
1

Distributed Dual Coordinate Ascent in General Tree
Networks and Communication Network Effect on

Synchronous Machine Learning
Myung Cho, Lifeng Lai, and Weiyu Xu

Abstract—Due to the big size of data and limited data storage
volume of a single computer or a single server, data are
often stored in a distributed manner. Thus, performing large-
scale machine learning operations with the distributed datasets
through communication networks is often required. In this
paper, we study the convergence rate of the distributed dual
coordinate ascent for distributed machine learning problems in
a general tree-structured network. Since a tree network model
can be understood as the generalization of a star network,
our algorithm can be thought of as the generalization of the
distributed dual coordinate ascent in a star network. We provide
the convergence rate of the distributed dual coordinate ascent
over a general tree network in a recursive manner and analyze the
network effect on the convergence rate. Secondly, by considering
network communication delays, we optimize the distributed dual
coordinate ascent algorithm to maximize its convergence speed.
From our analytical result, we can choose the optimal number of
local iterations depending on the communication delay severity to
achieve the fastest convergence speed. In numerical experiments,
we consider machine learning scenarios over communication
networks, where local workers cannot directly reach to a central
node due to constraints in communication, and demonstrate that
the usability of our distributed dual coordinate ascent algorithm
in tree networks.

Index Terms—distributed machine learning, distributed
dataset, machine learning over communication networks

I. INTRODUCTION

In the past decade, machine learning has been driven by
huge amount of data, simply called big data. In various
fields including education, finance, transportation, healthcare,
engineering, and management, etc., big data is fundamentally
changing our lives and societies [1], e.g., recommender services
[2], disease diagnosis and analysis [3], or even signal recovery
[4]. However, due to limited storage volumes in storage servers
and constraints in communication, we face challenges of
processing big data. Especially, big data are very often collected
and stored from different locations at different times. Also,
it is very expensive, inefficient, and insecure to aggregate
distributed data in one central place. Machine learning over
wireless communication networks can be a good example

M. Cho is with the Department of ECE, Penn State Behrend, Erie, PA
16563, USA (E-mail: mxc6077@psu.edu).

L. Lai is with the Department of ECE, University of California, Davis, CA
95616, USA (E-mail: lflai@ucdavis.edu).

W. Xu is with the Department of ECE, University of Iowa, Iowa City, IA
52242, USA (E-mail: weiyu-xu@uiowa.edu).

Lifeng Lai’s work was partially supported by the National Science
Foundation (NSF) under grants CCF-1717943, ECCS-2000415. Weiyu Xu’s
research was partially funded by NSF ECCS-2000425.

having these challenges, where machine learning process is
performed through multiple decentralized devices having local
data over wireless communication networks without sharing
their raw data with others [5, 6]. Therefore, it is quite natural
to consider solving large-scale machine learning problems with
distributed data over communication networks in order to obtain
valuable information from the distributed data.

Solving large-scale machine learning problems dealing with
distributed data over communication networks is a challenging
problem, due to the limited resources and obstacles including
limited communication bandwidth, limited storage volume,
limited energy consumption or even privacy and security issues.
In order to handle the challenges of distributed data with
limited resources, researchers have developed and studied
various algorithms in [7–17] and the references therein. More
specially, synchronous Stochastic Gradient Decent (SGD) [7, 8],
synchronous Stochastic Dual Coordinate Ascent (SDCA) [9–11,
13, 14], asynchronous SGD [12, 15], and asynchronous SDCA
[16, 17] for distributed data have been intensively investigated
in the literature. Among them, [13] reports that even though
the convergence of SGD does not depend on the size of data,
SDCA can outperform SGD when we need relatively high
solution accuracy. Moreover, asynchronous updating scheme
in SGD and SDCA can suffer from the conflicts between
intermediate results.

Motivated by these facts, [9–11] consider using synchronous
SDCA to solve regularized loss minimization problems in
a star network. In the scenario, data are distributed over a
few local workers in the star network, and each local worker
communicates with a central station. The authors in [9–11]
analyze the convergence rate of the distributed SDCA in terms
of communication rounds. Espeically, the strong aspects of
the proposed distributed optimization framework in [10, 11]
include free-of-tuning parameters or learning rates compared
with SGD-based methods, and the readily computable duality
gap for fair stopping criterion and efficient accuracy certificates.

However, in practice, the local workers may be organized in
various types of network topologies such as a tree, a mesh, or
a ring. Especially, in wireless communication networks, due to
limited communication power and energy consumption, local
workers sometimes cannot directly communicate with a central
node. In this situation, the distributed dual coordinate ascent in
a star network cannot be used for distributed machine learning.
And if intermediate nodes are added for the communication
from local workers to a central node, the distributed dual
coordinate ascent for a star network will easily suffer from

2

the increased latency and delay in communication. Therefore,
considering communication network topologies in distributed
machine learning problems is important, and taking advantage
of the network topologies may play a significant role in finding
efficient solutions for the problems. Then, it is natural to ask
how to design and analyze the distributed dual coordinate
ascent over a network with general topologies beyond a star
network. Additionally, since delay and latency in communica-
tion can affect the convergence speed of a distributed machine
learning algorithm, it is essential to investigate how network
communication delays will affect the design and convergence
rate of distributed dual coordinate ascent algorithms previsouly
introduced in [9–11] in terms of overall computational time
instead of the number of communication rounds. The authors
in [18] analyzed the convergence bound in terms of time
by considering communication delays in a network for a
consensus optimization problem. Additionally, the research
[19–23] studied separable consensus problems to each worker
by using ADMM techniques. We remark that the regularized
loss minimization problem considered in [9–11] is a different
problem from the consensus problems considered in [19–
23] in the aspect of separability. Moreover, in [24–26], the
authors considered a distributed deep neural network model.
By introducing auxiliary variables, the authors made the non-
convex problem separable, which can lead to a consensus
problem over a network. Unlike the works in [24–26], we
consider to solve distributed machine learning problems in
an augmented manner by taking into account communication
networks. Therefore, our work focuses on the communication
and network topology’s effect on the distributed machine
learning algorithms, while the works in [24–26] focus on
the alternating or block coordinate descent algorithm itself to
solve neural network problems with auxiliary variables without
considering network constraints.

The contribution of this paper is three-fold. Firstly, we design
the distributed dual coordinate ascent for a regularized loss min-
imization problem in a general tree-structured communication
network and analyze the convergence rate of the algorithm over
the general tree network. Since a star network is a special case
of a general tree network, our distributed dual coordinate ascent
algorithm can be thought of as a generalized version of the
distributed dual coordinate ascent in a star network. Secondly,
we study the influence of the communication constraints in
a network on the convergence rate of the distributed dual
coordinate ascent. By considering delays in communication,
we optimize the network-constrained dual coordinate ascent
to maximize its convergence speed in terms of time, and
provide an analytical solution for the optimal number of local
iterations depending on the communication delay severity. The
analytical solution, which is a function of the ratio between
the communication delay and the local processing time, can be
used to achieve the fastest convergence speed of the distributed
dual coordinate ascent in time. Finally, we demonstrate the
usability of our proposing algorithm in machine learning over
communication networks, where local workers cannot directly
reach to a central node.

The rest of the paper is organized as follows. In Section
II, we introduce the regularized loss minimization problem

with distributed data. Section III describes a review of existing
works on the synchronous distributed dual coordinate ascent
in a star network. In Section IV, we propose the generalized
distributed dual coordinate ascent in tree-structured networks.
Section V describes the convergence analysis of the generalized
distributed dual coordinate ascent. In Section VI, we study
the communication delay factor in the convergence speed of
the distributed dual coordinate ascent. In Section VII, we
demonstrate the performance of the generalized distributed dual
coordinate ascent and the optimal iteration numbers for the fast
convergence speed. The proposed algorithm and its convergence
rate without a proof were introduced in our previous conference
paper [27]. In this journal paper, we provide the full proof of
our theorem in Appendix A, the analysis of network topology
and communication effect on the algorithm in Sections V
and VI respectively, and additional numerical experiments in
Section VII.

Notations: We denote the set of real numbers as R. We
use [k] to denote the index set of the coordinates in the k-th
coordinate block. For an index set Q, Q and ∣Q∣ are used to
represent the complement and the cardinality of Q respectively.
We use bold letters to represent vectors and matrices. If we use
an index set as a subscript of a vector (resp. matrix), we refer
to the partial vector (resp. partial matrix) over the index set
(resp. with columns over the index set). The superscript (t) is
used to denote the t-th iteration. For example, α(t)

[k]
represents

a partial vector α over the k-th block coordinate set at the t-th
iteration. We reserve the superscript ⋆ to denote the optimal
solution to an optimization problem.

II. PROBLEM FORMULATION

We consider the following regularized loss minimization
problem [9–11, 14, 16, 17]:

minimize
w∈Rd

P (w) ≜
λ

2
∣∣w∣∣2 +

1

m

m

∑
i=1
`i(w

Txi), (1)

where xi ∈ Rd, i = 1,2, ...,m, are data points, `i(⋅), i =
1,2, ...,m, are loss functions, and λ is a tuning parameter for
a regularization term. Note that due to the regularization term
for w, which is a global variable, this minimization problem
is not separable for each distributed node unlike the consensus
problems introduced in [19–23], where the regularization term
is defined like ∑Kk=1 r(wk). Here r(⋅) is a regularization
function and K is the number of distributed nodes. By
considering different loss functions, (1) can be interpreted
as various machine learning problems including regression and
classification. For instance, for linear classification, by choosing
the loss function `i(⋅) to the hinge loss, i.e., `i(wTxi) =
max(0,1 − yi(wTxi)), (1) with labeled dataset {(xi, yi)}mi=1,
where yi ∈ R is label information, can be understood as the
linear Support Vector Machine (SVM) classification problem.
For regression, we can set `i(wTxi) = (wTxi − yi)2 with
some measurement data yi, i = 1,2, ...,m. Throughout the
paper, we assume that the data points xi, i = 1,2, ...,m, are
normalized in `2 norm, i.e., ∥xi∥ ≤ 1, i = 1,2, ...,m, and the
dataset {(xi, yi)}mi=1 is stored in a distributed manner over a
network having K local workers. More specifically, the k-th
local worker has training data {(xi, yi)}, i ∈ [k], where [k]

3

represents the index set for the training data of the k-th local
worker. Hence, we have ∣ ∪Kk=1 [k]∣ =m.

From the primal problem (1), we have the following dual
problem by considering the conjugate function, i.e., `i(a) =
supb ab − `∗i (b), where a, b ∈ R:

maximize
α∈Rm

D(α) ≜ −
λ

2
∣∣Aα∣∣2 −

1

m

m

∑
i=1
`∗i (−αi), (2)

where αi is the i-th element of the dual vector α ∈ Rm,
and the data matrix A ∈ Rd×m whose i-th column is 1

λm
xi,

i.e., Ai = 1
λm
xi, is introduced for notation convenience. By

defining w(α) ≜Aα shown in [10, 14], we have the duality
gap as P (w(α))−D(α) for a useful and readily computable
stopping criteria. It is noteworthy that from the duality principle
[28], we have P (w) ≥ D(α) for all w and α, and thus,
P (w(α)) ≥D(α) for all α. If α = α⋆, which is the optimal
solution to the dual problem (2), and the loss function `(⋅)
is convex, we have P (w(α⋆)) =D(α⋆) from strong duality
condition. Thus, w(α⋆) becomes w⋆, which is the optimal
solution to the primal problem (1). Additionally, if the loss
function `i(⋅) is non-convex, the primal problem will become
a non-convex problem. However, the dual problem is still
expressed in a convex problem [28]. Therefore, our algorithm
to tackle the dual problem can provide an optimal solution
to the dual problem. Unfortunately, in this case, there is no
guarantee that the optimal solution to the dual problem becomes
an optimal solution to the primal problem.

III. REVIEW OF THE DISTRIBUTED DUAL COORDINATE
ASCENT IN A STAR NETWORK

The distributed dual coordinate ascent for the regularized
loss minimization problem over distributed data in a net-
work has been studied in [9–11, 16], where a star network
topology for the network is considered as shown in Figure
1. In particular, the authors in [10] introduced a distributed
dual coordinate ascent framework, called the Communication-
Efficient Distributed Dual Coordinate Ascent (CoCoA), and
later proposed CoCoA+ [11], which is an enhanced version of
CoCoA by adjusting the parameter value in the accumulation of
intermediate results for faster convergence speed than CoCoA.
Since we are interested in the distributed dual coordinate ascent
for various structural network topologies and their influences
to the performance of the distributed algorithm, we provide a
high level review of CoCoA proposed in [10].

Suppose a star network has K local workers and each local
worker has disjoint parts of dataset {(xi, yi)}mi=1. With this
problem setting, the authors in [10] introduced the distributed
dual coordinate ascent for a star network. Due to the nature
of the distributed algorithm, the algorithm updates the global
variable in the outer iteration, and locally each worker has
inner iterations. Particularly, at the t-th outer iteration of the
algorithm, each worker solves a local dual problem for given
dataset via LocalDualMethod(⋅), which represents any dual
method to solve (2), e.g. Stochastic Dual Coordinate Ascent
(SDCA), simply denoted by LocalSDCA(⋅), through inner
iterations. And then, each local worker sends the intermediate
solution to the center node. The center node collects and
accumulates all the results from the local workers, and then

Fig. 1. Illustration of a star network having one central station and three local
workers W1, W2 and W3.

Algorithm 1: Communication-efficient Distributed Dual
Coordinate Ascent (CoCoA) [10]

Input: T ≥ 1
Output: w, α
Data: {(xi, yi)}mi=1 distributed over K local workers
Initialization: α(0)[k] ← 0 for all local workers, and w(0) ← 0

for t = 1 to T do
for all local workers k = 1,2, ...,K in parallel do
(△α[k],△wk) ← LocalDualMethod(α(t−1)[k] ,w(t−1))

α
(t)
[k] ← α

(t−1)
[k] +

1
K
△α[k]

end
send △wk, k = 1, ...,K, to the central station
w(t) ← w(t−1) + 1

K ∑
K
k=1△wk

distribute w(t) to local workers
end

updates and shares the global solution w(t) at the t-th outer
iteration back to the workers. Algorithm 1 describes the detail
steps of the distributed coordinate ascent in a star network.
The following theorem characterizes the convergence rate of
the algorithm in [10].

Theorem 1 ([10, Theorem 2]). Suppose that Algorithm 1
is run for T outer iterations of K local computers with the
procedure LocalSDCA(⋅) having local geometric improvement
Θ. Further, assume that the loss functions `i(⋅) are 1/γ-smooth.
Then, the following geometric convergence rate holds for the
global (dual) objective:

E[D(α⋆) −D(α(T))]

≤ (1 − (1 −Θ)
1

K

λmγ

ρ + λmγ
)
T
(D(α⋆) −D(α(0))), (3)

where m is the size of the whole dataset and ρ is any real
number satisfying

ρ ≥ ρmin ≜ maximize
α∈Rm

λ2m2∑
K
k=1 ∣∣A[k]α[k]∣∣

2
− ∣∣Aα∣∣2

∣∣α∣∣2
≥ 0.

With LocalSDCA(⋅), which uses the SDCA to solve the dual
problem for given dataset at each worker, the local geometric
improvement Θ can be set to

Θ = (1 − s/m̃)H , (4)

where m̃ ≜ maxk=1,...,Kmk is the size of the largest block
of coordinates among K local workers, H is the number of
local (or inner) iterations in LocalSDCA(⋅), and s ∈ [0,1] is
a step size of the gradient ascent which determines how far
the next solution will be taken from the current solution at
each iteration. Additionally, by choosing different parameter
values instead of 1

K
in the summation of △wk’s in Algorithm

1, the authors in [11] proposed CoCoA+, which has the same

4

Fig. 2. Illustration of a tree-structured network, which has two layers. In the
network, a central station (root node) has three direct child nodes S1, S2 and
S3. Each node Si has three direct child nodes Wij , j = 1,2,3.

framework as CoCoA introduced in Algorithm 1, for faster
convergence speed than CoCoA.

CoCoA has been shown to work well for distributed machine
learning problems with distributed data in a star network, which
is a simple network model. However, the topology of a network
may not necessarily be a star network. In the next section,
we study the distributed dual coordinate ascent in a general
network, which is a tree-structured network model.

IV. GENERALIZED DISTRIBUTED DUAL COORDINATE
ASCENT IN TREE NETWORKS

One may think of a connected communication network, e.g.,
a spanning tree network, as a virtual star network by considering
the long relays of links from a central node to each leaf node
as a direct virtual-link through intermediate nodes. However,
since communication delays normally exist in a network and
the communication is a big burden of distributed algorithms,
the distributed algorithms in the virtual star network can easily
suffer from the long delays in communication by significantly
slowing down the convergence of the distributed algorithms.
Therefore, in a connected communication network, it is efficient
to perform distributed optimization among local workers close
to each other, and then, communicate the intermediate results to
a central or sub-central nodes. Based on this idea, we investigate
how to design the distributed dual coordinate ascent over a
general tree-structured network, and provide its convergence
analysis. Since every connected network has a spanning tree,
we choose to investigate the distributed algorithm over a tree
network, which is also a generalization of a star network.

In Figure 2, we show a two-layer tree network as an example
of a general tree-structured network, where the number of layers
represents the depth of the tree network. The root node of the
tree network represents the central station of the network. Each
tree node may have several direct child nodes. For example, the
root node has three direct child nodes S1, S2, and S3 in Figure
2. A node not having any child node is called as a leaf node.
Without loss of generality, we assume that only leaf nodes
have the distributed data, which are disjoint segmented blocks
of the data matrix A in column-wise. Note that Ai = 1

λm
xi,

where Ai is the i-th column of A and xi ∈ Rd is the i-th data
point. If a non-leaf node Q has data, we can always create
a virtual leaf node L attached to Q, and “stores” the data in
L. Thus, without loss of generality, we can assume that the
dataset {(xi, yi)}mi=1 are distributed only to leaf nodes.

For a tree node Q, we can consider a subtree including
the tree node Q and its indirect and direct child nodes up to
leaf nodes, simply called the subtree Q. Figure 3 illustrates

Fig. 3. Illustration of a subtree including a node Q on the i-th layer and its
direct and indirect child nodes.

the subtree Q. We also denote the set of indices of all data
points stored in the subtree Q as Q, and the set of indices
of data points in the k-th direct child node of Q as [Q;k].
Therefore, [Q;k] ⊂ Q. Then, α[Q;k] represents the partial
vector of α ∈ Rm corresponding to the data points in the
subtree with the k-th direct child node of Q. Since each node
is used for an index set, we denote the number of data points
stored in the subtree Q, i.e., the cardinality of Q, as ∣Q∣. In a
tree network, we also assume that a node can only communicate
with its direct child nodes or its direct parent node.

We then introduce the generalized distributed dual coordinate
ascent, which we call TreeDualMethod, to solve the dual
problem (2) with distributed data stored over a general tree-
structured network. For simplicity, we consider the tree network
in Figure 2, where the number of layers, p, is 2. In a leaf
node Wij , TreeDualMethod in Procedure P is run with a local
dataset for Tp iterations, and then, the intermediate value △w
is shared with its direct parent node, i.e., the sub-central node
Si. In the sub-central node Si, a global variable w for the i-th
cluster is updated, and distributed to local workers Wij’s. After
running this process for Ti times independently in clusters,
the variables △w’s from clusters are shared with the central
node. The central node updates and shares the global variable
w for whole distributed nodes. And the algorithm repeats
this process until some stopping criteria holds. Algorithm 2,
Algorithm 3 and Procedure P describe the computational steps
of TreeDualMethod for the root node, a general tree node (not
root or leaf), and a leaf node respectively.

It is noteworthy that like the distributed algorithm in a star
network case, in the distributed networks, the output △wQ in
Procedure P and Algorithm 3 or the output w in Algorithm 2
are transmitted between nodes, while the outputs α and △αQ
are not transmitted through communication networks. Each
node generates α or ∆αQ as an output of each node, but those
outputs are used in each node at the next iteration without
transmission to other nodes. Therefore, even though we have
a large dataset, the communication cost is not affected by the
size of the dataset. Also, when the dimension of α ∈ Rm is
large, i.e., large amount of data, and the dimension of w is
much smaller than m, which is normally the case in big data,
our distributed algorithm will have less communication burden.

V. CONVERGENCE ANALYSIS OF TREEDUALMETHOD OVER
A TREE NETWORK

We analyze the convergence rate of the distributed dual
coordinate ascent in a general tree-structured network model
in this section. In a nutshell, we will show a recursive relation
between the convergence rate of the algorithm at a tree node Q

5

Algorithm 2: TreeDualMethod: Distributed Dual Coordi-
nate Ascent for the Root Node Q on the layer-0

Input: T0 ≥ 1
Initialization: α(0)[Q;k] ← 0 for all direct child nodes k of node
Q, w(0) ← 0

for t = 1 to T0 do
for all direct child nodes k = 1,2, ...,K0 in parallel do
(△α[Q;k],△wk) ← TreeDualMethod(α(t−1)[Q;k],w

(t−1))

α
(t)
[Q;k] ← α

(t−1)
[Q;k] +

1
K0
△α[Q;k]

end
w(t) ← w(t−1) + 1

K0
∑
K0
k=1△wk

end
Output: α(T0), and w(T0)

Algorithm 3: TreeDualMethod: Distributed Dual Coordi-
nate Ascent for a General Tree Node Q on the layer-i,
i = 1,2, ..., p − 1

Input: Ti ≥ 1, αQ, w
Initialization: α(0)[Q;k] ← α[Q;k] for all direct child nodes k of

node Q , w(0) ←w
for t = 1 to Ti do

for all direct child nodes k = 1,2, ...,Ki of Q in parallel
do
(△α[Q;k],△wk) ← TreeDualMethod(α(t−1)[Q;k],w

(t−1))

α
(t)
[Q;k] ← α

(t−1)
[Q;k] +

1
Ki
△α[Q;k]

end
w(t) ← w(t−1) + 1

Ki
∑
Ki
k=1△wk

end
Output: △αQ ≜ α(Ti)

Q −α
(0)
Q , and △wQ ≜AQ △αQ

and that at the node Q’s direct child nodes. Hence, the overall
convergence rate of the distributed dual coordinate ascent in a
general tree-structured network can be understood in a recursive
manner, where the number of recursions is dependent on the
number of layers of the tree network.

For clear description, let us consider a general tree network
model having p + 1 layers from the root node to leaf nodes,
where the root node is on the layer-0 and the leaf nodes are on
the layer-p. Suppose a node Q on the i-th layer has K direct
child nodes on the (i + 1)-th layer shown in Figure 3. We use
α[Q;k] to denote the partial dual variable vector corresponding
to its k-th direct child node, 1 ≤ k ≤K. Then, define the local
suboptimality gap for the k-th direct child node of Q as

εQ,k(α) ≜ maximize
α̂
[Q;k]

D(α[Q;1], ..., α̂[Q;k], ...,α[Q;K],αQ)

−D(α[Q;1], ...,α[Q;k], ...,α[Q;K],αQ). (5)

Remark that the local suboptimality gap for the k-th child node
is defined with fixing αQ and α[Q;i]’s, where i ≠ k, and only
updating α[Q;k]. Thus, the local suboptimality gap for the k-th
direct child node of Q represents the maximum objective value
gap that the k-th direct child node of Q can achieve from the
current α(t) value with fixing other αi, i ∉ [Q;k], variables.
We then introduce the following assumption about the local
geometric improvement of TreeDualMethod at the k-th direct
child node of Q.

Procedure P. TreeDualMethod: Distributed Dual Coordi-
nate Ascent for a Leaf Node Q on the layer-p

Input: Tp ≥ 1, αQ ∈ R∣Q∣, and w ∈ Rd consistent with other
coordinate blocks of α s.t. w =Aα

Data: {(xi, yi)}i∈Q
Initialization: △αQ ← 0 ∈ R∣Q∣, and w(0) ←w
for h = 1 to Tp do

choose i ∈ Q uniformly at random
find △α maximizing
−λm

2
∣∣w(h−1) + 1

λm
△ αxi∣∣

2
− `∗i (−(α

(h−1)
i +△α))

α
(h)
i ← α

(h−1)
i +△α

(△αQ)i ← (△αQ)i +△α
w(h) ← w(h−1) + 1

λm
△ αxi

end
Output: △αQ and △wQ ≜AQ △αQ

Assumption 1 (Geometric improvement of TreeDualMethod
at a direct child node). For a tree node Q on the i-th layer, we
assume that there exists Θi+1 ∈ [0,1) such that for any given
α, TreeDualMethod at the k-th direct child node of Q returns
an update △α[Q;k] satisfying

E[εQ,k(α[Q;1], ...,α[Q;k−1],α[Q;k] +△α[Q;k], ...,α[Q;K],αQ)]

≤ Θi+1 ⋅ εQ,k(α). (6)

Note that Assumption 1 here is introduced for an arbitrary
tree node in a general tree network and used as a starting
assumption in mathematical induction for recursive convergence
analysis, while Assumption 1 of [10] is introduced for an
abstract function in the distributed algorithm framework.

For a leaf node, we use LocalSDCA for TreeDualMethod
described in Procedure P as in [10], and provide the following
proposition about the convergence bound for a leaf node B
even with the input w also determined by αQ and αQ∖B in
Procedure P.

Proposition 1 ([10, Proposition 1]). Let us consider a tree
node Q whose direct child node B is a leaf node. Assume that
loss functions `i(⋅) are 1/γ-smooth. Then for the leaf node B,
Assumption 1 holds with

Θp = (1 −
λmγ

1 + λmγ

1

mB
)
Tp
. (7)

where mB is the size of data stored at node B, Tp is the
number of iterations in Procedure P.

Basically, the geometric improvement condition holds true with
LocalSDCA if the k-th direct child node of Q is a leaf child
node with Θ introduced in (4), where s in (4) is λmγ

1+λmγ
in (7).

Additionally, Theorem 2, which is our main result, shows that
if the geometric improvement condition holds true for direct
child nodes of Q, then the geometric improvement condition
also holds true for Q; thus it leads to a recursive calculation
of the convergence rate for the whole tree network.

Theorem 2. Let us consider a tree node Q on the i-th layer
which has Ki direct child nodes satisfying the local geometric
improvement requirement introduced in Assumption 1, with
parameters Θ1

i+1, Θ2
i+1, ..., and ΘKi

i+1. We assume that Algorithm
3 (or Algorithm 2) has an input w and is run for Ti iterations.
We further assume that loss functions `i(⋅)’s are 1/γ-smooth.

6

Then, for any input w to Algorithm 3 (or Algorithm 2), the
following geometric convergence rate holds for Q:

E[D(α∗Q,αQ) −D(α
(Ti)
Q ,αQ)] (8)

≤ (1 − (1 −Θi+1)
1

Ki

λmγ

ρi + λmγ
)
Ti
(D(α∗Q,αQ) −D(α

(0)
Q ,αQ)),

where Θi+1 =maxk Θk
i+1, and ρi is any real number satisfying

ρi ≥ ρmin ≜ maximize
αQ∈R∣Q∣

λ2m2∑
Ki
k=1 ∣∣A[Q;k]α[Q;k]∣∣

2
− ∣∣AQαQ∣∣

2

∣∣αQ∣∣2
≥ 0.

Note that the parameter ρi is related to the overlapping level
among the datasets in the subtree Q. When we have more
overlap among local datasets in the subtree, the parameter ρi
can become larger, which will lead to slower convergence rate.

Proposition 1 is for the local geometric improvement
of TreeDualMethod at a leaf node. Namely, Assumption 1
holds for leaf nodes. Theorem 2 is for the local geometric
improvement of TreeDualMethod at any non-leaf tree node.
Note that (1 − (1 −Θi+1) 1

Ki

λmγ
ρi+λmγ

)Ti in (8) becomes Θi for
a tree node Q on the i-th layer, and then, (8) is interpreted as
the local geometric improvement of TreeDualMethod at the
direct child node by the direct parent node of Q, which is a
node on the (i−1)-th layer. Basically, for the convergence rate
of the generalized dual coordinate ascent over the whole tree
network, we use the mathematical induction, where Proposition
1 is the base case, Assumption 1 is the starting assumption
of the mathematical induction, and Theorem 2 completes the
induction for the recursive convergence analysis. Therefore, by
combining Theorem 2 with Proposition 1, we can recursively
obtain the convergence rate of the generalized distributed dual
coordinate ascent algorithm for the whole tree network with
the fact that Assumption 1 holds true for every node in a tree
network. Figure 4 illustrates the structure of the tree network
factor in convergence rate, shown through Θ1 and Θ2.

We remark that Theorem 2 is different from Theorem 2 of
[10] in three aspects. Firstly, Theorem 2 is applicable to any tree
node in a general tree network, beyond a star network discussed
in [10]. Secondly, even when the input w of Algorithm 3 is
determined by not only αQ but also αQ, Theorem 2 holds. Note
that w =A(αQ,αQ) =AQαQ+AQαQ. Unlike our Theorem,
in Theorem 2 of [10], due to the star network topology, a local
worker has w as an input from the root node which is updated
with intermediate results obtained from all the local workers.
Hence, αQ is not considered in Theorem 2 of [10] and its
proof. Our proof of Theorem 2 addresses this challenge that
the input w is also affected by αQ. Therefore, we have to deal
with both updating coordinates αQ ∈ R∣Q∣ and un-updating
coordinates αQ ∈ R∣Q∣, where ∣Q∣ + ∣Q∣ = m, while in the
proof of Theorem 2 of [10], all the coordinates are updating
coordinates, i.e., α ∈ Rm. For the readability, we place the
proof of Theorem 2 in Appendix A. Finally, unlike [10], we
do not consider the different local-dual problem introduced in
Eqn. (8) of [10] for local workers, but deal with the original
dual problem introduced in (2) with fixed w ≜ AQαQ for a
general tree node Q. Therefore, our theorem works for any tree
node in a general tree network rather than just for one central
node, which allows the recursive convergence analysis of the
distributed dual coordinate ascent in a general tree network.

Fig. 4. Illustration of the structure of the tree network factor in convergence
analysis.

By denoting the convergence bound in (8) as Θi, i.e.,

Θi = (1 − (1 −Θi+1)Ci/Ki)
Ti , (9)

where Ci represents λmγ
ρi+λmγ

, Ti is the outer iteration in a tree
node on the i-th layer, and Ki is the number of direct child
nodes attached to a tree node on the i-th layer, we can express
the convergence bound on the whole tree-network, i.e., Θ0,
in terms of the number of layers p, and the number of nodes
Ki’s and Ci’s, as follows:

Θ0 = (1 − (1 −Θ1)
C0

K0
)
T0 (10)

= (1 − (1 − (1 −⋯(1 −Θp)
Cp−1
Kp−1

)
Tp−1
)⋯

C1

K1
)
T1
)
C0

K0
)
T0 ,

where Θp is introduced in (7). For simplicity, we assume that
all tree nodes on the i-th layer have the same number of direct
child nodes Ki.

If ∣Ti ⋅ CiΘi+1

Ki−Ci
∣ ≪ 1, for i = 0,1, ..., p − 1, by applying the

binomial approximation, we can have

Θi = (
Ki −Ci
Ki

)
Ti
(1 +

Ci
Ki −Ci

Θi+1)
Ti

≈ (
Ki −Ci
Ki

)
Ti
(1 +

Ci
Ki −Ci

Θi+1 ⋅ Ti.)

and approximate (10) as follows:

Θ0 ≈(
K0 −C0

K0
)
T0
+

p−1
∑
r=1

r

∏
i=0
(
Ki −Ci
Ki

)
Ti
⋅
r−1
∏
j=0

CjTj
Kj −Cj

+

p−1
∏
i=0
(
Ki −Ci
Ki

)
Ti
(
CiTi
Ki −Ci

)Θp. (11)

In Section VII, we will investigate the gap between (10) and
(11) through numerical experiments as well as analyze the
network topology’s effect including the number of workers Ki

and the number of layers p on the convergence bounds over
the whole tree network introduced in (10) and (11).

We have discussed how the network topology can affect
the convergence rate of the distributed dual coordinate ascent,
which is expressed in terms of the number of layers, the number
of nodes, and the number of iterations. However, for distributed
algorithms, communications in a network can be a bottleneck
of the convergence of the distributed algorithms. Therefore,
it is quite natural to consider communication delay, which is
normally expressed in time, in order to predict or estimate
the convergence speed of the distributed algorithms. In the
next section, we will study how communication delay, which
is one of major network constraints, impacts the convergence
of distributed dual coordinate ascent algorithms. By taking
communication delays into account, we will optimize the
number of local iterations Tp in Procedure P and Ti in
Algorithm 3 for maximum convergence speed.

7

VI. COMMUNICATION IMPACTS ON THE CONVERGENCE
RATE OF DISTRIBUTED DUAL COORDINATE ASCENT

Earlier works [9–11] bounded the convergence of distributed
dual coordinate ascent algorithms with respect to the number of
inner and outer iterations. However, in distributed algorithms,
there may be significant communication delays in a distributed
network. Thus, the convergence speed of distributed algorithms
depends on not only how many iterations of these algorithms
have been run, but also the communication delays in performing
these iterations. Intuitively, if the communication delay is close
to zero, local workers may be better to perform a small number
of local iterations, and communicate with the central station at
a higher frequency; on the other hand, if the communication
delay is large, namely, there is a large communication cost,
then local workers may want to perform more local iterations
before communicating with the central station in order to speed
up convergence. Therefore, our goal here is to investigate
the convergence speed of distributed dual coordinate ascent
with respect to total execution time including computational
time and communication delays, and to optimize the number
of local iterations by considering communication delays to
achieve the maximum convergence speed of the distributed
dual coordinate ascent. The research [18, 29–31] studied the
impact of the communication delays on the convergence rate
of algorithms in various distributed optimization problems
including distributed consensus problems. However, for the
regularized loss minimization problem that we deal with in
this paper, to the best of our knowledge, our paper is the first
one to analytically study the communication delay’s impact on
the convergence rate, and finds the optimal number of local
iterations depending on the communication delay severity.

For simplicity, let us first consider a star network as shown
in Figure 1 and the corresponding Algorithm 1. Since the
communication delay is normally given in time, we need
to consider both time and the number of iterations in the
convergence analysis in order to obtain the optimal number
of iterations in practical applications having communication
delay and computational time. We denote the round-trip
communication delay between a local worker and the central
station as tdelay . We use tlp to denote the computational time
for one local iteration at a worker, and use tcp to denote the
computational time for parameter update at the central station.

Suppose that each local worker performs Tp local iterations
before communicating with the central station, and there are
T0 outer iterations in total. Then, the total experienced time is
ttotal = (tlpTp + tdelay + tcp) ⋅ T0. Hence, the number of outer
iterations T0 is given by

T0 = ttotal/(tlpTp+tdelay+tcp). (12)

From (8), for T0 outer iterations, the expected gap between
the optimal objective value and the current objective value with
Algorithm 1 is expressed as

(1 − (1 − [1 − δ]Tp)
C

K
)
T0 , (13)

where δ = s
m̃

, C = λmγ/(ρ+λmγ), and K is the number of
local workers. In order to minimize the gap in objective value
(13) for a given total time ttotal, we introduce the following

optimization problem over the number of local iterations Tp
by plugging (12) into (13):

minimize
Tp≥0

F (Tp) ≜ (1 − (1 − [1 − δ]
Tp
)
C

K
)

ttotal
tlpTp+tdelay+tcp

. (14)

In order to figure out the optimal number of local iterations,
let us find the critical point of the objective function F (Tp).
By applying logarithm to F (Tp), we have

lnF (Tp) =
ttotal/tlp

Tp + (tdelay + tcp)/tlp
´¹¹¹¸¹¹¹¶

(A)

ln [
K −C

K
+
C

K
[1 − δ]

Tp
]

´¹¹¹¸¹¹¹¶
(B)

. (15)

(15) can be interpreted as the multiplication of two parts: the
fraction part (A) and the logarithm part (B). Note that the
fraction part (A) is a decreasing function over Tp. And for
the logarithm part (B), as Tp increases, (B) goes to ln((K −
C)/K), which is less than zero, due to the condition 0 ≤ 1−δ <
1. At Tp = 0, lnF (Tp) is 0 due to (B) = 0. As Tp goes to
infinity, lnF (Tp) will go to 0 due to (A) = 0. Therefore, we
can expect at least a critical point at some Tp. In order to figure
out the critical point of (15), which is the same critical point
of F (Tp), we calculate the first order condition as follows:

d lnF (Tp)

dTp
=
(K−C

K
)(
ttotal
tlp
)(1 − δ)Tp ln(1 − δ)

(K−C
K
+ C
K
[1 − δ]

Tp
)(Tp +

tdelay+tcp
tlp

)

−
(
ttotal
tlp
) ln (K−C

K
+ C
K
[1 − δ]

Tp
)

(Tp +
tdelay+tcp

tlp
)
2

= 0. (16)

By simplifying (16) and denoting tdelay+tcp
tlp

to r, we have the
first order condition over Tp as

K −C

K
(Tp + r)[1 − δ]

Tp
ln(1 − δ)

´¹¹¸¹¹¶
(C)

(17)

− (
K −C

K
+
C

K
[1 − δ]

Tp
) ln (

K −C

K
+
C

K
[1 − δ]

Tp
)

´¹¹¹¸¹¹¶
(D)

= 0.

When Tp is large enough, (D) is approximated to
(K−C

K
) ln(K−C

K
). And then, we have

K −C

K
(Tp + r)[1 − δ]

Tp
ln(1 − δ) =

K −C

K
ln (

K −C

K
). (18)

Note that (18) has Lambert W-function [32], which is defined
as when xex = a, the solution x is W (a), where W (⋅) is
the Lambert W-function. By the definition of the Lamber W-
function, we have the following optimal local iteration Tp:

Tp =
1

ln(1 − δ)
W ([1 − δ]

r
ln (

K −C

K
)) − r. (19)

From the recursive manner of the convergence analysis in a
tree network as introduced in Section V, the optimal number
of iterations Ti in Algorithm 3 for a node Q can also be
obtained by using aforementioned equation (14) with slightly
different interpretation. In the tree network, the number of
local iterations Tp in (14) is understood as the number of local
iteration Ti in Algorithm 3 for the node Q. The computational
time for the local iteration at a worker, denoted by tlp, is

8

interpreted as the computational time for one-time receiving
the updating intermediate results from Q’s child nodes. And
tdelay and tcp represent the communication delay time and the
processing time at Q’s direct parent node respectively. Thus,
with the same equation as (14) with different interpretation,
the optimal number of local iterations for a general tree node
Q can be obtained as (19).

Since the objective function F (Tp) in (14) represents the
convergence bound in terms of time, it is clearly recognized that
for a fixed local iteration Tp, the larger communication severity
r = tdelay/tlp exists, the slower convergence rate we have.
Additionally, if in a network, a central node, sub-central nodes
and local workers are needed to be chosen, by considering
the convergence analysis shown in a recursive manner and the
communication delay between layers, choosing a root node
making the depth of the connected network shallow will be
better for fast convergence. In the next section, we will further
investigate the impact of the communication delay severity r,
and other parameters including C, K, and δ in (19) on the
optimal number of local iterations Tp.

VII. NUMERICAL EXPERIMENTS

In wireless communication networks, it can often occur
that the local workers are located out of communication range
from the central node due to communication constraints such as
limited communication power, long distance, limited bandwidth,
and limited latency, etc. By reflecting the communication
constraints, in the numerical experiments, we consider machine
learning scenarios over communication networks, where local
workers cannot directly communicate with a central node. Thus,
in the distributed dual coordinate ascent for a star network,
local workers can only share their local solutions with a
central node through multiples of intermediate nodes, which
can possibly cause heavy communication delay and latency.
For comparison, we solve machine learning problems including
regression and classification over different communication
networks having different delays with the following datasets:
KDD Cup 1998 dataset1, covertype dataset2 [33], and wine
quality dataset3 [34]. In addition, we numerically check that
the optimal number of local iterations and demonstrate the
impact of communication delay on the convergence speed
of the distributed dual coordinate ascent by varying the
communication delay in networks. And, we further numerically
investigate the effect of network topology on the convergence
of the distributed dual coordinate ascent over a tree network.

We compare the convergence of the generalized distributed
dual coordinate ascent in tree networks against that in star
networks with intermediate nodes. Since the authors in [10,
11] compared the distributed dual coordinate ascent in a star
network, so-called CoCoA, with other well known methods in-
cluding mini-batch SDCA [35], local SGD and mini-batch-SGD
[36], we focus on comparing our generalized distributed dual
coordinate ascent in tree networks with that in star networks

1KDD Cup 1998 dataset: https://archive.ics.uci.edu/ml/datasets/KDD+Cup+
1998+Data

2Binary Covertype dataset: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html#covtype.binary

3Wine quality dataset: https://archive.ics.uci.edu/ml/datasets/wine+quality

by considering network constraints, especially, communication
delay and latency. Additionally, since we are interested in the
communication network’s effect on the convergence speed of
the synchronous distributed dual coordinate ascent, considering
the CoCoA+ [11], which is the updated version of CoCoA, or
an asynchronous method, is out of the scope of this paper.

A. Machine learning over communication networks

We consider both regression and classification problems
with KDD Cup 1998 dataset and the covtype dataset over
communication networks. In the communication networks, we
assume that local workers cannot directly reach to a central
node, and huge communication delay exists due to the long
relay of communication path. In order to reflect this scenario,
we deal with various communication delays between the central
node and its direct child nodes.

1) KDD Cup 1998 regression problem: In this numerical
experiment, we test our algorithm and analysis for a ridge
regression problem with KDD Cup 1998 dataset having
481 attributions including a label and 95412 instances. We
consider the following specific optimization problem by setting
`i(wTxi) = (1

λm
wTxi − yi)2:

minimize
w∈Rd

λ

2
∣∣w∣∣2 +

1

m
∣∣ATw − y∣∣2, (20)

where A ∈ Rd×m is the feature data matrix whose i-th column
is 1

λm
xi and y ∈ Rm is a label vector. Then, the following

dual problem is obtained from (20):

maximize
α∈Rm

−
λ

2
∣∣Aα∣∣2 − λ2m

m

∑
i=1
(
α2
i

4
−
yiαi
λm
). (21)

Hence, in a local worker, △α in Procedure P is simply
calculated as follows:

△α = −(
∣∣xi∣∣

2

λm
+
λ2m2

2
)
−1
(w(h−1)

T
xi +

λ2m2

2
α
(h−1)
i − λmyi),

where (xi, yi) is a randomly chosen data point and α(h−1)
i is

αi value at (h − 1)-th iteration.
For the dataset, we take first 95410 instances and 404

numerical-type attributions for our numerical experiments. And
then, we normalize each attribution with `2 norm of it for
the performance of regression operation, and then normalize
each instance with `2 norm in order to make each instance
xi hold the condition ∣∣xi∣∣ ≤ 1. We set the tuning parameter
λ to 1. For the communication networks, we consider a tree
network model having ten local workers, two sub-central nodes
(each having five local workers), and one central node. The
simulated star network has ten local workers and one center
node. In both cases, we evenly split the data to ten local
workers; namely, 9541 instances without overlap are assigned
to each local worker.

We set up a scenario where communication delay, tdelay,
exists between the center node and its direct child node.
Therefore, in a star network, the communication delay exists
between the central node and local workers, while a tree
network has the delay between the central node and the sub-
central node. We assume that communication delays between
sub-central nodes and local workers are negligible. We set
the communication delay tdelay = r × tlp, where tlp is the

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1998+Data
https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1998+Data
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covtype.binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covtype.binary
https://archive.ics.uci.edu/ml/datasets/wine+quality

9

(a) r = 1 (b) r = 104

Fig. 5. Duality gap at the central node in a regression problem as the operation
time of the algorithms goes. The distributed dual coordinate ascent in a tree
network (red) and a star network (blue), i.e., CoCoA, are considered when the
communication delay, tdelay , exists between the central node and its direct
child nodes. tdelay = r × tlp, where tlp represents the computational time for
one local iteration at a local worker, and r represents the delay severity level.

computational time for one local iteration at a worker and the
delay severity r is varied from 1 to 104. Hence, if the delay
severity r is huge, then, there exists huge communication delay
in the network when it is compared to the local processing
time for one iteration. For the algorithm in the tree network,
we set the number of local iterations in local workers and the
number of communications between the local workers and the
sub-central node to 1000 and 2 respectively. For the algorithm
in the star network, the number of local iterations at local
workers is set to 1000. Figure 5 shows the duality gap at the
central node as the operation time goes, and demonstrates that
as the communication delay severity increases, the gap between
a tree network and a star network in the convergence speed is
increased, which indicates the distributed algorithm in a star
network can suffer more from the communication delay effect.

2) Covertype dataset classification problem: We further
conduct the comparison between the distributed dual coordinate
scent in a star network and a tree network with a standard hinge
loss `2 regularized SVM. We assume that the communication
delay between the central node and its direct child nodes
exists in the communcaiton networks. In this experiment,
we use the preprocessed Covertype dataset [37], which is
a binary classification dataset having 581012 instances and 12
attributions including label information. The 12 attributions are
expressed as 54 columns of data with 10 quantitative variables,
4 binary wilderness areas and 40 binary soil type variables.
In order to satisfy the condition ∣∣xi∣∣ ≤ 1, we normalize the
dataset and yi ∈ {−1,1}, i = 1, ...,m. In this simulation, we
organize a tree network having one central node, two sub-
central nodes, and eight local workers. Each sub-central node
has four local workers. Each local worker has evenly divided
instances of the dataset without overlap. For the tree network,
the number of communications between the local workers and
the sub-central node is set to 10. The number of local iterations
in both networks is set to 300.

For SVM, we consider the soft-margin SVM classifica-
tion with hinge loss function, i.e, `i(wTxi) ≜ max(0,1 −
yi(1

λm
wTxi)) as follows:

minimize
w∈Rd

λ

2
∣∣w∣∣2 +

1

m

m

∑
i=1

max(0,1 −ATw), (22)

where Ai, the i-th column of the matrix A, is 1
λm

yixi, max(⋅)
is element-wise operator, and 0 ∈ Rm and 1 ∈ Rm are the all

(a) r = 1 (b) r = 104

Fig. 6. Duality gap at the central node in a classification problem as the
operation time of the algorithms goes. The distributed dual coordinate ascent in
a tree network (red solid line) and a star network (blue dotted line), i.e., CoCoA,
are considered when the communication delay, tdelay , exists between the
central node and its direct child nodes. tdelay = r × tlp, where tlp represents
the computational time for one local iteration at a worker, and r represents
the delay severity level.

0 and all 1 vectors respectively.
Then, the dual problem of (22) is stated as follows:

maximize
α∈Rm

m

∑
i=1
αi −

1

2λ
∣∣Aα∣∣2 subject to 0 ≤ αi ≤

1

m
, ∀i. (23)

Note here that while deriving the dual problem (23), we have
w = 1

λ
Aα as the dual-primal variable relation. Then, the local

problem for a local worker Q is stated as follows:

maximize
αQ∈R∣Q∣

−
λ

2
∣∣w +

1

λ
AQαQ∣∣

2
+∑
i∈Q

αi +∑
i∈Q

αi

subject to 0 ≤ αi ≤
1

m
, ∀i ∈ Q, (24)

where w ≜ 1
λ
AQαQ =w−

1
λ
AQαQ. Then, in Procedure P for

updating △α, we solve the following optimization problem:

△α = argmax
△α

−
λ

2
∣∣w(h−1) +

1

λ2m
△ αyixi∣∣

2
+ (α

(h−1)
i +△α)

subject to 0 ≤ α
(h−1)
i +△α ≤

1

m
. (25)

Here, we update the randomly chosen i-th coordinate of α,
where i ∈ Q. It is also possible to update the variable αQ with
a block coordinate method. In order to solve (25), we calculate
the optimal solution of (25) without the box constraint, i.e.,
0 ≤ α(h−1)

i + △α ≤ 1
m

, and then project the optimal solution
onto the box constraint as follows:

△α = {
1/m − α

(h−1)
i if α(h−1)i +△α > 1/m

−α
(h−1)
i if α(h−1)i +△α < 0

. (26)

Figure 6 shows the duality gap as the operation time of the
algorithms goes. As in Figure 6, it is better to run more local
iterations before sharing intermediate results with the central
node when there is huge communication delay in a network.

B. Impact of communication delay on the convergence speed

In order to see the impact of the communication delay
severity r, which is the ratio between the communication
delay and the local processing time for one iteration, on the
optimal number of local iterations Tp, we provide Figure
7 to show the optimal number of local iterations Tp by
finding the critical point of (16). In the simulation, we set
(C,K, δ, ttotal, tlp, tcp) = (0.5,3, 1/300,1,4 × 10−5,3 × 10−5).
We set tdelay = r × tlp, where r is a parameter indicating how
severe the communication delay is. Figure 7 (a) shows the

10

(a) (b)
Fig. 7. (a) The objective value of (14), which is the convergence bound (or
improvement), when the number of iterations Tp is varied from 1 to 2000,
where (C,K, δ, ttotal, tlp, tcp) = (0.5,3, 1/300,1,4 × 10−5,3 × 10−5) and
tdelay = r× tlp. The red line represents the optimal number of local iterations
to achieve the fastest convergence rate. (b) Optimal number of iterations to
achieve the fastest convergence rate, when the parameters are the same as (a)
and r is varied from 1 to 105.

objective values of (14) when Tp is varied from 1 to 2000.
The red line represents the optimal convergence bound at the
optimal number of local iterations, i.e., the critical point of (16)
with different delay severity. Figure 7 (b) shows the optimal
number of local iterations to achieve the fastest convergence
rate in different communication delay severity, where r is varied
from 1 to 105. The red dotted line is obtained by calculating
the given analytical solution introduced in (19) with given
aforementioned parameters, while the blue solid line is obtained
by numerically calculating (14) and finding the optimal Tp
which minimizes the objective value. This simulation results in
Figure 7 show that when the delay severity becomes larger, the
more local iterations are desired for the fast convergence speed
of the overall algorithm. It is noteworthy that in Figure 7(b),
the difference between the numerical results from (14) and the
analytical solution in (19) is observed. Especially, there is a
big gap in the small communication delay severity, e.g., r = 1.
This gap occurs because in the derivation of the analytical
solution in (19), we approximate (D) of (17) by assuming that
the local iteration Tp is large enough. Hence, the gap becomes
smaller when the communication delay severity is increased.

In order to see the impact of the optimal local iterations on
a practical machine learning problem, we similarly conduct a
regression task with wine quality dataset [34] in a star network.
For the number of iterations in local workers, we vary Tp from
1000 to 10000, and evaluate the convergence speed in terms
of operation time and duality gap. Figures 8 (a) and (b) show
the duality gap as the operation time goes when the delay
severity levels r are set to 1 and 105 respectively. When r = 1,
the fastest convergence is obtained at Tp = 2000, while when
r = 105, the fastest convergence is obtained at Tp = 10000.
As we expect in Section VI, when the communication delay
is severe, it is better to perform the more local iterations
before sharing the intermediate results with the central node.
Also, if the communication delay is small, frequently sharing
the intermediate results with the central node is helpful to
improve the overall convergence speed. Moreover, we calculate
the optimal number of iterations in local workers from the
analytical solution (19) to see whether the analytical solution
for the optimal number of local iterations fits to the simulation
results. We set parameters to δ = 1/1000, K = 4, and C = 0.9
by reflecting the network and simulation settings. With those

(a) (b)
Fig. 8. (a) Duality gap when the delay severity r is 1. (b) Duality gap when
the delay severity r is 105.

Fig. 9. Convergence bound over the whole tree network, Θ0, by varying num-
ber of child nodes K with fixed other parameters (p, Ti,Ci) = (3,40,0.9)
for all i = 0,1, ..., p − 1, and Θp = 0.5.

parameter values, we obtain 2117 for r = 1 and 6028 for
r = 105 from the analytical solution in (19), while in the
simulation, Tp = 2000 for r = 1 and Tp = 10000 for r = 105

provide the best convergence speed. Despite a little difference
between the simulation result and the analytical solution for
the optimal local number of iterations, (19) can still be used as
a guideline for the number of local iterations in local workers.
C. Network topology’s effect on convergence bound

In this subsection, we numerically investigate the effect of
network topology on the convergence bound over the whole
tree network, i.e., Θ0 introduced in (10). In order to see the
effect of the number of nodes on the convergence bound, we
firstly run simulations by varying the number of child nodes,
Ki. For the simulation, we take into account a tree network
having three layers, i.e., p = 3. For other parameters, we set
(Ti,Ci) to (40,0.9), for all i = 0,1, ..., p, and Θp to 0.5. We
consider that all nodes have the same number of child nodes
K, i.e., Ki =K, for all i = 0,1, ..., p−1, and vary K from 5 to
10. Figure 9 shows the convergence bound Θ0 by varying the
number of child node K. The red solid line and the blue dotted
line represent the convergence bound expressed in (10), and
its approximation introduced in (11). As the number of nodes
is increased, the convergence bound Θ0 is also increased.

We further run simulations to investigate the effect of the
number of layers, p, on the convergence bound, Θ0. For
simulations, we set Ki−Ci

Ki
= K−C

K
and Ti = T , for all i.

From the setting, we can further simplify the approximated
convergence bound introduced in (11) as

Θ0 =(
K −C

K
)
T
+

p−1
∑
r=1
(
K −C

K
)
T (r+1)

(
CT

K −C
)
r

+ [(
K −C

K
)
T
(
CT

K −C
)]
p
Θp. (27)

For given K and C, if T is large enough to be (K−C
K
)T CT

K−C
<

1, then, the convergence bound is expressed as

11

(a) T = 5 (b) T = 20
Fig. 10. Convergence bound over the whole tree network, Θ0, by varying
the number of layers p with fixed other parameters (K,Ci) = (5,0.9) for all
i = 0,1, ..., p − 1, and Θp = 0.5.

(a) r varied (b) C varied

(c) δ varied (d) K varied
Fig. 11. Optimal number of local iterations, Tp, by varying parameters.
Except for the varying parameter, other parameters are fixed to (C,K, δ, r) =
(0.5,3, 1/300,100).

Θ0 =(
K −C

K
)
T
+ (

K −C

K
)
T
⋅
(K−C

K
)
T CT
K−C − ((

K−C
K
)
T CT
K−C)

p

1 − (K−C
K
)
T CT
K−C

+ (
K −C

K
)
T ⋅p
(
CT

K −C
)
p
Θp. (28)

Note that limT→∞(K−CK)
T CT
K−C

= 0. If T is small enough to
be (K−C

K
)T CT

K−C
> 1, then, we have

Θ0 =(
K −C

K
)
T
+ (

K −C

K
)
T
⋅
((K−C

K
)
T CT
K−C)

p
− (K−C

K
)
T CT
K−C

(K−C
K
)
T CT
K−C − 1

+ (
K −C

K
)
T ⋅p
(
CT

K −C
)
p
Θp, (29)

Therefore, for given K and C, depending on the number of
iteration T , the dominant term in (10) (or (11)) is changed
like stated in (28) or (29), and the convergence bound, Θ0,
follows two different trends as shown in Figure 10. For Figures
10(a) and 10(b), we set the number of iterations T to 5 and 20
respectively with maintaining the other parameters the same.
Note that when p = 1, it represents the star network, and when
the number of iteration T is large enough, we can have the
better convergence bound in a tree network as in Figure 11(b).

D. Parameter setting for faster convergence speed

In order to investigate the optimal number of local iterations
which achieves the fastest convergence speed, from (19), we
generate Figure 11 by varying each parameter r, C, K, and δ.

In Figure 11(a), the communication delay severity parameter r
is varied with fixed other parameters, (C,K, δ) = (0.5,3, 1/300).
As shown in Figure 11(a) and the previous subsection, when
the communication delay severity r increases, the more number
of local iterations before communication with the central
node is desired for better convergence rate. Additionally, the
parameter ρ, which is reciprocal of the parameter C in (19),
indicates the distributed data overlapping level; namely, smaller
ρ, less overlapping data among local workers. In order to
check the impact of the data overlapping level on the optimal
local iteration Tp, we vary C with fixing other parameters to
(K,δ, r) = (3, 1/300,100), and draw the graph in Figure 11(b).
From Figure 11(b), when local workers have more overlapping
dataset among them. i.e., larger ρ value or smaller C value, it is
desired to run more local iterations to have better convergence
speed. And as δ decreases, correspondingly the step size of
the algorithm in a local worker decreases, the more number of
local iterations is desired. From Figure 11(d), as the number
of local workers, K, increases, the optimal number of local
iterations, Tp, is also increased.

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, 2014. 1

[2] J. P. Verma, B. Patel, and A. Patel, “Big data analysis: recommendation
system with hadoop framework,” in Proceedings of IEEE International
Conference on Computational Intelligence & Communication Technology,
2015, pp. 92–97. 1

[3] J. Andreu-Perez, C. Poon, R. D. Merrifield, S. Wong, and G.-Z. Yang,
“Big data for health,” IEEE journal of biomedical and health informatics,
vol. 19, no. 4, pp. 1193–1208, 2015. 1

[4] S. Efromovich, J. Lakey, M. C. Pereyra, and N. Tymes, “Data-driven
and optimal denoising of a signal and recovery of its derivative using
multiwavelets,” IEEE Transactions on Signal Processing, vol. 52, no. 3,
pp. 628–635, 2004. 1

[5] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp.
2204–2239, 2019. 1

[6] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an
intelligent edge: Wireless communication meets machine learning,” IEEE
Communications Magazine, vol. 58, no. 1, pp. 19–25, 2020. 1

[7] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed
synchronous SGD,” in Proceedings of the International Conference on
Learning Representations Workshop Track, 2016. 1

[8] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix
factorization with distributed stochastic gradient descent,” in Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2011, pp. 69–77. 1

[9] T. Yang, “Trading computation for communication: Distributed stochastic
dual coordinate ascent,” in Advances in Neural Information Processing
Systems, 2013, pp. 629–637. 1, 2, 3, 7

[10] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann,
and M. I. Jordan, “Communication-efficient distributed dual coordinate
ascent,” in Advances in Neural Information Processing Systems, 2014,
pp. 3068–3076. 1, 2, 3, 5, 6, 7, 8, 12

[11] C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč,
“Adding vs. averaging in distributed primal-dual optimization,” in
Proceedings of the International Conference on Machine Learning, 2015,
vol. 37, pp. 1973–1982. 1, 2, 3, 7, 8

[12] S.-Y. Zhao and W.-J. Li, “Fast asynchronous parallel stochastic
gradient descent: A lock-free approach with convergence guarantee,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2016,
pp. 2379–2385. 1

[13] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan,
“A dual coordinate descent method for large-scale linear SVM,” in
Proceedings of International Conference on Machine Learning. ACM,
2008, pp. 408–415. 1

[14] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss minimization,” Journal of Machine Learning
Research, vol. 14, pp. 567–599, 2013. 1, 2, 3, 14

12

[15] R. Zhang, S. Zheng, and J. T. Kwok, “Fast distributed asynchronous
SGD with variance reduction,” CoRR, abs/1508.01633, 2015. 1

[16] Z. Huo and H. Huang, “Distributed asynchronous dual free stochastic dual
coordinate ascent,” in Proceedings of the IEEE International Conference
on Data Mining, 2018. 1, 2, 3

[17] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon, “PASSCoDe: Parallel
asynchronous stochastic dual co-ordinate descent,” in Proceedings of
the International Conference on Machine Learning, 2015, vol. 15, pp.
2370–2379. 1, 2

[18] K. Tsianos, S. Lawlor, and M. G. Rabbat, “Communication/computation
tradeoffs in consensus-based distributed optimization,” in Advances in
Neural Information Processing Systems, 2012, pp. 1943–1951. 2, 7

[19] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under distributed
features,” IEEE Transactions on Signal Processing, vol. 67, no. 4, pp.
977–992, 2019. 2

[20] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed
optimization via inexact consensus ADMM,” IEEE Transactions on
Signal Processing, vol. 63, no. 2, pp. 482–497, 2015. 2

[21] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the ADMM in decentralized consensus optimization,”
IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761,
2014. 2

[22] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58, no.
10, pp. 5262–5276, 2010. 2

[23] M. Hong and T. Chang, “Stochastic proximal gradient consensus over
random networks,” IEEE Transactions on Signal Processing, vol. 65, no.
11, pp. 2933–2948, 2017. 2

[24] M. Carreira-Perpinan and W. Wang, “Distributed optimization of deeply
nested systems,” in Proceedings of International Conference on Artificial
Intelligence and Statistics, 2014, pp. 10–19. 2

[25] J. Zeng, T. T.-K. Lau, S. Lin, and Y. Yao, “Global convergence of block
coordinate descent in deep learning,” in Proceedings of International
Conference on Machine Learning, 2019, pp. 7313–7323. 2

[26] T. T.-K. Lau, J. Zeng, B. Wu, and Y. Yao, “A proximal block coordinate
descent algorithm for deep neural network training,” arXiv preprint
arXiv:1803.09082, 2018. 2

[27] M. Cho, L. Lai, and W. Xu, “Generalized distributed dual coordinate
ascent in a tree network for machine learning,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 3512–3516. 2

[28] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university
press, 2004. 3

[29] A. Nedic, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proceedings of the IEEE, vol. 106, no. 5, pp. 953–976, 2018. 7

[30] T. T. Doan, C. L. Beck, and R. Srikant, “Impact of communication
delays on the convergence rate of distributed optimization algorithms,”
arXiv preprint arXiv:1708.03277, 2017. 7

[31] K. I. Tsianos, The Role of the Network in Distributed Optimization
Algorithms: Convergence Rates, Scalability, Communication/Computation
Tradeoffs and Communication Delays, Ph.D. thesis, McGill University,
2013. 7

[32] R. M. Corless, G. H. Gonnet, D. EG. Hare, D. J. Jeffrey, and D. E. Knuth,
“On the LambertW function,” Advances in Computational Mathematics,
vol. 5, no. 1, pp. 329–359, 1996. 7

[33] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial
neural networks and discriminant analysis in predicting forest cover types
from cartographic variables,” Computers and Electronics in Agriculture,
vol. 24, no. 3, pp. 131–151, 1999. 8

[34] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine
preferences by data mining from physicochemical properties,” Decision
Support Systems, vol. 47, no. 4, pp. 547–553, 2009. 8, 10

[35] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro, “Mini-batch primal and
dual methods for SVMs,” in Proceedings of the International Conference
on Machine Learning, 2013, vol. 28, pp. III–1022–III–1030. 8

[36] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: primal
estimated sub-gradient solver for SVM,” Mathematical Programming,
vol. 127, no. 1, pp. 3–30, 2011. 8

[37] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of SVMs
for very large scale problems,” in Advances in Neural Information
Processing Systems, 2002, pp. 633–640. 9

APPENDIX A
PROOF OF THEOREM 2

We follow the proof of Theorem 2 of [10] with the additional
difference, i.e., dealing with both updating coordinates αQ and
un-updating coordinates αQ, and show that for a general tree
node Q, the convergence analysis introduced in (8) holds.

Proof. Suppose the tree node Q has K direct child nodes,
and we simply represent the child nodes from 1 to K. The
convergence rate of the algorithm at a tree node Q is obtained
by considering the updating scheme at the node Q as follows.

α(t+1) = (α(t+1)[1∶K],αQ) = (α
(t)
[1∶K] +

1

K

K

∑
k=1
△α<[k]>,αQ), (30)

where α<[k]> is the zero-padding version of α[k] and Q =
[1 ∶ K] = ∪Kk=1[k] is the index set corresponding to workers
connected to the node Q. The optimal value at the node Q is

D(αQ,αQ) (31)

= −
λ

2
∣∣AQαQ +AQαQ∣∣

2
−

1

m
∑
i∈Q

`∗i (−αi) −
1

m
∑

i∈Q
`∗i (−αi)

= −
λ

2
∣∣A[1∶K]α[1∶K] +w∣∣

2
−

1

m
∑

i∈[1∶K]
`∗i (−αi) −

1

m
∑

i∈Q
`∗i (−αi),

where AQ is the partial matrix of A by choosing the columns
of A over the index set Q, and AQαQ is denoted as w. From
(30), we have

D(α
(t+1)
[1∶K],αQ) =D(α

(t)
[1∶K] +

1

K

K

∑
k=1
△α<[k]>,αQ)

=D(
1

K

K

∑
k=1
(α
(t)
[1∶K] +△α<[k]>),αQ)

≥
1

K

K

∑
k=1

D(α
(t)
[1∶K] +△α<[k]>,αQ),

where the inequality is obtained from the Jensen’s inequality.
Then, we have

D(α
(t+1)
[1∶K],αQ) −D(α

(t)
[1∶K],αQ)

≥
1

K

K

∑
k=1
[D(α

(t)
[1∶K] +△α<[k]>,αQ) −D(α

(t)
[1∶K],αQ)]

=
1

K

K

∑
k=1
[D(α

(t)
[1∶K] +△α<[k]>,αQ)

−D((α
(t)
[Q;1], ...,α

⋆
[Q;k], ...,α

(t)
[Q;K],αQ))

+D((α
(t)
[Q;1], ...,α

⋆
[Q;k], ...,α

(t)
[Q;K],αQ)) −D(α

(t)
[1∶K],αQ)]

=
1

K

K

∑
k=1
[εQ,k(α

(t)
[1∶K],αQ) − εQ,k(α

(t)
[1∶K] +△α<[k]>,αQ)],

where εQ,k(⋅) is defined in (5) and the super-script ⋆ represents
the optimal solution. Then, the expectation of D(α(t+1)

[1∶K]
,αQ)−

D(α(t)
[1∶K]

,αQ) is lower-bounded as follows:

E[D(α(t+1)[1∶K],αQ) −D(α
(t)
[1∶K],αQ)]

≥
1

K

K

∑
k=1
[E[εQ,k(α(t)[1∶K],αQ)] − E[εQ,k(α

(t)
[1∶K] +△α<[k]>,αQ)]]

≥
1

K
(1 −Θ)

K

∑
k=1

εQ,k(α
(t)
[1∶K],αQ),

13

where the last inequality is obtained from Assumption 1. And
∑Kk=1 εQ,k(α

(t)

[1∶K]
,αQ) can be bounded as follows.

K

∑
k=1

εQ,k(α
(t)
[1∶K],αQ)

=
K

∑
k=1

maximize
α̂
[Q;k]

[D((α
(t)
[Q;1], ..., α̂[Q;k], ...,α

(t)
[Q;K],αQ))

−D((α
(t)
[Q;1], ...,α

(t)
[Q;k], ...,α

(t)
[Q;K],αQ))]

= maximize
α̂∈R∣[1∶K]∣

K

∑
k=1
[D((α

(t)
[Q;1], ..., α̂[Q;k], ...,α

(t)
[Q;K],αQ))

−D((α
(t)
[Q;1], ...,α

(t)
[Q;k], ...,α

(t)
[Q;K],αQ))]

= maximize
α̂∈R∣[1∶K]∣

K

∑
k=1
[−

λ

2
∣∣A[1∶K](α

(t)
[Q;1], ..., α̂[Q;k], ...,α

(t)
[Q;K]) +w∣∣

2

+
λ

2
∣∣A[1∶K]α

(t)
[1∶K] +w∣∣

2
]

−
1

m
∑

i∈[1∶K]
`∗i (−α̂i) +

1

m
∑

i∈[1∶K]
`∗i (−α

(t)
i)

= maximize
α̂∈R∣[1∶K]∣

[
1

m
∑

i∈[1∶K]
(− `∗i (−α̂i) + `

∗
i (−α

(t)
i))]

−
λ

2

K

∑
k=1
[∣∣A[1∶K](α

(t)
[Q;1], ..., α̂[Q;k], ...,α

(t)
[Q;K]) +w∣∣

2

− ∣∣A[1∶K]α
(t)
[1∶K] +w∣∣

2
]

= maximize
α̂∈R∣[1∶K]∣

[−
1

m
∑

i∈[1∶K]
(`∗i (−α̂i) − `

∗
i (−α

(t)
i))]

−
λ

2

K

∑
k=1
[∣∣A[1∶K]α

(t)
[1∶K] −A[k](α

(t)
[k] − α̂[k]) +w∣∣

2

− ∣∣A[1∶K]α
(t)
[1∶K] +w∣∣

2
]

= maximize
α̂∈R∣[1∶K]∣

[D(α̂[1∶K],αQ) +
λ

2
∣∣A[1∶K]α̂[1∶K] +w∣∣

2

−D(α
(t)
[1∶K],αQ) −

λ

2
∣∣A[1∶K]α

(t)
[1∶K] +w∣∣

2
]

−
λ

2

K

∑
k=1
[∣∣A[1∶K]α

(t)
[1∶K] −A[k](α

(t)
[k] − α̂[k]) +w∣∣

2

− ∣∣A[1∶K]α
(t)
[1∶K] +w∣∣

2
]

= maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ) −D(α
(t)
[1∶K],αQ)

+
λ

2
∣∣A[1∶K]α̂[1∶K] +w∣∣

2
−
λ

2
∣∣A[1∶K]α

(t)
[1∶K] +w∣∣

2

−
λ

2

K

∑
k=1
[∣∣A[k](α

(t)
[k] − α̂[k])∣∣

2

− 2(A[1∶K]α
(t)
[1∶K] +w)

TA[k](α
(t)
[k] − α̂[k])]

= maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ) −D(α
(t)
[1∶K],αQ)

+
λ

2
(∣∣A[1∶K]α̂[1∶K] +w∣∣

2
− ∣∣A[1∶K]α

(t)
[1∶K] +w∣∣

2
)

−
λ

2

K

∑
k=1
[∣∣A[k](α

(t)
[k] − α̂[k])∣∣

2
]

+ λ(A[1∶K]α
(t)
[1∶K] +w)

T
(A[1∶K]α

(t)
[1∶K] −A[1∶K]α̂[1∶K] +w −w)

= maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ) −D(α
(t)
[1∶K],αQ)

+
λ

2
(∣∣A[1∶K]α̂[1∶K] +w∣∣

2
− ∣∣A[1∶K]α

(t)
[1∶K] +w∣∣

2
)

−
λ

2

K

∑
k=1
[∣∣A[k](α

(t)
[k] − α̂[k])∣∣

2
] + λ∣∣A[1∶K]α

(t)
[1∶K] +w∣∣

2

− λ(A[1∶K]α
(t)
[1∶K] +w)

T
(A[1∶K]α̂[1∶K] +w)

= maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ) −D(α
(t)
[1∶K],αQ)

−
λ

2

K

∑
k=1
[∣∣A[k](α

(t)
[k] − α̂[k])∣∣

2
]

+
λ

2
(∣∣A[1∶K]α̂[1∶K] +w∣∣

2
+ ∣∣A[1∶K]α

(t)
[1∶K] +w∣∣

2

− 2(A[1∶K]α
(t)
[1∶K] +w)

T
(A[1∶K]α̂[1∶K] +w))

= maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ) −D(α
(t)
[1∶K],αQ) (32)

−
λ

2
[
K

∑
k=1
[∣∣A[k](α

(t)
[k] − α̂[k])∣∣

2
] − ∣∣A[1∶K](α̂[1∶K] −α

(t)
[1∶K])∣∣

2
]

´¹¹¸¹¹¶
=(A)

We can lower-bound (32) by upper-bounding (A). For the
upper-bound of (A), we have

(A) =
K

∑
k=1
[∣∣A[k](α

(t)
[k] − α̂[k])∣∣

2
] − ∣∣A[1∶K](α̂[1∶K] −α

(t)
[1∶K])∣∣

2

≤ ∑
i∈[1∶K]

∣∣Ai(α
(t)
i − α̂i)∣∣

2
− ∣∣A[1∶K](α̂[1∶K] −α

(t)
[1∶K])∣∣

2

≤ ∑
i∈[1∶K]

1

λ2m2
∣∣xi∣∣

2
(α
(t)
i − α̂i)

2
− ∣∣A[1∶K](α̂[1∶K] −α

(t)
[1∶K])∣∣

2

≤
1

λ2m2 ∑
i∈[1∶K]

(α
(t)
i − α̂i)

2
− ∣∣A[1∶K](α̂[1∶K] −α

(t)
[1∶K])∣∣

2

≤
1

λ2m2
∣∣α
(t)
[1∶K] − α̂[1∶K]∣∣

2
− ∣∣A[1∶K](α̂[1∶K] −α

(t)
[1∶K])∣∣

2

≤
ρ

λ2m2
∣∣α
(t)
[1∶K] − α̂[1∶K]∣∣

2,

where the second inequality is from Ai = 1
λm
xi, and the

third inequality is obtained from the assumption of the scaled
input data, i.e., ∥xi∥ ≤ 1. We can have the last inequality by
introducing ρmin, which is the minimum value of ρ, to hold
the last inequality as follows:

ρ ≥ ρmin ≜ maximize
α∈R∣[1∶K]∣

λ2m2∑
K
k=1 ∣∣A[k]α[k]∣∣

2
− ∣∣A[1∶K]α∣∣

2

∣∣α∣∣2
≥ 0.

The condition ρmin ≥ 0 can be shown by considering a feasible
solution making ∑Kk=1 ∣∣A[k]α[k]∣∣2 − ∣∣A[1∶K]α∣∣2 = 0, e.g.,
α = ei, where ei is a standard unit vector having 1 in the i-th
entry and 0 elsewhere.

Then, (32), which is ∑Kk=1 εQ,k(α
(t)

[1∶K]
,αQ), is lower-

bounded as follows:
K

∑
k=1

εQ,k(α
(t)
[1∶K],αQ)

≥ maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ) −D(α
(t)
[1∶K],αQ)

−
ρ

2λm2
∣∣α̂[1∶K] −α

(t)
[1∶K]∣∣

2

14

≥ maximize
η∈[0,1]

D(ηα⋆[1∶K] + (1 − η)α
(t)
[1∶K],αQ) −D(α

(t)
[1∶K],αQ)

−
ρ

2λm2
∣∣ηα⋆[1∶K] + (1 − η)α

(t)
[1∶K] −α

(t)
[1∶K]∣∣

2

≥ maximize
η∈[0,1]

ηD(α⋆[1∶K],αQ) + (1 − η)D(α
(t)
[1∶K],αQ)

−D(α
(t)
[1∶K],αQ) +

γη(1 − η)

2m
∣∣α⋆[1∶K] −α

(t)
[1∶K]∣∣

2

−
ρη2

2λm2
∣∣α⋆[1∶K] −α

(t)
[1∶K]∣∣

2

≥ maximize
η∈[0,1]

ηD(α⋆[1∶K],αQ) − ηD(α
(t)
[1∶K],αQ)

+
γη(1 − η)

2m
∣∣α⋆[1∶K]

−α
(t)
[1∶K]∣∣

2
−

ρη2

2λm2
∣∣α⋆[1∶K] −α

(t)
[1∶K]∣∣

2

= maximize
η∈[0,1]

ηD(α⋆[1∶K],αQ) − ηD(α
(t)
[1∶K],αQ)

+
η

2m
(γ −

λmγ + ρ

λm
η)∣∣α⋆[1∶K] −α

(t)
[1∶K]∣∣

2, (33)

where η in the second inequality is introduced for line search
between the optimal solution α⋆

[1∶K] and α
(t)

[1∶K]
, and the

equality holds when α̂[1∶K] is in the line between α⋆
[1∶K] and

α
(t)

[1∶K]
. And the third inequality is obtained from the strong

concavity of D(α). Specifically, we use the well-known fact
that if a function `i(a) is 1

γ
-smooth, the conjugate function `∗i

is γ strongly convex: for all u, v ∈ R and η ∈ [0,1] [14]:

− `∗i (ηu + (1 − η)v)

≥ −η`∗i (u) − (1 − η)`
∗
i (v) +

γη(1 − η)

2
(u − v)2. (34)

From (34), for D(ηα⋆
[1∶K] + (1 − η)α

(t)

[1∶K]
,αQ), we have

D(ηα⋆[1∶K] + (1 − η)α
(t)
[1∶K],αQ)

= −
1

2
∥A(ηα⋆[1∶K] + (1 − η)α

(t)
[1∶K], αQ)∥

2

−
1

m
∑

i∈[1∶K]
`∗i (−ηα

⋆
i − (1 − η)α

(t)
i)

−
1

m
∑

i∈Q
`∗i (−ηαi − (1 − η)αi)

= −
1

2
∥ηA(α⋆[1∶K], αQ) + (1 − η)A(α

(t)
[1∶K], αQ)∥

2

−
1

m
∑

i∈[1∶K]
`∗i (−ηα

⋆
i − (1 − η)α

(t)
i)

−
1

m
∑

i∈Q
`∗i (−ηαi − (1 − η)αi)

(34)
≥ −

1

2
∥ηA(α⋆[1∶K], αQ) + (1 − η)A(α

(t)
[1∶K], αQ)∥

2

−
1

m
∑

i∈[1∶K]
[η`∗i (−α

⋆
i) + (1 − η)`

∗
i (−α

(t)
i)

−
γη(1 − η)

2
(α⋆i − α

(t)
i)

2
]

−
1

m
∑

i∈Q
[η`∗i (−αi) + (1 − η)`

∗
i (−αi)]

≥ −
η

2
∥A(α⋆[1∶K], αQ)∥

2

−
(1 − η)

2
∥A(α

(t)
[1∶K], αQ)∥

2

−
1

m
∑

i∈[1∶K]
[η`∗i (−α

⋆
i) + (1 − η)`

∗
i (−α

(t)
i)

−
γη(1 − η)

2
(α⋆i − α

(t)
i)

2
]

−
1

m
∑

i∈Q
[η`∗i (−αi) + (1 − η)`

∗
i (−αi)]

= −
η

2
∥A(α⋆[1∶K], αQ)∥

2

−
η

m
[∑
i∈[1∶K]

`∗i (−α
⋆
i) +∑

i∈Q
`∗i (−αi)]

−
(1 − η)

2
∥A(α

(t)
[1∶K], αQ)∥

2

−
(1 − η)

m
[∑
i∈[1∶K]

`∗i (−α
(t)
i) +∑

i∈Q
`∗i (−αi)]

+
γη(1 − η)

2m
∑

i∈[1∶K]
(α⋆i − α

(t)
i)

2

= ηD(α⋆[1∶K],αQ) + (1 − η)D(α
(t)
[1∶K],αQ)

+
γη(1 − η)

2m
∥α⋆[1∶K] −α

(t)
[1∶K]∥

2.

Notice that η ∈ [0,1]. Also note that we derive the equations
by using A(α⋆

[1∶K],αQ); however, at each node, we do not
know AQ, but w. Therefore, for the term A(α⋆

[1∶K],αQ),
(AQα

⋆
[1∶K] + w) is the correct notation; however in order

to clearly show the dual objective function, we use the term
A(α⋆

[1∶K],αQ) instead of (AQα
⋆
[1∶K] +w) with which the

derivation can also go through.
(33) can be lower-bounded by choosing η = λmγ

λmγ+ρ
≥ 0 as

(33) ≥
λmγ

λmγ + ρ
(D(α⋆[1∶K],αQ) −D(α

(t)
[1∶K],αQ))

Therefore, we have

E[D(α(t+1)[1∶K],αQ) −D(α
(t)
[1∶K],αQ) ∣w,α

(t)
[1∶K]]

≥
1

K
(1 −Θ)

K

∑
k=1

εQ,k(α
(t)
[1∶K],αQ)

≥
1

K
(1 −Θ)

λmγ

λmγ + ρ
(D(α⋆[1∶K],αQ) −D(α

(t)
[1∶K],αQ)) (35)

From (35), we have

E[D(α(t+1)[1∶K],αQ) −D(α
⋆
[1∶K],αQ)

+D(α⋆[1∶K],αQ) −D(α
(t)
[1∶K],αQ) ∣w,α

(t)
[1∶K]]

≥
1

K
(1 −Θ)

λmγ

λmγ + ρ
(D(α⋆[1∶K],αQ) −D(α

(t)
[1∶K],αQ)).

By moving the term D(α⋆
[1∶K]) −D(α

(t)

[1∶K]
,αQ) in LHS to

RHS and multiplying −1 in both sides, we have

E[D(α⋆[1∶K],αQ) −D(α
(t+1)
[1∶K],αQ) ∣ α

(t)
[1∶K],w]

≤ (1 −
1

K
(1 −Θ)

λmγ

λmγ + ρ
)(D(α⋆[1∶K],αQ) −D(α

(t)
[1∶K],αQ))

	Introduction
	Problem formulation
	Review of the distributed dual coordinate ascent in a star network
	Generalized distributed dual coordinate ascent in tree networks
	Convergence analysis of TreeDualMethod over a tree network
	Communication impacts on the convergence rate of distributed dual coordinate ascent
	Numerical experiments
	Machine learning over communication networks
	KDD Cup 1998 regression problem
	Covertype dataset classification problem

	Impact of communication delay on the convergence speed
	Network topology's effect on convergence bound
	Parameter setting for faster convergence speed

	References
	Appendix A: Proof of Theorem 2

