
Science of Computer Programming 198 (2020) 102520
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

EMIP: The eye movements in programming dataset

Roman Bednarik a,∗, Teresa Busjahn b, Agostino Gibaldi c, Alireza Ahadi d, 
Maria Bielikova e, Martha Crosby g, Kai Essig h, Fabian Fagerholmn,i, 
Ahmad Jbara j, Raymond Lister d, Pavel Orlov k, James Paterson l, Bonita Sharif m, 
Teemu Sirkiä n, Jan Stelovsky g, Jozef Tvarozek f, Hana Vrzakova o, 
Ian van der Linde p

a University of Eastern Finland, Finland
b HTW Berlin, Germany
c University of Genova, Italy
d University of Technology, Sydney, Australia
e Kempelen Institute of Intelligent Technologies, Slovakia
f Slovak University of Technology in Bratislava, Slovakia
g University of Hawai‘i at Mānoa, USA
h Rhine-Waal University of Applied Sciences, Germany
i University of Helsinki, Finland
j Augusta University, GA, USA
k Imperial College London, UK
l Glasgow Caledonian University, UK
m University of Nebraska, Lincoln, USA
n Aalto University, Finland
o University of Colorado, Boulder, USA
p Anglia Ruskin University, Cambridge, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 September 2019
Received in revised form 14 July 2020
Accepted 15 July 2020
Available online 4 August 2020

Keywords:
Eye-tracking
Program comprehension
Dataset

A large dataset that contains the eye movements of N=216 programmers of different 
experience levels captured during two code comprehension tasks is presented. Data are 
grouped in terms of programming expertise (from none to high) and other demographic 
descriptors. Data were collected through an international collaborative effort that involved 
eleven research teams across eight countries on four continents. The same eye tracking 
apparatus and software was used for the data collection. The Eye Movements in Program
ming (EMIP) dataset is freely available for download. The varied metadata in the EMIP 
dataset provides fertile ground for the analysis of gaze behavior and may be used to make 
novel insights about code comprehension.

Crown Copyright © 2020 Published by Elsevier B.V. All rights reserved.

1. Introduction

The earliest studies that examined of the role of visual attention in programming date back to 1990. Crosby and Stelovsky 
[1] asked N=19 participants, divided into low and high experience groups, to view prose, code, and graphical versions of 

* Corresponding author.
E-mail address: roman.bednarik@uef.fi (R. Bednarik).
https://doi.org/10.1016/j.scico.2020.102520
0167-6423/Crown Copyright © 2020 Published by Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2020.102520
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102520&domain=pdf
mailto:roman.bednarik@uef.fi
https://doi.org/10.1016/j.scico.2020.102520


2 R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520
a binary search algorithm while their eye movements were recorded. Results included that a range of individual strate-
gies/scan-paths were found; that there were significant differences in the way programmers read source code in comparison 
to prose (e.g., that more fixations were directed to relevant areas of code in comparison to prose); that programmers with 
less experience spend more time examining code comments; and those with more experience examine code more efficiently, 
directing their attention to the most important (complex) areas of the algorithm.

With the increasing availability and maturity of eye-tracking apparatus, more studies of program comprehension using 
eye tracking have emerged. A number of exemplar studies highlighting the kinds of research questions that can be addressed 
by analyzing the eye movements of programmers are briefly summarized below, but for more complete reviews see [2] and 
[3]. In 2006, Uwano et al. [4] presented typical patterns of eye movements across source code. Bednarik and Tukiainen 
[5] reported on the differences in gaze patterns between novice and expert programmers using an interactive dynamic 
visualization environment. More recent studies examined the effect (on the pattern of eye movements elicited) of identifier 
naming conventions [6,7], programming language [8], and also examined the potential role of parafoveal vision (i.e., outside 
the visual axis) in code comprehension [9]. Busjahn et al. showed that the order in which novice and expert programmers 
read through the lines of code in a program differs from the order that those lines would be executed [10].

In the present article, we present the EMIP (Eye Movements In Programming) dataset, a large eye movement dataset 
recorded from programmers across multiple sites of different levels of expertise as they examined two object oriented 
source code fragments. It is hoped that this dataset will enable more questions concerning program comprehension to be 
addressed, and that the size of the dataset will allow this to be done with ample statistical power (cf. existing studies that 
typically use much fewer participants). For a practical guide on how to design and conduct eye tracking studies in software 
engineering we direct the reader to [11].

2. Motivation for eye movements in programming dataset

With the increasing number of published studies examining eye movements in programming, there is a growing need to 
compare and consolidate theories and results. Aside from systematic reviews [2,3], one way to accomplish this is through 
the provision of a large, publicly available dataset that can be mined both to verify existing theories and develop new ones. 
Some of the principal motivations for the new dataset are enumerated below.

First, the question of how to exploit eye-tracking data effectively during live programming is unresolved; for instance, 
in the development of automated tools for error correction [12]. Such methods would greatly benefit from a large pool 
of data collected in controlled conditions. A similar argument holds for research using machine learning and data-mining. 
The training, optimization, and validation of such systems would benefit greatly from the availability of a sufficiently large 
quantity of labeled data.

Second, such a dataset has the capacity to inform the use of eye tracking in the programming and software development 
process. For example, in recent studies, eye-tracking has been used to improve awareness and collaboration between pair 
programmers [13]. Learning the typical gaze patterns of programmers during comprehension activities is more robust in the 
presence of a sufficiently large dataset.

Third, central questions in eye-tracking programming research focus on differences that emerge as a consequence of 
programmer expertise. Indeed, researchers have shown great interest in trying to identify and understand the diagnostic 
markers of expertise. A large dataset, as presented here, supported by a large number of participants of different expertise 
levels, allows for finer-grained analyses of expertise-related research questions.

Fourth, eye-tracking data is gaining popularity as a physiological measure of developers’ workload or emotional state 
[14]. These studies benefit from the availability of a large dataset, providing high statistical power. Moreover, recent years 
have seen the development of low-cost eye tracking devices with performance that is beginning to approach research 
grade devices [15,16], and the integration of eye-tracking devices into conventional laptop computers, allowing for more 
widespread use of these approaches in the future.

Fifth, obtaining a large dataset requires significant technical investment, effort, and is costly to collect. A large, free 
dataset should help support the enlargement of the research community in this area, permitting both the replication and 
validation of existing findings and the development of new avenues of research in the sub-field of program comprehension 
in software engineering.

This paper describes an international effort to collect a large and carefully controlled dataset that is suitable for address-
ing the questions and research problems described above, inter alia.

3. Materials and methods

We describe the logistics of the data collection process, test stimuli (i.e., the code that participants were asked to ex-
amine), apparatus, the experimental procedure, and the format and structure of the captured data in detail below. This 
information is provided to enable users to evaluate the robustness of our data, to understand the kinds of research ques-
tions that can be asked (i.e., which variables describing participants were collected and therefore may serve as predictors 
in analyses), to enable others to replicate and/or extend the dataset, and to enable others to compare our results with their 
own by considering any methodological differences.

To support replication, all materials for conducting the study are available at http://emipws .org /stimulus -material/.

http://emipws.org/stimulus-material/


R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520 3
3.1. Data collection logistics

The EMIP dataset was collected as a community effort involving eleven research teams across eight countries and four 
continents. A call for participation was distributed using mailing lists likely to be used by those with an interest in the 
topic of eye movements in programming. SensoMotoric Instruments (SMI) kindly provided two eye-movement recording 
systems (comprising a laptop computer, software, and eye tracking hardware, described in detail in Section 3.2, below) that 
were shipped to participating labs, along with detailed instructions on how to assemble the hardware and how to run the 
experimental software. This high resolution eye-tracking system was portable, enabling it to be posted to data collection 
sites, and the availability of two systems enabled labs to work concurrently, thereby speeding up data collection.

Assistance was provided via email, when needed. Data were collected at the following sites:

• The Centre for Human Centred Technology Design, University of Technology Sydney, Australia;
• The Department of Computer Science, Aalto University, Finland;
• The Department of Computer Science, University of Helsinki, Finland;
• The Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Slovakia;
• Information & Computer Sciences, University of Hawai’i at Mānoa, USA;
• Neuroinformatics Group, Bielefeld University, Germany;
• The School of Mathematics and Computer Science of the Netanya Academic College, Netanya, Israel;
• The School of Computing, Engineering and Built Environment, Glasgow Caledonian University, United Kingdom;
• Software Engineering Research and Empirical Studies Lab, Youngstown State University, USA;
• The Physical Structure of Perception and Computation Group, University of Genoa, Italy;
• The School of Computing and Information Science, Anglia Ruskin University, Cambridge, United Kingdom.

3.2. Apparatus

Eye movements were recorded using a non-invasive screen-mounted SMI RED250 mobile video-based eye tracker. The 
eye tracker provided has a sample rate of 250 Hz, with an accuracy of < 0.4◦ and a precision of ≈ 0.03◦ of visual angle. 
The working distance from the device is 50 − 80 cm within a ‘head box’ of 32 × 21 cm at 60 cm, which provided an ideal 
workspace for the experimental procedure (see Section 3.4).

Stimuli were presented on a laptop computer screen set at a resolution of 1920 × 1080 pixels. Stimuli were free-viewed 
(i.e., no head or chin rest was used) to simulate a naturalistic programming environment (something that would not have 
been possible had a head-mounted eye tracker or head/chin restraint been used).

The data collection procedure (see below) was implemented in the SMI Experimental Suite (a software bundle that was 
packaged on the laptop). The experimental apparatus, setup and software were matched as closely as possible between 
collaborating sites by shipping a pre-configured eye tracker and laptop computer. Data were collected in a quiet, well-lit 
environment to minimize distractions to participants.

3.3. Participants

Participants were recruited at each site by opportunity sampling. Data from N=216 participants are included in the 
dataset, of whom 41 were female and 175 were male (mean age 26.56 years, SD = 9.28). All participants completed 
a demographic questionnaire. Participants were principally University students enrolled in undergraduate or postgraduate 
courses related to computing, but also included academic and administrative staff and some professional programmers.

Participants came from a diverse pool of language families (1 Arabic, 2 Bengali, 1 Cantonese, 4 Chinese, 2 Czech, 1 
Egyptian, 62 English, 1 English and Hebrew, 17 Finnish, 10 German, 2 Greek, 8 Hebrew, 3 Hindi, 21 Italian, 1 Italian and 
English, 1 Marathi, 2 Nepali, 1 Norwegian, 1 Persian, 2 Portuguese, 1 Punjabi, 1 Russian and Hebrew, 57 Slovak, 3 Spanish, 2 
Swedish, 1 Tagalog, 1 Tamil, 4 Telugu, 1 Thai, 1 Turkish, 1 Ukrainian). Out of 154 non-native speakers, 66 participants spoke 
English fluently. 84 participants reported medium English proficiency and 4 participants reported low English proficiency.

All participants had normal or corrected-to-normal vision (17 were wearing contact lenses, 74 glasses). Ethics clearance 
for the study was granted at all sites. Participation was voluntary, and participants were treated in accordance with the 
tenets of the Declaration of Helsinki. No payment was offered.

3.4. Experimental procedure

Participants were seated in front of the laptop that had the eye tracker installed on it. When participants indicated 
that they were ready to proceed, an instruction screen was presented explaining what they were being asked to do. Next, 
a questionnaire was presented. This included identifying the programming language that they wished to be used in the 
experiment (i.e., the language that they were most familiar with). Three language options were provided: Java, Scala, or 
Python. Programming expertise was self-evaluated as none, low, medium or high, and number of years of programming 
experience was also recorded.



4 R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520
Table 1
Metadata provided in emip_metadata.csv (as part of the dataset).
Variable Description Value

id Unique identifier, which refers to the 
raw gaze data file

[n]

age Age [years]
gender Gender [male, female, other]
mother_tongue Mother tongue [full-text]
English_level English proficiency [low, medium, high]
visual_aid Is the participant wearing glasses or 

contact lenses
[no, glasses, contact lenses]

makeup Is the participant wearing mascara or 
other eye-make-up

[yes, no]

experiment_language Programming language used in the 
experiment

[Java, Python, Scala]

expertise_experiment_language Expertise in Java/Python/Scala [none, low, medium, high]
time_experiment_language How long the participant has been 

programming in Java/Python/Scala
[years]

frequency_experiment_language How often does the participant 
program in Java/Python/Scala

[not at all, less than 1 h/m, less 
than 1 h/w, less than 1 h/d, 
more than 1 h/d]

other_languages Other programming languages the 
participant knows

[language_level of expertise]

expertise_programming Overall programming expertise [none, low, medium, high]
time_programming How long the participant has been 

programming
[years]

frequency_other_language How often the participant uses 
programming languages other than 
Java/Python/Scala

[not at all, less than 1 h/m, less 
than 1 h/w, less than 1 h/d, 
more than 1 h/d]

For each stimulus program:
answer_{rectangle|vehicle} Answer to the comprehension 

question
[full-text]

correct_{rectangle|vehicle} Evaluation of the answer [0,1]
order_{rectangle|vehicle} Order in which the stimulus programs 

were shown
[1,2]

stimulus_{rectangle|vehicle} Filename of the screenshot in folder 
“stimuli”

[full-text]

{mother_tongue| 
time_experiment_language| 
time_programming| 
other_languages}_original

unedited participant entries [full-text]

Next, the eye tracker was calibrated using a 9-point calibration routine, and its accuracy checked with a validation 
procedure. This required participants to attend predefined regions of interest (ROIs) while the experimenter visually checked 
that gaze and the regions coincided correctly.

Following successful calibration, participants completed two code comprehension tasks (Vehicle and Rectangle, each 
comprising 11-22 lines of code), presented in the same order for all participants. Participants were instructed to read and 
try to understand the code, and to press space bar when they were done. Next, a multiple-choice question was presented 
on the screen that evaluated code comprehension. No time limit to answer the question was applied. At the end of the 
experiment, eye movement coordinates and question responses were stored for offline analysis.

3.5. Code and comprehension questions

The code presented to participants was chosen to be simple enough to be understood by novices, yet not too trivial 
for experts. In particular, static metrics such as Cyclomatic Complexity [17] and control structure nesting indicate that the 
code was simple, whereas the results of the comprehension questions (See Section 4) show that they were not necessarily 
too trivial for the participants. If more complex code had been used then we may have risked inexperienced programmers 
giving up or examining the code pseudo-randomly. Furthermore, the code was short enough to fit onto a single screen 
without scrolling, enabling straightforward eye movement analysis.

Rectangle:
The Rectangle code defines a class Rectangle that contains four coordinate variables, a constructor, and methods to com-

pute area, width, and height. In the main method, two rectangle objects are instantiated and their areas calculated. It was 
adapted from a code comprehension study written in Python [18] which we translated to Java and Scala. The comprehension 
question for the Rectangle task is shown in Table 2.



R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520 5
Table 2
Multiple choice comprehension question for the Rectangle code.

The program:

• computes the area of rectangles by multiplying their width (x1-x2) and height (y1-y2).
• computes the area of rectangles by multiplying their width (x2-x1) and height (y2-y1).
• computes the area of rectangles by multiplying their width (x1-y1) and height (x2-y2).
• I’m not sure.

Table 3
Multiple choice comprehension question for the Vehicle class.

The program:

• defines a vehicle by producer that has a type and can reduce its speed.
• defines a vehicle by producer that has a type and can accelerate its speed.
• defines a vehicle by producer that has a type and can accelerate and reduce its speed.
• I’m not sure.

Table 4
Overview of dataset content.

Content Description Size

rawdata folder with 216 TSV-files containing raw eye movement data 2.5 GB
stimuli folder with screenshots of the experiment slides in JPG-format and CSV-files 

with AOI coordinates for the stimulus programs
1 MB

emip_metadata CSV file with participants’ background information, order in which the stim-
ulus programs were show and information about the comprehension ques-
tions

93 kB

date TXT-file specifying when the dataset was uploaded 13 B

Vehicle:
The Vehicle code defines a class Vehicle that contains a number of variables, a constructor, and an accelerate method 

that could modify a current speed variable. In a main method, a single object is instantiated and its speed subsequently 
modified. The comprehension question for the Vehicle task is shown in Table 3.

3.6. Dataset structure and contents

The dataset is available for download as a 560 MB ZIP file at http://emipws .org /wp -content /uploads /emip _dataset .zip. It is 
distributed under the Creative Commons CC-BY-NC-SA license. Table 4 lists the contents of the package. The eye movement 
data is in a generic .tsv (tab separated value) format to maximize compatibility with analysis software.

In order to allow for automatic processing, some of the information provided by the participants required editing: (1) 
multiple answers were separated by a semicolon (e.g., two or more native languages were provided); (2) text in answers to 
numeric questions was converted to numbers (e.g., one year was converted to 1); (3) redundant information was removed. 
The exact information entered by the participants is also retained, in the columns with the same name and “_original” 
added (see Table 1).

4. Results

This section provides the accuracy results for each comprehension question along with some descriptive statistics on 
programming languages used and participant expertise.

4.1. Code comprehension results

Table 5 summarizes the number of correct and incorrect answers for both items of code examined. Most participants 
responded correctly to the question about the Rectangle code, but fewer did so for the Vehicle code. The majority of par-
ticipants understood the general idea of the Vehicle program, but did not realize that the (signed) datatype used as an 
argument to the method that modified the value of the speed variable supported the possibility of decreasing as well as 
increasing the speed of vehicle objects (i.e., that passing a negative integer to the accelerate method would decrease the 
speed of the vehicle). Hence, even though it is not a complex program, many participants did not fully grasp this more 
subtle nuance of the language.

Whilst negative acceleration, in physics, can decrease speed, one might argue that our name for the accelerate method 
was misleading in relation to the question posed given the expertise of the target audience (i.e., the question asked whether 

http://emipws.org/wp-content/uploads/emip_dataset.zip


6 R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520
Fig. 1. Code in Java.



R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520 7
Table 5
Crosstabulation of task performance.

Task Correct Incorrect Total

Rectangle 152 64 216
Vehicle 50 166 216

Total 202 230 432

Fig. 2. Programming languages that the participants claimed to know in addition to the language used in the experiment. C includes C-based derivatives 
such as Handel-C and Embedded C. The category other includes all entries that are not programming languages strictly speaking (including Arduino, Closure, 
CSS, Excel, HTML, Unix, and XML).

speed reduction was possible, and in the vernacular the term ‘accelerate’ is commonly taken to mean ‘increase speed’), 
which will have increased the number of incorrect responses, despite being technically valid. It is important to note that 
participants did not know what they would be asked after they had examined the code, so this should not have affected 
the distribution of eye movements, as participants were instructed to examine the code in order to understand it. Fig. 3
represents the fixation density map for one participant for both code stimuli. The fixation density map was computed using 
EMA, a free Eye Movement Analysis toolbox [19].

4.2. Programming languages

Most participants elected to have the code presented in Java (95.83%), potentially reflecting the continued widespread 
use of Java in undergraduate teaching and in industry (Fig. 1). A much smaller number of participants selected Python 
(2.31%) or Scala (1.85%). In the questionnaire, participants reported having expertise in a wide variety of other languages 
(see Fig. 2). Interestingly, C together with its extensions and derivatives (Handel-C, Embedded C, C++, C#, Objective-C) was 
the language mentioned most often (81%), followed by Python (31%), and JavaScript (26%).

4.3. Participant expertise

As noted above, participants indicated their level of expertise in the programming language used in the experiment. 
The distribution of experience levels for our participants was: none (13.89%), low (31.94%), medium (46.29%), and high 
(7.87%). On average, participants have 2.29 years (SD = 3.34) of experience in the programming language selected for the 
experiment.

This information can be used to examine correlations in the eye tracking data to participant expertise. For example, in 
Fig. 4 low expertise (e.g., null or small) is characterized by gaze density maps with greater spatial dispersion across the code 
page, potentially indicating a more exploratory approach rather than one that is focused on the most important/diagnostic 
features of the program. Similarly, Fig. 5 shows how participants with low expertise produced more spatially distributed fix-
ations, and fixations of longer duration, compared to expert participants. Note that these are cursory high-level observations 
and more detailed analysis is needed to learn more about how expertise affected the results.

5. Discussion

Experimenter and participant time, equipment cost and availability, the provisioning and maintenance of repositories, 
data processing skills, and other factors limit the availability of large datasets of eye movements. By distributing the efforts 
across a number of sites, we reduced some of these costs in the creation of this EMIP dataset. In addition, the collaborative 
knowledge, skills, peer-support and discussion allowed us to support the validity of the setup and the resulting data.

The EMIP dataset presents a range of possible use cases, some of which were outlined above. Relating gaze behavior 
with participants’ programming expertise and other metadata can potential reveal novel insights concerning the relationship 
between code comprehension and demographic variables.

https://sourceforge.net/projects/ema-toolbox/


8 R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520
Fig. 3. Gaze density maps of a single participant for Rectangle (top) and Vehicle (bottom) code. Computed using a Gaussian kernel density function wherein 
red denotes a high density of fixations and green a low density. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Low-level eye movement parameters observed in reading text, from [20], are listed below:

• Saccade frequency - Experienced readers make a saccade during reading every quarter of a second on average.
• Fixation duration - The average fixation duration is 200-250 ms, and the range is 100 ms to over 500 ms.
• Saccade amplitude - At each saccade, the eyes move forward a number of characters that varies from 1 to 20, with the 

average being 7-9 characters.
• Saccade duration - Saccades are relatively short and on average last for 20-40 ms.

The large size of the dataset can provide baseline data that highlights how reading source code may differ from reading 
of text. For instance, source code may elicit different kinds of low-level eye movement parameters compared to examining 
images [21][22] or reading prose [20], given that since code is not typically read sequentially and will likely entail repeated 



R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520 9
Fig. 4. Gaze density maps grouped by programming expertise for Rectangle (top) and Vehicle (bottom) code. The maps are computed by grouping the 
participants into expertise levels, from left to right none, low, medium or high. Computed using a Gaussian kernel density function wherein red denotes a 
high density of fixations and green a low density. Each map represents the mean among of the fixation density maps across participants in each group.

Fig. 5. Distribution of fixations for expert and inexpert participants. Fixation patterns corresponding to participants with no (left) and high expertise 
(right), for the Rectangle (top) and Vehicle (bottom) code. Each circle represents a fixation, and the radius is proportional to the fixation duration. Blue 
colors correspond to the start of the trial while red colors to the end of the trial, according to the colorbar at the bottom.



10 R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520
regressions to particularly important areas. In addition to the metrics listed in [20], we direct the reader to [23] for a list of 
eye movement metrics used in software engineering studies.

Along with the programming language experience and other metadata, our dataset could be used in predictive models of 
expertise by examining the efficiency of the code examination process. This has potential applications in teaching, assess-
ment and recruitment (although clearly such data must be treated cautiously). To accomplish this, deep learning networks 
trained on expertise-labeled eye movement data could be used [24].

Other potential uses of the dataset unrelated to program comprehension research include: (i) to evaluate the potential 
of eye-movement-based biometric identification systems, in which the oculomotor behavior of an individual potentially 
represents a uniquely identifiable signature [25]; (ii) to evaluate the degree to which participants calibration is aligned 
correctly with expected regions of interest (here, lines of text in a computer program), enabling eye tracker accuracy and 
precision to be evaluated; (iii) to compare the eye movement data with that obtained using consumer-grade web-cam based 
eye trackers, which are just beginning to offer reasonable levels of accuracy (e.g., [26][27]).

6. Limitations

The present study has a number of limitations worth highlighting: (i) Only two code fragments were examined by 
participants, and both were object oriented, thus any findings may or may not generalize to more algorithmic code or 
code written in languages in other programming paradigms; (ii) Since this was a multi-site study, small differences in 
experimental setup may have occurred, despite the same eye tracker and laptop computer being shipped to all sites to try 
to standardize to the greatest degree possible; (iii) The code comprehension questions used, although administered post-hoc
(i.e., did not affect the eye movements elicited during code examination) were, in retrospect, quite limited. The first question 
could have been answered using algebraic knowledge, and the second may have been affected by some participants not 
knowing that negative acceleration is standard terminology in physics to elicit a reduction in velocity, and thus that the 
accelerate method could validly accept a negative argument.

7. Conclusions and future work

In this article, a large dataset that contains the eye movements of programmers recorded during two code comprehension 
tasks is presented. The data were collected collaboratively across eleven research teams, and were subsequently organized 
and cleaned, and published in a public (online) repository that can be found at (http://emipws .org). Extensive metadata is 
provided that can be used to address a wide variety of research questions. The dataset is sufficiently large and varied to 
enable code comprehension questions to be addressed with ample statistical power.

Given the limitations outlined in the previous section, future work could usefully be directed to collect the eye movement 
of programmers while examining code written in languages that use other programming paradigms (i.e., not just object 
oriented), code spanning a broader range of difficulty levels (e.g., algorithms of greater complexity), and for which a greater 
number and variety of comprehension questions were asked. In addition, we welcome the program comprehension and eye 
tracking community to use the dataset and extend it with other post processing and analyses.

CRediT authorship contribution statement

Roman Bednarik: Conceptualization, Investigation, Methodology, Validation, Writing - original draft, Writing - review & 
editing. Teresa Busjahn: Conceptualization, Investigation, Methodology, Resources, Validation. Agostino Gibaldi: Investiga-
tion, Resources, Writing - original draft, Writing - review & editing. Alireza Ahadi: Resources. Maria Bielikova: Resources.
Martha Crosby: Resources. Kai Essig: Resources. Fabian Fagerholm: Resources. Ahmad Jbara: Resources. Raymond Lister:
Resources. Pavel Orlov: Investigation, Visualization. James Paterson: Resources, Writing - original draft, Writing - review & 
editing. Bonita Sharif: Resources. Teemu Sirkiä: Resources. Jan Stelovsky: Resources. Jozef Tvarozek: Resources. Hana Vrza-
kova: Investigation, Visualization, Writing - original draft, Writing - review & editing. Ian van der Linde: Resources, Writing 
- original draft, Writing - review & editing.

Declaration of competing interest

Authors declare they have no conflict of interest regarding the publication of this article.

Acknowledgements

The authors would like to thank all participants who took part in the study.

References

[1] M.E. Crosby, J. Stelovsky, How do we read algorithms? A case study, Computer 23 (1990) 25–35.
[2] U. Obaidellah, M. Al Haek, P. Cheng, A survey on the usage of eye-tracking in computer programming, ACM Comput. Surv. 51 (2018) 1–58.

http://emipws.org
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib3ABCAF692871B195D6D7DFD43DB73979s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib2FD90A398FFECC3A4288B3FBD084AEE5s1


R. Bednarik et al. / Science of Computer Programming 198 (2020) 102520 11
[3] Z. Sharafi, Z. Soh, Y.-G. Guéhéneuc, A systematic literature review on the usage of eye-tracking in software engineering, Inf. Softw. Technol. 67 (2015) 
79–107.

[4] H. Uwano, M. Nakamura, A. Monden, K.-i. Matsumoto, Analyzing individual performance of source code review using reviewers’ eye movement, in: 
Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, ACM, 2006, pp. 133–140.

[5] R. Bednarik, M. Tukiainen, An eye-tracking methodology for characterizing program comprehension processes, in: Proceedings of the 2006 Symposium 
on Eye Tracking Research & Applications, ACM, 2006, pp. 125–132.

[6] B. Sharif, J.I. Maletic, An eye tracking study on camelcase and under_score identifier styles, in: Program Comprehension (ICPC), 2010 IEEE 18th Inter-
national Conference on, IEEE, 2010, pp. 196–205.

[7] D.W. Binkley, M. Davis, D.J. Lawrie, J.I. Maletic, C. Morrell, B. Sharif, The impact of identifier style on effort and comprehension, Empir. Softw. Eng. 18 
(2013) 219–276, https://doi .org /10 .1007 /s10664 -012 -9201 -4.

[8] R. Turner, M. Falcone, B. Sharif, A. Lazar, An eye-tracking study assessing the comprehension of C++ and Python source code, in: Proceedings of the 
Symposium on Eye Tracking Research and Applications (ETRA), ACM, 2014, pp. 231–234.

[9] P.A. Orlov, R. Bednarik, The role of extrafoveal vision in source code comprehension, Perception 46 (2017) 541–565.
[10] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J.H. Paterson, C. Schulte, B. Sharif, S. Tamm, Eye movements in code reading: relaxing the linear order, in: 

Program Comprehension (ICPC), 2015 IEEE 23rd International Conference on, IEEE, 2015, pp. 255–265.
[11] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, M. Crosby, A practical guide on conducting eye tracking studies in software engineering, 

Empir. Softw. Eng. (2020) 1–47.
[12] C. Palmer, B. Sharif, Towards automating fixation correction for source code, in: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking 

Research & Applications, ACM, 2016, pp. 65–68.
[13] S. D’Angelo, A. Begel, Improving communication between pair programmers using shared gaze awareness, in: Proceedings of the 2017 CHI Conference 

on Human Factors in Computing Systems, ACM, 2017, pp. 6245–6290.
[14] T. Fritz, A. Begel, S.C. Müller, S. Yigit-Elliott, M. Züger, Using psycho-physiological measures to assess task difficulty in software development, in: 

Proceedings of the 36th International Conference on Software Engineering, ACM, 2014, pp. 402–413.
[15] K. Ooms, L. Dupont, L. Lapon, S. Popelka, Accuracy and precision of fixation locations recorded with the low-cost eye tribe tracker in different experi-

mental setups, J. Eye Mov. Res. 8 (2015).
[16] A. Gibaldi, M. Vanegas, P.J. Bex, G. Maiello, Evaluation of the Tobii Eyex eye tracking controller and Matlab toolkit for research, Behav. Res. Methods 49 

(2017) 923–946.
[17] T.J. McCabe, A complexity measure, IEEE Trans. Softw. Eng. 2 (1976) 308–320, http://dblp .uni -trier.de /db /journals /tse /tse2 .html #McCabe76.
[18] M. Hansen, Quantifying code complexity and comprehension, Ph.D. thesis, Indiana University, 2015.
[19] A. Gibaldi, S. Sabatini, The saccade main sequence revised: a fast and repeatable tool for oculomotor analysis, Behav. Res. Methods (2020) 1–21.
[20] K. Rayner, B.J. Juhasz, A. Pollatsek, Eye movements during reading, in: The Science of Reading: A Handbook, 2005, pp. 79–97.
[21] I. van der Linde, U. Rajashekar, A.C. Bovik, L.K. Cormack, Doves: a database of visual eye movements, Spat. Vis. 22 (2009) 161–177.
[22] U. Rajashekar, I. van der Linde, A.C. Bovik, L.K. Cormack, Foveated analysis and selection of visual fixations in natural scenes, in: Proc. IEEE Int. Conf. 

Image Processing (ICIP), Atlanta, GA, IEEE, 2006, pp. 453–456.
[23] Z. Sharafi, T. Shaffer, B. Sharif, Y. Guéhéneuc, Eye-tracking metrics in software engineering, in: J. Sun, Y.R. Reddy, A. Bahulkar, A. Pasala (Eds.), Asia-

Pacific Software Engineering Conference, APSEC 2015, New Delhi, India, 1-4 December 2015, IEEE Computer Society, 2015, pp. 96–103.
[24] M. Kümmerer, T.S. Wallis, M. Bethge, Deepgaze II: reading fixations from deep features trained on object recognition, arXiv preprint, arXiv:1610 .01563, 

2016.
[25] T. Busjahn, C. Schulte, B. Sharif, A. Begel, M. Hansen, R. Bednarik, P. Orlov, P. Ihantola, G. Shchekotova, M. Antropova, et al., Eye tracking in computing 

education, in: Proceedings of the Tenth Annual Conference on International Computing Education Research, ACM, 2014, pp. 3–10.
[26] A. Canessa, A. Gibaldi, M. Chessa, S.P. Sabatini, F. Solari, The perspective geometry of the eye: toward image-based eye-tracking, in: Human-Centric 

Machine Vision, IntechOpen, 2012.
[27] A.-H. Javadi, Z. Hakimi, M. Barati, V. Walsh, L. Tcheang, Set: a pupil detection method using sinusoidal approximation, Front. Neuroeng. 8 (2015) 4.

http://refhub.elsevier.com/S0167-6423(20)30128-3/bib81D1A27036D6BAC74687EA772FAE4770s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib81D1A27036D6BAC74687EA772FAE4770s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibD6F54C362696C1342609F5D1389E63D0s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibD6F54C362696C1342609F5D1389E63D0s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib177F0387514725FA757BCB2807DAB533s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib177F0387514725FA757BCB2807DAB533s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib1AC1AF5D7AFFE925F78EF95EDF063E6Ds1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib1AC1AF5D7AFFE925F78EF95EDF063E6Ds1
https://doi.org/10.1007/s10664-012-9201-4
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib4AA457811D37384BDE064C8F04691CE8s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib4AA457811D37384BDE064C8F04691CE8s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib8A712BA0BA3AE9AB68FBF86F90D43DE3s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib17DB3C4D49C3ADBB607A4C87777781AFs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib17DB3C4D49C3ADBB607A4C87777781AFs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib1211A106B6BB600122C8515AAB5D01A5s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib1211A106B6BB600122C8515AAB5D01A5s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib75FEED52DD7A857FA6080629E99A66F4s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib75FEED52DD7A857FA6080629E99A66F4s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibF3407365EA7DBD2AD6813F052AEBD06Fs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibF3407365EA7DBD2AD6813F052AEBD06Fs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibAB290CFFAFC36AFD8F7358A561F5D928s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibAB290CFFAFC36AFD8F7358A561F5D928s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibD18D71F13C67743D02A530468A16B58Es1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibD18D71F13C67743D02A530468A16B58Es1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibE05E76CF61455C815A912FE026A2F36Fs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibE05E76CF61455C815A912FE026A2F36Fs1
http://dblp.uni-trier.de/db/journals/tse/tse2.html#McCabe76
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib5069A77F582DC8C915E41495D55F60FAs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib5EA0C1F6999792585C1BB7432F70956As1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibA818D5B78762A4A178DC11A85428EB38s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibA78EA618661F2B166D145FA0285556BFs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib13041FABDEAB6D26A43339A665CE431Fs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib13041FABDEAB6D26A43339A665CE431Fs1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib61DA6B63656E8C376ECAF38C8AD69576s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib61DA6B63656E8C376ECAF38C8AD69576s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib340DD5D4FB70C333409F01795655C171s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib340DD5D4FB70C333409F01795655C171s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibB66D06B1E371D8FD908AA1ACFC104F61s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bibB66D06B1E371D8FD908AA1ACFC104F61s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib01D328F1CCB0CD5E776207523D7ECAA8s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib01D328F1CCB0CD5E776207523D7ECAA8s1
http://refhub.elsevier.com/S0167-6423(20)30128-3/bib6D531218D6C5230E80DE522D9CEAAD1Ds1

	EMIP: The eye movements in programming dataset
	1 Introduction
	2 Motivation for eye movements in programming dataset
	3 Materials and methods
	3.1 Data collection logistics
	3.2 Apparatus
	3.3 Participants
	3.4 Experimental procedure
	3.5 Code and comprehension questions
	Rectangle:
	Vehicle:

	3.6 Dataset structure and contents

	4 Results
	4.1 Code comprehension results
	4.2 Programming languages
	4.3 Participant expertise

	5 Discussion
	6 Limitations
	7 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


