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Abstract The adaptive immune system responds to pathogens by selecting clones of cells with
specific receptors. While clonal selection in response to particular antigens has been studied in
detail, it is unknown how a lifetime of exposures to many antigens collectively shape the immune
repertoire. Here, using mathematical modeling and statistical analyses of T cell receptor
sequencing data, we develop a quantitative theory of human T cell dynamics compatible with the
statistical laws of repertoire organization. We find that clonal expansions during a perinatal time
window leave a long-lasting imprint on the human T cell repertoire, which is only slowly reshaped
by fluctuating clonal selection during adult life. Our work provides a mechanism for how early
clonal dynamics imprint the hierarchy of T cell clone sizes with implications for pathogen defense
and autoimmunity.

Introduction

The hallmark of adaptive immunity is the generation of diversity through genetic recombination and
clonal selection. Their interplay balances the breadth and specificity of the ~10"? T cells in the human
body (Figure 1A; Arstila et al., 1999, Farber et al., 2014): The genetic recombination of the T cell
receptor (TCR) locus, termed VDJ recombination, generates an enormous potential diversity of
receptors ranging from early estimates of ~10"° (Davis and Bjorkman, 1988) to more recent esti-
mates of ~10%" (Mora and Walczak, 2016) different possible receptor TCRop heterodimers. Clonal
selection expands the number of specific cells during an infection for effector functions, a fraction of
which is retained over prolonged periods of time as immune memory (Ahmed and Gray, 1996;
Farber et al., 2014).

Much progress has been made deciphering the mechanisms of regulation and control of T cell
dynamics over the last few decades (Antia et al., 2005; Sallusto et al., 2010; Farber et al., 2014).
However, much of that progress has focused on the dynamics of subsets of T cells specific to a par-
ticular antigen and has come from experiments in mice. An important open question is how expo-
sures to many antigens over a human lifetime collectively shape our T cell repertoire (Farber et al.,
2014; Davis and Brodin, 2018).

High-throughput repertoire sequencing enables direct surveys of the diversity and clonal compo-
sition of T cells from human blood or tissue samples and thus promises to provide quantitative
answers to this question (Robins et al., 2009; Thomas et al., 2014; Britanova et al., 2016;
Emerson et al., 2017; Oakes et al., 2017;: Thome et al., 2016; Robins et al., 2010; Qi et al., 2014,
Lindau et al., 2019, TRACERx consortium et al., 2019). However, while the TCR locus provides a
natural barcode for clonal lineages due to its large diversity, this same diversity also makes inferring
past clonal dynamics a challenging inverse problem, in particular given practical limitations on
sequencing depth and temporal resolution in longitudinal studies. Mathematical modeling can help
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elLife digest The human immune system develops a memory of pathogens that it encounters
over its lifetime, allowing it to respond quickly to future infections. It does this partly through T cells,
white blood cells that can recognize different pathogens. During an infection, the T cells that
recognize the specific pathogen attacking the body will divide until a large number of clones of
these T cells is available to help in the fight. After the infection clears, the immune system ‘keeps’
some of these cells so it can recognize the pathogen in the future, and respond quicker to an
infection.

Over the course of their lives, people will be infected by many different pathogens, leading to a
wide variety of T cells that each respond to one of these pathogens. However, it is not well
understood how various infections throughout the human lifespan shape the overall population of
different T cells.

Gaimann et al. used mathematical modelling to study how the composition of the immune
system changes in people of different ages. Different populations of T cells — each specialized
against a specific antigen — had been previously identified through genetic sequencing. Gaimann
et al. analyzed their dynamics to show that many of the largest populations originate around birth,
during the formation of the immune system.

These findings suggest a potential mechanism for how exposure to pathogens in infancy can
influence the immune system much later in life. The results may also explain variations in how people
respond to infections and in their risk of developing autoimmune conditions. This understanding
could help develop new treatments or interventions to guide the immune system as it develops.

address this challenge by solving the forward problem of linking clonal dynamics to emergent statis-
tical patterns (Desponds et al., 2016; Lythe et al., 2016; Dessalles et al., 2019, Altan-
Bonnet et al., 2020; de Greef et al., 2020). Comparing patterns to data can provide insights about
dynamics from static snapshots of repertoire organization in different individuals. A particularly strik-
ing such pattern has been the observation of power-law scaling of clone sizes spanning several
orders of magnitude (Robins et al., 2009, Thomas et al., 2014, Britanova et al., 2016;
Emerson et al., 2017, Oakes et al., 2017). In a typical sample of T cells from peripheral blood, a
large fraction of clones is only seen once within 10°-10” sampled sequences, while the most abun-
dant clones account for more than 1% of all sequencing reads. Such power-law scaling of clone sizes
has been shown to arise at steady state in models of fluctuating clonal selection driven by different
antigen encounters (Desponds et al., 2016). However, it is unclear whether this mechanism alone is
sufficient to explain how clone size scaling is established, and more broadly how variable the clonal
hierarchy is over time.

Here, we develop a theory of T cell dynamics throughout the human lifespan based on the statis-
tical laws of repertoire organization and dynamics revealed by cohort and longitudinal human TCR
repertoire sequencing (Britanova et al., 2016, Emerson et al., 2017, Chu et al., 2019;
Lindau et al., 2019). We find that clonal expansions during repertoire formation play an important
role in establishing the clone size hierarchy, which is only slowly reshaped by fluctuating clonal selec-
tion during adult life.

Results

A scaling law of human T cell repertoire organization

An important statistic to summarize repertoire organization is the clone size distribution, which tabu-
lates the number of clones found at different multiplicities within a repertoire or sample. Multiple
previous studies have shown that these distributions are heavy-tailed (Robins et al., 2009,
Thomas et al., 2014; Britanova et al., 2016; Emerson et al., 2017; Oakes et al., 2017). However,
potential confounding by noise introduced during the sequencing process has remain debated
(Altan-Bonnet et al., 2020) and systematic analyses of how variable these distributions are across
healthy individuals have been lacking. To fill these gaps, we reanalyzed data from two large-scale
cohort repertoire sequencing studies of human blood samples, which used fundamentally different
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Figure 1. Statistics of human T cell repertoire organization. (A) T cells with highly diverse receptors are created from progenitor cells through genetic
recombination (left), which then undergo clonal selection (middle) together shaping the immune repertoire. The T cell receptor (TCR) locus acts as a
natural barcode for clonal lineages, which can be read out by sequencing (right). (B, C) Clone size distributions in two large cohort studies of human
blood samples using disparate sequencing protocols display a power-law relationship between the rank and size of the largest clones. Each line shows
the size distribution of all T cell clones in an individual in an unsorted blood sample, that is independently of the phenotypes of the cells making up the
different clones. Ages are color coded as indicated in the legend. The black line shows a power law with a slope of -1 for visual comparison.
Normalized clone sizes were defined as the number of reads of a given receptor’s sequence divided by the total number of reads within a sample and
a factor equal to the average fraction of T cells with memory phenotype at different ages to account for variations in sampling depth and in the subset
composition of peripheral blood, respectively (Figure 1—figure supplement 3). Only a single individual is displayed per 2-year age bracket to improve
visibility. (D) Power-law exponents as a function of the age (legend: linear regression slope and coefficient of determination). Data sources:

Britanova et al., 2016, Emerson et al., 2017.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Cohort age distributions.

Figure supplement 2. Clone size distributions in phenotypically sorted T cell subsets.

Figure supplement 3. Influence of normalization procedure on clone size distributions.

Figure supplement 4. Dependence of power-law exponent on age by cytomegalovirus (CMV) infection status and sex.
Figure supplement 5. Clone size distributions in cordblood.

sequencing pipelines and thus have different sources of noise (Materials and methods — Experimen-
tal data sources). Both studies sequenced the locus coding for the hypervariable TCR CDR3 B-chain
from peripheral blood T cells of healthy human volunteers spanning a large range of ages (Figure 1—
figure supplement 1). In both studies, T cells were sequenced without regard to their phenotypic
characteristics. A clone thus represents the full lineage of cells derived from a common ancestral cell
irrespective of differentiation status (see Appendix 5 — Relation between clone size and cellular phe-
notypes and Figure 1—figure supplement 2 for a phenotypically resolved analysis).

After normalizing clone sizes to account for variations in sampling depth and for the increasing
fraction of T cells of memory phenotype with age (Figure 1—figure supplement 3), we found that
the tails of the clone size distributions collapsed to the same statistical law across individuals and
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cohorts (Figure 1B,C): Ranking clones by decreasing size, the rank of the largest clones approxi-
mately scales with their size C as a power law,

rank~C™¢, M

where o is a scaling exponent. To quantify the apparent similarity of the scaling relationship, we
determined o for each sample by maximum likelihood estimation. Only a small fraction of all T cells
are sampled, which poses a challenge because subsampling a power law leads to deviations from
scaling at small clone sizes (Stumpf et al., 2005). To overcome this challenge, we used a trimming
procedure and excluded clones smaller than a minimal size from the fitting, which decreases bias
arising from subsampling (Appendix 1). Determined in this subsampling-robust manner the fitted
power-law exponents agree remarkably well within the range of ages covered by both cohorts
(Figure 1D): with oo = 1.17 + 0.03 (mean =+ standard error [SE]) and oo = 1.18 + 0.01 in the Britanova
cohort and Emerson cohort, respectively. Moreover, the fitted exponents varied little between indi-
viduals in both cohorts; with a sample standard deviation of fitted exponents of 0.14 and 0.21,
respectively. The agreement of the mean exponents is noteworthy given the different sequencing
pipelines and provides strong evidence that the scaling relationship (Equation 1) is a true feature of
the clone size distribution and not of the measurement process.

What drives the emergence of a power-law distributed hierarchy of clone sizes? Given the repro-
ducibility of the scaling law across individuals, we might hope for a statistical explanation indepen-
dent of the precise antigenic history that has driven the expansion of specific cells in an individual.
To test hypotheses about mechanisms underlying scaling, we describe repertoire dynamics using a
general mathematical framework based on effective stochastic rate equations for the recruitment of
new clones, and the proliferation and death of already existing clones within a T cell compartment
(Materials and methods — Mathematical framework). In macroecology, where such reductionist
approaches have a long history, simple neutral models within this framework have had surprising
success in describing species abundance distributions only accounting for demographic stochasticity
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Figure 2. Emergence of power-law scaling of clone sizes in a minimal model of repertoire formation. (A) Sketch of the stochastic dynamics of
recruitment, proliferation, and death of T cells. Proliferation is inversely proportional to total repertoire size, which reflects increased competition as the
repertoire grows. (B) Clone size distributions in simulated repertoires display power-law scaling (blue lines), in contrast to steady-state predictions that
conform with those of a null model based only on demographic stochasticity (black line, Equation 48). (C) lllustration of the mechanism: early in life
rates of proliferation exceed clonal turnover (lower panel). As the total repertoire size increases (gray line, upper panel) the proliferation rate decreases
due to increased competition. The dynamics of selected clones after their recruitment marked by a dot is indicated by colored lines (upper panel). The
line position shows the cumulative size of all prior clones, while the line width indicates the size of the clone (not to scale). The earlier a clones is
recruited the larger it expands during the period of overall repertoire growth. (D) Dependence of the clone size distribution on parameters. Simulated
repertoires at 5 years of age were subsampled to 10° cells to mimick the experimental sampling depth (solid lines). The simulated data closely follow
predictions from a continuum theory of repertoire formation (dashed lines). Model parameters: (B,D) clonal death rate d = 0.2/year, clonal recruitment
rate 0 = 106/year, clone size at recruitment Co = 1; (B) total proliferation rate by = ‘IO7/year (implying a recruitment to proliferation ratio y = 0.1), (D)
variable bg as indicated in the legend by the ratio y.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Analytical predictions for clone size distributions in a model with variable recruitment sizes.

Figure supplement 2. Simulated clone size distributions in a model with saturation of proliferation rates.
Figure supplement 3. Simulated clone size distributions in a model with competition for clone-specific resources.
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(Volkov et al., 2003), but this source of variability is insufficient to account for the observed breadth
of T cell clone sizes (Desponds et al., 2016; de Greef et al., 2020; for a detailed discussion see
Appendix 2). The failure of this null model has prompted a search for other mechanisms that explain
scaling.

To constrain this search, we analyzed how fitted exponents varied with age. In particular, based
on a finite time solution we derived for a previously proposed model (Desponds et al., 2016) of
how power-law scaling can emerge from the cumulative effect of temporal fluctuations in clonal
growth rates (Materials and methods — Slow convergence to steady-state scaling), we expected a
substantially steeper tail in young individuals. While exponents overall decreased slightly with age,
the dependence on age accounted for surprisingly little variation in both cohorts (Figure 1D), includ-
ing when controlling for sex and cytomegalovirus (CMV) exposure status (Figure 1—figure supple-
ment 4). Notably, scaling is established within the first decade of life, with significant clone size
variability existing as early as at birth (Figure 1—figure supplement 5), defying previous model
predictions.

A mechanism for the emergence of scaling during repertoire formation
We hypothesized that scaling might result from clonal expansions during repertoire formation, which
would naturally explain the early onset of scaling. Our hypothesis is based on experimental evidence
in mice (Le Campion et al., 2002; Min et al., 2003; Haluszczak et al., 2009, Kawabe et al., 2017)
and human (Rufer et al., 1999; Schénland et al., 2003) that repertoire formation is driven not only
by increased thymic output, but also by large proliferative expansion of some T cell clones. Addition-
ally, multiple studies Hammarlund et al., 2003; Pogorelyy et al., 2017; Tanno et al., 2020 have
shown that some T cell clones can persist over multiple decades, which suggests that clonal turnover
might be sufficiently slow for transient expansionary dynamics early in life to shape repertoire organi-
zation over a prolonged time period (see also Appendix 2 —Relaxation time scale in a neutral
model).

To test our hypothesis, we constructed a minimal model of repertoire formation based on known
T cell biology (Figure 2A). Following previous work (Bains et al., 2009; Lythe et al., 2016), we
assume that T cells proliferate at a rate inversely proportional to the total number of cells N already
present in the repertoire. This assumption leads to increased proliferation early in life before the rep-
ertoire has reached its homeostatic size, for which there is experimental evidence Le Campion
et al., 2002; Min et al., 2003; Haluszczak et al., 2009; Kawabe et al., 2017; Rufer et al., 1999;
Schénland et al., 2003. This assumption is also compatible with a simple mechanistic model of T
cell competition (Materials and methods — Mechanistic motivation for the competition function). We
further assume that cells die at a rate d, and that new clones are recruited at rate 8 with an initial
size Co. For simplicity, we set Cy equal to one in the following and we assume constant rates d and
0. Importantly, recruitment of new clones and total expansion of already existing clones maintain a
constant ratio throughout development under these assumptions in line with findings that the frac-
tion of cells with TCR excision circles, which are diluted during peripheral division, is constant during
fetal development (Schonland et al., 2003) and infancy (Douek et al., 2001; Bains et al., 2009).

We simulated the model starting from an empty repertoire and found that large clones displayed
power-law scaling (Figure 2B blue lines). The simulation results contrast with steady-state predic-
tions (Figure 2B black line), where the model effectively reduces to the neutral null model intro-
duced earlier (Materials and methods — Steady-state distribution). The power-law tail persisted over
multiple decades of aging, much beyond the timescale of cellular turnover, 1/d = 5 years, assumed
in the simulations. A mathematical analysis shows that relative timescales of clonal and cellular turn-
over are controlled by the control parameter y = 0Cy/by, which is the ratio of the contribution of
recruitment and proliferation to overall compartment maintenance (Appendix 2). The long timescale
of clonal turnover emerges because the chosen parameters are in the biological parameter regime
v<1, where most cell death is balanced by proliferation (den Braber et al., 2012, Macallan et al.,
2017). Thus, we find that repertoire formation can produce transient but long-lasting power-law
scaling of clone sizes.

To obtain intuitive insight into how scaling is established, we developed a continuum theory of
clonal dynamics during repertoire growth (Materials and methods — Continuum theory of clonal
growth). We find that the clone size C; of the i-th clone recruited at time t; follows a subexponential
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Figure 3. Statistical dating of clones reveals that early expansions have a long-lasting effect. (A) Genetic recombination of a TCR involves the choice of
aV, D, and J region among multiple genomically-encoded templates as well as the deletion and insertion of nucleotides at both the VD and DJ
junctions. The enzyme TdT, which is responsible for nucleotide insertions, is not expressed during early fetal development. This allows a statistical
dating of clonal ages, as clones with zero insertions at both junctions constitute a much larger fraction of all clones during a fetal and perinatal time
window. (B) Fraction (+ SE) of clones with zero insertions as a function of age and clone size. Clones are binned by their size into non-overlapping bins
(rank 1-500, 501-1000, and so on; upper values are indicated on the x-axis). (C) Same data as in B displayed with a rescaled x-axis using fitted
parameters T4 = 9.1 £ 0.5 years, r* = 1.2+ 0.2 - 10*. The data collapses onto a sigmoidal function predicted by theory (Equation 3) with fitted py_ =
0.074 + 0.004, po + = 0.0187 + 0.0005 (black line). Data source: Emerson et al., 2017.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Fraction of zero insertion clones within productive and unproductive sequences.

Figure supplement 2. Enrichment of clones with known specificity.

Figure supplement 3. Enrichment of clones with high probability of generation.

Figure supplement 4. Fraction of zero insertion clones as function of age and clone size by cytomegalovirus (CMV) infection status.

growth law C;(1) = Co(t/1;)"/" . Clones recruited early grow large deterministically until competi-
tion lowers proliferation rates below the death rate (Figure 2C, lower panel). Different clones are
recruited at different times and thus have more or less time to grow (Figure 2C, upper panel), which
leads to a clone size distribution that follows power-law scaling with an exponent a« =1+ vy. We
note that this origin of the power-law scaling is closely related to a well-known generative mecha-
nism for power-laws first studied by Yule, 1924 (for a detailed discussion see Appendix 4 — A unified
view on mechanisms generating power laws in different growth processes).

The predicted exponent closely matches simulation results for different values of y (Figure 2D
dashed lines). Intuitively, when recruitment rates are higher, clones founded early have less time to
outgrow later competitors, and thus the power law is steeper (o is larger). Importantly, in the biolog-
ical parameter regime in which proliferation dominates, y<1, the exponent is compatible with
experiments (Figure 1B-D). We thus find, that the model - without fine tuning of parameters —
reproduces the observed scaling exponent.

To expose a basic mechanism capable of producing broad clone size distributions, we have kept
the model deliberately simple. More detailed models demonstrate the conditions and limits on the
generalizability of this mechanism (Appendix 3). Variable recruitment sizes only affect the distribu-
tion of small clones (Figure 2—figure supplement 1); while a saturation of proliferation rates, or
competition between subsets of T cells for specific resources maintain distributions at small and
intermediate sizes while leading to cutoffs for the largest clones (Figure 2—figure supplement 2
and Figure 2—figure supplement 3, respectively).

Long-lived incumbency advantage shows early expansions imprint clone
size hierarchy

Our proposed theory for the rapid emergence of scaling predicts that large clones have expanded
massively during repertoire formation. To test this prediction, we need to trace the dynamics of early
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founded clones. To this end, we exploit a change in the recombination statistics taking place during
fetal development (Feeney, 1991; Rechavi et al., 2015; Park et al., 2020; Figure 3A). While T cells
are produced by the thymus from the late first trimester the enzyme terminal deoxynucleotidyl trans-
ferase (TdT), which inserts non-templated nucleotides during VDJ recombination, is not expressed
until the mid second trimester (Park et al., 2020). Therefore, many more T cells in fetal and neonatal
blood have zero insertions than expected from the adult recombination statistics (Rechavi et al.,
2015). This enables a statistical dating of individual clones in a repertoire based on their sequence
(Sethna et al., 2017, Pogorelyy et al., 2017).

If our model is correct, we expect abundant clones to be more likely to have zero insertions than
smaller clones. Analyzing data from the Emerson cohort, we find that zero insertion clones are
indeed highly enriched within the most abundant clones (Figure 3B). This generalizes a previous
report of such an enrichment within the naive compartment (Pogorelyy et al., 2017). The large
cohort size allows us to perform a fine-grained analysis of how the fraction of zero-insertion clones
depends on clonal abundance and age. We find that enrichment is particularly pronounced in the
young and decreases with age at different speeds depending on clone size. Among the largest
clones many more still have zero insertions than expected from the adult recombination statistics
even multiple decades after repertoire formation. This suggests that the incumbent large clones cre-
ated during repertoire formation are only slowly replaced by clones expanding later in life, similarly
to what has been observed in mice (Gossel et al., 2017, Hogan et al., 2019).

Additional analyses rule out other potential explanations for the relation between insertion statis-
tics and clonal abundance. First, sequences with zero insertions are similarly enriched among the
largest clones in productive and unproductive sequences (Figure 3—figure supplement 1) demon-
strating that convergent selection pressures during adult life are not a primary source of the higher
abundance of these clones. Second, while abundant clones are also enriched for sequences with
known antigen specificity (Figure 3—figure supplement 2) and sequences likely to be convergently
recombined (Figure 3—figure supplement 3), these enrichments do not show the same striking
dependence on age. Furthermore, we find that zero insertion clones are consistently less enriched in
individuals infected by CMV (Figure 3—figure supplement 4), in contrast to the hypothesis that this
infection might drive their expansion (Pogorelyy et al., 2017). Taken together, these analyses
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Figure 4. The small magnitude of longitudinal clone size fluctuations implies a slow reordering of the clone size hierarchy. (A,B) Longitudinal clonal
dynamics in a healthy adult over a one year time span. (A) Fraction of the 1000 largest clones that fall within a specific clone size rank bin at the earliest
time point. A small number of clones was not detected at all at the first time point (ND) likely representing recently expanded clones. All other clones
were already among the largest clones initially. (B) Variance of log-foldchanges in clone size as a function of time difference for the 250 largest clones.
(C) Fraction of clones with zero insertions as a function of age and clone size in a simulated cohort using a magnitude of clonal growth rate fluctuations
inferred from the longitudinal data. Data source: Chu et al., 2019.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Provenance of large T cell clones for all subjects.
Figure supplement 2. Dynamics of large persistent clones for all subjects.
Figure supplement 3. Data collapse by parameter rescaling for the simulated cohort.
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support the conclusion that dynamics during the perinatal time window of repertoire formation leave
a long-lasting imprint on the T cell clonal hierarchy well into adulthood.

Longitudinal clone size fluctuations predict the dynamics of the clone
size hierarchy with aging

Building on this successful validation of a core prediction of our theory, we asked whether we could
leverage the detailed pattern of enrichments at different ranks and ages to quantify how much being
part of the wave of early expansions determines the fate of a clone relative to other sources of clone
size variability. To this end, we extended our model beyond repertoire formation and allowed clonal
proliferation rates to fluctuate over time to model the net effect of clonal selection by changing anti-
genic stimuli during adult life (Desponds et al., 2016). Specifically, we added a stochastic term to
the growth rate of each clone to provide an effective Langevin description of the long-term dynam-
ics induced by fast-changing antigen stimuli,

bi(t) = by/N +V20,(t), )

where (1,(1)n,(¢)) = ;5(t — ).

To determine a biologically plausible fluctuation strength o, we analyzed the variability of clone
sizes over time in a longitudinal repertoire sequencing study (Chu et al., 2019). We first analyzed
how much recently expanded clones contribute to the tail of the clone sizes, and found that only a
small fraction of the largest clones in any sample were not already large at the earliest time point
(Figure 4A and Figure 4—figure supplement 1). To minimize confounding by transient dynamics
affecting these clones, we excluded them from further analysis. We found that large clones had
remarkably stable abundances over time, which we quantified by calculating the variance of log-fold-
changes in clone size between the second and every subsequent time point (Figure 4B and Fig-
ure 4—figure supplement 2). The variability of clone sizes increased linearly over time as expected
theoretically, from which we determined a magnitude of net growth rate fluctuations o compatible
with the slope of increase (Materials and methods — Modeling long-term repertoire dynamics with
fluctuating clonal growth rates).

Using the fitted fluctuation strength, we constructed an in silico cohort of individuals of different
ages according to the extended model (Materials and methods — Simulated cohort). In short, we
computationally assigned each newly recruited clone to have zero insertions in a way that mimics the
change in fetal recombination statistics, and we simulated memory repertoire dynamics based on
the combined effect of early expansion and fluctuating clonal selection (Equation 2). The enrichment
of zero insertion clones in the simulated cohort (Figure 4C) closely recapitulated the empirical find-
ings using plausible parameter values. Notably, the longer lasting enrichment of zero insertion
clones among the very largest clones is also found in the simulated cohort, and the timescales over
which the enrichment decays agree remarkably well.

To obtain analytical insight into the enrichment dynamics, we studied how fluctuating growth
rates reorder the clone size hierarchy established during repertoire formation (Materials and meth-
ods — Relaxation of the zero insertion distribution). The early clone size hierarchy in our model is
dominated by the time of recruitment, which leads to a steep gradient in the zero insertion probabil-
ities as a function of rank in the first decade of life (Figure 4C). We thus calculated how the zero
insertion probabilities Py(r,t) for clones of rank r at time t change due to fluctuating clonal growth
starting from an idealized initial condition resembling the early clone size hierarchy, in which the
clone sizes follow power-law scaling and the r* largest clones have a zero insertion probability pg
and all others a probability po . We find that the probability of zero insertion clones then follows a
sigmoidal shape as a function of log clone size rank, which changes with age as follows,

Apo log(r/r*)+t/74

Po(r,t) = Terfc (2\/%) + Do+s (3)

where Apy =po_ — po is the difference of zero insertion probabilities, 7, a characteristic timescale,
and erfc(x) the complementary error function. These analytical results suggest a two-parameter
rescaling of the enrichment of zero insertion clones as a general test of our theory. To demonstrate
the feasibility of fitting these parameters from the enrichment dynamics, we determined them from
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the simulated data using weighted least squares fits setting r and t in Equation 3 to the mid-value of
each bin. Rescaling the data with the fitted r* and 7, lead to a collapse of all simulated datapoints
onto the predicted sigmoidal curve (Figure 4—figure supplement 3). We then applied the same fit-
ting and rescaling procedure to the experimental data, and found that it also leads to a remarkably
good data collapse (Figure 3C).

The fitted parameters quantify key features of long-term repertoire dynamics, with 7, characteriz-
ing the timescale over which fluctuations change the clone size hierarchy, and r* being related to the
number of clones recruited during early repertoire growth. In line with the long-lived enrichment of
zero insertion clones, the fitting reveals a remarkably slow timescale of about a decade over which
the clone size hierarchy is reordered during healthy aging. The fitted r* indicates that early reper-
toire formation involves the expansion of a large number of different clones. Overall, the agreement
between theory and data demonstrates that our model quantitatively captures how early expansions
and ongoing fluctuating selection together shape the clone size hierarchy.

Discussion

The evolution of the adaptive immune system has endowed vertebrates with the ability to adapt to
pathogens that evolve on a timescale faster than host reproduction (Mayer et al., 2016). However,
this ability comes with a cost: every generation needs to rebuild immune memory anew. As the
organism first comes into contact with the outside world, it quickly needs to train its adaptive
immune system to tolerate innocuous antigens and build up immune memory against pathogens.
Here, we have shown that this process of rapid adaptation leaves a long-lasting imprint on the orga-
nization of the human T cell repertoire. More broadly, we propose a theory of repertoire dynamics
that quantitatively describes how early expansions during repertoire formation combine with a life-
time of exposures to cumulatively shape the T cell hierarchy. Notably, we find that the T cell reper-
toire is remarkably stable over time in adult individuals outside of the punctuated expansions and
contractions of specific clones in acute responses. Our study demonstrates that despite its vast com-
plexity, repertoire dynamics is partially predictable by quantitative models. The model predictions
can help guide future longitudinal studies, which in turn will allow refinements of modeling assump-
tions. The current work thus provides a stepping stone toward a detailed quantitative understanding
of T cell dynamics that we hope will ultimately power the rational development of immunodiagnos-
tics and therapeutics.

The general mechanism we describe for imprinting in the adaptive immune system provides a uni-
fied lens through which to view a number of converging lines of evidence about how a developmen-
tal time window shapes adaptive immunity (Guerau-de-Arellano et al., 2009; Farber et al., 2014,
Gostic et al., 2016; Constantinides et al., 2019; Li et al., 2019, Davenport et al., 2020;
Hong et al., 2020). In our model, overall repertoire growth early in life amplifies the effect of any
early exposures, as the responding clones continue to proliferate as memory cells and thus are much
larger than memory produced from similar exposures after the homeostatic repertoire size is
reached. We thus expect early pathogen exposures to be particularly potent, as has been observed
in influenza, where disease severity across age cohorts for different strains depends on the first
exposure (Gostic et al., 2016). Conversely, we expect the presence of tolerizing factors early in life
to be particularly crucial during repertoire formation to avoid autoimmunity, as has been observed
for the autoimmune regulator gene AIRE, for which expression is only essential during a perinatal
time window (Guerau-de-Arellano et al., 2009).

A limitation of datasets used in this study is that they do not provide direct information about the
phenotypic characteristics of cells belonging to different clones. Repertoire sequencing of phenotyp-
ically sorted blood samples shows that the largest clones predominantly consist of cells with memory
phenotype (Appendix 5). This indirectly suggests that the clonal expansions during repertoire forma-
tion produce memory cells as we have assumed in our simulated cohort (Figure 4C). Supporting this
interpretation, a substantial number of memory cells circulate in the blood quickly following birth
(Pediatric AIDS Clinical Trials Group et al., 2003) and recent evidence suggests that memory-like T
cells are already generated in particular tissue sites such as the intestine even before birth
(Zhang et al., 2014; Li et al., 2019). However alternatively, early expansions could also set up a
broad distribution of naive T cell clone sizes (de Greef et al., 2020), whose hierarchy would then
need to be roughly maintained during the transition into memory to be compatible with the
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observed impact of early expansions on the hierarchy of the most abundant clones. Advances in rep-
ertoire sequencing of T cells sorted with increasing granularity using cell surface markers
(Oakes et al., 2017; Soto et al., 2020) along with advances in single-cell technologies linking TCR
sequencing and cellular phenotyping could help differentiate between these scenarios in the future.

An important question raised by our work is which antigens drive the expansion of early T cell
clones. To address this question, it will be necessary to determine the exposures that imprint the
abundance of these clones, as has been done recently for mucosal-associated invariant T cells
(Constantinides et al., 2019), a subset of non-conventional T cells. Going forward, the highly abun-
dant clones with sequences close to the genetically inherited gene templates resulting from the
absence of TdT expression during early fetal development are a particularly interesting target of
study. They might constitute an evolutionarily controlled set of innate-like defenses within the adap-
tive immune system. Determining what imprints their abundances will help resolve the question of
whether their large abundances are simply a byproduct of rapid repertoire formation or whether
these clones serve particular functions.

Materials and methods

Experimental data sources

We analyzed T cell repertoire sequencing data from two large published cohort studies of healthy
human volunteers by Britanova et al., 2016 and Emerson et al., 2017 and from a longitudinal study
by Chu et al., 2019, detailed descriptions of which we provide in the following.

In short, Britanova et al., 2016 sequenced reverse transcribed mRNA with added unique molecu-
lar identifiers (UMlIs), while Emerson et al., 2017 and Chu et al., 2019 sequenced genomic DNA
coding for this region without the addition of UMlIs. These approaches have complementary
strengths: The addition of UMlIs allows to correct for stochasticity during PCR amplification and
sequencing artifacts, while DNA sequencing removes the influence of cell-to-cell gene expression
heterogeneity.

The Britanova cohort comprises 71 individuals spanning ages 6-103 years, as well as eight cord
blood samples. The Emerson cohort spans ages 1-74 years and consists of a training and validation
set of 666 and 120 individuals, respectively. From the training set, we excluded 111 samples with
missing age information and 62 samples with a conflicting data format. We used only samples from
the training set to analyze how the scaling law of repertoire organization changes with age (Fig-
ure 1). For the zero insertion enrichment analyses (Figure 3B,C), we combined both the training and
validation set together with separately published repertoire sequencing data from eight elderly indi-
viduals Lindau et al., 2019 generated using the same experimental pipeline (immunoSEQ, Adaptive
Biotechnologies, Seattle) to achieve the broadest possible coverage of all age groups.

The longitudinal study by Chu et al., 2019 performed repertoire sequencing of peripheral blood
from three healthy female volunteers (using the immunoSEQ pipeline) over eight time points span-
ning a ~1 year time frame. One individual in the study was in mid-adulthood (24-45 years, Subject 3
in the original study), while two were in early adulthood (18-24 years, Subjects 1 and 2 in the original
study). In Figure 4A,B, we display data from the older individual as we expect dynamics of large
clones to be masked less by measurement noise as the large clones increase in relative abundance
with age.

All studies from which we analyzed data sequenced the locus coding for the TCR CDR3 B-chain
only, and we thus define clones as collections of cells sharing the same CDR3 B-chain. Clone sizes
are defined as the number of distinct unique molecular identifiers (UMls) sequenced (Britanova

Table 1. Repertoire sequencing data used in this study.

Study Link

Britanova et al., 2016 https://doi.org/10.5281/zenodo.826447
Emerson et al., 2017 https://doi.org/10.21417/B7001Z
Lindau et al., 2019 https://doi.org/10.21417/PL2018JI

Chu et al., 2019 https://doi.org/10.21417/B7J01X
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cohort), or based on sequencing reads (Emerson cohort). The definition of a clone solely based on
the CDR3 B-chain neglects convergent recombination of the most easily produced receptors with
different CDR3 o.-chains, but we expect convergent recombination to be sufficiently rare overall for
this distinction not to qualitatively affect clone size distributions.

For all studies we used data, which was preprocessed as described in the original study. This data
is publicly available using the links provided in Table 1.

We also used flow cytometry data on the fraction of naive cells from Britanova et al., 2014 (avail-
able at https://doi.org/10.1371/journal.pcbi.1005572.s016) and from Pediatric AIDS Clinical Trials
Group et al., 2003.

Data analysis

Fitting power-law exponents
We estimate the power-law exponent from sampled clone sizes {C;}, i =1,...,M, which exceed a
minimal size C,,;, by numerically maximizing the log-likelihood of the data (Clauset et al., 2009),

M
L=-Mn{(1+a,Cpn) — (1+a) > InC, 4)
i=1

where {(x,k) is the incomplete Riemann zeta function. We use C,;, = 16 for both cohorts, which pro-
vides a balance between minimizing bias of the estimated exponents induced by subsampling while
not overly increasing the variance of the estimator by excluding most of the data (see Appendix 1—
figure 2).

Fitting the zero insertion profiles

To fit the zero insertion fractions to the theory prediction (Equation 3) we determine the values for
r* and 7,4 by a weighted least squares fit. We set r and t to the mid-value of each bin for the data.
We weight each value by the sum of its empirical standard error and a fixed model specification
error of 2- 1073 chosen based on fits to the simulated cohort (Figure 4—figure supplement 3). To
demonstrate the feasibility of the parameter inference, we reinferred the parameters from the simu-
lated data and recovered those used as parameter values for the simulation. We also fitted the val-
ues of po_ and pg, but we note that they are not used in the rescaling and are only needed to
display the theoretical curve (Equation 3).

Normalization of clone sizes

Variations in sampling depth can confound comparisons of clone sizes (Appendix 1). Intuitively, if we
sample more cells overall we also expect to sample proportionally more cells belonging to each
given clone. This suggests to use the frequency with which cells are sampled from a given clone as a
more robust measure, which can be empirically estimated by normalizing each clone size by the total
sample size. We further normalize clone sizes by the fraction of memory T cells found in people of
different ages to account for the increase in memory cell fraction in peripheral blood with age
(Appendix 5). Together these two normalization steps lead to a large degree of data collapse as
compared to unnormalized clone sizes (Figure 1—figure supplement 3).

Regression analyses
We determine 95% confidence intervals on regression lines by bootstrapping using case resampling
(Efron and Hastie, 2016).

Mathematical framework
We describe T cell dynamics using the following general set of stochastic rate equations. The class
of models we consider are known in the mathematical literature as birth-death-immigration models.

The number of cells C;, i = 1,...,M of each of the M clones in the repertoire changes according to
proliferation: C; bi(CXNC C;+1, (5)
death: C; d(CXxnC C;—1, (6)
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Figure 5. Validation of the mean-field approximation. Comparison of full stochastic simulations and simulations
using mean-field competition. Parameter: by = 2 - 10*/year, d = 0.2/year, = 2 - 103/year (implying y = 0.1),
simulation length 5 years.

where the rate of proliferation b;(C,X,t) or cell death d;(C,X,r) generally can depend on the reper-
toire composition C, on the time t, and on the state of the environment X(¢) representing
for example the levels of different antigens and cytokines in the organism at a given time. We fur-
thermore consider that new clones are added at rate 6(X,) at a size Co,

recruitment : X)) Cpq = Cp. (7)
This recruitment represents thymic output and antigen-driven differentiation of naive cells for the
naive and memory compartment, respectively.

b,‘(C,X,l‘):b()/N7 di(C,X,[)Zd, Q(X,[)Za (8)

where N(r) :Z?i(f) C;(?) is the total repertoire size. In the results section ‘Long-lived incumbency
advantage shows early expansions imprint clone size hierarchy’ w modify this model by adding a
noise term that describes the effective influence of environmental variations X(f) on clonal

proliferation,
bi(C,X,1) = by /N +V20n;(1), 9
where (n;(t)n;(1')) =8;6(r—1').

Modeling repertoire formation

Mechanistic motivation for the competition function
We consider a population of N T cells that proliferate at a rate proportional to the concentration S
of a set of stimuli (stimulatory cytokines), b < S. We assume that the cytokines are produced by other
cells at some fixed rate p and degraded at a basal rate q. We further assume that competition
between T cells is mediated by their consumption of cytokines. The dynamics of S is then described
by

ds

a:pqukaN7 (10)
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where —kSN is a mass action term describing how T cells lower cytokine levels. Assuming a sepa-
ration of timescales in which cytokine concentrations change quickly we obtain the quasi steady state
approximation

p
S= .
q+kN

(11)
When the consumption term dominates relative to basal decay, kN >> g, we obtain bx S 1/N.

Mean-field competition approximation

We simplify the full stochastic model (Equation 5-Equation 7) using a mean-field approximation for
the competition, which decouples the dynamics of individual clones while retaining the full stochas-
ticity on the clonal level. This approximation replaces the dependence of the proliferation rate on N
by a dependence on its continuum theory average given by Equation 14. We exactly simulated a
system of reduced size to validate the mean-field approximation. The distributions of the exact and
mean-field simulations agree to within stochasticity (Figure 5), with the exception of the largest
clone, which is larger in the exact simulations as has been discussed elsewhere (Dodds et al., 2017).

Continuum theory of clonal growth
To obtain insight into why the model produces power-law scaling we present a simple continuum
theory of early clonal dynamics. We approximate the clone size dynamics of the i-th clone C; as

ac;i ( by }
P (Wt)*d)@, (12)

with C;(t;) = C, at the time of recruitment t;. The total repertoire size N =), C; evolves according
to

dN
E—bo*dN+9C0, (13)
whose solution is given by
N(t) = (bo +0Co) (1 —e ") /d. (14)

For times large compared to 1/d the total repertoire size given in Equation 14 reaches a steady-
state,

ch):(b0+0c0)/d7 (15)

because competition for proliferation signals acts as a homeostatic regulator. By combining Equa-
tion 14 and Equation 12 we derive the clonal growth law

el — 1 1/(1+y)
Ci(=Co (ﬁ) e, (16)

where vy as in Appendix 2 is the recruitment to proliferation ratio which in this model is given by
v=0Cy/by. To simplify we expand the growth law at leading order for small times, 1;<r<1/d, to

obtain
£\ 0+
Ci(H) =Gy <t) . (17)

This expression can also be derived directly by noting that early repertoire growth is linear
N(t)=(bo +6Cy)t, and that the early dynamics is dominated by proliferation and not death such that

ac; 1
dr — (14+7y)t

G, (18)

which is solved by Equation 17. Given the constant recruitment of new clones the distribution of
the t/'s is uniform, which with Equation 17 implies a clone size distribution
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Figure 6. Fluctuating fitness model out-of-steady state. Analytical predictions for the clone size distributions in a
geometric Brownian motion fluctuating fitness model (Integral of Equation 26) as a function of effective age
7 = Ta?. The black line shows the asymptotic prediction for the steady-state scaling. Parameter: @ = 1.2.

df;

Icl c 7 (19)

P(C) = P(1(C))

that follows power-law scaling with an adjustable exponent that depends on y. Note that the
exponent for P(C) differs by one from the exponent for the rank (Clauset et al., 2009), which is a
complementary cumulative distribution, and thus e =1+ .

Steady-state distribution

To derive the power-law scaling, we have expanded the total repertoire size for small times (or
death rates). How does the clone size distribution change later in life? At large times, the division
rate by/N(r) falls below the constant death rate d as the steady-state repertoire size N, is
approached following Equation 14. In this model this happens at a time r* ~ log(1 + 1/vy)/d, after
which the large clones experience a deterministic force toward extinction. For times 7 > r* the model
effectively reduces to the neutral birth-death dynamics considered in Appendix 2. (The growth rate
fluctuations produced by variations of the total population size around steady state asymptotically
vanish for large N,.) We thus expect the steady-state clone size distribution to be equivalent to that
of the neutral model (Equation 48). Indeed this distribution accurately describes the distribution of
small clones in old age (Figure 2B). The neutral distribution is not compatible with data as discussed
before. However, the timescale over which large early founded clones vanish is long (Appendix 2)
such that a tail of large clones resulting from the early growth dynamics can be maintained much
beyond r* until 1 > 7. (see also Appendix 2 —Relaxation time scale in a neutral model).

Modeling long-term repertoire dynamics with fluctuating clonal growth
rates

Slow convergence to steady-state scaling

Multiplicative stochastic processes are a classical generative mechanisms for heavy-tailed distribu-
tions (Sornette and Cont, 1997; Gabaix, 1999, Newman, 2005). In the context of lymphocyte
dynamics this mechanism has first been proposed by Desponds et al., 2016, who argued that fluctu-
ations in antigen availability can lead to multiplicative stochastic dynamics producing power-law scal-
ing at steady state. Here, we expand on this earlier work by analyzing a simple fluctuating fitness
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model out-of-steady-state. Our analytical results show that the emergence of scaling can be slow
when the fluctuation amplitude is small.

We opted to treat proliferation rate fluctuations as temporally uncorrelated for computational
tractability (Equation 2). Correlations in proliferation rate fluctuations are clearly an important fea-
ture of short-term dynamics — for example to describe the quick expansion and contraction during
and following acute infection over a timescales of days and weeks, respectively (Mayer et al., 2019).
However, given finite correlation times we expect to be able to capture dynamics over the long
timescales which we are interested in here, with uncorrelated noise with an effective net fluctuation
strength that averages over the short-term dynamics.

In this limit clone sizes follow a geometric Brownian motion, that is x = log C/C follows the Lan-
gevin equation

dx;
d_tl =fo+V2om;, (20)
with initial condition x(1;)=0, where o sets the fluctuation strength and where
(mi()m;(7')) = 8;6(t — ). A negative mean fitness f,<0 balances the recruitment of new clones and the
net expansion induced by the fluctuating term. In general, we might want to include also demo-
graphic noise and the extinction of clones as an absorbing boundary condition (Desponds et al.,
2016), but here for simplicity we will neglect those effects. Equation 20 is a diffusion equation for
the logarithmic clone size x and has the well-known Green'’s function

1 (—y—fo)?

G(‘x7y’ l) = \/me_ a0 ) (21)

which describes how the distribution spreads out from an initial 5-distribution centered at size y.
The clone size distribution at time T is given by

T
P(x,T) = /0 dtP(H)G(x,0,1), (22)

where t is the clonal age. For a constant immigration rate t is uniformly distributed and we obtain
by integration

V4To? V4To?
2%T :

fox(1-609) i 20
e < erfc (—IX‘ f('T) —e 2 erfc <—M+ﬁ‘r>

P(x,T) = (23)

where 6(x) is the Heaviside step function, 6(x) =0 for x<0 and 6(x) = 1 otherwise. For large T and
x>0 this reduces to

P(x) = & (<), (24)
which implies
P(C)~C " witha = —fy/0?, (25)

recovering the steady-state result from Desponds et al., 2016.
Setting fy = —ao? and rescaling age as 7 = Ta?, we can rewrite the finite time solution as

—axf(x [x[+7a —ax(1-6(x [x[—az
P )erfc(ﬁ> — gmx(1-6( »erfc( ic )

P(x,7) = (26)

2aT

Plotting the cumulative distribution of clone sizes at different effective ages (Figure 6) we
observe that the convergence of clone size distributions is slow when o2 is small. Based on estimates
for the fluctuation strength from longitudinal data (Figure 4B), we would expect significant devia-
tions from the steady state power-law scaling that persist into adulthood. Thus, this mechanism
alone is unable to account for the observed power-law scaling in data.
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A note on the scaling exponent

A minimal requirement for the existence of a steady state is fy<0 ensuring that clones eventually die
to balance the recruitment of new clones. This condition still allows such multiplicative processes to
produce power-laws with arbitrary exponents as noted before (Desponds et al., 2016). Here, we
propose that the parameters should fulfill a stronger condition. In particular, it seems reasonable to
require that the large clones do not deterministically take up a larger fraction of the overall reper-
toire, or equivalently that their expected change in clone size should not exceed one. The mean of
the lognormal distribution of clone size change is given by ¢*°, and thus we find the stronger
condition

<o, @7)

Importantly, it follows that exponents in the vicinity of @ = —1 arise without fine-tuning as long as
the timescale of expected net clonal decay is large compared to the diffusion timescale.

Another perspective on the parameterization is provided by noting that the Langevin equation
for C (not x = log C) in the Stratonovich convention includes an extra drift term —a?, to keep (AC)
independent of the choice of o. Alternatively, in the Ito convention the extra drift term arises by lto’s
lemma when transforming the equation from C to x.

Predictions for longitudinal fluctuations in clone sizes
To quantify longitudinal fluctuations, we calculate the mean and variance of log-clonesize changes
with respect to a reference time to. From the model we, according to Equation 21, expect

(x(2) = x(t0)) =for (28)

{(x(t) =x(t0) = {x(r) —x(10)))*) = 2071, (29)

The variance of log-clonesize changes in empirical data involves an additional term ¢ accounting
for sample-to-sample variability. This term is expected not to depend on the time difference, and we
can thus determine ¢? by linear regression with an intercept that captures the sampling variability o2
(Figure 4B).

We note that a similar approach has been independently proposed in unpublished work by
Ferri, 2018.

Relaxation of the zero insertion distribution

Here, we solve for the relaxation dynamics of the zero insertion distribution in a simplified setting.
Throughout we use log clone sizes x = log C for notational convenience. We posit that at time 0 the
power-law distribution P(x,0) = ae™*" is already established and we further assume that the r* larg-
est clones have zero insertion probability py_ and all smaller or later added clones have probability
Po.+- Then the probability that a clone of a given size x has zero insertions is given by

P()(X, t) = Ap()fearly (.X, t) +[70,+ (30)

where Apy =po - —po+ and feauy(x,1) is the fraction of clones of size x and time t that derive from
the r* largest clones at time O.

In the following, we determine an analytical formula for f,..(x,f) under the assumption that the
dynamics leaves the distribution unchanged P(x, ) = P(x,0). We then have

j-:::m dy eiﬂyG()Q y7 t)

e*(X)C

fearly(x: )= ) (31

where G(x,y,1) as before is the Green’s function of the fluctuating proliferation rate dynamics and
Xmin is defined such that the total number of clones times P(x>x,,) equals r*. By integration one
obtains
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Table 2. Parameters of the minimal model of repertoire formation (Figure 2B).

Parameter Explanation Value
d death rate 0.2/year
y recruitment to proliferation ratio 0.1

0 recruitment rate 10%/year
Co recruitment size 1

1 2 min — t 2002
Frans (1) = 5 049 exfe (" xF il +2a0 )), (32)
' 2 402t
which after setting fy = —ao? reduces to
1 Xpnin — X + ot
arty(x,1) = —erfe [ Z—ne—— . 33
Jearty(%,1) ST C( o7 ) (33)

To convert clone size into ranks, we note that rank~e ™ and thus x,i, —x~1log(%). In combina-
tion with Equation 33 and Equation 30 we thus obtain

A Llog(r/r*) + ac?t
Po(r,1) = erte (%) +por- (34)
{0

Defining a characteristic timescale for the diffusive dynamics as 7, = 1/(ac)?, we can simplify this
expression to

Po(r,t) = %erfc <W> +Po+- (35)
d

Simulation procedures

Repertoire formation

To simulate the model efficiently at large scales, we use a mean-field competition approximation
(Materials and methods — Mean—field competition approximation). We verified the validity of the
mean-field assumption by comparing them to full stochastic simulations of the coupled birth-death-
immigration equations, which we simulated using the Gillespie algorithm (Press et al., 2007; Fig-
ure 5). In the mean-field approximation, the proliferation rate is time-dependent, which requires a
specific procedure for sampling event times. The time interval until the next event depends on the
total rate for all possible processes A(r) = 0 + b(t) + d . To sample an interval of time Ar between two
events from an inhomogeneous Poisson process of rate A(f) one can sample from a Poisson process
with a rate function A*(¢) fulfilling the majoration condition A* > A(¢) V¢ and then reject a proposed
time interval Ar* with a probability of 1 —A(r + Ar*)/A*(t + Ar*) (Lewis and Shedler, 1979). The
thinned set of event times follows the statistics of the Poisson process with rate A(¢). Here, because
competition is increasing with time, A(r) decreases monotonically. Therefore, the homogeneous Pois-
son process with a constant rate function A*(r) = A(1y), satisfies the majoration condition. Using this
thinning technique, we are able to efficiently sample the next event time while accounting for the
time-dependence of the proliferation rate. The source code that allows reproduction of the statisti-
cal analyses and numerical results reported in the manuscript is published (Gaimann et al., 2020).

Simulated cohort

As empirical evidence shows that the tail of the clone size distribution is almost exclusively driven by
cells with memory phenotype (Appendix 5), we focused on the clone size dynamics within the mem-
ory compartment. We assumed that the recruitment size for memory cells is independent of the
prior naive cell dynamics, and we thus did not explicitly model the clone size dynamics within the
naive compartment. Within the memory compartment, we modeled clone size dynamics under the
combined effect of early deterministic expansions during repertoire formation and fluctuating clonal
growth rates according to Equation 2. Given the large sizes of memory clones, we expect
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demographic stochasticity to be negligible relative to clone size variability introduced by fluctuating
selection. For tractability, we thus ignored demographic fluctuations, which allowed us to combine
the continuum solution to the deterministic clonal growth (Equation 16) with the stochastic propa-
gator for the fluctuating dynamics (Equation 21) to efficiently simulate the dynamics. To study the
enrichment of zero insertion clones in silico, we assigned newly recruited memory clones as having
zero insertions with a probability equal to the fraction py(f) of zero insertion clones within the naive
compartment. We assumed po(f) =po_ before TdT expression turn-on at time ' and
po(t) = po—t/tT +po+ (1 —t/t7) for t>t", where t/f' is the fraction of naive clones produced since the
switch to the adult recombination statistics. Taken together, these simplifications lead to the follow-
ing direct sampling scheme:

e Sample the age T of an individual uniformly from the range [0, 80] years.

o Set the number of clones equal to 0T (rounded to the nearest integer), where 0 is the rate of
recruitment of new clones to the memory compartment.

e For each clone determine its recruitment time t; by drawing uniformly from the range [0, 7.

e Assign each clone as having zero insertions with a probability

(1) = { Po- <t
po pot/t +po(1—1/") otherwise

e Sample the size C;(T) of each clone as follows (Equation 16 and Equation 21),

1 el —1
i = i), xi~N|—d(T—t;)+——log( ——— | —0*(T —1;),20*(T —1;
Ci=exp(x;), x N( d( l)+1+70g(edtf,1> o (T —1),20°( l)), (36)

where d,y,0? are model parameters and y~N(u, o?) indicates x being drawn from a normal distri-

bution of mean p and variance o?.

* Finally to mimic the experimental sampling depth of Ny, reads we determine sampled clone
sizes C; by Poisson sampling,

Ci~Pois(Ngampie - Ci/N), with N = Z c, (37)

where x~Pois(A) indicates x being drawn from a Poisson distribution of parameter A.

Parameter choices
In the following, we summarize the parameters we used to simulate repertoire dynamics and provide
additional motivation for our parameter choices.

Lifetimes of several years and several months have been measured by deuterium labeling for
naive and memory T cells, respectively (De Boer and Perelson, 2013; Borghans et al., 2018). Clonal
turnover can be substantially slower than cellular turnover when proliferation balances most death
(Appendix 2). This has been shown to be the case for the maintenance of naive cells in human
(Zhang et al., 2014), where the aging-associated decline of the fraction of T cells with TCR excision

Table 3. Parameters of the simulated cohort (Figure 3C).

Parameter Explanation Value

o? Magnitude of clone size fluctuations 0.08/year
d Death rate 0.2/year
y Recruitment to proliferation ratio 0.1

0 Recruitment rate 10°/year
Po— Zero insertion fraction early in life 0.07

Do+ Adult zero insertion fraction 0.02

rf Time of recombination statistics switch 0.05 years
Nampie Simulated sample size 5.10°
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circles (TRECs) suggests y~0.1. Similarly, memory T cell numbers decline much more slowly overall
than suggested by the deuterium labeling literature, which is thought to be driven by homeostatic
proliferation in the absence of reinfection (Macallan et al., 2017). For example, T cell memory has
been observed to decline with half-lives of 8-15 years by following titers after small pox vaccination
(Hammarlund et al., 2003). Additionally, the relatively short average lifetime of memory T cells likely
masks substantial heterogeneity with a subset of more long-lived cells also contributing to the slower
long-term decline of memory cells (Akondy et al., 2017). Another line of direct evidence for long
clonal persistence has come from two studies of identical twins (Pogorelyy et al., 2017,
Tanno et al., 2020), which have shown an excess sharing of identical clones decades after in utero
blood exchange in monochorionic twins.

To simulate repertoire formation (Figure 2B), we used a set of parameters summarized in Table 2.
In choosing these parameters, we were not trying to reproduce exact values of any particular T cell
subset, but rather illustrate a plausible biological parameter regime that characterizes T cell dynam-
ics. We note that qualitatively the scaling presented in Figure 2B only depends on y as shown by
our theoretical analysis, in a way that is shown in Figure 2D. For the recruitment rate 6, we used a
rate intermediate between those suggested by estimates of thymic output and the rate of recruit-
ment of memory clones suggested by estimates of the diversity of the memory compartment (see
below). We note that under mean-field competition the rate of recruitment 6 only determines the
overall number of clones, but does not influence the dynamics of individual clones. While 6
decreases during adulthood for both the naive compartment (as thymic production wanes with age)
and the memory compartment (as new primary responses are rarer at advanced age), we used a con-
stant 6 for simplicity. We expect this simplifying assumption not to qualitatively affect the results in
Figure 2 due to a separation of timescales: The clone size scaling emerging from the expansionary
dynamics only depends on the rate 6 during infancy and not on slower changes in § happening dur-
ing adulthood. We chose a recruitment size of one to numerically investigate potential deviations
from the continuum theory predictions due to demographic stochasticity. The number of recruited
clones is of course much larger in practice in the memory compartment, and even naive cells
undergo a few rounds of division before thymic export and thus have Cy>1. Assuming a larger Cy
will further decrease the small effects of demographic stochasticity relative to the continuum theory.

To study the enrichment of zero insertion clones in a simulated cohort (Figure 4C), we used the
same recruitment to proliferation ratio and death rate as in the previous simulation of repertoire for-
mation. To determine the absolute number of large clones that have zero insertions in these simula-
tions, the choice of the recruitment rate 6 is important. Based on order-of-magnitude estimates of
the clonal diversity of the memory compartment (Robins et al., 2009; Qi et al., 2014), we chose a
value of § = 10°/year. Additionally, we chose a fraction of zero insertion clones within the early naive
compartment of py_ = 0.07 (roughly equal to their overall fraction in cord blood [Pogorelyy et al.,
2017)) and in the late naive compartment equal to py . = 0.02 (roughly equal to their overall fraction
in adult blood). Finally, we used " = 0.05 years for the time of the recombination switch, which
together with the choice of # produces ~10% excess zero insertion clones recruited during repertoire
formation in line with the empirical enrichment data in the <10 years age group (Figure 3B). All
parameters are summarized in Table 3.
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Appendix 1

Subsampling scaling

Only a small fraction of the ~10"? T cells in the human body are sampled by repertoire sequencing.
What effect does subsampling have on the clone size distribution? In the following, we discuss how
subsampling affects the distribution of sampled clone sizes and we discuss analysis techniques for
robust inferences and data visualization despite variations in sampling depth.

Inference of scaling exponent

Given a clone of size C in the repertoire, the number of reads from that clone C follows a distribution
P(C|C). The form of P(C|C) depends on the sampling process. To build intuition let us consider the
simplest case, in which every cell is sampled independently with a probability 5, the subsampling
fraction. Then the sampling distribution is binomial

P(T|C) = (g) €1 —m)€C. (38)

The mean of this distribution is

(C)=nC, (39)

which implies that sampled clone sizes are on average smaller by a factor n than the actual clone
size. In the practically relevant limit where the sampling fraction is small, n < 1, we can further sim-
plify and assume that the counts from the large clones follow a Poisson distribution. In the Poisson
limit, the sampled clone size varies around its mean value with a coefficient of variation that scales as
an inverse of the square root of the mean sampled count,

Je-w@)y
c, = (é) =/ (40)

Importantly, the stochastic sampling introduces a subsampling scale, C = nC~1, at the clone size
C =1/m, from which on average we expect a single sampled cell. Due to the existence of this scale
subsampling breaks scale-invariance: even if P(C) follows a perfect power law, the distribution of
sampled counts

P(C)=Y_P(C)P(C|C) 41)
C

deviates from power-law scaling close to C = 1. This intuition can be made rigorous using a gen-
erating function formalism (Stumpf et al., 2005): for example for P(C) =C~%/{(2) one obtains for
Cc>1
1

P(C)~ FeaTIR (42)

As expected the scaling with an exponent —2 is recovered asymptotically, but subsampling leads
to a deviation from scaling when C is close to 1.

The deviation from scaling due to subsampling leads to biases in naive estimates of the scaling
exponent. How can we determine a power-law exponent in a way that is robust to subsampling?
When the sampling distribution is known or can be inferred from replicate sequencing the exponent
can be determined using maximum likelihood estimation of a model with an underlying power law
distribution of clone sizes convolved with the sampling probability (Puelma Touzel et al., 2020).
Here, we propose a simpler approach that does not require precise knowledge of the sampling pro-
cess. We exploit the fact that the deviations from scaling vanish asymptotically for large C (Equa-
tion 42), by excluding small clones below some minimal size C,;, from the fitting. The power-law
exponent is expected to converge as we increase C,;,, which we confirm using simulated data
(Appendix 1—figure 1, blue dots). We can also consider more realistic models for the sampling
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process that account for overdispersion, that is their coefficient of variation exceeds the minimal
value of one set by Poisson sampling. Mechanistically, such overdispersion arises for a number of
reasons, most importantly because in practice we are not actually directly counting cells: in the
DNA-based sequencing pipeline every cell can give rise to multiple sequencing reads due to the
PCR amplification step, and in the mRNA-based sequencing pipeline despite the addition of unique
molecular identifiers several of them can originate from different mRNA molecules from the same
cell. As long as the number of reads from each cell is independently and identically distributed the
law of large numbers ensures that the relative frequencies of large clones converge. We thus expect
that the trimming method of fitting only to counts greater than C,,;, also works for overdispersed
sampling. We test the trimming method on simulated data, in which the sampling follows a negative
binomial distribution with mean w and variance p -+ au® (which reduces to Poisson sampling for
a = 0). We find that trimming allows a correct estimate of « (Appendix 1—figure 1, orange and
green dots).
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Negative Binomial, a = 1
¢ Negative Binomial, a = 10
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o
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Power-law exponent a
N
[o)]
]

2414
224 ¢ o o N N ]
T
20+
10° 10" 10°
Cutoff Cpin

Appendix 1—figure 1. Estimated power-law exponents converge to correct value using trimming
method. Fitted exponent as a function of the cutoff choice in simulated data (errorbars +2 SE over
50 independent draws). The fitted exponent changes drastically for small C,,;,, before leveling off
indicating deviations from true power-law scaling at the smallest clone sizes. Such a deviation is
expected due to subsampling despite the true power-law scaling in the underlying distribution (see
text). Simulations: 107 clones were drawn from a discrete power-law distribution with @ = 2.15. A
sample of size 5 - 10° cells was then drawn from the underlying power law based on a Poisson (blue
dots) or negative binomial sampling (orange and green dots show two choices of the overdispersion
coefficient a).

Applying the same method to the empirical data we find that the fitted exponents also depend
on C,i, (Appendix 1—figure 2). In practice, we chose C,,;, = 16 to balance a trade-off between mini-
mizing bias and variance, which increases as more of the data is excluded from the fit Appendix 1—
figure 2.
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Appendix 1—figure 2 continued on next page
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Appendix 1—figure 2 continued

Appendix 1—figure 2. Influence of choice of C,;, on fitted power-law exponent for empirical data.
Fitted exponent as a function of the cutoff choice (black lines: 50 random repertoires, blue line:
mean) in the (A) Britanova et al. and (B) Emerson et al. datasets. The fitted exponent changes
drastically for small C,,;, before leveling off indicating deviations from true power-law scaling at the
smallest clone sizes, similarly to those seen in simulated data (Figure 1). To alleviate the bias
induced by finite sampling, we choose a cutoff value C,;,, for which the power-law exponent
estimates have leveled off. For large C,;, the variance of fitted exponent increases as more and
more data is excluded from the fit (A, B inset), which sets a practical upper bound for choosing Cp;,.

Graphical display of subsampled distributions

The intuition we have built about how subsampling affects clone size distributions can help us
choose an appropriate method for displaying subsampled data (Appendix 1—figure 3). Which
graphical representation of the clone size distribution minimizes the influence of variations in sam-
pling depth?
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Appendix 1—figure 3. Graphical display of subsampled power-law distributions. (A-D) Show various
ways of displaying clone size distributions obtained by subsampling an underlying clone size
distribution consisting of 10® clones drawn according to P(C)~ C~22 to various sampling depths. (A)
The empirical probability density function of clone sizes, (B) its cumulative density, as well as (C) the
cumulative density of normalized clone sizes are not invariant under changes of the sampling depth.
Only the tail behavior of relative frequencies of finding cells from large clones is reproducibly
captured, which makes rank-frequency plots (displays of unnormalized cumulative distributions of
normalized clone sizes) the method of choice for collapsing clone size distributions at various
sampling depths.

The shift of the mean clone size (Equation 39) suggests that we should normalize sampled clone
sizes by the sampling fraction 7, as has been noted elsewhere (Levina and Priesemann, 2017).
While experimentally we do not know the sampling fraction, we can instead simply divide the clone
sizes by the total sample size (Appendix 1—figure 3C,D). This normalization is particularly intuitive
as it corresponds to using the relative frequencies of cells in different clones. While the absolute
number of cells in a large clone increases with more sampling, the fraction of all sampled cells that
are part of a particular clone remains constant on average.

Plots of the cumulative distribution of clone sizes make it easier to visually assess the tail behavior
of the distribution (Appendix 1—figure 3B) than plots of the probability density (Appendix 1—fig-
ure 3A). However, even after normalizing clone sizes by the sample size there remains a very visible
shift between the cumulative distributions at different sampling depths (Appendix 1—figure 3C).
This shift arises because the implicit normalization by the total number of unique clones makes the
sampled cumulative distribution depend heavily on sampling depth. As sampling increases so does
the total number of unique clones that will be sequenced. This suggests that we might do better by
simply omitting the normalization. Ranking clones by their normalized size yields precisely such an
unnormalized cumulative distribution. Taken together, by both scaling clone sizes by the sample size
and resisting the temptation to normalize the ranks, we can collapse distributions sampled at differ-
ent depths (Appendix 1—figure 3D).
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Modeling neutral repertoire dynamics

In the following, we review results on the neutral dynamics of clone sizes in which the continuous
recruitment of new clones is balanced by a net negative growth of already established clones b<d.
These models have a long history in ecology (Volkov et al., 2003), and have also been proposed as
null models in the context of T cell dynamics previously (Desponds et al., 2017, Desponds et al.,
2016; de Greef et al., 2020). While the results can be found in the literature their inclusion serves
to introduce a parametrization highlighting the recruitment to proliferation ratio y as a key quantity
governing clonal dynamics.

Steady-state clone size distribution
At steady state, the probability distribution P(C) of clone sizes C needs to fulfill the balance

condition
bCP(C)=d(C+1)P(C+1), (43)
for all C>C, which yields
P(C) o<l (b>C: lexp(fCIOg(d/b)). (44)
Cc\d C

This distribution is characterized by power-law scaling with an exponent of 1 for small clone sizes,
and, importantly, has an exponential cutoff at C*=1/log(d/b). In contradiction with this model
experiments point toward power-law scaling with an exponent ~2 (Note that P(C)~C~*"! when
rank~C~%). Additionally, the size of large clones seen experimentally is incompatible with the pre-
dicted exponential cutoff as we discuss below.

The total repertoire size follows the following continuum equation

N _ b aN+0c,, (45)
dr
such that at steady-state, ‘g}’ =0, the repertoire has a total size
0Cy
Ny = . 46
=5 (46)

For a more interpretable alternative parametrization, we introduce the recruitment to prolifera-
tion ratio for the maintenance of cells at steady state

0Cy d
Using this relation to rewrite Equation 44 we obtain
1
P(C)aEexp(fClog(qu'y)), (48)

implying a cutoff clone size of C* =1/log(1 + ). The largest clones represent on the order of one
percent of the repertoire, which assuming independent sampling from the underlying repertoire
would correspond to ~10'° cells in the complete repertoire. For small y, we can expand C*~1/y, so
in order to have a cutoff clone size C* of this order of magnitude one would need to have an unrea-
sonably small y~1071°,

Relaxation time scale in a neutral model

Over what timescale do transiently expanded clones disappear in a neutral model? The time scale
7. = 715 for deterministic clonal decay can be much larger than the lifespan 1/d of a single cell when
birth and death are closely balanced. Rewriting the birth rate in terms of y and d we obtain
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147y

Te= W» (49)

demonstrating that for y < 1 clonal dynamics is a factor of 1/y slower than cellular dynamics.
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Appendix 3

Influence of model assumptions on repertoire formation process

For tractability and interpretability, we have kept the model presented for repertoire formation in
the main text deliberately simple. Here, we explore how a saturation of the proliferation rate, com-
petition for specific resources, or variations in the recruited number of cells impact the clone size
distributions.

Saturation of proliferation rate

Cellular growth is not arbitrarily fast, which is not accounted for in the simple model in which cells
proliferate very rapidly early in life. To understand how such a saturation effect influences clone size
distributions, we introduce an upper limit on birth rate that limits proliferation in the absence of
competition. Following De Boer and Perelson, 1995, we set the clonal birth rate to b(r) =
bo/(K + N) for some constant K, which sets the repertoire size below which competition is negligible.
Given this choice the birth rate remains limited to a value by/K even in the absence of any competi-
tors. Increasing K leads to deviation in the scaling of the largest clones, but the same scaling remains
at intermediate clone sizes (Figure 2—figure supplement 2). In the model early clonal growth is
exponential until the total repertoire has reached size N(¢) ~ K, which explains the different distribu-
tion of the largest clones. However, the number of clones that are recruited during this phase grows
only logarithmically with K due to the exponential increase in total repertoire size.

Competition for specific resources

T cells respond to stimuli from peptide-MHC complexes, which could also act as limiting resources.
T cells then compete only with those cells specific to the same antigens in contrast to the global
competition considered previously. To assess how assumptions about the mechanisms of competi-
tion influence, our results we simulated the repertoire formation process using a classical description
of competition for antigens (De Boer and Perelson, 1994, De Boer et al., 2001, Mayer et al.,
2015). We consider a fixed number of antigens N, and encode the specificity of the M clones in a
matrix K of size M x N,, where K; = 1 if clone i recognizes the antigen j and K;; = 0 otherwise. We
draw the entries of K independently with a fixed binding probability p,. We assume that the prolifer-
ation rate of a cell of the i-th clone is proportional to the amount of antigenic stimulation:

by Na
b; = Va; K;F; (50)

where the availability of antigen j is given by

1

R —
T YK G

(51)

The normalization of Equation 50 ensures that total proliferation is comparable to a global
resource model with the same parameters independent of N,. For computational tractability, we sim-
ulated the clone size dynamics without taking into account demographic stochasticity in proliferation
and death of cells. While more specific competition (smaller p,) leads to a deviation in the distribu-
tion of the largest clones, we find that clone size distributions are heavy tailed independently of the
choice of p,, and all display the same scaling at intermediate clone sizes (Figure 2—figure supple-
ment 3).

Variations of the recruitment size

The numbers of cells Cy that are recruited might also be variable. In particular, this will be the case
when modeling the memory compartment, in which Co represents the number of cells from a clone
recruited into memory following infection. To understand how such variations modify the dynamics
of repertoire formation, we derive an analytical prediction in the case where the distribution of
recruitment sizes, P(Cy), is lognormal. Given a lognormal distribution with parameters 1 and oy the
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mean introduction size is given by Cy = ¢#7i/2, To keep the mean introduction size constant while
changing the variability of clone sizes, we use a parametrization in terms of Cy and oy and set
o = log(Cy) — 03 /2. To determine the clone size distribution resulting from early repertoire growth,

we integrate the continuum theory prediction, P(C/Cy) o (C/Cy)">"" over the distribution of Cy:

P(C) ox [y dCo(C/Co) s o/ 2 o)

5 \—2-7 L o2 1 [(—2log(C/Co)+(3+27y)0?2
=(C/Cp) T+ 0%( s /2;%00( v) 0)'

(52)

The complementary error function (x) saturates for x < —1. Thus, the distribution follows the
same power-law P(C)~C~277 for large clones, logC/Co>>ao(\/§+3+—22”ao), while it deviates for
smaller clones within the range of recruitment sizes (Figure 2—figure supplement 1).
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Appendix 4

A unified view on mechanisms generating power laws in different
growth processes

The origin of power-law scaling during repertoire formation is reminiscent of a class of stochastic
processes widely studied in the literature as a mechanism underlying power-law distributions found
in diverse contexts (Yule, 1924; Luria and Delbriick, 1943; Barabasi and Albert, 1999), which has
been rediscovered multiple times since the pioneering work of Yule on speciation (Yule, 1924).
Common to these processes is that the distribution of types at a given point is the result of a bal-
ance between the growth of existing types and the addition of new types. The different models
depending on their context differ in (i) the growth rate r(r) of the number of units of each already
existing type and (ii) the rate function 6(r) at which new types are introduced. They all share the
same basic mathematical mechanism that produces a power law distribution of types as we review
below. The three maybe most well-known instances of this class of processes are the following:

e The Yule model of speciation (Yule, 1924), in which (i) species within a genus speciate at some
constant rate, and (ii) new genus is created at a rate proportional to the number of already
existing genera.

e The Luria-Delbriick model of population genetics during exponential growth (Luria and Del-
briick, 1943) in which (i) each cell divides at a constant rate, and (ii) new alleles arise through
random mutation at a constant rate per cell division.

o The Barabasi-Albert model of network growth (Barabasi and Albert, 1999), in which at every
time step (ii) a new node is added, and is (i) linked to m already existing nodes with a probabil-
ity proportional to the number links that a chosen node already has.

Despite differing in their assumptions about the functional form of the growth and innovation
rates we show in the following that these different models all share a common mathematical basis.
To provide a common terminology, we will use the language of urn models and refer to different
types as urns and to the different number of units of each types as balls in each urn. In an attempt to
unify the different models, we develop a continuum theory for these growth-innovation processes.
To do so, we rescale time to

r:/o o(«"Hdr, (53)

such that new urns are added at unit rate, 6(7) =1. The number of balls in each urn then grows
according to

dC; dCidr  r(i(1))
dr  drdr 6(i(7))

Cizig(T)Ci. (54)

The key to the power-law scaling in all these models is the existence of a regime in which
1
{r)=—, (55)

that is the growth rate scales inversely with rescaled time with a proportionality factor 1/«a. Equa-
tion 55 has the same form as Equation 18 that we derived for our model of repertoire formation.
Thus following the derivation of Equation 19 within Materials and methods — Continuum theory of
clonal growth we obtain a subexponential growth of balls in already existing urns, which leads to a
power law scaling of the distribution of balls per urn,

P(C)ox C™*71, (56)

with an adjustable exponent that depends on a.

Before deriving how Equation 55 arises in specific contexts let us first remark on a general conse-
quence of this form of effective growth law: The total number of balls added to all existing urns per
rescaled time unit is constant. To derive this let us assume that each new urn is populated by Cy
balls, then the total number of balls N(r) = }", C; grows according to
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W_1yic, (57)
dr  art
which is solved by
_ G
N(T)_a_lr (58)

Multiplying by the growth rate Equation 55 yields a constant,

N()Z(r) =2 (59)

thus showing the equivalency between the assumed growth rate dependency on rescaled time
and the constancy of how many balls are added per rescaled time unit.

In the Yule process, we have r(r) = r and recruitment is proportional to the number of genera,
0(t) = sG(r), which grow at a (generally different) rate s, G(¢) = Goe". By integration we obtain
7(t) = Go(e" — 1), which leads to {(7) = /- Thus {(7)= > when the number of newly created
genera exceeds the initial number 7 > Gy. The exponent of the power-law is determined by the
ratio of the growth of genera and species, a = s/r.

In the Luria-Delbriick model, we have r(r) = r assuming mutations do not change the growth rate.
Recruitment is proportional to the total population size 6(r) = urN(t), where u is the mutation proba-
bility per replication and where N(r) = Nye™. By integration we obtain 7 (1) = uNy(e” — 1), which leads

to {(7) = m Thus {(7) =+ when 7 > uNj. In contrast to Yule’s model, the power-law exponent

is fixed at @ = 1 under our assumption that mutations are neutral, because the same growth process
governs the increase in 6(¢) and in cell numbers.

In the Barabasi-Albert model, the introduction rate 6(r) = 1 is constant, but r(r) decreases with
time. The m newly added links attach preferentially to those nodes that already have a large degree.
The growth rate r(r) = m/N(t) of a node thus decreases proportionally to the total degree N = 2mt
of all present nodes. We have r(r) = 1/(2t), which implies {(7) = 5~ and a = 2.
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Appendix 5

Relation between clone size and cellular phenotypes

In both cohorts, all T cells from peripheral blood were sequenced irrespective of their phenotypes.
Antigenic challenges drive large clonal expansions and we thus expect clones with effector or mem-
ory cells to be larger than naive clones all else being equal (Farber et al., 2014; Mayer et al.,
2019). This has generally been confirmed by TCR repertoire sequencing studies (Oakes et al.,
2017), but there have also been some reports (Qi et al., 2014; Pogorelyy et al., 2017) of expanded
naive clones with similar sizes to the largest memory clones. Given this unclear picture from the liter-
ature, we analyzed the relative contribution of naive and memory cells to clones of different sizes.
Overall, we might expect that naive clones dominate the clone size distribution at the smallest
sizes. To test this idea, we compared sequencing and flow cytometry data from the Britanova cohort
and found that the fraction of naive cells in different individuals explains a remarkably high 88% of
variability in the number of clones sequenced only once after subsampling all repertoires to the
same size (Figure 1—figure supplement 2A). To further determine how cells from clones of differ-
ent sizes partition phenotypically, we analyzed data from a study in which T cells were sequenced
both in unsorted blood as well as after sorting into naive and memory cells (Chu et al., 2019). We
find that the sizes of large clones follow the same scaling in unsorted blood and in the memory com-
partment (Figure 1—figure supplement 2B) Within the naive compartment most clones are small,
in particular when excluding clones from which cells are also found in the memory compartment (Fig-
ure 1—figure supplement 2B, red line). We note from the plot that all the largest 200 clones in
unsorted blood have memory phenotype cells, and less than 1% of the top 1000 clones are not
found within the memory compartment. This rules out that the enrichment of zero insertion clones
among the most abundant clones found in Figure 3 is driven by naive clones as has been suggested
in a previous study (Pogorelyy et al., 2017). The relative frequency of a clone within the memory
compartment is larger by a constant fold-factor (Figure 1—figure supplement 2C), likely reflecting
an increased relative frequency of the large clones when excluding naive cells from the denominator.
Our analysis of the clone size distributions in unsorted blood shows that the largest clones take
up an increasing fraction of all sampled reads with age (Figure 1—figure supplement 3B,E). Flow
cytometry data shows that the overall fraction of memory T cells in blood also increases with age
(Figure 1—figure supplement 2D; Pediatric AIDS Clinical Trials Group et al., 2003,
Britanova et al., 2016). How much is the former increase explained by the latter? In the following,
we show how to answer this question in the absence of direct data on sorted memory T cell reper-
toires. Let us define C} as the number of memory cells of the i-th clone and C; as the number of
naive cells. What we are measuring in unsorted blood is the overall fractional size f; of the clone,

__G+cr
GG

What we are interested in instead is the fraction of the memory compartment taken up by cells
belonging to the same clone,

Ji (60)

ct
e R 61
s r
We have shown above that empirically for the largest clones C;" > C;. Thus
| oo
ﬁ+zﬁ/r+7 Wlthr+:m, (62)

where r' is the fraction of memory cells within the repertoire. Finally, we approximate r* by its
mean value expected at each given age as fitted from the flow cytometry data (Figure 1—figure
supplement 2D). We find that this normalization mostly collapses the tails of empirical clone size dis-
tributions (Figure 1—figure supplement 3C,F). This implies that most of the increase in the sizes of
the largest clones is explained by the overall expansion of the memory compartment, while the rela-
tive clone sizes within the memory compartment are more stable.
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