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Abstract

Motivation: The circadian rhythm drives the oscillatory expression of thousands of genes across all tis-
sues. The recent revolution in high-throughput transcriptomics, coupled with the significant implications
of the circadian clock for human health, has sparked an interest in circadian profiling studies to discover
genes under circadian control.
Result: We present TimeCycle: a topology-based rhythm detection method designed to identify cycling
transcripts. For a given time-series, the method reconstructs the state space using time-delay embedding,
a data transformation technique from dynamical systems theory. In the embedded space, Takens’ theo-
rem proves that the dynamics of a rhythmic signal will exhibit circular patterns. The degree of circularity
of the embedding is calculated as a persistence score using persistent homology, an algebraic method for
discerning the topological features of data. By comparing the persistence scores to a bootstrapped null
distribution, cycling genes are identified. Results in both synthetic and biological data highlight Time-
Cycle’s ability to identify cycling genes across a range of sampling schemes, number of replicates, and
missing data. Comparison to competing methods highlights their relative strengths, providing guidance
as to the optimal choice of cycling detection method.
Availability and Implementation: A fully documented open-source R package implementing Time-
Cycle is available at: https://nesscoder.github.io/TimeCycle/ .

Introduction
Circadian rhythms—physiological, behavioral, and metabolic oscillations with an approximate 24-h period—
are controlled by an evolutionarily conserved set of core clock genes operating at the transcriptional and
protein level. Entrained by Zeitgebers (external environmental stimuli such as light, temperature, and
food) that modulate time–of–day specific functions, the circadian clock orchestrates a multitude of cellular
processes, including nearly half of genes across all tissues [1]. Although various epidemiological studies have
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established significant links between circadian rhythms and human health [1–10], the underlying biological
mechanisms coupling these phenomena remain poorly understood.

Facilitated by the development of high-throughput assays, researchers can now interrogate biological
mechanisms at the molecular level by analyzing transcriptomic time-series data to identify genes under cir-
cadian control. This capability presents researchers with new analytical challenges of how best to reliably
extract rhythmic signals from transcriptomic time-series data [11]. First, experimental costs constrain the
frequency and length of sampling, requiring conclusions to be made from sparse or short time-series measure-
ments. Second, circadian expression profiles often do not follow precise sinusoidal waveforms, but exhibit
asymmetries, sharp peaks, additive trends, and noisy fluctuations [12–16]. To address these challenges, a
variety of cycling detection methods have been proposed [12,13,15,17–25]. However, bench-marking studies
indicate that no method is universally optimal, and different algorithms may yield conflicting results on the
same data [16,26–29].

Early cycling detection used parametric approaches employing auto-correlation, curve fitting, and Fourier
analysis to decompose expression patterns into harmonic components of varying amplitude and phase [17–19].
These methods could successfully identify genes with relatively symmetric waveform shapes, but had poor
performance on asymmetric and sharply peaked waveforms [12,13]. To address these shortcomings, a range
of non-parametric methods were developed [13,15,22–25]. While non-parametric methods sacrifice statistical
power relative to parametric methods [28], they are applicable to a broader range of cycling waveforms and
generally outperform parametric methods [22,23,25,30].

Nevertheless, limitations remain in current methods [11, 16, 28, 31]. A common approach is to compare
the observed gene expression time-series to a user-defined set of reference waveforms (e.g. oscillations with
different degrees of sawtooth asymmetry) to calculate a periodicity score (e.g. via the Kendall τ rank cor-
relation). Such methods may fail to detect cyclic patterns that do not fall into the predetermined profiles
of reference signals, effectively limiting the scope of discovery. Moreover, these methods typically assess the
statistical significance relative to a null model of a randomized time-series. Since randomized time-series may
jump from low to high gene expression faster than biological translation and degradation processes allow,
these methods may produce unrealistic null models and misleading significance tests.

In addition to methodological hurdles, there are also considerations of various methods’ abilities to handle
replicates, uneven sampling, missing data, and computational efficiency. In practice, the ability of methods
to adequately handle these features directly affects flexibility in experimental design. For instance, a method
that can accommodate uneven sampling can allow for dense sampling at times of interest, with sparser
sampling at other times. Because missing data often occur as a result of sequencing errors with greater
likelihood as sample size increases [32], researchers benefit from algorithms that can adequately handle
missingness. Finally, computational efficiency allows for data set sizes to grow while still processing the data
in a reasonable amount of time.

Results from dynamical systems theory and toplogogical data analysis provide alternative strategies
to overcome the limitations of curve-fitting and template-based analysis methods. The recent “SW1PerS”
method [24] uses time–delay embedding [33] to transform sliding windows of the time-series into a high-
dimensional point cloud, and quantifies the circularity of the transformed signal as a measure of its periodicity.
However, because the rhythmicity scores do not follow a well-defined distribution and the computational
complexity of the algorithm precludes permutation tests, SW1PerS does not provide a p-value testing whether
a gene is cycling.

To address these challenges, we introduce TimeCycle: a nonparametric, template–free algorithm based on
topological data analysis with a bootstrapping procedure for statistical inference of cycling genes. Results
demonstrate that TimeCycle reliably discriminates cycling and non-cycling profiles in synthetic data and
reproducibly detects known circadian genes in experimental data. Below we describe the method, illustrate
its application to multiple data sets, and provide a comparison to several competing methods.
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Results
TimeCycle is a method for classifying and quantifying cyclic patterns of gene expression in transciptomic
time-series data. Application to both synthetic and experimental data demonstrate TimeCycle’s ability to
efficiently discriminate cycling genes from non-cycling genes across a range of sampling schemes, number of
replicates, and missing data.

The TimeCycle Method
TimeCycle’s basic framework consists of a rescaling/normalization step, reconstruction of the state space
via time-delay embedding, isolation of nonlinear patterns via manifold learning and dimension reduction,
quantification of the circularity of the signal using persistent homology, and comparison of that measure
to a bootstrapped null distribution to assess statistical significance (Figure 1B). We describe the main
steps of the method here; a complete description pertaining to the methods preprocessing, null distribution,
and period estimation can be found in the supplement and TimeCycle’s documentation available at https:
//nesscoder.github.io/TimeCycle/.

Reconstructing dynamical cycles via Takens’ theorem

TimeCycle exploits Takens’ theorem, a result from dynamical systems theory that proves that the time–
delay embedding of a single variable observed over time will reconstruct (up to diffeomorphism) the state
space of a multivariate dynamical system [33]. A d-dimensional time–delay embedding of a time-series
X is defined as a representation of that time–series in a d-dimensional space where each point is given
by the coordinates (xt, xt−τ , xt−2τ , . . . , xt−dτ ). As a consequence of Takens’ theorem, a dynamical system
with a cycle will exhibit circular patterns in the time–delay space, whereas non-periodic signals will form a
mass (Figure 1A). Using this logic, TimeCycle reconstructs the state space for each gene using time-delay
embedding and quantifies the circularity of the embedding as a measure of the evidence of cycling dynamics.

Parameter choice and detrending via dimension reduction

Time-delay embedding requires two parameters, the embedding dimensionality d and the delay lag τ . A
perfectly sinusoidal signal will form a circle in d = 2 dimensions, and hence a two-dimensional embed-
ding would be sufficient in the ideal case. However, biological signals are often not strictly periodic, but
exhibit drifts in the oscillation. A common approach is to detrend the time-series by fitting it to a line
and analyzing the residuals [23]. While this removes linear trends, the detrending procedure can introduce
false positives [16], as non-rhythmic signals—e.g. sigmoidal and exponential—may appear rhythmic after
detrending (Supplemental Figure 1). Instead, we observe that any non-periodic component of the signal
may be represented by higher dimensions in the embedded space. Hence, we embed the time-series in three
dimensions (Figure 1C: Left) and use nonlinear dimension reduction to recover the periodic component.
An illustrative example is given in Figure 1C (Middle). A drifting oscillation will form a helix in the 3-D
embedded space, with the linear trend contributing to the elongation of the helix along one coordinate and
the circular component preserved in the other two. TimeCycle uses Laplacian Eigenmaps [34], a nonlinear
dimension reduction (NLDR) technique, to project the 3-D embedded data back into a 2-D space, preserving
the circular geometry.

This approach has two advantages over linear-fit detrending. First, it is in principle applicable to any
type of drift, and is not necessarily confined to removing linear trends. Second, it will only yield a circular
pattern in the 2-D space if the periodic component is strong relative to the drift. That is, if the “drift
coordinate” (e.g., the axis of the helix in Figure 1C) more faithfully preserves the local geometry of the data
than the circular “cycling coordinates”, it will be chosen by the NLDR, and the resulting 2-D representation
will not have a detectable circular topology. Together, these features overcome the drawbacks of linear-fit
detrending.
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The optimal choice for the other parameter, the lag τ , is less obvious. While the underlying mathematical
theory holds for all τ > 0 [33], in practice the presence of noise and short time-series lengths lead to
differences in the embedding as a function of τ [35]. Because the underlying theory is insensitive to τ , it
yields no guidance on how to derive an “optimal” lag or set criteria for its selection. A common approach,
due to Fraser and Swinney, is to choose τ to maximize the independence between embedded points [36]; more
recently, Meiss and colleagues proposed a method to choose τ that minimizes the curvature [37]. In practice,
however, the best choice is often application–dependent. Because our goal here is to detect rhythmicity
(rather than fully reconstruct the state space), we sweep through values of τ , computing the degree of
circularity for each. If a signal is truly rhythmic, on average the state space manifold across lags should be
approximately circular.

Quantification of cycling via persistent homology

We quantify the circularity of the embedded data using persistent homology (PH) [38], an algebraic means to
measure topological structures (i.e. components, holes, voids, and higher dimensional analogs) in a data set.
From each point of the embedded signal, a d-sphere of radius ε is incrementally grown (Figure 1C: Right).
When a pair of points have intersecting spheres (i.e. are at most 2ε apart), a line is drawn between those
points. When a complete cycle is formed amongst a set of points at some εb, this is defined as a “birth event”:
the initial appearance of a topological hole, a closed cycle lying entirely inside the spheres surrounding the
embedded data. As ε is increased, the topological hole eventually closes at a radius εd defining the “death
event”. The persistence score of a topological feature is defined as the difference between the death and
birth radii εd− εb. Several such features, with associated persistence scores, may be present in the data, the
largest of which corresponds to the most unambigously periodic dynamics. A rhythmic signal will produce
a more circular embedding, resulting in a larger maximum persistence score, than a non-rhythmic signal.

Significance testing

A common approach for assessing statistical significance in cycling detection algorithms is to compare the
statistics of an observed signal to a null model comprising random time series [13, 22, 25]. Such null models
may be unrealistic, however, since gene expression in the biological context is constrained by transcription
and degradation rates, and an assumption of random, independent time-series may contain changes in gene
expression that are biologically unattainable. Instead, TimeCycle’s null model is obtained by permuting
the finite differences in gene expression between sampled time-points. The distribution of gene expression
changes under the null is thus identical to that of the observed data, ensuring that the resulting random
time-series reflect biological transcription and degradation constraints (Figure 1B). A persistence score
is computed for each resampled time-series to generate a reference distribution of persistence scores under
the null (no cycling), conditioned on the observed rates of change. The observed persistence score is then
compared to this reference distribution to obtain a p-value.

A significant consideration for this method is the computational complexity of the persistence score
calculation [O(N logN) in the number of time points for 2-d data], which will need to be performed for
each gene and each resampled time-series. Indeed, a drawback of the SW1PerS algorithm is its inability into
compute a p-value due to the computational cost of the method. To overcome this challenge, we devised a
scheme to allow for hypothesis testing with improved computational efficiency: prior to the embedding and
PH analysis, each gene is mean centered and scaled to unit variance, allowing a common set of permuted
time-series to be used for all genes to test the statistical significance of cycling.

Parameter estimation

Often, researchers desire estimates of the period, phase, and amplitude of the genes detected as cycling.
Because the time-delay embedding and PH computation does not provide these estimates, a separate com-
putation in TimeCycle is used to generate these results. To estimate the period, amplitude, and phase

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2020.11.19.389981doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.389981


of the oscillations (Figure 1B), signals are linearly detrended and smoothed via a moving average before
fitting the signal to the first three harmonics of the fast Fourier transform (FFT). The period, phase, and
amplitude are computed from the FFT fit. (Note that when performing the less computationally costly pa-
rameter estimation, the rescaling procedure used in the cycle detection step is omitted to preserve amplitude
measures.)

Replicate time-points

A practical consideration when designing transcriptomic time-series experiment is the trade-off between
replicates, sampling resolution, and sampling length in relation to experimental cost [11, 16]. While cycling
detection methods do not require replicates [13,22–25,27,30]; technical replicates are necessary for performing
additional analysis beyond the scope of cycling detection – e.g. differential expression and differential time-
course profiles [39,40]. As such, researchers benefit from algorithms that can incorporate replicates to improve
detection of cycling genes [30]. Adhering to best practice guidelines outlined in previous studies [11, 16],
TimeCycle averages replicate time-points. The averaged signal is then processed following all steps outlined
above.

Application and evaluation using simulated gene expression data
To comprehensively evaluate TimeCycle’s capabilities across different patterns of temporal gene expres-
sion, we applied TimeCycle and four other methods—JTK_CYCLE [22], RAIN [13], GeneCycle [21], and
SW1PerS [24]—to synthetic data described in our previous benchmarking work [16]. JTK_CYCLE and
RAIN were selected for comparison as the primary methods used in the field of circadian rhythm detection.
GeneCycle was selected as an alternative method highlighted in previous benchmarking studies to be robust
to outliers [21, 26, 28]. SW1PerS was selected as the only other method utilizing topological data analysis.
While other methods such as ARSER [23] and booteJTK [25] were considered based on previous benchmark-
ing studies [16, 26–28], they were ultimately omitted from analysis as they do not natively handle missing
data. Synthetic data sets varied in number of replicates (1, 2, 3), sampling intervals (1-h, 2-h, 4-h), sampling
length (36-h, 48-h, 72-h, 96-h), and noise levels (10%, 20%, 30%, 40% of signal amplitude), across 11 base
waveform shapes. Seven of these 11 shapes were considered cyclic (sine, peak, sawtooth, oscillations about
a linear trend, damped, amplified, contractile), and 4 were considered non-cyclic (flat, linear, sigmoid, and
exponential). For each waveform in each condition, 1000 “genes” were simulated with varying amplitudes,
phases, and shape parameters (e.g., the envelope for damped/amplified waves), yielding in total 11,000 sim-
ulated genes for each of the 144 sampling and noise conditions. (Further details of the synthetic data sets
can be found in the Methods section and Supplementary Materials of [16].)

Accuracy and sampling considerations

A summary of TimeCycle results in the synthetic data is found in Figure 2. Receiver-operating characteristic
(ROC) curves were computed for each of the 144 synthetic data sets, and the area under the curve (AUC)
was used to compare classification accuracy across methods. An AUC of 1 represents perfect classification,
while an AUC of 0.5 represents a classification no better than pure chance. AUC values are shown as a
function of the number of samples collected per time-series. TimeCycle exhibits AUCs ≥ 0.8 across most
sampling schemes, with the best performance observed for data sampled every 2-h for 48-h—the scheme
primarily used in previous benchmarking studies [13,16,24–27].

Examining the type I and type II error rates relative to the FDR adjusted p-values across the varying
noise levels, we find that TimeCycle and JTK_Cycle are more conservative in comparison to RAIN and
GeneCycle (Figure 2B). This can also be seen in Supplemental Figure 2, which illustrates that the null
distribution of p-values is biased toward 1 for both TimeCycle and JTK_Cycle (more strongly biased for
JTK_Cycle), whereas small p-values are overrepresented under the null for RAIN and GeneCycle (leading
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to a greater chance of false positives) for non-cycling genes. Across all methods, false negative error rates
increase with noise.∗

Outside the 48-h sampling schemes, TimeCycle exhibits good performance for longer time-series sampled
every 1 or 2-hours, but reduced performance for sparser sampling (every 4-h compared to 1-h and 2-h), even
for longer time-series. This is attributable to sparsely-sampled manifolds in the reconstructed state space,
resulting in an insufficient number of data-points for cycle formation. This suggests that, for a fixed number
of samples, denser sampling for a shorter duration may be favorable to longer, sparser sampling.

It is also instructive to examine how the classification accuracy for different waveforms changes with
the sampling strategy. We find that for time-series lasting 36h, strong symmetric cyclers are robustly
detected, while asymmetric cyclers (such as the sawtooth) do not have sufficient points to close the cycle
in the embedded space (that is, observations along the “sharp” rise or fall of an asymmetric waveform may
be missed when fewer than two complete periods are assayed, leading to a “C” shape in the embedded
space). At 72-h and 96-h, linear trending and damped oscillations are more likely to be classified as non-
cycling due to the fact that as the time-series sampling is extended, the trends and dampening become more
pronounced, dominating the underlying oscillation. Because these signals are not in fact strictly periodic
(returning to precisely the same state at regular intervals), this can be a desirable or undesirable behavior
depending on whether the user wishes to classify linear trending and damped oscillations as cycling. Details
for an implementation with alternative parameters to detect oscillations with linear trends can be found in
TimeCycle’s documentation.

Comparison to other methods

To compare TimeCycle’s ability to distinguish cycling from non-cycling waveforms to that of other methods,
we examined the pairwise comparison of raw p-values generated by each method. To simulate results for an
ideal data set, comparisons were made using the recommended sampling scheme—every 2-h for 48-h with
one replicate—under low (10%) noise conditions (Figure 3). (Similar plots for varying noise levels can be
found in Supplemental Figures 3–5).

The lower triangle of Figure 3 depicts the pairwise scatterplot of the − log10 p for each synthetic gene
across methods, with the larger points designating the average − log10 p for a given waveform shape. (Note
that, as previously discussed, SW1PerS does not compute a p-value; instead, the periodicity score is shown.)
The results are generally well-correlated, with non-cycling waveforms clustering at low significance and
sinusoidal waveforms ranked high; differences between methods are most noticeable for trending, sawtooth,
and contractile waveforms. Given the algorithmic similarities of RAIN/JTK_CYCLE (via the Jonckheere-
Terpstra test) and TimeCycle/SW1PerS (via topological analysis), it is unsurprising that these methods are
more highly correlated within method pairings than across methodological approaches.

The upper triangle of Figure 3 measures the fraction of correctly classified signals for each waveform
shape, ie, the conditional probability of correctly classifying the gene as cycling or non-cycling given the
waveform. Here, the decision threshold for classifying a given gene as cycling was chosen via Youden’s J
statistic [41] computed from AUC over all genes. For the sampling scheme of 48h every 2h, TimeCycle’s
accuracy was comparable to other methods for most waveform shapes with three exceptions: First, TimeCycle
shows improved performance in detecting peaked and contractile waveforms across methods when samples
are taken every 2h across 48h. Second, TimeCycle also shows improved detection of peaked waveforms in
comparison to JTK_CYCLE, RAIN, and GeneCycle, with a slight decrease in comparison to SW1PerS.
Third, TimeCycle shows decreased performance in detecting linear trends across all methods. To mitigate
this shortcoming, alternative parameters for the improved detection of genes with linear trends can be found
in TimeCycle’s documentation. While TimeCycle outperforms other methods in certain circumstances, our
∗SW1PeRS was omitted from the type I and type II error analysis as it does not produce p-values, but rather a periodicity
score.
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result suggest that no method is uniformly best at picking up all types of circadian dynamics under all
sampling schemes.

Missing data and outliers

Since missing data often occur as a result of sequencing errors with greater probability as the sample size
increases [32], researchers benefit from algorithms that can handle missingness. TimeCycle imputes the
missing points via the linear interpolation algorithm as described by Moritz et al. in their imputeTS R
package [42]. However, by introducing imputed data, one also introduces new assumptions—specifically,
smoothness in the trajectory and hence small gene expression changes before/after the missing observation.
These properties must be shared by the null model to ensure that the significance testing is not biased by the
imputation. Hence, we perform the previously–described resampling procedure post-imputation, effectively
taking the imputation assumptions into account when defining the null distribution.

To investigate how TimeCycle performs when data are missing, we simulated missingness in the synthetic
data sets (Figure 4). For each of the 11,000 genes, we randomly removed points sweeping from 0% missing-
ness until only 2 points remained. The AUC was computed at each missingness value (Figure 4A). At 50%
missingness in the synthetic data, TimeCycle shows robust classification with a slow decrease in AUC for each
noise level. We observe that the difference in AUC between noise levels is greater than the degradation in
AUC as a function of missingness (Figure 4A & B). The differences are primarily attributable to decreases
in sensitivity, with high levels of noise and missingness compromising the ability to detect cycling genes. We
find little decrease in specificity, confirming that the “smoothing” induced by the imputation procedure does
not generate false positives. Missing data analyses for JTK_CYCLE, RAIN, and GeneCycle can be found
in Supplemental Figures 6–8.

As an additional check of method robustness, we performed an outlier analysis across all 36 variants
of the 48-h sampling lengths. Outliers were injected into the time–series at a rate of 1% of all sampled
time–points and were drawn from a uniform distribution between [µ − 4σ, µ − 3σ] and [µ + 3σ, µ + 4σ] of
the diurnal mean (µ) for each time–series, following previous studies [22, 43]. TimeCycle exhibited a very
slight and non-significant decrease in average AUC±sd across all noise levels (0.86±0.05 vs 0.87±0.05, with
and without outliers, respectively); other methods also remained unchanged (Supplemental Figure 9).
As expected from the unchanged AUC, the type I and type II error rates were also unaltered. This suggests
that the performance of TimeCycle, as well as other methods, is robust to outliers.

Application to biological data: reproducibility analysis
While synthetic data has the advantage of known ground truth, it also has the drawback of not necessarily
being representative of the real biological data sets. On the other hand, measuring a method’s accuracy using
real data is limited, as the ground truth is not generally known. Instead, one may test the reproducibility of
the results, under the assumption that a true biological signal should be consistently detected across multiple
studies of the same condition.

To this end, we took a “cross-study concordance” approach in which we tested the ability of each method
to consistently characterize a set of 12,868 genes measured in three independent mouse liver time-series
expression sets [1, 44, 45]. We expect that a method that accurately detects cycling genes should do so
reproducibly in all three data sets, whereas a method that is no better than chance will yield divergent
results in the three data sets. Moreover, the genes detected as cycling in common across the data set should
exhibit similar dynamics across all three data sets. By contrast, if a method is overly permissive, leading to
a high false-positive rate, genes may be classified as “cycling” across data sets without actually having any
commonality in their dynamics. We evaluate both of these by (i) examining the overlap in genes classified
as cycling in the various data sets (following the Methods of [16]) and (ii) computing the rank correlation
ρ of the expression profiles of the genes detected as cycling at FDR < 0.05 and LogFC > 2. Together, our
analysis quantifies whether the cycling detection is reproducible.
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The data sets used in this analysis were comparable, but independent time-series studies of gene expression
in mouse liver, referred to hereafter as Hogenesch [44], Hughes [45] and Zhang [1]. These data sets are
summarized in Table 1. The Hogenesch data set [44] was downsampled to two data sets sampled every
2-h for 48-h (Hogenesch 2A and Hogenesch 2B) to be consistent with the sampling schemes of the Hughes
2012 [45] and Zhang 2014 [1] studies. Following application of TimeCycle, genes with FDR < 0.05 were
classified as cycling; the overlap in the cycling genes for the various data sets is given (Figure 5A: Top).
Comparing the distribution of the FDR-corrected p-values for the known circadian genes relative to all
genes shows a statistically significant shift across all four datasets, with circadian genes more likely to have
significant p-values (Figure 5A: Bottom), confirming the intuition that known circadian genes should
show enriched cycling. Furthermore, the known circadian genes Per1, Cry1, Npas2, and Clock were detected
across multiple studies.

To investigate whether the reproducibility was robust to the (somewhat arbitrary) choice of significance
threshold, we calculated the percent of genes concordantly classified as cycling or noncycling for each pair of
studies as a function of the FDR significance threshold (Figure 5B). The concordance is generally higher
for TimeCycle relative to other methods at conservative significance thresholds ≤ 0.05. This implies that
genes identified as cycling by TimeCycle are likely to be reproducible.

The Hughes and Zhang studies differed in the sampling start phase by 6-h, presenting an opportunity
to examine whether genes detected as cycling in both had similar estimated periods and amplitudes, but
differing phases, as would be expected if the cycling detection is accurate [46]. We find that genes detected as
cycling in both the Zhang and Hughes data sets with an FDR< 0.05 also had highly reproducible amplitudes
across the various data sets (Pearson correlation r = 0.9, Figure 5C). We also find that genes identified
as cycling clustered around a period of 24 hours, indicating that these are indeed circadian oscillators.
Finally, plotting the computed phase of genes detected reflects the 6-h phase shift (modulo 24h) as expected
(Figure 5C). Heatmaps of cycling genes detected across data sets are shown (Figure 5D).

We then examined more broadly whether genes that are detected as cycling across different studies
exhibit similar dynamics, and compared TimeCycle’s results to other methods. A method that has a high
rate of false-positives may indeed identify many genes as cycling in common across studies, but by chance
rather than detecting a meaningful signal. Hence, we assess whether the genes that are identified as cycling
in multiple studies of the same tissue also have reproducible dynamics. For each study and each gene, we
computed the rank correlation of its time-series in the reference study with the same gene’s time-series in the
other studies. We expect that genes under true circadian control should exhibit more correlated dynamics
amongst the studies than the set of all genes. We thus computed empirical CDFs of the correlations for
genes identified as cycling (FDR < 0.05) by each method† (Figure 5E). In this figure, the null distribution
represents the rank correlation of a random sampling of all 12,868 genes with replacement in the pairwise
comparisons of all data sets, and the all-gene correlation represents the rank correlations for all 12,868 genes
in the pairwise comparisons of all data sets. TimeCycle, JTK_CYCLE, and GeneCycle show a statistically
significant shift in the distribution of rank correlations in comparison to RAIN, the all-gene correlation, and
the null distribution in all data sets (all p ≤ 2.2 · 10−16, Kolmogorov-Smirnov test). We conclude from this
that TimeCycle reliably detects cycling dynamics across multiple studies of the same tissue.

Discussion
We have presented TimeCycle, a new method that leverages results from dynamical systems theory and
topology to detect patterns of cyclic expression in time-series experiments. TimeCycle reconstructs the state
space for the dynamical system governing each gene using time-delay embedding, and quantifies how cyclic
the embedding is using persistence homology. Statistical significance is assessed by comparing the persistence
scores to those that obtain from a resampled null model. TimeCycle accurately detects rhythmic transcripts
†Since SW1PerS does not produce a p-value to classify genes as cycling/non-cycling, it was omitted from this comparison.
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in both synthetic and real biological data, and is robust to missingness, noise, and non-cyclic components in
the dynamics.

A few methodological innovations distinguish TimeCycle from other cycling-detection algorithms. In con-
trast to methods that compare gene expression profiles to templates of expected cycling patterns, TimeCycle
reconstructs the underlying dynamical system directly from the observed data. This enables TimeCycle
to articulate more complex dynamics than can be easily considered using template-based approaches. Ad-
ditionally, the method to construct the null distribution is both computationally efficient and biologically
representative. SW1PerS (a prior method that also used persistence homology rather than a template) did
not implement hypothesis testing due to the computational cost, while template-based methods that im-
plement hypothesis testing do so by resampling the time-series in a manner that can generate biologically
implausible null models. TimeCycle is thus an improvement in both regards.

From a practical standpoint, we identified strengths and weaknesses of TimeCycle’s ability to detect
cycling transcripts under varying conditions. We find that TimeCycle is better able to detect sharply peaked
waveforms and waveforms where the period appears variable, while JTK_Cycle, RAIN, and GeneCycle are
more robust with respect to linear trends. This is in keeping with prior work [16] demonstrating that no
cycling detection method is consistently “best” for all genes. Instead, it is incumbent upon the researcher to
consider the patterns of gene expression that are of the greatest interest and choose a method accordingly.

The results also highlight the importance of constructing biologically representative null models. By
resampling the finite differences from the gene expression time-series to construct a null distribution of
persistence scores, TimeCycle tests whether an observed gene has a stronger cycling behavior than expected
by chance, conditioned upon the speed at which the expression is capable of changing. This improves upon
SW1PerS, which does not compute a p-value, and also upon methods such as RAIN that randomize the
time-series itself. We note that this method for constructing the null distributions could also be adapted
for other methods, and emphasize the need for method developers to consider biological constraints when
devising null models.

A practical consequence of TimeCycle’s methodological features is that the genes detected as cycling
by TimeCycle are highly reproducible. Applied to three independent studies of mouse live gene expression,
TimeCycle consistently identified genes as cycling in multiple studies, and those genes were shown to exhibit
reproducible dynamics.

Finally, we note that the experimental sampling design remains a crucial factor for the reliability of any
cycling detection method. As with other methods [11, 16], TimeCycle performs best when applied to time-
series spanning 48-h sampled every 2-h, and is considerably less accurate for shorter and sparser sampling.
These findings underscore the important role that experimental design — not only the method choice —
plays in the analysis of circadian data.

Methods

Generating synthetic data
A total of 144 unique synthetic time-course data sets, each comprising 11,000 expression profiles, were
generated in R using the code outlined in [16]. Each data set consisted of a different number of replicates
(1, 2, 3), sampling intervals (1-h, 2-h, 4-h), sampling lengths (36-h, 48-h, 72-h, 96-h), and noise levels as a
percentage of the wave form amplitude (10%, 20%, 30%, 40%). Within each condition, 11 base waveforms
were simulated to mimic expression patterns observed in nature: periodic patterns, nonperiodic patterns,
and dynamics that have a cyclic component but do not meet the strict definition of periodicity. Seven of
these 11 shapes were considered cyclic (sine, peak, sawtooth, linear trend, damped, amplified, contractile),
and 4 were considered noncyclic (flat, linear, sigmoid, and exponential). Further details may be found in [16].
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Processing synthetic data
All 144 synthetic data sets were processed by all four cycling detection methods (TimeCycle, JTK_CYCLE [22],
RAIN [13], GeneCycle [21], and SW1PerS [24], using each method’s recommended parameter settings as de-
fined by the method’s documentation. Since GeneCycle and SW1PerS do not have a built-in function for
dealing with replicates, replicates were averaged together, following the recommended common practice in
the field [11,16]. TimeCycle, JTK_CYCLE, and RAIN used the replicate procedures recommended in their
documentation. See the Supplement and https://github.com/nesscoder/TimeCycle-data for a complete
list of the experimental parameters and associated source code.

Computing ROC, AUC, and percent correct classification

For each method across all 144 synthetic data sets and missing data analysis, the receiver operating character-
istic (ROC) and accompanying area under the curve (AUC) were computed using the pROC R package [47].
The optimal threshold for computing each methods’ percent correct classification is defined by the Youden’s
J statistic [41], again computed using pROC. For each waveform shape at the classification threshold defined
by the Youden’s J index, the percent correct classification was computed by dividing the number of synthetic
genes called as (non-)cyclers out of the total possible (non-)cyclers.

Missing data analysis

To evaluate TimeCycle’s ability to handle missing data, we analyzed synthetic data sampled every 2-h for
48-h with one replicate at varying noise levels with a range of missing values. For each of the 11,000 genes
in each data set, time-points were randomly removed by sweeping from 0% missingness until only 2 points
remained. ROC plots and AUC scores depicted in Figure 4 were computed as described above.

Outlier analysis

To evaluate TimeCycle’s ability to handle outliers, we analyzed 36 synthetic datasets all with a 48-h sampling
length. Each data set consisted of a different number of replicates (1, 2, 3) and sampling intervals (1-h, 2-h,
4-h). Following [22] and [43], for all sampled time–points, outliers were injected into the time–series at a
rate of 1%. Outliers were drawn from a uniformly distribution between [µ− 4σ, µ− 3σ] and [µ+ 3σ, µ+ 4σ]

of the diurnal mean (µ) for each time–series [43].

Preprocessing and analysis of microarray data
Microarray data was preprocessed as described in Methods—Preprocessing Microarray Data of [16]. (See
https://github.com/nesscoder/TimeTrial for associated source code.)

To characterize the effects of sampling schemes using real data, the three data sets were processed to
ensure comparability across data sets. The Hughes 2012 and Zhang 2014 data sets were sampled every 2-h
for 48-h. The Hogenesch 2009 data set, comprising data sampled every 1-h for 48-h, was down-sampled into
2 data sets sampled ever 2-h for 48-h. All four data sets (2 original and 2 down-sampled) were processed by
TimeCycle, JTK_CYCLE, RAIN and GeneCycle, using each method’s recommended parameter settings as
defined by the method’s documentation.‡ Further details may be found in the Supplement.

Gene dynamics reproducibility assessment via rank correlation CDF

The distribution of Spearman rank correlations were computed by comparing genes identified by each method
with an FDR < 0.05 and LogFC < 2 in one data set (e.g. Hogenesch 2009, Hughes 2012, Zhang 2014) with
their pairwise expression in the other data sets. Before computing the correlation — to account for the 6-h
phase shift in sampling start time between the Hughes dataset (start 0ZT ) and the Hogenesch/Zhang (start
18ZT ) data sets — the last three time points (e.g. 6-h) in the Hughes data set were moved to the start of the
‡SW1PerS was omitted from the microarray analysis since the algorithm does not produce a p-value and thus could not be
meaningfully compared to the other methods.
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time-series (Figure 5D). The distribution of cycling gene correlations was compared to both the all-gene
correlations and a null distribution of correlations. The all-gene correlation represents the rank correlation
on a per gene basis for all 12,868 genes, whether or not they were identified as cycling. The null distribution
of correlation coefficients was constructed by randomly resampling the 12,868 genes in each data set (thereby
generating correlation coefficients from different, rather than the same, genes).
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Figure 1: TimeCycle Theory and Implementation | [A] Takens’ theorem proves that the dynamics of a periodic signal
will exhibit circular patterns in the embedded space. A periodic function (Top) embedded in the state space forms a circle. A
non-periodic function (Bottom) embedded in the state space forms a mass. [B] The TimeCycle algorithm assesses statistical
significance with respect to a null distribution of persistence scores generated from random time-series with the same marginal
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Figure 2: Synthetic Data Overview | [A] A total of 144 unique synthetic time-course data sets were generated in R
with known ground truth, as described in [16]. Each data set consisted of a different number of replicates (1,2,3), sampling
intervals (1-h, 2-h, 4-h), sampling lengths (36-h, 48-h, 72-h, 96-h), and noise levels (10%, 20%, 30%, 40%) as a percentage of
the waveform amplitude. AUC scores for each method were computed across all 144 data sets. Lines represent the best linear
fit across replicates and noise levels within a specified sampling scheme. Replicate time-series were averaged together for the
GeneCycle and SW1PerS algorithm, since neither algorithm has a built-in method for handling replicates. [B] Type I and
Type II error rates at varying FDR thresholds across methods for synthetic data sampled every 2-h for 48-h with 1 replicate.
FDR = 0.05 marked by grey vertical line. (SW1PerS does not compute a p-value, but rather a periodicity score and was thus
omitted from analysis.)
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Figure 3: 48 Hour Synthetic Data Method Comparison | Comparison of TimeCycle, JTK_CYCLE, RAIN, SW1PerS,
and GeneCycle results for synthetic data of various waveform shapes. LOWER TRIANGLE: scatterplot of − log10 p for
each synthetic gene. The larger colored points represent the average − log10 p designated by waveform shape. DIAGONAL:
Histogram of − log10 p for each synthetic gene by method. UPPER TRIANGLE: Classification accuracy comparison by
waveform category. Darker bars correspond to the method listed in the row; lighter bars correspond to the method listed
in the column. Each value corresponds to the fraction of correctly classified genes (true positive for cycling/non-cycling as
appropriate) for a given waveform type, using a classification threshold obtained from Younden’s J index for the ROC across
all genes. * SW1PerS does not compute a p-value, but rather a periodicity score. † GeneCycle results of p = 0 were set to
machine precision (2.2 · 10−16) for visualization purposes.
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Figure 4: Missing Data Results | [A] TimeCycle AUC scores across varying levels of percent missingness per gene when
sampled every 2-h for 48 h with one replicate. Results are shown for each level of noise. 50% missingness is highlighted by the
vertical orange line. [B] TOP: ROC curves for each percent missingness depicted in the AUC score plot in panel A above.
ROC curves scaled from Blue (0% missingness) to grey (96% missingness). 50% missingness is again highlighted by the orange
curve. BOTTOM: Histogram of − log(p) at the different noise levels corresponding to the orange 50% missingness ROC plot.
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R = 0.9 , p < 2.2e-16
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Figure 5: TimeCycle Biological Data Results | [A] TOP: Upset plot showing overlap between significant cycling genes
sets detected by TimeCycle at an FDR < 0.05 across 3 distinct mouse liver time-series data sets as described in [16].The Zhang
and Hughes data sets were sampled every 2-h for 48-h. The Hogenesch study, sampled every 1-h for 48-h, was downsampled into
two data sets sampled every 2-h for 48-h (Hogenesch 2A and Hogenesch 2B). BOTTOM: Distribution of FDR-adjusted p-values
of the known circadian genes (orange) versus all genes (grey). Circadian genes were extracted from the CGDB database [48].
Only circadian genes that were experimentally validated in mouse liver tissue through low-throughput methods were included
in the analysis. [B] Percentage of genes concordantly called cycling or non-cycling across studies at varying FDR thresholds
in each pair of studies; comparisons to other methods are also shown. [C] LogFC amplitude, period, and phase scatterplot
comparison of genes identified as cycling in both the Zhang and Hughes data sets with an FDR < 0.05. [D] Heatmap of the
cycling genes detected in each data set with an FDR < 0.05 ordered by phase. Orange and grey represents gene expression
above and below diurnal mean, respectively. [E] Rank correlation CDFs of genes identified by each method with an FDR < 0.05

and LogFC < 2 in one data set compared to their pairwise expression in the other data sets. The null distribution represents
the rank correlation of a random sampling of all 12,868 genes with replacement in the pairwise comparisons of all data sets. All
gene correlation represents the rank correlation on a per gene basis for all 12,868 genes in the pairwise comparisons of all data
sets.
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Hogenesch 2009 Hughes 2012 Zhang 2014
Genotype Wildtype C57BL/6J Wildtype C57BL/6J Wildtype C57BL/6J

Age 6-weeks Not Specified 6-weeks
Entertainment Condition 12h : 12hLD → DD 12h : 12hLD → DD 12h : 12hLD → DD

Entrainment Length 1 Week 1 Week 1 Week
Microarray Platform Affy Mouse 430 2.0 Affy MoEx 1.0 ST Affy MoGe 1.0 ST

Sampling Scheme Every 1-h for 48-h Every 2-h for 48-h Every 2-h for 48-h
ZT Start Time ZT 18 ZT 0 ZT 18

Samples Per Time Point 3-5 Male 2 Male and 2 Female 3 Male
GEO Accession # GSE11923 GSE30411 GSE54650

Table 1: Experimental Design Biological Data
Three mouse liver time-series expression sets (Hogenesch 2009, Hughes 2012, Zhang 2014) where analyzed from the Gene
Expression Omnibus database (GEO). In each experiment, Wildtype C57BL/6J mice where entrained to a 12 hour light, 12
hour dark environment for a week before being released into constant darkness, a standard practice in the field for assessing
circadian function. The Hogenesch study sampled mice every 1 hour for 48 hours, while the Hughes and Zhang Studies sampled
every 2 hours for 48 hours. Other variations in the data sets include microarray platform, ZT time of sampling, and number of
mice sampled per time point. Adapted from [16].
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