In this case, the bias is caused by the non-
uniformity of density. With the increase of sample size, the
effect of such non-uniformity will converge to zero. S2 is
the region near to the boundary, in which the probability
that B(x, ν) 6⊂ S is not negligible, hence P (B(x, ν)) can
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deviate significantly comparing with cdν
dg(x). Therefore,

the bias in this region will not converge to zero. However,
we let the size of S2 converge to zero, so that the overall
bound of the bias converges.

For sufficiently large M ,∣∣∣∣E [(ln
Pg(B(X, ν))

cdνdg(X)

)
1(X ∈ S1)

]∣∣∣∣
≤

∣∣∣∣E [(ln
Pg(B(X, ν))

cdνdg(X)

)
1(X ∈ S1, ν ≤ aM )

]∣∣∣∣
+

∣∣∣∣E [(ln
Pg(B(X, ν))

cdνdg(X)

)
1(X ∈ S1, ν > aM )

]∣∣∣∣
(a)

≤
∣∣∣∣E [ln(1− C1ν

2

cdg(X)

)
1(ν ≤ aM ,X ∈ S1)

]∣∣∣∣
+ ln

Ug
aLg

P(X ∈ S1, ν > aM )

(b)

≤ 2C1

cdLg
a2M + ln

Ug
aLg

( e
k

)k (2 lnM)k

M2

∼
(

lnM

M

) 2
d

. (36)

In step (a), we use Lemma 1, Assumption 1 (b) and
Assumption 1 (e). In step (b), the first term uses the fact that
for sufficiently large M , aM will be sufficiently small, hence
C1ν

2/(cdg(x)) ≤ C1a
2
M/(cdg(x)) < 1/2. The second term

of step (b) comes from the Chernoff bound, which indicates
that for all x ∈ S1 and sufficiently large M ,

P(ν > aM |x)

≤ e−MPg(B(x,aM ))

(
eMPg(B(x, aM ))

k

)k
≤ e−MLgcda

d
M

(
eMLgcda

d
M

k

)k
=

( e
k

)k (2 lnM)k

M2
. (37)

Moreover,∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S2)

]∣∣∣∣ ≤ ln
Ug
aLg

P(X ∈ S2)

≤ ln
Ug
aLg

UgV (S2)

≤ ln
Ug
aLg

UgHgaM

∼
(

lnM

M

) 1
d

. (38)

In this equation, V (S2) is the volume of S2, and we use the
fact that V (S2) ≤ HgaM according to the definition of S2

and Assumption 1 (c). Based on (36) and (38),

|I2| .
(

lnM

M

) 1
d

. (39)

Similarly, we have |I1| . (lnN/N)(1/d), and according to
the definition of digamma function ψ, |I3| . 1/M + 1/N .
Therefore

|E[D̂(f ||g)]−D(f ||g)| .
(

ln min{M,N}
min{M,N}

) 1
d

. (40)

APPENDIX B
PROOF OF THEOREM 2

In this section, we derive the bound of the bias for
distributions that satisfy Assumption 2. These distributions
are smooth everywhere and the densities can approach zero.
Based on Assumption 2 (b) and (c), which requires that the
Hessian of f and g are bounded by C0, and P(f(X) ≤
t) ≤ µtγ , and P(g(X) ≤ t) ≤ µtγ , we show the following
lemmas, whose proofs can be found in Appendix B-A, B-B,
and B-C, respectively.

Lemma 2. There exist constants Uf and Ug such that
f(x) ≤ Uf and g(x) ≤ Ug for all x.

Lemma 3. There exists a constant C2, such that

E[| ln ‖X‖ |1(g(X) ≤ t)] ≤ C2t
γ ln(1/t)

for sufficiently small t, in which X follows a distribution
with pdf f .

Lemma 4. For sufficiently small t,

∫
g(x)>t

f(x)

g(x)
dx ≤

{
µ
(

1 + ln 1
µt

)
if γ = 1

µ
1−γ t

γ−1 if γ < 1.
(41)

Similar to the proof of Theorem 1, we decompose the bias
as E[D̂(f ||g)]−D(f ||g) = −I1 + I2 + I3. Then

|I2| =
∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)

]∣∣∣∣ . (42)

Divide Sg into two parts.

S1 =

{
x|g(x) >

2C1

cd
a2M

}
, (43)

S2 = Sg \ S1, (44)

in which aM = AM−β , A = (k/C1)(1/(d+2)). β will be
determined later. C1 is the constant in Lemma 1.
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We first consider the region S1.∣∣∣∣E [ln Pg(B(x, ν))

cdνdg(X)
1(X ∈ S1, ν ≤ aM )

]∣∣∣∣
(a)

≤
∣∣∣∣E [ln(1− C1a

2
M

cdg(X)

)
1(X ∈ S1, ν ≤ aM )

]∣∣∣∣
(b)

≤
∣∣∣∣E [2C1a

2
M

cdg(X)
1(X ∈ S1)

]∣∣∣∣
. a2M

∫
g(x)>

2C1
cd

a2M

f(x)

g(x)
dx

(c)

.

{
M−2βγ if γ < 1

M−2β lnM if γ = 1,
(45)

in which (a) comes from Lemma 1. For (b), note that
according to (43), C1a

2
M/(cdg(x)) < 1/2 for x ∈ S1, and

| ln(1− u)| ≤ 2u for any 0 < u ≤ 1/2. (c) uses Lemma 4.
For ν > aM , note that according to Lemma 1,

Pg(B(x, aM )) ≥ cdadMg(x)− C1a
d+2
M ≥ 1

2
cda

d
Mg(x). (46)

Based on this fact, if β ≤ 1/(d + 2), we show the
following two lemmas:

Lemma 5. There exists a constant C3, such that

P(ν > aM ,X ∈ S1) ≤ C3M
−γ(1−βd). (47)

Proof. Please see Appendix B-D for detailed proof.

Lemma 6. There exists a constant C4, such that

E
[
ln

ν

aM
1(ν > aM ,X ∈ S1)

]
≤ C4M

−γ(1−βd) lnM. (48)

Proof. Please see Appendix B-E for detailed proof.

Then ∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S1, ν > aM )

]∣∣∣∣
≤ |E[lnPg(B(X, aM ))1(X ∈ S1, ν > aM )]|

+|E[ln(cda
d
M )1(X ∈ S1, ν > aM )]|

+|E[ln g(X)1(X ∈ S1, ν > aM )]|

+d

∣∣∣∣E [ln ν

aM
1(ν > aM ,X ∈ S1)

]∣∣∣∣ . (49)

Note that

1 ≥ Pg(B(x, aM ))

≥ cda
d
Mg(x)− C1a

d+2
M

≥ C1a
d+2
M

= C1A
d+2M−β(d+2). (50)

Therefore

|E[lnPg(B(X, aM ))1(X ∈ S1, ν > aM )]|
. M−γ(1−βd) lnM. (51)

The second and the third terms in (49) satisfy the same
bound. The last term can be bounded using Lemma 6. Hence∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S1, ν > aM )

]∣∣∣∣
. M−γ(1−βd) lnM. (52)

Now we consider x ∈ S2.∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S2)

]∣∣∣∣
≤ |E[lnPg(B(X, ν))1(X ∈ S2)]|

+|E[ln g(X)1(X ∈ S2)]|
+| ln cd|P(X ∈ S2) + d|E[ln ν1(X ∈ S2)]|. (53)

From order statistics [33], |E[lnPg(B(x, ν))|x]| = |ψ(k)−
ψ(M)| ≤ lnM . According to Assumption 2 (b), the first
three terms in (53) can be bounded by:

|E[lnPg(B(X, r))1(X ∈ S2)]|
. lnMP(X ∈ S2)

∼ lnMa2γM ∼M
−2βγ lnM, (54)

|E[ln g(X)1(X ∈ S2)]

= E
[
ln

1

g(X)
1

(
g(X) ≤ 2C1

cd
a2M

)]
=

∫ ∞
0

P
(

ln
1

g(X)
1

(
g(X) ≤ 2C1

cd
a2M

)
> t

)
dt

≤
∫ ln

cd
2C1a

2
M

0

P
(
g(X) ≤ 2C1

cd
a2M

)
dt

+

∫ ∞
ln

cd
2C1a

2
M

P
(
g(X) < e−t

)
dt

≤ µ

(
2C1

cd
a2M

)γ
ln

cd
2C1a2M

+

∫ ∞
ln

cd
2C1a

2
M

µe−γtdt

= µ

(
2C1

cd
a2M

)γ (
ln

cd
2C1a2M

+
1

γ

)
∼ M−2βγ lnM, (55)

and

| ln cd|P(X ∈ S2)| .M−2βγ . (56)

The last term in (53) can be bounded using the following
lemma, whose proof can be found in Appendix B-F.

Lemma 7. There exist two constants C5 and C6, such that
for sufficiently large M ,

|E[ln ν|x]| ≤ C5 lnM + C6| ln ‖x‖ |. (57)
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Using this lemma, we have

|E[ln ν1(X ∈ S2)]|
≤ |E[(C5 lnM + C6| ln ‖X‖ |)1(X ∈ S2)]|

. a2γM ln
1

aM
∼ M−2βγ lnM. (58)

Therefore∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S2)

]∣∣∣∣ .M−2βγ lnM. (59)

Combining (45), (52) and (59), we get

|I2| .M−2βγ lnM +M−γ(1−βd) lnM. (60)

Since the above bound holds for arbitrary β ≤ 1/(d+ 2),
we just let β = 1/(d+ 2), then

|I2| .M−
2γ
d+2 lnM. (61)

Similarly, we have |I1| . N−
2γ
d+2 lnN , and according to the

definition of digamma function, |I3| . 1/M + 1/N . Hence

|E[D̂(f ||g)]−D(f ||g)|
. (min{M,N})−

2γ
d+2 ln min{M,N}. (62)

A. Proof of Lemma 2

We only show that there exists a constant Ug such that
g(x) ≤ Ug holds for all x. The proof of the upper bound
Uf of density f will be exactly the same. From Lemma 1,

Pg(B(x, r)) ≥ g(x)cdr
d − C1r

d+2. (63)

Since Pg(B(x, r)) ≤ 1, we have

g(x) ≤ 1 + C1r
d+2

cdrd
(64)

for all r > 0. Define Ug as the right hand side of (64) given
r = (d/(2C1))1/(d+2), i.e.

Ug =
1 + d

2

cd

(
d

2C1

) d
d+2

, (65)

then g(x) ≤ Ug for all x.

B. Proof of Lemma 3

From Hölder inequality, For any p, q such that p > 1,
q > 1, and 1/p+ 1/q = 1,

E [ln ‖x‖ |1(g(X) ≤ t)]
≤ (E [| ln ‖x‖ |p])

1
p (E [1(g(X) ≤ t)q])

1
q . (66)

From Assumption 2 (b),

E[1(g(X) ≤ t)q] = P(g(X) ≤ t) ≤ µtγ . (67)

Moreover, from Assumption 2 (d), P(‖X‖ > t) ≤ K/ts,
then

E[| ln ‖X‖ |p]

=

∫ ∞
0

P (| ln ‖X‖ |p > u) du

=

∫ ∞
0

[
P
(
‖X‖ > eu

1
p

)
+ P

(
‖X‖ < e−u

1
p

)]
du

≤
∫ ∞
0

Ke−su
1
p
du+

∫ ∞
0

Ugcde
−du

1
p
du

v=su
1
p

=
1

sp

∫ ∞
0

Kpe−vvp−1dv +

∫ ∞
0

Ugcdpe
−dvvp−1dv

=

(
K

sp
+
Ugcd
dp

)
p!. (68)

Using Stirling’s formula p! ≤ epp+1/2e−p, we have

E[ln ‖X‖1(g(X) ≤ t)]

≤ e
1
p p1+

1
2p e−1

(
K

sp
+
Ugcd
dp

) 1
p

(µtγ)1−
1
p

≤ p1+
1
2p

(
K

sp
+
Ugcd
dp

) 1
p

(µtγ)1−
1
p

≤ pe
ln p
2p

[(
K

sp

) 1
p

+

(
Ugcd
dp

) 1
p

]
(µtγ)1−

1
p

∼ ptγ(1−
1
p ), (69)

which holds for all p > 1. For sufficiently small t, let p =
ln(1/t), then the right hand side of (69) becomes etγ ln(1/t).

C. Proof of Lemma 4

∫
g(x)>t

f(x)

g(x)
dx = E

[
1

g(X)
1(g(X) > t)

]
=

∫ ∞
0

P
(

1

g(X)
1(g(X) > t) > u

)
du

=

∫ 1
t

0

P
(
g(X) <

1

u

)
du

≤
{ µ

1−γ t
γ−1 if γ < 1

µ+ µ ln 1
µt if γ = 1.

(70)

D. Proof of Lemma 5

For all x ∈ S1,

Pg(B(x, aM )) ≥ g(x)cda
d
M − C1a

d+2
M

≥ C1a
d+2
M

= C1A
d+2M−β(d+2)

= kM−β(d+2)

≥ k

M
, (71)
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in which we used (43) and Lemma 1. Hence, according to
(46) and Chernoff inequality,

P(ν > aM |x)

≤ e−MPg(B(x,aM ))

(
eMPg(B(x, aM ))

k

)k
≤ e−

1
2Mg(x)cda

d
M

(
eMg(x)cda

d
M

2k

)k
:= φ(x). (72)

Moreover, define a = Mcda
d
M/2, then

P(ν > aM ,X ∈ S1)

=
( e
k

)k
E
[
e−ag(X)(ag(X))k

]
≤

( e
k

)k
E
[
e−

1
2ag(X)

]
sup
t>0

e−
1
2 ttk

= 2kE
[
e−

1
2ag(X)

]
= 2k

∫ ∞
0

P
(
e−

1
2ag(X) > u

)
du

= 2k
∫ ∞
0

P
(
g(X) <

2

a
ln

1

u

)
du

= 2k+γµ

∫ 1

0

(
ln

1

u

)γ
du

= 2k+γµΓ(γ + 1)

(
1

2
McdA

dM−βd
)−γ

. (73)

The proof is complete.

E. Proof of Lemma 6

From Assumption 2 (d), P(‖Y ‖ > r) ≤ K/rs. Hence
Pg(B

c(0, r)) ≤ K/rs, in which Bc(0, r) = Rd \ B(0, r).
Denote ν0 as the kNN distance of x = 0 among
Y1, . . . ,YM . Then for sufficiently large M and r >
(2K)1/s, we have Pg(Bc(0, r)) ≥ 1/2, hence

P(ν0 > r) = P (n(Bc(0, r)) > M − k)

≤ P
(
n(Bc(0, r)) >

1

2
M

)

≤ e−M
K
rs

(
eM K

rs

1
2M

) 1
2M

≤
(

2eK

rs

) 1
2M

. (74)

Denote nY (S) as the number of samples from
{Y1, . . . ,YM} that are in S. Then for any
given x, and r ≥ (2K)1/s + ‖x‖, since
nY (B(x, t)) ≥ nY (B(0, t− ‖x‖)),

P(ν > r|x) ≤
(

2eK

(r − ‖x‖)s

) 1
2M

. (75)

Let

t0 = max

{
ln

2 ‖x‖
aM

,
1

s
ln

21+seK

asM

}
. (76)

It can be checked that aMet0 ≥ (2K)1/s + ‖x‖, therefore

E
[
ln

ν

aM
1(ν > aM )|x

]
=

∫ ∞
0

P(ν > aMe
t|x)dt

=

∫ t0

0

P(ν > aMe
t|x)dt+

∫ ∞
t0

P(ν > aMe
t|x)dt

≤
∫ t0

0

P(ν > aM |x)dt+

∫ ∞
t0

(
2eK

(aMet − ‖x‖)s

) 1
2M

dt

(a)

≤ φ(x)t0 +

∫ ∞
t0

(
21+seK

asMe
st

) 1
2M

dt

= φ(x)t0 +

(
21+seK

asM

) 1
2M 2

M
e−

1
2 sMt0

(b)

≤ φ(x)t0 +
2

M
. (77)

In (a), we use (72) and the definition of t0, which implies that
‖x‖ ≤ aMe

t/2. (b) uses the fact that est0 ≥ 21+seK/asM .
Hence

E
[
ln

ν

aM
1(ν > aM ,X ∈ S1)

]
≤ E[φ(X)t0] +

2

M
. (78)

It remains to bound E[φ(X)t0]. For any T > 0,

E[φ(X)t0] ≤ E[φ(X)t01(t0 ≤ T )] + E[φ(X)t01(t0 > T )]

≤ TE[φ(X)] + E[t01(t0 > T )]. (79)

In Lemma 5, we have shown that E[φ(X)] ≤ C3M
−γ(1−βd).

For the second term,

E[t01(t0 > T )]

≤ E
[(

ln
2 ‖X‖
aM

+
1

s
ln

21+seK

asM

)
1

(
‖X‖ > 1

2
aMe

T

)]
≤

∫ ∞
0

P
(

ln
2 ‖X‖
aM

1

(
X >

1

2
aMe

T

)
> u

)
du

+
1

s
ln

21+seK

asM
P
(
‖X‖ > 1

2
aMe

T

)
≤

∫ T

0

P
(
‖X‖ > 1

2
aMe

T

)
du

+

∫ ∞
T

P
(
‖X‖ > 1

2
heu
)
du

+
2sK

asMe
sT

ln
21+seK

asM

≤ 2sK

asMe
sT s

[
sT + 1 + ln

21+seK

asM

]
. (80)
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Let T = (1/s) lnM , then

E[φ(X)t0] .M−γ(1−βd) lnM. (81)

Hence

E
[
ln

ν

aM
1(ν > aM ,X ∈ S1)

]
.M−γ(1−βd) lnM. (82)

F. Proof of Lemma 7

|E[ln ν1(ν < 1)|x]|

=

∫ ∞
0

P(ν < e−t|x)dt

(a)

≤
∫ ∞
0

P
(
Pg(B(x, ν)) < Ugcde

−dt) dt
(b)

≤
∫ 1

d ln M
k

0

dt+

∫ ∞
1
d ln M

k

(
eMUgcde

−dt

k

)k
dt

=
1

d
ln
M

k
+

(eUgcd)
k

kd
. (83)

In (a), we use Lemma 2. (b) uses Chernoff bound. Moreover,
let t0 = max{ln(2 ‖x‖), (1/s) ln(21+seK), 0}, then

E[ln ν1(ν > 1)|x]

=

∫ ∞
0

P(ν > et|x)dt

≤
∫ t0

0

dt+

∫ ∞
t0

(
2eK

(et − ‖X‖)s

) 1
2M

dt

= t0 +

∫ ∞
t0

(
21+seK

est

) 1
2M

dt

= t0 + (21+seK)
1
2M

2

sM
e−

1
2 sMt0

≤ max

{
ln(2 ‖x‖), 1

s
ln(21+seK), 0

}
+

2

sM

≤ | ln(2 ‖x‖)|+ 1

s
| ln(21+seK)|+ 2

sM
. (84)

Combining (83) and (84), the proof is complete.

APPENDIX C
PROOF OF THEOREM 3

From (2), we have

Var[D̂(f ||g)]

= Var

[
d

N

N∑
i=1

ln νi −
d

N

N∑
i=1

ln εi

]

≤ 2 Var

[
d

N

N∑
i=1

ln εi

]
+ 2 Var

[
d

N

N∑
i=1

ln νi

]
:= 2I1 + 2I2. (85)

We bound I1 and I2 separately.

Bound of I1. I1 is the variance of Kozachenko-
Leonenko entropy estimator [18], which estimates h(f) =
−
∫
f(x) ln f(x)dx. Here we use similar proof procedure

as was already used in the proof of Theorem 2 in our
recent work [24]. [24] has analyzed a truncated KL entropy
estimator, which means that εi is truncated by an upper
bound aN . The variance of this estimator is actually equal
to Var[(d/N)

∑N
i=1 ln ρi], in which ρi = min{ε, aN}. It

was shown in [24] that if aN ∼ N−β with 0 < β < 1/d,
then Var[(d/N)

∑N
i=1 ln ρi] = O(N−1). In this section, we

prove the same convergence bound for the estimator without
truncation, i.e. Var[(d/N)

∑N
i=1 ln εi].

Let X′1 be a sample that is i.i.d with X1,X2, . . . ,XN .
Recall that εi is the k-th nearest neighbor distance of
Xi among X1,X2, . . . ,XN . If we replace X1 with X′1,
then the kNN distances will change. Denote ε′i as the k-th
nearest neighbor distance based on X′1,X2, . . . ,XN . Then
use Efron-Stein inequality [34],

Var

[
d

N

N∑
i=1

ln εi

]

≤ N

2

( d

N

N∑
i=1

ln εi −
d

N

N∑
i=1

ln ε′i

)2
 . (86)

Define Ui = ln(Ncdε
d
i ) and U ′i = ln(Ncd(ε

′
i)
d) for

i = 1, . . . , N . Moreover, define ε′′i as the k nearest neighbor
distances based on X2, . . . ,XN , and U ′′i = ln(Ncd(ε

′′
i )d),

i = 2, . . . , N . Follow the steps in Appendix C of [24], we
have

Var

[
d

N

N∑
i=1

ln εi

]
≤ 2

N
(2kγd + 1)

[
(k + 1)E[U2

1 ] + kE[(U ′′1 )2]
]
, (87)

in which γd is a constant that depends on dimension d and
the norm we use. For example, if we use `2 norm, then γd
is the minimum number of cones with angle π/6 that cover
Rd.

Now we bound E[U2
1 ] and E[(U ′′1 )2]. Define ρ =

min{ε, aN}, in which aN ∼ N−β , 0 < β < 1/d.
Note that we truncate the estimator for the convenience
of analysis, although we are now analyzing an estimator
without truncation. The deviation caused by such truncation
will be bounded later. In the following proof, we omit the
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index for convenience. E[U2] can be bounded by

E[U2] = E[(ln(Nεdcd))
2]

= E
[(

ln(NPf (B(X, ε)))− ln
Pf (B(X, ε))

f(X)cdρd

+d ln
ε

ρ
− ln f(X)

)2
]

≤ 4E[(ln(NPf (B(X, ε))))2]

+4E

[(
ln
Pf (B(X, ε))

f(X)cdρd

)2
]

+4d2E

[(
ln
ε

ρ

)2
]

+ 4E[(ln f(X))2],

(88)

in which Pf (S) is the probability mass of S under a
distribution with pdf f , i.e. Pf (S) =

∫
S
f(x)dx.

According to Assumption 3 (b), E[(ln f(X))2] =∫
f(x) ln2 f(x)dx < ∞. Moreover, Lemma 6 and Lemma

7 in [24] have shown that

lim
N→∞

E[(ln(NPf (B(X, ε))))2] = ψ′(k) + ψ2(k), (89)

and

lim
N→∞

E

[(
ln
Pf (B(X, ε))

f(X)cdρd

)2
]

= 0. (90)

It remains to show that E[ln2(ε/ρ)]→ 0:

E

[(
ln
ε

ρ

)2
]

= E

[(
ln

ε

aN

)2

1(ε > aN )

]
≤ 2E[ln2 ε1(ε > aN )] + 2E[ln2 aN1(ε > aN )]

≤ 2E[ln2 ε1(aN < ε ≤ 1)] + 2E[ln2 ε1(ε > 1)]

+2 ln2 aNP(ε > aN )

≤ 4 ln2 aNP(ε > aN ) + 2E[ln2 ε1(ε > 1)]. (91)

For sufficiently large N , aN < r0. From Assumption 3 (b),
for sufficiently small t,

P(f̃(x, aN ) < t) ≤ P

((
ln inf
r<r0

f̃(x, r)

)2

> ln2 t

)

= o

(
1

ln2 t

)
, (92)

in which we use small o notation, since for any variable
U such that U ≥ 0 and E[U ] < ∞, uP (U > u) → 0 as

u → ∞. Since β < 1/d, pick δ such that 0 < δ < 1 − βd,
then

P(ε > aN )

≤ P
(
Pf (B(X, aN )) <

2k

N1−δ

)
+P
(
Pf (B(X, ε)) ≥ 2k

N1−δ , ε > aN

)
(a)

≤ P
(
f̃(x, aN ) <

2k

N1−δcdadN

)
+ e−2kN

δ

(
2ekN δ

k

)k
(b)
= o

(
1

(lnN)2

)
. (93)

In (a), we use the definition of f̃ in (12) for the first term,
and use Chernoff inequality for the second term. (b) holds
because N1−δadN ∼ N1−δ−dβ . 1 − δ − βd > 0, thus
N1−δ−dβ →∞. Then we can get (93) using (92).

Moreover, we can show the following Lemma:

Lemma 8.

lim
N→0

E[ln2 ε1(ε > 1)] = 0. (94)

Proof. Please see Appendix C-A.

Based on (91), (93) and Lemma 8, E[ln2(ε/ρ)] → 0.
Therefore (88) becomes

lim
N→∞

E[U2] ≤ 4

[
ψ′(k) + ψ2(k) +

∫
f(x) ln2 f(x)dx

]
. (95)

Similar results hold for E[(U ′′)2]. Hence (87) becomes

Var

[
d

N

N∑
i=1

ln εi

]
= O

(
1

N

)
. (96)

Bound of I2. Let Y′1 be a sample that is i.i.d with
Y1, . . . ,YM . Define ν′i as the k-th nearest neighbor distance
of Xi among {Y′1,Y2, . . . ,YM} for i = 1, . . . , N . Let
X′1 be a sample that is i.i.d with X1, . . . ,XN , and define
ν′′1 as the k-th nearest neighbor distance of X′1 among
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{Y1, . . . ,YM}. Then from Efron-Stein inequality,

I2 = Var

[
d

N

N∑
i=1

ln νi

]

≤ M

2
E

( d

N

N∑
i=1

ln νi −
d

N

N∑
i=1

ln ν′i

)2


+
N

2
E

[(
d

N
ln ν1 −

d

N
ln ν′′1

)2
]

=
Md2

2N2
E

( N∑
i=1

(ln νi − ln ν′i)

)2


+
d2

2N
E[(ln ν1 − ln ν′′1 )2]

:= I21 + I22. (97)

To bound the right hand side of (97), we first make the
following definitions:

Definition 1. Define two sets S1 ⊂ Rd, S′1 ⊂ Rd:

S1 := {x|Y1 is among the k neighbors of x in

{Y1, . . . ,YM}} ,
S′1 := {x|Y′1 is among the k neighbors of x in

{Y1, . . . ,YM}} .

Definition 2. Define two events:

E1 : max

{
max
i∈[N ]

‖Xi‖ , max
i∈[M ]

‖Yi‖ , ‖Y′1‖
}

> (M +N + 1)
5
s ;

E2 : min

{
min
i∈[N ]

νi, min
i∈[N ]

ν′i

}
< (M +N)−

k+5
dk . (98)

We also denote E = E1 ∪ E2.
The following lemma shows that the probabilities that

these events happen are low.

Lemma 9. The probabilities of E1, E2 are bounded by:

P(E1) ≤ k

(M +N + 1)4
, (99)

P(E2) ≤
(
eUgcd
k

)k
(M +N)−4. (100)

Proof. Please see Appendix C-B.

These bounds show that P(E) . (M +N)−4. Moreover,
we show the following lemma:

Lemma 10. There exists a constant C1 such that for
sufficiently large M we have

E[ln4 ν] < C1 ln4M. (101)

Proof. Please see Appendix C-C.

Based on Lemma 9 and Lemma 10,

E

( N∑
i=1

(ln νi − ln ν′i)

)2

1(E)


≤ NE

[(
N∑
i=1

(ln νi − ln ν′i)
2

)
1(E)

]

≤ 2NE

[
N∑
i=1

(ln2 νi + ln2 ν′i)1(E)

]
= 4N2E[ln2 ν1(E)]

≤ 4N2
√
E[ln4 ν]P(E)

.
N2 ln2M

(M +N)2
. (102)

If E does not happen, then ‖Xi‖, ‖Yi‖, ‖Y′1‖ are all
upper bounded by (M + N + 1)(5/s). Thus νi and ν′i are
all upper bounded by 2(M + N + 1)(5/s). Besides, from
(98), they are both lower bounded by (M+N)−

k+5
dk . Define

nX(S1) and nX(S′1) as the number of samples among
{X1, . . . ,XN} in S1 and S′1, respectively, then there are
at most nX(S1) + nX(S′1) points such that νi 6= ν′i. If Xi

falls outside S1 and S′1, then νi = ν′i since both Y1 and Y′1
are not among the k neighbors of Xi in {Y1, . . . ,YM}.
Hence

E

( N∑
i=1

(ln νi − ln ν′i)

)2

1(Ec)


≤ E

( N∑
i=1

(ln νi − ln ν′i)1(νi 6= ν′i)

)2

1(Ec)


≤ E

[(
N∑
i=1

(
5

s
ln(2(M +N + 1))

+
k + 5

dk
ln(M +N)

)
1(νi 6= ν′i)

)2

1(Ec)

]

≤
(

5

s
+
k + 5

dk

)2

ln2(2M + 2N + 2)

E[(nX(S1) + nX(S′1))2]

≤ 2

(
5

s
+
k + 5

dk

)2

ln2(2M + 2N + 2)

(E[n2X(S1)] + E[n2X(S′1)]). (103)

Now it remains to bound E[n2X(S1)] and E[n2X(S′1)]. We
have the following lemma:
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Lemma 11.

E[n2X(S1)]

≤
[
4(k + 1)2 +

16

(1− ln 2)2

]
γ2dN(N − 1)

(M − 1)2
+
kN

M
,

E[n2X(S′1)]

≤
[
4(k + 1)2 +

16

(1− ln 2)2

]
γ2dN(N − 1)

(M − 1)2
+
kN

M
.

(104)

Proof. Please see Appendix C-D.

Combining (102), (103) and Lemma 11, we have

I21 .

(
1

M
+

1

N

)
ln2(M +N). (105)

Then I22 can be bounded by:

I22 =
1

2N
E[(ln(Ncdν

d
1 )− ln(Ncd(ν

′
1)d))2]

≤ 1

N

[
E[(ln(Mcdν

d
1 ))2] + E[(ln(Mcd(ν

′
1)d))2]

]
=

2

N
E[(ln(Mcdν

d
1 ))2]. (106)

Similar to the analysis from (88) to (95), we can show that
the limit of E[(ln(Mcdν

d
1 ))2] can also be bounded by the

right hand side of (95). Therefore

I22 .
1

N
, (107)

I2 = I21 + I22 .

(
1

M
+

1

N

)
ln2(M +N), (108)

and

Var[D̂(f ||g)] ≤ 2I1 + 2I2

.

(
1

M
+

1

N

)
ln2(M +N). (109)

A. Proof of Lemma 8

Similar to (75), we can show that for any given x, and
t ≥ (2K)1/s + ‖x‖,

P(ε > t|x) ≤
(

2eK

(t− ‖x‖)s

) 1
2 (N−1)

. (110)

Then

E[ln2 ε1(ε > 1)] =

∫ ∞
0

P
(
ln2 ε1(ε > 1) > t

)
dt

=

∫ ∞
0

P(ε > e
√
t)dt. (111)

Therefore if (1/2)e
√
t ≥ (2K)1/s,

P(ε > e
√
t)

≤ P
(
‖X‖ > 1

2
e
√
t

)
+ P

(
‖X‖ < 1

2
e
√
t, ε > e

√
t

)

≤ k(
1
2e
√
t
)s +

 2eK(
e
√
t − 1

2e
√
t
)s
 1

2 (N−1)

= 2sKe−
1
2 st + (21+seK)

1
2 (N−1)e−

1
2 s(N−1)t. (112)

Define

φ(t) =


1 if t ≤ max

{
ln2(21+

1
sK

1
s ),

2
s ln(21+seK)

}
2sKe−

1
2 st + e−

1
4 st if t > max

{
ln2(21+

1
sK

1
s ),

2
s ln(21+seK)

}
.

It can be shown that P(ε > e
√
t) ≤ φ(t). Since φ(t)

is integrable in (0,∞), according to Lebesgue dominated
convergence theorem,

lim
N→∞

E[ln2 ε1(ε > 1)] =

∫ ∞
0

lim
N→∞

P(ε > e
√
t)dt = 0.(113)

B. Proof of Lemma 9

Proof of (99). According to Assumption 3 (c), for i =
1, . . . , N ,

P(‖Xi‖ > t) ≤ E[‖Xi‖s]
ts

≤ K

ts
. (114)

Similar bound holds for ‖X′1‖ and Yi, i = 1, . . . ,M . Let
t = (M + N + 1)(5/s), and using the union bound, we get
(99).

Proof of (100). Since g is bounded by Ug , we have
Pg(B(x, r)) ≤ Ugcdr

d for any x and r > 0. Let r0 =

(M +N)−
k+5
dk , then for sufficiently large M , we have

Ugcdr
d
0 < Ugcd(M +N)−

k+5
k <

k

M
, (115)

as Ug , cd and k are fixed.
Hence using Chernoff inequality,

P(νi < r0) ≤ exp[−MUgcdr
d
0 ]

(
eMUgcdr

d
0

k

)k
≤

(
eMUgcdr

d
0

k

)k
. (116)

Then (100) can be obtained by calculating the union bound.
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C. Proof of Lemma 10

Define

t1 = max

{
ln4(2 ‖x‖), 1

s4
ln4(21+seK)

}
, (117)

and

t2 =

(
2

d
ln
MUgcd
k

)4

, (118)

then

E[ln4 ν|x] =

∫ ∞
0

P
(
ln4 ν > t|x

)
dt

=

∫ ∞
0

P
(
ν > et

1
4 |x
)
dt

+

∫ ∞
0

P
(
ν < e−t

1
4 |x
)
dt. (119)

∫ ∞
0

P
(
ν > et

1
4 |x
)
dt

≤
∫ t1

0

dt+

∫ ∞
t1

(
2eK

(et
1
4 − ‖x‖)s

) 1
2M

dt

(a)

≤ t1 +

∫ ∞
t1

(
21+seK

est
1
4

) 1
2M

dt

u=t
1
4

= t1 + (21+seK)
1
2M

∫ ∞
t
1
4
1

e−
1
2 sMu4u3du

λ=sM/2

≤ t1 + (21+seK)
1
2M(

1

λ
t
3
4
1 +

3

λ2
t
1
2
1 +

6

λ3
t
1
4
1 +

6

λ3

)
e−λt

1
4
1

= t1 + (21+seK)
1
2M(

1

λ
t
3
4
1 +

3

λ2
t
1
2
1 +

6

λ3
t
1
4
1 +

6

λ4

)
exp

[
−1

2
M ln(21+seK)

]
≤ t1 +

(
1

λ
t
3
4
1 +

3

λ2
t
1
2
1 +

6

λ4
t
1
4
1 +

6

λ4

)
(b)

≤ ln4(2 ‖x‖) +
1

s4
ln4(21+seK) + δM

. ln4 ‖x‖+ 1. (120)

In (a), we use ‖x‖ < et
1
4 /2. This is true because of the

definition of t1 in (117). In (b), we use (117) again, and δM
is a sequence decreasing with M .

Now we bound the second term in (119). Using Chernoff

inequality, ∫ ∞
0

P
(
ν < e−t

1
4

)
dt

≤
∫ ∞
0

P
(
P (B(x, ν)) < Ugcde

−dt
1
4

)
dt

=

∫ t2

0

dt+

∫ ∞
t2

(
eMUgcd exp[−dt 1

4 ]

k

)k
dt

. ln4M. (121)

Thus

E[ln4 ν] . 1 + ln4M + E[ln4 ‖X‖] ∼ ln4M, (122)

in which the last step uses (68).

D. Proof of Lemma 11

Define Pf (S) =
∫
S
f(x)dx for any set S, then nX(S1)

follows binomial distribution with parameter N and Pf (S1),
thus

E[n2X(S1)|Pf (S1)] = N(N − 1)P 2
f (S1) +NPf (S1). (123)

From Assumption 3 (d), f(x) ≤ Cg(x), thus

E[P 2
f (S1)] ≤ C2E[P 2

g (S1)], (124)
E[Pf (S1)] ≤ CE[Pg(S1)]. (125)

It remains to bound E[P 2
g (S1)] and E[Pg(S1)]. Recall that

S1 is defined as the set in which the k nearest neighbors
include Y1. Since Y1, . . . ,YM are all random, for any x,
Y1 is among the k nearest neighbors of x with probability
k/M , thus

E[Pg(S1)] =
k

M
. (126)

Recall that γd is defined as the minimum number of cones
with angle π/6 that can cover Rd. Now we pick any y ∈ Rd,
and divide Rd into γd cones with angle π/6, such that y
is the vertex of all the cones. These cones are named as
Cj , j = 1, . . . , γd, and then ∪γdj=1Cj = Rd. Define rj as
the distance from Y1 to its k-th nearest neighbor among
{Y2, . . . ,YM}∩Cj . If there are less than k samples in Cj ,
then let rj =∞. Define

G1 = ∪γdj=1B(Y1, rj) ∩ Cj . (127)

Then we show that S1 ⊆ G1. Since ∪γdj=1Cj = Rd, for
any x, x ∈ Cj for some j ∈ {1, . . . , γd}. If x ∈ Cj
and x /∈ G1, then in B(Y1, rj) ∩ Cj , there are already at
least k points, Yil , l = 1, . . . , k, among Y1, . . . ,YM . Then
‖Yil −Y1‖ < rj for l = 1, . . . , k, while ‖x−Y1‖ ≥ rj .
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Denote θ as the angle between vector Yil−Y1 and x−Y1.
Since Yil ∈ Cj and x ∈ Cj , we have θ < π/3, and thus

‖Yil − x‖2 = ‖x−Y1‖2 + ‖Yil −Y1‖2

−2 ‖x−Y1‖ ‖Yil −Y1‖ cos θ

< ‖x−Y1‖2 + ‖Yil −Y1‖2

−‖x−Y1‖ ‖Yil −Y1‖
< ‖x−Y1‖2 , (128)

which indicates that ‖Y1 − x‖ > ‖Yil − x‖ for l =
1, . . . , k. Yil , l = 1, . . . , k are all closer to x than Y1,
therefore Y1 can not be one of the k nearest neighbors of
x, i.e. x /∈ G1. Recall that x is arbitrarily picked outside
G1, thus S1 ⊂ G1. Therefore

E[P 2
g (S1)] ≤ E[P 2

g (G1)]

= E
[
P 2
g (∪γdj=1B(Y1, rj) ∩ Cj)

]
≤ E


 γd∑
j=1

Pg (B(Y1, rj) ∩ Cj)

2
 .
(129)

Define

nj =

M∑
i=2

1(Yi ∈ Cj), (130)

then given nj , if nj ≥ k,

Pg(B(Y1, rj) ∩ Cj)
Pg(Cj)

∼ B(k, nj − k + 1), (131)

in which B denotes the Beta distribution. Hence

E[Pg(B(Y1, rj) ∩ Cj)|nj ,Y1] =
k

nj + 1
Pg(Cj),

E[P 2
g (B(Y1, rj) ∩ Cj)|nj ,Y1]

=
k(k + 1)

(nj + 1)(nj + 2)
P 2
g (Cj).

(132)

If nj < k, then rj =∞, and

E[Pg(B(Y1, rj) ∩ Cj)|nj ,Y1] = Pg(Cj),

E[P 2
g (B(Y1, rj) ∩ Cj)|nj ,Y1] = P 2

g (Cj). (133)

Combine these two cases, we have

E[Pg(B(Y1, rj) ∩ Cj)|nj ,Y1]

= min

{
k

nj + 1
, 1

}
Pg(Cj), (134)

E[P 2
g (B(Y1, rj) ∩ Cj)|nj ,Y1]

= min

{(
k + 1

nj + 1

)2

, 1

}
P 2
g (Cj). (135)

Now we bound the right hand side of (134) and (135).

E
[{

k

nj + 1
, 1

}]
= P

(
nj ≥

1

2
(M − 1)Pg(Cj)

)
k

1
2 (M − 1)Pg(Cj)

+P
(
nj <

1

2
(M − 1)Pg(Cj)

)
≤ 2k

(M − 1)Pg(Cj)

+e−(M−1)Pg(Cj)
(
e(M − 1)Pg(Cj)
1
2 (M − 1)Pg(Cj)

) 1
2 (M−1)Pg(Cj)

=
2k

(M − 1)Pg(Cj)
+ e−

1
2 (1−ln 2)(M−1)Pg(Cj). (136)

Similarly,

E

[
min

{(
k + 1

nj + 1

)2

, 1

}]

≤ 4(k + 1)2

(M − 1)2Pg(Cj)
+ e−

1
2 (1−ln 2)(M−1)Pg(Cj).

(137)

Hence

E[Pg(B(Y1, rj) ∩ Cj)|Y1]

≤ 2k

M − 1
+ Pg(Cj)e

− 1
2 (1−ln 2)(M−1)Pg(Cj)

≤ 2k

M − 1
+

2

(1− ln 2)(M − 1)
, (138)

E[P 2
g (B(Y1, rj) ∩ Cj)|Y1]

≤ 4(k + 1)2

(M − 1)2
+ P 2

g (Cj)e
− 1

2 (1−ln 2)(M−1)Pg(Cj)

≤ 4(k + 1)2

(M − 1)2
+

16

(1− ln 2)2(M − 1)2
. (139)

From (134) and (135),

E


 γd∑
j=1

Pg(B(Y1, rj) ∩ Cj)

2


= γdE[P 2
g (B(Y1, rj) ∩ Cj)|Y1]

+γd(γd − 1)E[Pg(B(Y1, rj) ∩ Cj)|Y1]

+E[Pg(B(Y1, rl) ∩ Cl)|Y1]

≤
[
4(k + 1)2 +

16

(1− ln 2)2

]
γ2d

(M − 1)2
. (140)
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Therefore, from (123), (124), (125), (129) and (126),

E[n2X(S1)]

= N(N − 1)E[P 2
f (S1)] +NE[Pf (S1)]

=

[
4(k + 1)2 +

16

(1− ln 2)2

]
γ2dN(N − 1)

(M − 1)2
+
kN

M
.

(141)

Using similar steps, it can be shown that E[n2X(S′1)]
satisfies the same upper bound.

APPENDIX D
EXTENSION OF THE VARIANCE ANALYSIS

Proof of (20). Define

λ(t) = sup
S:Pg(S)≤t

Pf (S). (142)

The proof of (20) follows similar steps as the proof in
Appendix C, except that according to Assumption (d’), (124)
and (125) become the following:

E[P 2
f (S1)] ≤ E[λ2(Pg(S1))]

≤ C2
δE[P 2−2δ

g (S1)]

≤ C2
δ (E[P 2

g (S1)])1−δ, (143)

and similarly,

E[Pf (S1)] ≤ Cδ(E[Pg(S1)])1−δ. (144)

Follow the remaining steps, (20) can be proved.
Proof of the fact that two Gaussian distributions with

same variances and different means satisfy assumption
(d’). It is enough to prove that (19) holds for sufficiently
small t. Without loss of generality, assume f centers at ae1,
in which e1 is the unit vector in the first dimension, and g
centers at 0. Then

f(x)

g(x)
= e−

1
2a

2

eax1 , (145)

which increases with x1. To maximize Pf (S) given Pg(S) ≤
t, S should be {x|x1 ≥ φ−1(1 − t)}, in which φ is the
cumulative distribution function of standard one dimensional
Gaussian distribution. Denote Z as a random variable fol-
lowing one dimensional standard Gaussian distribution, then

for sufficiently small t,

λ(t) = P(Z > φ−1(1− t)− a)

= t
P(Z > φ−1(1− t)− a)

P(Z > φ−1(1− t))
(a)

≤ t
(φ−1(1− t))2 + 1

(φ−1(1− t))2 − aφ−1(1− t)

exp

[
−1

2
a2 + aφ−1(1− t)

]
(b)

≤ t1−δtδ exp

[
−1

2
a2 + a

√
2 ln

1

t

]
(c)

≤ Cδt
1−δ, (146)

for some Cδ . In (a), we use a property of Gaussian distri-
bution, i.e. for all u > 0,

1√
2π

u

u2 + 1
e−

1
2u

2

< P(Z > u) <
1√
2π

1

u
e−

1
2u

2

. (147)

In (b), we use another inequality P(Z > u) ≤ e−u
2/2,

which yields φ−1(1 − t) ≤
√

2 ln(1/t). For (c), note that
tδ exp

[
−a2/2 + a

√
2 ln(1/t)

]
is continuous on a closed

interval [0, 1], and thus has a maximum value.

APPENDIX E
PROOF OF THEOREM 4

In this section, we show the minimax convergence rate
of KL divergence estimator for distributions with bounded
support and densities bounded away from zero. The proof
can be divided into proving the following three bounds
separately:

Ra(N,M) &
1

M
+

1

N
, (148)

Ra(N,M) & N−
2
d (1+ 2

ln lnN ) ln−2N ln−(2− 2
d )(lnN),

(149)

Ra(N,M) & M−
2
d (1+ 2

ln lnM ) ln−2M ln−(2− 2
d )(lnM).

(150)

Proof of (148).
Let X be supported on [0, 1]d, and

f1(x) =

{
3
2 if 0 ≤ x1 ≤ 1

2
1
2 if 1

2 < x1 ≤ 1,

f2(x) =

{
3
2 + δ if 0 ≤ x1 ≤ 1

2
1
2 − δ if 1

2 < x1 ≤ 1,
(151)

and g(x) = 1. Then

D(f1||g) =

∫
f1(x) ln

f1(x)

g(x)
dx =

3

4
ln

3

2
+

1

4
ln

1

2
, (152)
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D(f2||g)

=

(
3

4
+

1

2
δ

)
ln

(
3

2
+ δ

)
+

(
1

4
− 1

2
δ

)
ln

(
1

2
− δ
)

=
3

4
ln

3

2
+

1

4
ln

1

2
+

(
1

2
ln 3

)
δ +O(δ2). (153)

Therefore, for sufficiently small δ, D(f2||g) − D(f1||g) ≥
(ln 3)δ/4. Moreover,

D(f1||f2) = −3

4
ln

(
1 +

2

3
δ

)
− 1

4
ln(1− 2δ). (154)

By Taylor expansion, it can be shown that ln(1+2δ/3) ≥
2δ/3− δ2/9, and ln(1− 2δ) ≥ −2δ + 2δ2, thus

D(f1||f2) ≤ 2

3
δ2. (155)

Therefore, from Le Cam’s lemma [34],

Ra(N,M)

≥ 1

4
(D(f1||g)−D(f2||g))

2
exp[−ND(f1||f2)]

≥ 1

4

(
1

4
ln 3

)2

δ2 exp

[
−2

3
Nδ2

]
. (156)

Let δ = 1/
√
N , then

Ra(N,M) &
1

N
. (157)

Similarly, let

g1(x) =

{
3
2 if 0 ≤ x1 ≤ 1

2
1
2 if 1

2 < x1 ≤ 1,

g2(x) =

{
3
2 + δ if 0 ≤ x1 ≤ 1

2
1
2 − δ if 1

2 < x1 ≤ 1,
f(x) = 1, (158)

for x ∈ [0, 1]d. Then it can be shown that

Ra(N,M) &
1

M
. (159)

The proof of (148) is complete.
Proof of (149).
The proof has similar idea with [27] and [24]. To begin

with, define

Fa = {(f, g)|f(x) = (1− α)Qa(x)

+
m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
,

g(x) = (1− α)Qa(x) +
m∑
i=1

α

mDd
Qa

(
x− ai
D

)
,

1

m

m∑
i=1

ui = α, 1 < mDd−1 < C1,

ui
mDd

∈ {0} ∪ (c, 1)
}
,

(160)

in which Qa(x) = 1/vd for x ∈ B(0, 1), vd is the unit
ball volume, thus

∫
Qa(x)dx = 1. C1 and c are two

constants. α ∈ (0, 1) and D decrease with N , while m
increases with N . ai, i = 1, . . . , n are selected such that
‖ai − aj‖ > 2D for all i, j ∈ {1, . . . ,m} and i 6= j. It can
be checked that both f and g integrate to 1. The condition
ui/(mD

d) ∈ {0} ∪ (c, 1) is designed such that the density
in the support is bounded away from zero, i.e. if f(x) > 0,
then f(x) ≥ c. Moreover, the surface area of the support
is sd(1 + mDd−1), in which sd is the surface area of unit
ball, and sd = dvd. With the condition 1 < mDd−1 < C1,
the surface area of the supports of f and g are both upper
bounded by sdC1. Therefore, for sufficiently large Hf , Hg ,
Uf , Ug and sufficiently small Lf and Lg , Fa ∈ Sa. Define

Ra1(N,M)

= inf
D̂

sup
(f,g)∈Fa

E
[
(D̂(N,M)−D(f ||g))2

]
. (161)

Recall that Ra(N,M) is defined as the minimax mean
square error over Sa, hence

Ra(N,M) ≥ Ra1(N,M). (162)

To derive a lower bound of Ra1(N,M), we use Le Cam’s
method again, with Poisson sampling. Define

Ra2 = inf
D̂

sup
(f,g)∈Fa

E
[
(D̂(N ′,M)−D(f ||g))2

]
, (163)

in which N ′ ∼ Poi(N), Poi is the Poisson distribution. Then
we have the following lemma:

Lemma 12.

Ra1(N,M) ≥ Ra2(2N,M)− 1

4
exp[−(1− ln 2)N ]. (164)

Proof. Please refer to Appendix E-A for details.

Furthermore, define

F ′a = {(f, g)|f(x) = (1− α)Qa(x)

+
m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
,

g(x) = (1− α)Qa(x) +
m∑
i=1

α

mDd
Qa

(
x− ai
D

)
,∣∣∣∣∣ 1

m

m∑
i=1

ui − α

∣∣∣∣∣ < ε, 1 < mDd−1 < C1,

ui
mDd

∈ {0} ∪ (c(1 + ε), 1− ε)
}
.

(165)

Comparing with the definition of Fa in (160), the only
difference is that we now allow (1/m)

∑m
i=1 ui to deviate

slightly from α. As a result, f is not necessarily a pdf, since
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it is not normalized. However, we extend the definition of KL
divergence D(f ||g) =

∫
f(x) ln(f(x)/g(x))dx here. Define

Ra3(N,M, ε)

= inf
D

sup
(f,g)∈F ′a

E[(D̂(N ′,M)−D(f ||g))2], (166)

in which N ′ ∼ Poi(N
∫
f(x)dx). Then the number of

samples falling on any two disjoint intervals are mutually
independent. Ra2 can be lower bounded by Ra3 with the
following lemma:

Lemma 13. If ε < α/2, then

Ra2((1− ε)N,M)

≥ 1

2
Ra3(N,M)− 3ε2

(
ln2 α

mDdvd
+ ln2 α+

9

4

)
.

(167)

Proof. Please refer to Appendix E-B for details.

With Lemma 12 and Lemma 13, the problem of bounding
Ra(N,M) can be converted to bounding Ra3(M,N, ε). We
then show the following lemma, which is slightly modified
from Lemma 11 in [24].

Lemma 14. Let U , U ′ be two random variables that satisfy
the following conditions:

1) U,U ′ ∈ [ηλ, λ], in which λ ≤ (1− ε)mDd, 0 < η < 1,
and ηλ ≥ c(1 + ε)mDd;

2) E[U ] = E[U ′] = α.
Define

∆ =

∣∣∣∣E [U ln
1

U

]
− E

[
U ′ ln

1

U ′

]∣∣∣∣ . (168)

Let

ε = 4λ/
√
m, (169)

then

Ra3(N,M, ε)

≥ ∆2

16

[
31

32
−

64λ2
(
ln m

λ

)2
m∆2

−mTV
(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
− 16λ2

m∆2
(d lnD + h(Qa))2

]
, (170)

in which h(Qa) = ln vd is the differential entropy of Qa.

Proof. The proof is exactly the same as the proof of Lemma
11 in [24]. Condition (1) is different from the corresponding
condition in [24], but such difference does not affect the
proof.

We construct U , U ′ as following. Let X,X ′ ∈ [η, 1] have
matching moments to the L-th order, and let

PU (du) =
(

1− E
[ η
X

])
δ0(du) +

α

u
PαX/η(du),

PU ′(du) =
(

1− E
[ η
X ′

])
δ0(du) +

α

u
PαX′/η(du),

in which δ0 denotes the distribution that puts all the mass
on u = 0. Now we assume α ≤ (1 − ε)mDdη. Let λ =
α/η, then U,U ′ are supported in [0, λ], and condition (1) in
Lemma 14 is satisfied. Then from Lemma 4 in [27],

∆ = E
[
U ln

1

U
− U ′ ln 1

U ′

]
= α

(
E
[
ln

1

X

]
− E

[
ln

1

X ′

])
, (171)

and E[U j ] = E[U ′j ] for j = 1, . . . , L. In particular, E[U ] =
E[U ′] = α. When X and X ′ are properly selected, according
to eq.(34) in [27],∣∣∣∣E [ln 1

X

]
− E

[
ln

1

X ′

]∣∣∣∣ = 2 inf
p∈PL

sup
x∈[η,1]

| lnx− p(x)|,(172)

in which PL is the set of all polynomials with degree L.
According to eq.(5) and (6) in page 445 in [36], for a > 1,

L→∞,

inf
p∈PL

sup
t∈[−1,1]

| ln(a− t)− p(t)| = 1 + o(1)

L
√
a2 − 1(a+

√
a2 − 1)L

.

Let x = 1− (t+ 1)/(a+ 1), and η = (a− 1)/(a+ 1), then
the above equation can be transformed to the following one:

inf
p∈PL

sup
x∈[η,1]

| lnx− p(x)| = 1 + o(1)

L
√
4η

1−η

(
1+η
1−η +

√
4η

1−η

)L , (173)

i.e. there exist two constants c1(η) and c2(η) that depend on
η, such that

inf
p∈PL

sup
x∈[η,1]

| lnx− p(x)| ≥ c1(η)

LcL2 (η)
. (174)

Hence

∆ ≥ 2αc1(η)

LcL2 (η)
. (175)

To bound the total variation term in (170), we use the
following lemma.

Lemma 15. ([27], Lemma 3) Let Z,Z ′ be random variables
on [0, A]. If E[V j ] = E[V ′j ] for j = 1, . . . , L, and L > 2eA,
then

TV (E[Poi(Z)],E[Poi(Z ′)]) ≤
(

2eA

L

)L
. (176)
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Substitute Z,Z ′ with NU/m and NU ′/m, and let A =
Nλ/m, we get

TV
(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
≤

(
2eNλ

mL

)L
≤
(

2eNDd

L

)L
, (177)

in which the last step holds because λ ≤ (1− ε)mDd.
Let L,D,m change in the following way:

L =

⌊
ln lnN

ln c2(η)

⌋
, (178)

D =

(
L

2e

) 1
d

N−
1
d (1+ 1

L ), (179)

and from (160),

m ∼ D−(d−1) ∼ L−(1− 1
d )N(1− 1

d )(1+ 1
L ), (180)

and

λ ∼ mDd ∼ L 1
dN−

1
d (1+ 1

L ), (181)

α = λη ∼ L 1
dN−

1
d (1+ 1

L ). (182)

Then

∆ ≥ 2αc1(η)

LcL2 (η)
&

α

lnN ln lnN
. (183)

Note that the second, third and fourth term in the bracket at
the right hand side of (170) converge to zero. In particular,
for the second term,

λ2
(
ln m

λ

)2
m∆2

∼ (lnN)4

m
→ 0. (184)

For the third term,

mTV
(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
≤

(
2eNDd

L

)L
m =

m

N
→ 0, (185)

and it is straightforward to show that the fourth term also
converges to zero. Therefore, from Lemma 14,

Ra3(N,M, ε) & ∆2 & L
2
dN−

2
d (1+ 1

L ) 1

ln2N ln2 lnN
.(186)

Pick η such that c2(η) = e2. According to condition 1) in
the statement of Lemma 14, this is possible if c is sufficiently
small. Then

Ra3(N,M, ε)

& N−
2
d (1+ 2

ln lnN ) ln−2N ln−(2− 2
d )(lnN). (187)

From Lemma 13, and note that from (169),

ε2 =
16λ2

m2
∼ m2D2d

m
∼ Dd+1, (188)

which converges sufficiently fast, thus Ra2(N(1 − ε)) can
also be lower bounded with the right hand side of (187).
From (162) and (164),

Ra(N,M) & N−
2
d (1+ 2

ln lnN ) ln−2N ln−(2− 2
d )(lnN).(189)

Proof of (150).
Define

Ga = {(f, g)|f(x) = (1− α)Qa(x)

+
m∑
i=1

α

mDd
Qa

(
x− ai
D

)
,

g(x) = (1− α)Qa(x) +
m∑
i=1

vi
mDd

Qa

(
x− ai
D

)
,

1

m

m∑
i=1

vi = α, 1 < mDd−1 < C1,
ui
mDd

∈ (c, 1)

}
.

(190)

Then for any (f, g) ∈ Ga,

D(f ||g) =
m∑
i=1

α

m
ln
α

vi
= α lnα− α

m

m∑
i=1

ln vi. (191)

Define

Ra4(N,M) = inf
D̂

sup
(f,g)∈Ga

E[(D̂(N,M)−D(f ||g))2], (192)

then for sufficiently large Ug and sufficiently low Lg , we
have Ra(N,M) ≥ Ra4(N,M).

We use Poisson sampling again. Define

Ra5(N,M) = inf
D̂

sup
(f,g)∈Ga

E[(D̂(N,M ′)−D(f ||g))2],(193)

in which M ′ ∼ Poi(M). Then we have the following lemma.

Lemma 16.

Ra4(N,M)

≥ Ra5(N, 2M)− 1

4
α2 ln2 c exp[−(1− ln 2)M ].

(194)

Proof. Please refer to Appendix E-C.
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Define

G′a = {(f, g)|f(x) = (1− α)Qa(x)+
m∑
i=1

α

mDd
Qa

(
x− ai
D

)
,

g(x) = (1− α)Qa(x) +
m∑
i=1

vi
mDd

Qa

(
x− ai
D

)
,∣∣∣∣∣ 1

m

m∑
i=1

vi − α

∣∣∣∣∣ < ε, 1 < mDd−1 < C1,

ui
mDd

∈ (c(1 + ε), 1− ε)
}
,

(195)

and

Ra6(N,M) = inf
D̂

sup
(f,g)∈G′a

E[(D̂(N,M ′)−D(f ||g))2],(196)

in which M ′ ∼ Poi
(
M
∫
g(x)dx

)
. Then the following

lemma lower bounds Ra5 with Ra6:

Lemma 17. If ε < α/2, then

Ra5(N, (1− ε)M) ≥ 1

2
Ra6(N,M)− 4ε2. (197)

Proof. Please refer to Appendix E-D.

Now we bound Ra6(N,M, ε) with the following lemma.

Lemma 18. Let V, V ′ be two random variables that satisfy
the following conditions:

(1) V, V ′ ∈ [ηλ, λ], in which λ ≤ (1− ε)mDd, 0 < η < 1
and ηλ ≥ c(1 + ε)mDd;

(2) E[V ] = E[V ′] = α.
Define

∆ = |E[lnV ]− E[lnV ′]|. (198)

Let ε = λ/
√
m, then

Ra6(N,M, ε)

≥ α2∆2

16

[
1

2
− 8 ln2 c

m∆2

−mTV
(
E
[

Poi
(
MV

m

)]
,E
[

Poi
(
MV ′

m

)])]
.

(199)

Proof. Please refer to Appendix E-E.

Now we use eq.(34) in [27] again, which shows that there
exist V, V ′ ∈ [ηλ, λ] that have matching moments up to L-th
order, such that

|E[lnV ]− E[lnV ′]| = 2 inf
p∈PL

sup
z∈[η,1]

| ln z − p(z)|. (200)

The remaining proof follows the proof of (149). L,D,m, λ
and α take the same value as the equations from (178) to

(182), and then we can get similar bound as (149), replacing
N with M .

A. Proof of Lemma 12

Let N ′ ∼ Poi(2N), then

Ra2(2N,M)

= inf
D̂

sup
(f,g)∈Fa

E
[
(D̂(N,M)−D(f ||g))2

]
≤ inf

D̂
E

[
sup

(f,g)∈Fa
E
[
(D̂(N,M)−D(f ||g))2|N ′

]]

= E

[
inf
D̂

sup
(f,g)∈Fa

E
[
(D̂(N,M)−D(f ||g))2|N ′

]]
= E[Ra1(N ′,M)]

= E[Ra1(N ′,M)|N ′ ≥ N ]P(N ′ ≥ N)

+E[Ra1(N ′,M)|N ′ < N ]P(N ′ < N),

(201)

in which the inequality in the second step comes from
Jensen’s inequality. Note that Ra1(N,M) is a nonincreasing
function of N , because if N1 < N2, given N2 samples
{X1, . . . ,XN2}, one can always pick N1 samples for the
estimation, thus Ra1(N1,M) ≥ Ra1(N2,M) always holds.
Therefore

E[Ra1(N ′,M)|N ′ ≥ N ] ≤ Ra1(N,M). (202)

Moreover, since N ′ ∼ Poi(2N), use Chernoff inequality, we
get

P(N ′ < N) ≤ exp[−(1− ln 2)N ]. (203)

Now it remains to bound E[Ra1(N ′,M)|N ′ ≤ N ]. Note
that we can always let the estimator be

D̂(f ||g) =
1

2

(
sup

(f,g)∈Fa
D(f ||g) + inf

(f,g)∈Fa
D(f ||g)

)
, (204)

hence

E[Ra1(N ′,M)|N ′ < N ]

≤ 1

4

(
sup

(f,g)∈Fa
D(f ||g)− inf

(f,g)∈Fa
D(f ||g)

)2

.(205)

From the definition of Fa in (160), for all (f, g) ∈ Fa,

D(f ||g) =

∫
f(x) ln f(x)dx−

∫
f(x) ln g(x)dx

= −h(f)−
∫
f(x) ln g(x)dx, (206)
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and ∫
f(x) ln g(x)dx

=

∫ m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
ln

α

mDdvd
dx

=

(
1

m

m∑
i=1

ui

)
ln

α

mDdvd

= α ln
α

mDdvd
, (207)

which is the same for all (f, g) ∈ Fa. In addition,

h(f) = −
∫
f(x) ln f(x)dx

= −(1− α) ln
1

vd
− 1

m

m∑
i=1

ui ln
α

mDdvd

= (1− α) ln vd + α ln(mDdvd)−
1

m

m∑
i=1

ui lnui.

(208)

Hence,

E[Ra1(N ′,M)|N ′ < N ]

≤

(
sup

(f,g)∈Fa
h(f)− inf

(f,g)∈Fa
h(f)

)2

=
1

4

[
sup

{
1

m

m∑
i=1

ui lnui|ui > 0,
1

m

m∑
i=1

ui = α

}

− inf

{
1

m

m∑
i=1

ui lnui|ui > 0,
1

m

m∑
i=1

ui = α

}]2
=

1

4
α2 ln2 α

<
1

4
. (209)

From (201), (202), (203) and (209),

Ra2(2N,M) ≤ Ra1(N,M) +
1

4
exp[−(1− ln 2)N ]. (210)

B. Proof of Lemma 13

Recall that in (165),

f(x) = (1− α)Qa(x) +
1

q

m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
, (211)

and |(1/m)
∑m
i=1 ui − α| < ε. Define

q =

∑m
i=1 ui
mα

, (212)

and

f∗(x) = (1− α)Qa(x) +
1

q

m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
.(213)

Then from (165), |q − 1| < ε/α,
∫
f∗(x)dx = 1, and f∗ ∈

Fa. Hence

Ra3(N,M, ε

= inf
D̂

sup
(f,g)∈F ′a

E
[
(D̂(N,M)−D(f ||g))2

]
≤ 2inf

D̂
sup

(f,g)∈Fa
E
[
(D̂(N,M)−D(f∗||g))2

]
+2 sup

(f,g)∈Fa
(D(f ||g)−D(f∗||g))

2

≤ 2Ra2((1− ε)N,M)

+2 sup
(f,g)∈Fa

(D(f ||g)−D(f∗||g))
2
.

(214)

Now we bound the second term.

|D(f ||g)−D(f∗||g)|
≤ |h(f)− h(f∗)|

+

∣∣∣∣∫ f(x) ln g(x)−
∫
f∗(x) ln g(x)dx

∣∣∣∣ .
(215)

According to (208),

|h(f)− h(f∗)|

=
1

m

∣∣∣∣∣
m∑
i=1

ui lnui −
m∑
i=1

ui
q

ln
ui
q

∣∣∣∣∣
=

1

m

∣∣∣∣∣q
m∑
i=1

ui
q

(
ln
ui
q

+ ln q

)
−

m∑
i=1

ui
q

ln
ui
q

∣∣∣∣∣
≤ 1

m

∣∣∣∣∣(q − 1)
m∑
i=1

ui
q

ln
ui
q

∣∣∣∣∣+
1

m

∣∣∣∣∣
m∑
i=1

ui ln q

∣∣∣∣∣
(a)

≤ |1− q||α lnα|+ α|q ln q|
(b)

≤ ε ln
1

α
+ α

(
1 +

ε

α

)
ln
(

1 +
ε

α

)
(c)

≤ ε ln
1

α
+

3

2
ε, (216)

in which (a) is obtained by maximizing
|
∑m
i=1(ui/q) ln(ui/q)| under the restriction

(1/m)
∑m
i=1(ui/q) = α, (b) comes from |q − 1| < ε/α,
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and (c) uses ε < α/2. Moreover,∣∣∣∣∫ f(x) ln g(x)dx−
∫
f∗(x) ln g(x)dx

∣∣∣∣
=

∣∣∣∣∣
(

1

m

m∑
i=1

ui − α

)
ln

α

mDdvd

∣∣∣∣∣
≤ ε

∣∣∣∣ln α

mDdvd

∣∣∣∣ . (217)

Hence

|D(f ||g)−D(f∗||g)| ≤ ε
∣∣∣∣ln α

mDdvd

∣∣∣∣+ ε ln
1

α
+

3

2
ε.(218)

Therefore

Ra3(N,M, ε) ≤ 2Ra2((1− ε)N,M)

+6ε2
(

ln2 α

mDdvd
+ ln2 α+

9

4

)
.

C. Proof of Lemma 16

Similar to the proof of Lemma 12,

Ra5(N, 2M)

≤ Ra4(N,M)

+ exp[−(1− ln 2)M ]E[Ra4(N,M ′)|M ′ < M ],

and

E[Ra4(N,M ′)|M ′ < M ]

≤ 1

4

(
sup

(f,g)∈Ga
D(f ||g)− inf

(f,g)∈Ga
D(f ||g)

)2

=
1

4

( α
m

sup

{
m∑
i=1

ln vi|vi ∈ (cmDd,mDd),
1

m

m∑
i=1

vi = α

}
− α
m

inf

{
m∑
i=1

ln vi|vi ∈ (cmDd,mDd),
1

m

m∑
i=1

vi = α

})
≤ 1

4
α2 ln2 c. (219)

The proof is complete.

D. Proof of Lemma 17

Similar to the proof of Lemma 13, consider that

g(x) = (1− α)Qa(x) +
1

mDd

m∑
i=1

viQa

(
x− ai
D

)
, (220)

define q = (
∑m
i=1 vi)/(mα), and

g∗(x) = (1− α)Qa(x) +
1

q

m∑
i=1

vi
mDd

Qa

(
x− ai
D

)
.(221)

Similar to (214),

Ra6(N,M, ε) ≤ 2Ra5(N, (1− ε)M)

+2 sup
(f,g)∈G′a

(D(f ||g)−D(f ||g∗))2 ,

and

|D(f ||g)−D(f ||g∗)| =

∣∣∣∣f(x) ln
g(x)

g∗(x)
dx

∣∣∣∣
= α| ln q|
≤ 2ε, (222)

in which the last step holds since |q−1| < ε/α and ε < α/2.
The proof is complete.

E. Proof of Lemma 18

Let g1, g2 be two random functions:

g1(x) = (1− α)Qa(x) +
m∑
i=1

Vi
mDd

Qa

(
x− ai
D

)
,

g2(x) = (1− α)Qa(x) +

m∑
i=1

V ′i
mDd

Qa

(
x− ai
D

)
.

Define two events:

E =

{∣∣∣∣∣ 1

m

m∑
i=1

Vi − α

∣∣∣∣∣ ≤ ε,
|D(f ||g1)− E[D(f ||g1)]| ≤ 1

4
α∆

}
, (223)

E′ =

{∣∣∣∣∣ 1

m

m∑
i=1

V ′i − α

∣∣∣∣∣ ≤ ε,
|D(f ||g2)− E[D(f ||g2)]| ≤ 1

4
α∆

}
, (224)

then

P

(∣∣∣∣∣ 1

m

m∑
i=1

Vi − α

∣∣∣∣∣ > ε

)
≤ Var[V ]

mε2
≤ λ2

4mε2
=

1

4
. (225)

Consider that | lnV | ∈ (ln(1/λ), ln(1/(ηλ))), we have

Var[lnV ] ≤ 1

4
ln2 η ≤ 1

4
ln2 c, (226)
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hence for i = 1, 2,

P
(
|D(f ||gi)− E[D(f ||gi)]| >

1

4
α∆

)
≤ 16

α2∆2
Var[D(f ||gi)]

=
16

α2∆2m
Var[α lnV ]

≤ 4 ln2 c

m∆2
. (227)

Therefore

max{P (Ec), P (E′c)} ≤ 1

4
+

4 ln2 c

m∆2
. (228)

According to (191),

|E[D(f ||g1)]− E[D(f ||g2)]| = α|E[lnV ]− E[lnV ′]|
= α∆. (229)

From the definition of E, E′ in (223) and (224), if E,E′

happen, then

|D(f ||g1)−D(f ||g2)| ≤ 1

2
α∆. (230)

Denote π∗1 as the distribution of samples according to g1
conditional on E, and π∗2 as the distribution according to g2
conditional on E′. Then under π∗1 , π∗2 ,

TV(π∗1 , π
∗
2) ≤ TV(π1, π2) + P (Ec) + P (E′c), (231)

and

TV(π1, π2) ≤ mTV
(
E
[

Poi
(
MV

m

)]
,E
[

Poi
(
MV ′

m

)])
.

Then according to Le Cam’s lemma,

Ra6(N,M, ε)

≥ 1

4

(
1

2
α∆

)2

(1− TV(π∗1 , π
∗
2))

≥ α2∆2

16

[
1

2
− 8 ln2 c

m∆2

−mTV
(
E
[

Poi
(
MV

m

)]
,E
[

Poi
(
MV ′

m

)])]
.

(232)

The proof is complete.

APPENDIX F
PROOF OF THEOREM 5

Similar to Theorem 4, the proof can be divided into
proving the following three bounds:

Rb(N,M) &
1

M
+

1

N
; (233)

Rb(N,M) & N−
2γ
d+2 (lnN)−

4d+8−4γ
d+2 ; (234)

Rb(N,M) & M−
2γ
d+2 (lnM)−

4d+8−4γ
d+2 . (235)

Proof of (233).
Let

g(x) =
1√
2π

exp

[
−1

2
x21

]
, (236)

in which x1 is the value of the first coordinate of x, and

fi(x) =
1√

2πσi
exp

[
− x21

2σ2
i

]
, i = 1, 2, (237)

in which σ2
2 = 1/2, and σ1 = (1 + δ)σ2. Then

D(f1||g) =
1

2
(σ2

1 − 1)− lnσ1, (238)

D(f2||g) =
1

2
(σ2

2 − 1)− lnσ2, (239)

(240)

and

D(f1||f2) =
1

2

(
σ2
1

σ2
2

− 1

)
− ln

σ1
σ2

= δ +
1

2
δ2 − ln(1 + δ)

≤ δ2. (241)

From Le Cam’s lemma,

Rb(N,M)

≥ 1

4
(D(f2||g)−D(f1||g))2 exp[−ND(f1||f2)]

≥ 1

4

(
ln(1 + δ)− 1

4
(2δ + δ2)

)2

exp[−Nδ2]

≥ 1

4

(
1

2
δ − 3

4
δ2
)2

exp[−Nδ2]. (242)

Let δ = 1/
√
N , for sufficiently large N , Rb(N,M) ≥

1/(32N). Similarly, let

f(x) =
1√
2π

exp

[
−1

2
x21

]
, (243)

and

gi(x) =
1√

2πσi
exp

[
− x21

2σ2
i

]
, i = 1, 2, (244)

in which σ1 = (1+δ)σ2, then we can get Rb(N,M) & 1/M .
Hence

Rb(N,M) &
1

N
+

1

M
. (245)

Proof of (234).
To begin with, we construct Qb(x) that satisfies the

following conditions:
(G1) Qb(x) is supported on B(0, 1), i.e. Qb(x) = 0 for
‖x‖ > 1;

(G2)
∥∥∇2Qb

∥∥ ≤ C0 for some constant C0;
(G3)

∫
B(0,1)

Qb(x)dx = 1;
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(G4) Qb(x) ≥ 0 for all x.
Let

Qm = sup
x
Qb(x). (246)

Define

Fb = {(f, g)|f(x) = (1− α)Qb(x)

+
m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
,

g(x) = (1− α)Qb(x) +
m∑
i=1

α

mDd
Qb

(
x− ai
D

)
,

1

m

m∑
i=1

ui = α, 1 < mDd+2(1−γ) < C1,

ui
mDd+2

< 1
}
. (247)

In (247), there are two conditions that are different from
the definition of Fa in (160): 1 < mDd+2(1−γ) < C1, and
ui/(mD

d+2) < 1. The first one is designed so that the
distribution satisfies the tail assumption (Assumption 2 (b)).
For t ≤ 1,

P(f(X) ≤ t) ≤
{
tvd +mtvdD

d if t ≤ D2Qm
tvd + α if t > D2Qm

≤ tvd +mDd+2(1−γ)Q1−γ
m vdt

γ

≤ µtγ , (248)

in which µ = vd(1 + C1Q
1−γ
m ).

Follow the analysis in [24], we can still get eq.(100) in
[24], i.e.

R(N,M) &
( m

N lnm

)2
. (249)

Let

D ∼ N−
1
d+2 (lnN)

1
d+2 , (250)

then

m ∼ D−d−2(1−γ) ∼ N
d+2(1−γ)
d+2 (lnN)−

d+2(1−γ)
d+2 . (251)

Hence

Rb(N,M) & N−
4γ
d+2 (lnN)−

4d+8−4γ
d+2 . (252)

Proof of (235). Define

Gb = {(f, g)|f(x) = (1− α)Qb(x)

+
m∑
i=1

α

mDd
Qb

(
x− ai
D

)
,

g(x) = (1− α)Qb(x) +
m∑
i=1

vi
mDd

Qb

(
x− ai
D

)
,

1

m

m∑
i=1

vi = α, 1 < mDd+2(1−γ) < C1,

vi
mDd+2

< 1, vi ≥ C2α
}
,

(253)

in which C1 and C2 are two constants. Comparing with the
definition of Fb in (247), we add a new condition vi ≥ C2α,
to ensure that f/g is always bounded by 1/C2. Similar to
Theorem 4, Let V, V ′ ∈ [C2α, λ], λ = α/η, λ ≤ mDd+2.
Moreover, we still define ∆ as was already defined in (198).
Then from Lemma 18,

R(N,M)

& α2∆2

[
1

2
− 8 ln2 c

m∆2

−mTV
(
E
[

Poi
(
MV

m

)]
,E
[

Poi
(
MV ′

m

)])]
,

and from (177),

TV
(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
≤

(
2eMλ

mL

)L
≤
(

2eMα

mLη

)L
. (254)

From Lemma 5 in [27], there exists two constants c, c′ such
that

∆ = inf
p∈PL

sup
z∈[cL−2,1]

| ln z − p(z)| ≥ c′. (255)

Let L = 2blnmc, λ = m lnm/e2M , and α =
m/(M lnm),

then

Rb(N,M) &
( m

M lnm

)2
. (256)

With the restriction 1 < mD1+2(1−γ) < C1 and λ ≤
mDd+2, we have

D ∼M−
1
d+2 ln

1
d+2 M, (257)

m ∼ D−d−2(1−γ) ∼M
d+2(1−γ)
d+2 (lnM)−

d+2(1−γ)
d+2 , (258)

hence

Rb(N,M) &M−
4γ
d+2 (lnM)−

4d+8−4γ
d+2 . (259)
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