Studying Developer Reading Behavior on Stack
Overflow during API Summarization Tasks

Jonathan A. Saddler
University of Nebraska - Lincoln
Lincoln, Nebraska USA 68588

jsaddle@cse.unl.edu

Shruthi Nagaraj, Olga Baysal
Carleton University
Ottawa, Ontario, Canada
{olga.baysal,shruthi.nagaraj} @carleton.ca

Abstract—Stack Overflow is commonly used by software de-
velopers to help solve problems they face while working on
software tasks such as fixing bugs or building new features.
Recent research has explored how the content of Stack Overflow
posts affects attraction and how the reputation of users attracts
more visitors. However, there is very little evidence on the effect
that visual attractors and content quantity have on directing
gaze toward parts of a post, and which parts hold the attention
of a user longer. Moreover, little is known about how these
attractors help developers (students and professionals) answer
comprehension questions. This paper presents an eye tracking
study on thirty developers constrained to reading only Stack
Overflow posts while summarizing four open source methods
or classes. Results indicate that on average paragraphs and code
snippets were fixated upon most often and longest. When ranking
pages by number of appearance of code blocks and paragraphs,
we found that while the presence of more code blocks did not
affect number of fixations, the presence of increasing numbers
of plain text paragraphs significantly drove down the fixations
on comments. SO posts that were looked at only by students
had longer fixation times on code elements within the first ten
fixations. We found that 16 developer summaries contained 5 or
more meaningful terms from SO posts they viewed. We discuss
how our observations of reading behavior could benefit how users
structure their posts.

Index Terms—API summarization, Stack Overflow, eye track-
ing, controlled experiment, reading behavior

I. INTRODUCTION

When building software systems, developers need to un-
derstand code first before they make any changes. During
maintenance, developers are often required to understand the
code that others have written. While code comprehension
is part of a developer’s daily activities, the process can be
time consuming due to the cognitive effort involved. Previous
research [1, 2] has suggested that code summarization — the
task of writing short, natural language descriptions of source
code — can help developers quickly understand the source
code and its various elements such as its classes and methods.
A majority of summarization techniques are built around source
code [2] and only a few on using informal documentation for
the summarization of code elements [3].

978-1-7281-5143-4/20/$31.00 (© 2020 IEEE

Cole S. Peterson
University of Nebraska - Lincoln
Lincoln, Nebraska USA 68588

cpeterso@cse.unl.edu

Latifa Guerrouj
Ecole de technologie supérieure (ETS)
Montréal, Quebec, Canada
Latifa.Guerrouj@etsmtl.ca

195

Sanjana Sama
Youngstown State University
Youngstown, Ohio USA 44555
ssama@student.ysu.edu

Bonita Sharif
University of Nebraska - Lincoln
Lincoln, Nebraska USA 68588

bsharif @unl.edu

However, developers often depend on other sources of
informal documentation such as Stack Overflow (SO)!, a
popular Q&A forum for software developers to find solutions to
development problems they face. Often, the source code (third
party API usage) is not available to developers, leading them
to seek help on SO posts. Stack Overflow’s official website
statistics suggest that 50 million developers and engineers visit
its website every month.

The goal of this paper is to better understand how developers
leverage Stack Overflow discussions for code comprehension
and summarization tasks. To accomplish our research goal,
we use eye tracking technology to collect eye gaze data from
developers to learn how they read SO posts, In particular,
we look to see what specific elements they read and use
from posted questions, answers, and comments in their code
comprehension and summarization tasks. We seek to answer
the following research questions:

o RQI1: What elements do developers read on Stack Over-
flow pages when summarizing API elements?

o RQ2: What are the differences between how professional
developers and non-professional (student) developers read
Stack Overflow posts when summarizing API elements?

e RQ3: Do developer summaries reflect what was read on
Stack Overflow?

e RQ4: How do specific attributes of the Stack Overflow
posts (i.e., code block count, paragraph count) impact
gaze behavior?

The first research question (RQ1) can help us understand how
developers read SO pages and where they focus their attention
during code summarization tasks. For RQ2, we compare two
different groups of participants to understand whether there is
a difference in the reading behavior of professional vs. non-
professional developers during code summarization tasks. The
findings of these research questions can help create guidelines
for those writing SO posts to improve how they structure
them. RQ3 offers insights into how relevant the participant’s

Uhttps://stackoverflow.com/

SANER 2020, London, ON, Canada
Research Papers

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

summaries are to the content of the Stack Overflow pages. The
goal of RQ3 is to determine if the SO posts are used in the
written summaries. RQ4 provides evidence on how specific
attributes of SO content affect eye gaze and reading behavior.

To answer our research questions, we conduct a controlled
experiment with 30 software developers, both professional and
non-professionals (i.e., industry professionals and students in
academia), to understand how they leverage SO discussions
for code comprehension and summarization tasks.While they
performed these tasks, we tracked elements they looked at on
SO pages, the duration of their gaze on these elements, and
what pages they navigated to while searching for answers to
each question.

The paper offers the following contributions:

o A controlled experiment with 30 software developers
to understand how they summarize API elements by
leveraging Stack Overflow discussions.

o Use of eye tracking technology to understand developer
behaviors, strategies and specific areas of focus when they
read Stack Overflow pages.

« Evidence on what elements of informal documentation
on Stack Overflow developers use to write summaries.

The paper is organized as follows. We present related
work on code summarization and eye tracking in program
comprehension in Section II. In Section III, we present the
experimental design followed by the results in Section IV.
Section V discusses the results and implications of those results.
Threats to validity are presented in Section VI. We conclude
with a summary of our findings and future work in Section
VIL

II. RELATED WORK
A. Code Summarization and Stack Overflow Studies

There have been several works in the area of code sum-
marization, however, they mainly focus on the source code
and its textual information when summarizing code [3-5].
For example, Moreno et al. [3] suggested a summarization
approach based on the idea of Java source-code stereotypes.
They engineered a set of algorithms to traverse code for facts
about method structure in Java class source files, what variables
are returned, how often they get returned, and how often all
methods in a class share similar functions.

Recently, Guerrouj et al. [6] investigated the use of Stack
Overflow for code summarization. They considered as context
the information which surrounds the classes or methods
trapped in Stack Overflow discussions. Treude and Robillard
[7] proposed an approach to automatically augment API
documentation with insights from Stack Overflow. The above
two works are closest to the work presented in this paper.

From the human evaluation aspect, Ford et al. [8] learned
that women users posted more often when they knew the
other responder was of the same gender. Calefato et al. [9]
found that longer question body lengths, and high uppercase-
to-lowercase character ratio in the text, can be a deterrent to

having a question get an answer marked acceptable by the
original poster. Moreover, a far-more-persistent, independent
variable such as the reputation score of the original poster had
the strongest effect on whether a question was answered and
promoted.

B. Eye Tracking Studies

A large body of research studies [10] in the field of program
comprehension has leveraged eye tracking to have a better
understanding on how programmers understand programs, and
have given insights and detailed information about the cognitive
processes of program comprehension strategies, including for
example the effects of the way code is colored when rendered
on screen [11]. Additionally, some researchers have used eye
trackers to contrast movement and navigation through code
[12-14].

Abid et al. [15] replicated the study by Rodeghero at al. [16]
for code summarization tasks on large Java open source systems
and found that developers tend to look at calls the most
compared to method signatures (as previous reported in smaller
snippets). This indicates that developers behave differently
when tasked with realistic code compared to smaller snippets.

Turner et al. [17] investigated the effects of debugging across
two different programming languages, Python and C++. Uwano
et al. [18] found a Scan gaze pattern when developers read
code with the goal of finding a defect. Saddler et al. [19]
analyze reading behavior and comprehension of C++ source
code by conducting both line and keyword level analysis on
the transitions students make between C++ source code blocks
for comprehension tasks.

One eye tracking study that is most relevant to ours is
by Peterson et. al. [20] , which studied information seeking
behavior of developers using Stack Overflow. They found
developers focus on code elements the most and show a
transition matrix of the most common regions on a page a
developer searches through. In other work [21], the authors
focused on explaining how developers view source code
visually via radial transition graphs - this study did not use
Stack Overflow.

We share with the above-mentioned research the idea that
code summarization is a complex task and that automating it
can help guide developers during their work. Unlike previous
works, we focus on examining Stack Overflow and its parts
(e.g., comment regions on a Stack Overflow page, scores, code
snippets, etc.) that can be vital to enhance code summarization.
Our work differs in that we conduct an eye tracking study
to understand reading behavior which has not been done in
prior work. Unlike previous works that have mainly leveraged
code and/or its comments to summarize code elements, we
have investigated how developers summarize code elements
discussed in informal documentation, i.e., Stack Overflow.

III. EXPERIMENTAL DESIGN

We now outline the experimental design including the tasks,
participants, and instrumentation of the study.

196

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

A. Study Overview

In this study, each participant was asked to provide a

summary of four API elements, two methods and two classes.

Table I presents the details of API elements from four open

source Java projects: Eclipse, JMeter, Tomcat and NetBeans.

Each API element corresponds to one summarization task and
was well researched to ensure that developers actually discuss
these APIs on Stack Overflow.

Each task (i.e., API element to be summarized) included a
link to a Stack Overflow search page mentioning a specific
API element as the search query. Participants could select posts
in this search query and search additional queries. The tasks (2
classes and 2 methods) were randomly assigned to participants
to ensure that each API element was equally distributed. During
the study, participants had access to a browser, a text file where
the questions and tasks were presented, and a form to report
API summaries. They were not shown the codebase itself.

Selection of API elements. When selecting APIs we wanted to
make sure they were not too self explanatory nor too complex
for comprehension. The selected API elements have three
levels of comprehension complexity or difficulty. Some API
elements were meant to be easy to understand, while others
might require more time and information for participants to
thoroughly understand and summarize. Each task sequence
provided to a participant was designed to include API elements
of various difficulty levels, (no one sequence has all four
easy API elements or all four difficult to comprehend API
elements.) Once the APIs were finalized, we made eight main

sequences to use in the experiment as part of a larger study.

Each sequence included a combination of easy, moderate and
difficult API elements. Each had a total of four different API
elements, and one of these was given to each participant for the
purpose of this study, containing a URL to a Stack Overflow
discussion. The assignment of these sequences to participants
was completely randomized.

B. Areas of Interest (AOI) on a Stack Overflow Page

Stack Overflow pages can be broken down into regions.

We label these regions based on their usefulness in aiding
a user toward a solution. Figure 1 presents a sample Stack
Overflow post with a label for different regions. Every post
includes a title and question. The title is typically a brief
summary of the question being asked, while the question is a
textual description that provides more details on the problem
the developer is facing.

The question given on each page can be followed by zero or
more answers where users leave textual responses proposing
a solution to the original poster. Stack Overflow users can
also respond to the original question via question comments
posted below the question to gather more information from the
poster or clarify the question. Users may also leave answer
comments which appear directly below a specific answer that
was previously posted. Tags are short labels that appear next to
questions that help identify topics of the question. Vote counts
appear on every page next to the question, answers, and some

comments and highlight whether other users find the content
useful or appropriate.

We consider the seven above-mentioned regions of Stack
Overflow pages to be the targeted areas of interest in our
analysis. Other regions of the post such as advertisements,
account navigation, page navigation, and search bars are
excluded from our analysis.

C. Dependent Variables
The dependent variables used in our analysis are as follows:

« Fixation Count - the number of times a participant fixated
upon an area of interest (AOI).

o Fixation Duration - the duration of all fixations of a
participant on an area of interest.

o Summary Accuracy - the accuracy of the participant’s
summaries when compared to a summary from an oracle.

o Summary Relevance - the sum of words from a par-
ticipant’s summary that match words found in a Stack
Overflow page

« Vertical Early Percentage - percentage of fixations made
to an AOI that is vertically earlier in the page than the
previous fixation.

« Vertical Later Percentage - percentage of fixations made
to an AOI that is vertically later in the page than the
previous fixation.

« Regression Rate - percentage of transitions back to an
AOI after the participant transitions out of it and revisits
it again.

The summary accuracy metric was calculated using several
human annotators’ ratings against an oracle. The summary
relevance was automatically calculated using several ad-hoc
scripts. The rest of the metrics were based on eye movement
data collected while participants read the posts.

By tracing each webpage visited, we were able to later
collect the text of certain page features (questions / answers /
comments) using an ad-hoc parser, and later count how often
fixations reached these. We downloaded pages via the Stack
Exchange printing service?, using its ability to render text
verbatim from any Stack Overflow page we gave it to help
simplify the DOM for quick and easy parsing [22].

D. Oracle Summaries

The summaries produced by the participants were verified
against an oracle of summaries generated by human annotators.
All eight API elements were summarized in the oracle. Based
on the information available on the web (both formal and
informal) and after analyzing API usage in source code, three
independent human annotators (among the list of co-authors
on this paper) formed an oracle of summaries. The three final
sets of summaries from each annotator were further discussed
and combined to form one final oracle of API summaries. The
oracle summaries contain comprehensive summaries for each
API element and are used to rate the quality and correctness of
the summaries produced by the participants. To answer fully

Zhttp://www.stackprinter.com/

197

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summarization tasks and characteristics of API elements.

Task ID Project Version | API element | Fully qualified name #LOC | #SO posts
T1 Eclipse 4.2 method org.eclipse.core.databinding.binding.dispose 18 42
T2 Eclipse 4.2 class org.eclipse.swt.SWTError 34 56
T3 JMeter 32 method org.apache. jmeter.Jmeter.convertSubTree 51 1
T4 JMeter 32 class org.apache. jmeter.samplers.SampleResult 721 196
TS Tomcat 7 method org.apache.catalina.realm.JDBCRealm.getRoles 42 2
T6 Tomcat 7 class org.apache.catalina.valves.ValveBase 133 39
T7 NetBeans 7.4 method org.netbeans.api.progress.ProgressUtils. 14 1

runOffEventDispatchThread
T8 NetBeans 7.4 class org.openide.nodes.CHildFactory.Detachable 70 1
= stackoverflow o9 e s

Home

How to get roles from principal in Apache Shiro?

Fig. 1: Areas of interest (AOIs) on

or partially correct, the participant had to fully or partially
describe all elements stated in that API’s oracle summary. The
annotators were graduate research students pursuing PhD and
Master’s degrees in the field of computer science and had prior
experience with Java APIs.

As an example, the oracle summary for the SWTError class
was “A class representing an error internal to the SWT module.
It contains a integer code and a throwable object. Indicates
that an internal error occurred in SWT, displaying the error
code and a description of the problem”. Omitting some but
not all information from the oracle will reduce a participant’s
score. One of the fully correct answers given by a participant
was “The class is an exception class for SWT in eclipse, the
exceptions are used for widgets and dialogs (for example,
you can not have two file selection dialogs open at once), or
otherwise have too many widgets open on a single display".
A partially correct answer was “org.eclipse.swt.SWTError is
a display method used for displaying widgets to your screen.
Each widget seems to be a get function".

E. Eye Tracking Environment and Apparatus

We used the Tobii X60 eye tracker to collect eye tracking data
on Stack Overflow pages within the web browser in Eclipse. We
used iTrace [23], an eye tracking infrastructure that supports
collection of fine-grained gaze data in Integrated Development
Environments (IDEs) and browsers such as Chrome. The

PUBLIC
© Stack Overflow ‘ | am a bit stuck here QUESTION TEXT
Using a very simple Shiro configuration with jdbcRealm:
WIE P o)
usesCOUNT —
e cacheManager = org.apache. shiro. cache.MemoryConstrainedCacheManager
ecurityManager. cacheManager = $cacheManager
— # Create DI 1m.
Teams =\ jdbcRealm = org.apachesshiro.realm.jdbc.JdbcRealn 1 Answer
QaAforwork L —
£lconflgureinbAcinealndatasounces S S—]
Leam More ds = org.postgresql.ds.PGSimpleDatasource =
ds.databaseName = pg_sensor Role query ANSWER TEXT‘ -
How to activate JMX on a JVM for access with jconsole? e el) st may ks aonas o
java jvm monitoring jmx jconsole QUESTION TAGS T
asked May 1309 at 8:02
Mauli
9,210 #24 »74 »109
itis allowd, and actually it is only a reminder for me, because | always forget where to copy the parameters -
from and now | know where | find it :-) — Mauli COMMENT 2

a SO page included in our analysis.

plugin has been effectively used for determining feasibility of
deriving traceability links between code and bug reports using
gaze [24] and for large realistic program comprehension [14]
studies. iTrace is able to automatically map the eye gazes
to semantically meaningful elements on Stack Overflow (and
source code). We ran the Olsson fixation filter [25] on raw
gazes to generate fixations of gazes that were 60 milliseconds
or longer and were dispersed by less than 35px.

F. Participants

Thirty participants, drawn from a pool of two university
campuses, participated in our study (26 males and 4 females,
aged 18-35). Participants were recruited via email once
research ethics protocol approval was obtained. All reported
they had completed a Bachelor’s degree program or higher,
while 53% reported they were enrolled in or completed
a Master’s degree program or higher. 17 participants self
identified as only holding an occupation of student, leaving 13
more participants who self-identified as affiliated with industry
or as an academic faculty, and who also did not identify as a
student.

When ranking their experience with the Java programming
language on a scale from poor to excellent (coded 1-5, 1 -
“Poor”, 5 - “Excellent”), 70% rated themselves 2 and lower,
while 30% (9) rated themselves 3 or higher. We asked about
open source software they had been exposed to and found 21

198

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

of them were already familiar with the interface of Eclipse
IDE, and 15 familiar with NetBeans. None of the participants
developed code for the subject systems.

G. Study Instrumentation

On the day of the study, the participants came into the
research lab and first filled out a pre-questionnaire that collected
their demographic data. Next, each participant was asked to
summarize in their own words (without any restriction on
the length) two classes and two methods from our set of 4
open source projects. The API elements were arranged in eight
randomly assigned task sequences. The comprehension context
was to explain the purpose and usage of the API elements,
i.e., methods and classes. Since summarization requires a fair
amount of mental activity, we used four API elements to limit
participants’ fatigue effect. This study was conducted as part
of a broader study having each participant use varied context
resources to solve summarization problems. A subset of thirty
responses from this larger study was set aside for use in the
analysis we present in this paper.

The participants had access to a web browser, the text file
where all questions and tasks were presented, and a response
file where they typed summaries of the class/method. All of
these elements were present within the Eclipse IDE. Participants
were provided with a link to SO posts mentioning the API
element. Tasks were randomly assigned to participants while
making sure that each API element had an equal distribution
among participants.

Eye tracker calibration was done at the start of each
summarization task. A separate eye tracking session was
made for each summarization task. At the end of the study,
participants filled out a post-questionnaire that helped us gain
insights and feedback about the collected data. The study took
one hour, on average, for each participant. A remuneration
of a 20 USD gift card was offered to every participant as
compensation for completing the study.

H. Verifiability

A complete replication package on tasks and results is
provided at http://seresl.unl.edu/SANER2020.

IV. EXPERIMENTAL RESULTS

We analyzed 30 eye-movement data sessions, along with

28 API summaries across 29 pages of Stack Overflow content.

Summaries from two participants were discarded due to grading
errors.

A. RQI: What elements do developers read on Stack Overflow
pages when summarizing API elements?

Most fixations were on question code and question main
text, and with our precise tracking, we could trace 29% of all

fixations to question paragraphs, and 16% to those in answers.

Figures 2 and 3 help show participants spent nearly 45% of
their session reading plain text paragraphs, and nearly 50% of
their fixations on code blocks within a page, but less of their
time fixating (40%) on that code.

ANSWER IMAGE _ QUESTION TAG _QUESTION VOTE CT.

" ANSWER VOTE CT.
QUESTION IMAGE %% & W 1%
0% - \,Xk _— ___QUESTION TITLE
ANSWER COMMENT ——————— || 1%
2% ////// (|
QUESTION_— \
COMMENT |
3% QUESTION
ANSWER TAG, 1% VOTE CT, 1% PARAGRAPH
GODE " e 36 ne, 1 0%
s
17% o
PARAGRAPH,
45%
(CODE, 47%
ANSWER
PARAGRAPH
QUESTION CODE

16%
29%

Fig. 2: Fixation counts by region.

QUESTION VvoTE CT, __ ANSWER VOTE CT, 0%
ANSWER IMAGE, 0%__ QUESTIONTAG, 1% 7%~ QUESTIONTITLE, 2%

’ QUESTION
___PARAGRAPH, 25%

QUESTION IMAGE, 0% 4
A\
ANSWER COMMENT, _—
VOTE CT,, 7% TITLE, 2%

4% /
QUESTION COMMENT,
TAG, 1%

3% IMAGE, 0%

COMMENT,

ANSWER CODE, 14% PARAGRAPH,

44%
CODE, 39%

ANSWER PARAGRAPH,
18%

QUESTION CODE, 25% .~

Fig. 3: Fixation duration by region.

We also see in Figure 3 that the ratio of fixation duration
spent on question paragraphs as opposed to answer paragraphs
is close to 3:5 (3.6 seconds on question paragraphs to every
5 seconds on answer paragraphs), while guestion code gets
almost twice as many visits as answer code, a helpful insight
from our fine grained analysis. 12 of 30 participants were
tasked with answering a question related to either Eclipse
or NetBeans. Eclipse-familiar participants spent 20 seconds
less time (23s v. 42s) on average looking at paragraphs, but
interestingly, spent less time fixating on code (17s v. 21s).

Looking at navigation between and inside AOIs, we see that
most transitions were made to the same AOI with an average
vertical early percentage (transitions made to a AOI vertically
earlier in the SO page) of 18.44% and an average vertical later
percentage of 22.04%. We also found that participants had a
regression rate (transitions to a different AOI before coming
back to an AOI that the participant had already visited) of
45.54% on average. However, not all AOI types had the same
regression behavior. AOI’s other than code, paragraphs, and

199

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Mean fixation count and mean fixation duration on AOIs
(PAR=paragraph, COD=code block., ALL=all regions)

Fixation Count Fixation Duration
PAR | COD | ALL PAR | COD | ALL
Professionals 40.7 32.0 82.8 | 29.0s | 19.0s | 64.5s
Students 28.6 379 | 70.7 | 20.2s | 23.6s | 47.8s
Eclipse: Not Fam.
Asked Eclipse* 39.5 450 | 98.0 | 42.0s | 169s | 72.7s
Eclipse: Fam.
Asked Eclipse 34.8 28.8 | 78.5 | 23.0s | 21.0s | 59.0s
NetBeans: Not Fam.
Asked NetBeans* 27.0 40.5 70.5 | 189s | 21.0s | 90.7s
NetBeans: Fam
Asked NetBeans 20.2 8.3 343 | 14.3s | 14.6s | 33.1s
Does not use SO 19.7 11.0 333 | 13.3s | 13.7s | 28.6s
Uses SO 354 38.0 80.7 | 25.2s | 22.5s | 58.0s

*Asked for Summary of Eclipse/Netbeans Method/Class.
Note that we were only interested in IDE familiarity.

TABLE III: Top fixation duration regions and task accuracy for
students and professionals.

Fixation Duration Student Professional
Code Block 9 (64%) 3 (37%)
Para. Block 5 (36%) 3 (37%)

Comment Block - 2 (25%)
Incorrect 5 (31%) 3 (25%)
Some Correct | 11 (69%) 9 (75%)

imagery had small regression rates. For instance, titles had a
regression rate of 7.14% which was lower than we expected.
RQ1 Findings: Developers spent most of their time reading
the code portion of questions over comments, vote tallies, and
titles when they were looking at the question part of the Stack
Overflow page. When they were looking at the answer parts
of the Stack Overflow page, participants were found to spend
most of their time on answer text over comments and vote
tallies. The most regressions were to question-region code.

B. RQ2: What are the differences between how professional
developers and non-professional (student) developers read
Stack Overflow posts when summarizing API elements?

In Table II, we show gaze fixation duration comparison of

students and professionals on code regions across all questions.

Professionals in our population visited code regions 18% more
on average than students. It is also worth noting that, even
though both professionals’ and students’ average fixation count
on comments is less than 10 fixations per session (See Table
III), professionals visited nearly 3 times as many comments
on average than students did in any given session, and 2 of 8
professionals fixated on comments longer than on any other
region (including code and paragraphs). This might indicate
comments held special meaning to professionals.

Next, we investigate what pages (See Table IV) on SO the
participants looked at and whether there was overlap between
participants. On average, participants looked at approximately
2 SO pages per session. Professionals looked at an average
of 2.31 SO pages during their tasks whereas students looked
at 1.88 pages on average. In total, there were 29 unique SO
pages that were visited during this study. Of these, 16 were

. Pages Viewed By Both
[Pages Viewed By Professionals Only
Pages Viewed By Students Only

i—-l
& & &

10%
P— |
o & &S & KL &

0%] mi
~$ég. s c.°‘!‘ <

o & & & 2 & B 9 S
& £ & W ¢ & & ¥ & &
A P P O

&
&

40%

30%

20%

Duration Percentage

I .=
£ © F

¢ &

‘\0

Fig. 4: Fixation duration distribution of the first 10 fixations on a SO
page by areas of interest (AOIs) and experience.

viewed by at least one professional and one student, 8 viewed
only by professionals, and 5 only by students.

We wanted to see how developers first glanced at these
SO pages so we analyzed the first ten fixations a participant
made on a page. The ten fixations threshold that was chosen
is arbitrary, but we feel it is a good compromise between
providing more context on the first fixations alone and on
the general gaze distribution of the entire session. Looking at
Figure 4, we can see the distribution of the first ten fixations
using their duration for pages that were looked at by both
students and professions, pages that were looked at only by
professionals, and pages that were looked at only by students.

The first major difference we see between pages read by only
students and pages read by only professionals is that student
only pages had a higher percentage of fixation duration on
Answer Code elements. We also see that Answer Text on pages
read by only students has a smaller percentage of fixations than
on pages read by only professionals. This pattern of student-
only read pages containing more fixations and more fixation
time on code elements and less on the text elements is seen
again in the Question Code and Question Text elements. While
this doesn’t show that students read the code in a SO post
more at the beginning of reading the post than professionals,
it does hint at a difference in SO searching behavior between
students and professionals.

Another notable difference in the gaze distribution between
pages viewed by students only and pages viewed by profes-
sionals only is that very little time on student only pages was
spent fixating on the Question Title or Question Vote elements
and the professional only pages had more of the beginning
fixations on these elements. This seems to indicate that most of
the pages found by students only were not being looked at for
these elements. One explanation is that professionals looked
at the title and vote count of the posts at the beginning of

200

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

reading it to evaluate it or provide more context to the question,
whereas students went directly to the content inside the post.

RQ2 Findings: On average, professionals fixate on more
AOIs than students. In addition, they fixate on 18% more
code regions than students. Pages that were looked at only by
students had more fixation time on code elements and pages
that were looked at only by professionals had more fixation
time on text elements, the question title, and the question vote
count.

C. RQ3: Do developer summaries reflect what was read on
Stack Overflow?

We compared the summaries developers submitted with
what content they found on a Stack Overflow page in answers,
code snippets, and comments. Nearly 23,000 words unique
to each page from SO pages visited were extracted from
questions, answers, comments, and titles. We processed the
words from each page, splitting words connected by periods and
underscores, discarding this and other punctuation — including
G’ 3“7 []1(C))— adding all SO words as tokens to a
SO word-token dictionary, keyed to only retrieve words in a
participant’s log of SO pages they themselves visited. We then
determine “summary relevance” by counting how often words
from developer summaries appear in the text of Stack Overflow
pages, following a lemmatization step via the following process:

1) We broke each word from the summaries into a word.

2) We used the premier NLTK tagger [26] packaged with
NLTK 3.4.4, the averaged perceptron tagger, to tag each
summary word with its proper part of speech. We did
not re-train the packaged model.

3) We used the WordNet lemmatizer (part of NLTK) to
shorten each tagged summary word to its root, removing
any words matching parts of speech that were not nouns,
adjectives, and verbs, adding the rest to a dictionary.

4) We matched elements from participant’s SO-word-token
entries with this lemmatized content from their summary.

A word can be lemmatized in different ways, and lemma-
tizers typically require complete sentences to work properly.
Rather than train the averaged perceptron model for peak
accuracy in terms of tagging the right part of speech, we first
look for any way that a long word (like runner, or running, or
runs) can be reduced (to say run), by lemmatizing each in the
list of words in all three intended forms — noun, adjective, and
verb — using the WordNet Lemmatizer. We then determined
whether one of the three roots appears in the summary, by
attempting to match each against the lemmas of complete
sentences provided in a participant’s summary.

If text from a participant’s summary appears 5 or more
times in SO word tokens from their session, the summary is
considered to contain content relevant to SO. Otherwise, we
consider the summary to be non-relevant to the discussion
posted online. Minor conversions were necessary to make sure
our parser could get proper part-of-speech information (such
as first mapping all words to the Universal POS Tagset [27]).

It would be helpful to relate the results of whether accuracy
was reflected in how well their summary matched words in

the question. We present the outcome of attempts by a few
participants to answer questions in Table V. Though participants
had the opportunity to navigate as many pages as they wanted
to in an untimed session, some participants only navigated
up to a single page. The thoroughness of the response to the
summary works to the participant’s advantage. Fewer words
included in the summary that are relevant, as in the case of a
few shown in our example, can hurt their chances of getting
the summary correct.

RQ3 Findings. With our threshold cutoff of 5 matching
terms, we were able to discover that 53% of the time, (for
16 participants) summaries matched what was found in the
content they viewed on Stack Overflow.

D. RQ4: How do specific attributes of the Stack Overflow
posts (i.e., code block count, paragraph count) impact gaze
behavior?

Our experiment was able to track the regions that participants
visited the most and looked at the longest. The two most visited
blocks for every participant were code blocks and plain text
paragraph blocks. Next, we wanted to determine if the number
of appearances of a feature such as a hyperlink, block count,
or paragraph of text affects how long a participant spends
looking at code blocks or paragraph blocks. If the number of
paragraphs is above or below a threshold, it is reasonable to
suspect this may affect how long a participant will spend look
at the entire page if on a time budget.

We first divided questions into specific groups, by ordering
them by feature count by dividing the counts of the AOI
categories into quartiles. One of our initial ideas for groupings
was “word count” (strings of contiguous letters) on the page.
The word counts of questions ranged from 74 to 1,605 words
(across titles, questions, answers, and comments). After creating
quartiles, we created three groups to keep comparisons simple,
one group G1 with counts less than the 1%¢ quartile, a second
G2 with counts between the 15¢ and 37¢ quartile, and the rest
in the final group G3.

We also created similar quartile groups by creating a “head
count” in each of appearances of our seven main page regions
plus 5 Stack Overflow feature quirks that are used to emphasize
text: hyperlinks, bold words, blockquotes, plain text paragraphs,
and code blocks. We created some of these through manual
analysis by looking for, counting, and recording appearances
of these on every page. Looking at this data this way made it
possible for us to narrow consideration to just two independent
variables — appearances of paragraphs, and appearances of code
blocks — focusing on whether these numbers have any impact
on gaze behavior.

1) Comparing the Groups: We ran an Analysis of Variance
test to detect whether differences in word counts in code blocks
or question/answer paragraph answer text affect whether fixa-
tions would rise or fall on either code, comments, paragraphs, or
titles. In the ANOVA, we looked at the total amount of fixations
a participant made on one of these two regions whenever they
visited this page in a session. We call this case a “visit.”’. Across
29 unique pages, participants were able to visit overlapping

201

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Questions visited by participants and their attributes.

PAR=plain text paragraphs, COD=code blocks, WC=Word count, all regions

num SO-ID Short name Visited by WC | PAR | COD
1 24414549 | “DisableGUINetbeans” P08, P13 1605 5 0
2 40970794 | “JavaJMXDisabled” PO1, P11, P15 1335 7 6
3 2379688 “TestingJavaClassesJMeter” P04 699 7 6
4 31539964 | “DynamicallyRemoveNode” P05, P16, P24 513 6 5
5 16940470 | “JMeterMultipleSampleResult” P21, P29 476 9 8
6 37306300 | “CanTomcat7BeConfigured” P14 434 13 11
7 19438438 | “ReadRequestStreamMultiple” P02, P19 372 7 0
8 23011284 | “InvocationTargetExceptionSWTError” | P03, P25 355 6 12
9 27487610 | “VisualStudio” P12, P30 338 5 0
10 34333812 | “CustomSSOValveBaseJBoss” P28 330 4 2
11 17869755 | “FindingThelssueOfNoClass” P14, P18, P28 328 5 6
12 46256355 | “DataExtractionJMeter” P21 306 6 4
13 12313939 | “SessionTransactionHibernate” P30 306 19 1
14 24803004 | “RedirectPostRequest” P19 281 7 3
15 24358707 | “ExtendsValveBase” P02, P14, P18, P28 268 6 5
16 1138450 “ImplementTomcatRealm” P06, P23 261 13 11
17 6977864 “DisposingDataContext” P07, P12, P22 227 7 2
18 46032100 | “RolesPrincipalShiro” P06, P10, P23 219 12 12
19 46367242 | “HowToGetCookieManager” P29 217 7 2
20 40259589 | “SWTErrorNotImplementedEclipse” P17 214 9 23
21 34236820 | “VeriftyHeaderBeforeRequest” P14 206 10 3
22 6014767 “AutomaticallyUploadAfter” P07, P12 162 4 0
23 19878257 | “HowCanlGetRequestResponse” P04 147 18 7
24 43594344 | “JMeterCustomJavaSampler” P21, P30 137 6 4
25 11959334 | “NoClassDefFoundErrorSWTError” P03, P17, P25 131 14 3
26 14768131 | “SWTErrorNotImplementedMultiple” P17, P25 127 6 7
27 856881 “HowToActivateJMX” P11 96 38 41
28 23569777 | “CantMakeCustomValveWork™ P14, P28 87 13 1
29 44160451 | “JMeterAssertion” P09 74 9 3

TABLE V: Selected participants, their answers,

and words used from Stack Overflow

Part. | API Asked C/R | Shortnames of All Visited Questions | Lemmatizer Matches from Summary | Summary Snippet
P03 | Eclipse C R | NoClassDefFoundErrorSWTError class, exception, SWT, eclipse, exception class for SWT in
SWTError Class InvocationTargetExceptionSWTError | used, widgets, file, open, many eclipse, exceptions are used
for widgets and dialogs
P15 JMeter convertSubTree | C R | DisableGUINetbeans Subtree, method, removes, removes disabled elements
Method disabled, elements, target and replaces with target subtree
P05 Netbeans R DynamicallyRemoveNode Detachable, add, child, allows to add child
Detachable Class nodes, root nodes under the root nodes

Legend: C - Fully correct answer, R - Answer meets relevance threshold.

TABLE VI: Accuracy by OSS project in question

OSS Project
Accuracy Eclipse JMeter Tomcat NetBeans
Incorrect 0 2 (20%) | 3 (42.9%) 3 (50%)
Some Correct | 5 (100%) | 8 (80%) | 4 (57.1%) | 3 (50%)

TABLE VII: Accuracy by API scope in question

API Type
Accuracy Method Class
Incorrect 5 (31.25%) 3 (25.0%)
Partially Correct | 11 (68.75%) | 9 (75.0%)

sets of these, as they were free to explore. When all is taken
into account, 62 total visits were available to experiment with,
along with 62 recordings of fixations to paragraphs, to code,
and to the other main 7 regions of our analysis. This data is
presented as part of our replication package.

The two ANOVAs focused on the three quartile-based groups
for paragraphs and code blocks. After getting the means of
each group in each category, we found an appropriate test for

TABLE VIII: Effect of paragraph count on SO page fixations
(COD=code block, TTL=title, COM=comment)

Group Mean min Mean Sq HSD p
Pair Fix Count N1,No Error min dif
COD G1-G2 | 10.50/23.29 4 436.487 17.60 483
COD G1-G3 | 10.50/18.45 4 436.487 17.60 792
COD G2-G3 | 23.29/18.45 11 436.487 17.60 783
TTL G1-G2 1.23/.37 13 .657 .61 .004
TTL G1-G3 1.23/.37 11 .657 .61 .007
TTL G2-G3 .37/1.18 11 .657 .61 780
COM G1-G2 5.90/1.46 10 10.226 2.72 .001
COM G1-G3 5.90/1.36 10 10.226 2.72 .006
COM G2-G3 1.46/1.36 11 10.226 2.72 .996

answering the question would be comparing the means using
the Tukey Honest Significant Difference (HSD) minimum mean
difference test [28]. This mean difference test uses results from
an Anova F test to specify a unique value by which means must
differ in order for the difference to count as significant. We
present these comparisons and the Tukey HSD values below
and in Tables VIII and IX.

202

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

TABLE IX: Effect of code block count on SO page fixations
(COD=code block, TTL=title, COM=comment)

Group Mean min Mean Sq HSD p
Pair Fix Ct N1,No Error min dif
COD G1-G2 | 14.22/20.19 9 422.442 17.72 725
COD G1-G3 | 14.22/30.60 9 422.442 17.72 .203
COD G2-G3 | 20.19/30.60 10 422.442 17.72 .353
TTL G1-G2 44/.32 9 .583 .64 907
TTL G1-G3 44/.40 9 .583 .64 991
TTL G2-G3 .32/.40 10 .583 .64 .958
COM G1-G2 1.40/1.32 8 6.342 2.50 .983
COM G1-G3 1.32/1.14 7 6.342 2.50 .960
COM G2-G3 1.14/1.14 7 6.342 2.50 .986

2) How Adding More Paragraphs Affects Gaze: Paragraph
totals we found in pages helped us divide pages into groups with
less than 5 paragraphs (low), 6 to 12 paragraphs (medium) and
13 or more paragraphs (high). On average, the fixation counts on
medium and high paragraph page comments were significantly
less than for low (piow—med = -001, Prow—high = .006). The
minimum amount these means have to differ according to
Tukey’s HSD test is by 2.72 fixations to be significant.

3) How Adding More Code Affects Gaze: Quartiles on our
counts of code blocks in our participants visited pages helped
us divide pages into groups that had fewer than 2 code blocks
(low), 3 to 9 code blocks (medium) and 10 or more code blocks
(high). Considering only pages containing at least 1 block,
increase in code blocks on a page does not make a significant
change in mean fixation count (ANOVA F,4.(2,47) = 1.602,
p = .212). Fixations on comments are not affected by number
of code blocks, (ANOVA Foomment(2,47) = .038, p = .963).

We need to point out that behavior of participants made
it difficult to compare certain groups in our analysis. Nearly
70% of visits to pages (42/62) presented us with data where
participants had fixated on titles for less than 60ms, and nearly
43% of visits (21/49 visits) resulted in comments not being
fixated upon at all when they were present. These statistics
helped explain why some group-wide distributions in our data
were skewed toward 0. The skewness of inputs to our data sets
ranged from -.222 to 2.8, from minor to moderate skewing.
We found applying a square-root transformation to 9 of 18 of
our groups was not enough to bring skewness for these down
to less than an acceptable 0.8. We explain this as a threat to
validity.

RQ4 Findings. Higher paragraph counts can have a negative
impact on the amount of fixations that reach other parts
of the page that contain text relevant to the question, in
particular comments. Paragraphs might draw more interest
from participants new to browsing pages on these APIs for the
first time because other features appearing below them take
up less space. Since comments take up less space, they might
seem less relevant to the main material. This content might be
perceived by newcomers as extra and unrelated to what will
help answer the question.

V. DISCUSSION

We conducted a controlled exploratory study where we
tracked the gaze of 30 participants for a total of 77 minutes
of session time while they looked at Stack Overflow pages,
and localized 27.5 minutes of fixation data to areas of interest
related to this study. On average, each participant spent 55.06
seconds browsing regions of interest in a session, (34.97
seconds for a question, 20.09 seconds for an answer).

Professional and Student Gaze Outcomes. We found that
professionals looked at more AOIs than students and looked
at code elements 18% more on average than students. There
was no difference in the number of pages professionals and
students in this sample read per session as they both read 2
pages per session on average. We found that SO pages that
were viewed only by students had more fixation time on code
elements within the first 10 fixations on the page. One possible
explanation for this difference is that students may search for
SO posts that contain more examples of code than professionals,
or it may be that students are more drawn to the code inside
of a SO post.

53% (16 of 30) of the participants passed our 5-word
threshold test for whether the submitted summary was relevant
to the questions that participants viewed, indicating a majority
of participants relied on StackOverflow to inform their under-
standing. We did not learn where within these posts participants
collected their text from most often, though we did find more
plain text paragraphs that were present in the questions and
answers, the fewer fixations other regions received on a page.

At least 50% of each sub-population of either Eclipse, JMeter,
Tomcat or NetBeans respondees scored at least a partially
correct answer to our comprehension questions. (See Table VI).
75% of these asked questions about classes from these API’s
scored partially correct or better, and 68.75% method-level API
questions scored partially correct or better. (See Table VII).

We now discuss some implications of this work. Stack
Overflow is a great resource for developers to learn more
about programming and these results can help to improve
the quality of questions and answers alike. We found that
developers read the text and code of Stack Overflow posts.
Comments, tags, and votes are not looked at nearly as often. If
there is an important correction to an answer, the poster should
consider editing the original answer in order to ensure that the
correction is seen by the most people. Likewise, if there is an
important clarification to a question, the poster should consider
editing the question rather than adding the clarification as a
comment. In addition, we found that students did not look at
the title on the page within the first few fixations on the page
and that all participants rarely fixate on the title after they had
viewed it once. A poster might want to consider including the
title’s context inside the text of the question since developers
will be more likely to read and navigate back to question text
than the title.

VI. THREATS TO VALIDITY

With respect to internal validity, the quality of summaries
from participants could be affected by how much page content

203

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

a participant was able to view in their session. There are many
factors that make guessing the size of the summary based on the
content viewed difficult, and we could not control for this, given
that we gave participants freedom to navigate Stack Overflow
on their own. We believe the freedom we allowed participants to
navigate throughout the site was necessary to mimic a realistic
situation and allow them to fully and completely answer our
comprehension questions without much foreknowledge of the
API’s. In RQ4, we downloaded pages visited by participants
and recorded paragraph count, code region count, as well
as blockquote, hyperlink, and bold region count, to see how
they affected gaze. However, not all pages participants visited
contained these elements. To ensure proper comparison between
groups in our data, we removed from page-to-page comparisons,
any page that contained 0 code blocks if we were comparing
fixations on code blocks, or pages containing 0 comments if
we were comparing fixations on comments.

With respect to external validity, the selection of the API
elements and page attributes we chose to analyze out of the
many available could affect the generalizability of our work.
To keep the study realistic, we had the participants use Stack
Overflow in a browser and used open source API elements
(and not some toy application). For attributes analyzed, some
were chosen because they appeared in other research (code
and bold words), while others because they were the easiest
to extract from HTML. We did not focus on ads or account
information on SO pages, though they could be prominent
attractors of gaze on Stack Overflow. We leave this as future
work.

In terms of construct validity, we used a count of 5 terms to
measure a binary representation of whether content from user’s
summaries was relevant. Plus, the threshold of 10 fixations used
to compare the fixation distributions on SO pages read by only
students, only professionals, or both is arbitrary, but this was
done to help illustrate initial behavior. In addition, we chose to
use lemmatization, when a potentially more accurate alternative
for matching words could have been using thesaurus synonyms
to match words. However, in this paper we present only the
final step in our approach to this problem. Before settling on
lemmatization, we tried much simpler methods such as regex
matching on words and matching on word stems instead of
whole words, but these led to a less robust matching system
in the end, and would match words that were not parts of
speech indicative of understanding the question. Implementing
reducing all words to lemmas was an alternative that led to less
bias to a particular grammatical choice made by the participant.
We invite future work in this field to explore whether adding
thesaurus results would take our relevance analysis a step
further.

With respect to conclusion validity, during this study, to en-
sure ANOVA would give reliable results, we inspected whether
our fixation count histograms followed normal distributions.
We found two interesting things that prevented us from getting
optimal ANOVA results - very few participants fixate on titles
or comments in our pages, making their fixations harder to
compare to other areas. This presented us with a choice to

make to either apply stronger transformations to every single
element in the data set, thereby “cleaning the data first”, or
to present the data as is. We chose the latter which may have
had us miss some important mean differences because of the
skew in the ANOVA inputs.

VII. CONCLUSIONS AND FUTURE WORK

We studied how 30 students and professionals read Stack
Overflow posts while they summarized API elements to answer
API comprehension questions without direct access to the
source code. After finding that plain text paragraphs along
with code examples attract the greatest total fixation duration
and fixation counts, we showed how gaze behavior of those
familiar with SO or familiar with an API in their question
differed greatly from those unfamiliar. Those familiar with
Stack Overflow fixate much less often on code, paragraphs,
and the page overall, and their gazes spent less time per page.
Those familiar with an API they were asked to summarize
spent about 25% less time on average fixating on code or
paragraphs they came across, and spent nearly half the time
fixating on the page overall as those unfamiliar with the APL

Though we did not see professionals and students differ much
in terms of their accuracy or the direction of their transitions
among blocks on pages or pages themselves, we saw differences
in gaze behavior that depended on page content. Higher word
counts in plain text paragraphs led to no change in fixations
on paragraph content or code content, but rather significantly
fewer fixations on comments. Plain text paragraphs are found
everywhere throughout Stack Overflow questions, but we were
able to unearth how the internal structure of a question may
draw gaze activity to certain parts of a page.

As part of future work, we plan on re-conducting this study
by providing Stack Overflow posts as well as the source code of
the system. The more we enable access to more of the web, the
more we can mimic a real developer workspace, and the more
our research can allow us to see what resources developers
voluntary pick while browsing the web to understand code,
and how and why they choose to transition between them. In
line with this concept, future work also includes opening up
the participant’s freedom to browse other relevant parts of the
web to see how various resources of online information will
improve their learning experience.

REFERENCES

[1] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shankar, “Towards
automatically generating summary comments for java methods,” in
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, New York, NY, USA, 2010, pp. 43-52.

[2] R. P. L. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proceedings of the International Conference on Automated
Software Engineering, 2010, pp. 33-42.

[3] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in Proceedings of the 2013 21st International Conference on
Program Comprehension. Piscataway, NJ, USA: IEEE Press, 2013, pp.
23-32.

[4] P. W. McBurney and C. McMillan, “Automatic documentation generation
via source code summarization of method context,” in Proceedings of
the 22Nd International Conference on Program Comprehension, ser.
ICPC 2014. New York, NY, USA: ACM, 2014, pp. 279-290. [Online].
Available: http://doi.acm.org/10.1145/2597008.2597149

204

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

[5]

[6]

[7]

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

R. P. Buse and W. R. Weimer, “Automatically documenting
program changes,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10.
New York, NY, USA: ACM, 2010, pp. 33—42. [Online]. Available:
http://doi.acm.org/10.1145/1858996.1859005

L. Guerrouj, D. Bourque, and P. C. Rigby, “Leveraging informal
documentation to summarize classes and methods in context,” in
Proceedings of the IEEE/ACM 37th IEEE International Conference
on Software Engineering, 2015, pp. 639-642.

C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 392—403.

D. Ford, A. Harkins, and C. Parnin, “Someone like me: How does peer
parity influence participation of women on stack overflow?” in IEEE
Symp. VL/HCC 2017, Raleigh, NC, USA, 2017, pp. 239-243. [Online].
Available: https://doi.org/10.1109/VLHCC.2017.8103473

F. Calefato, F. Lanubile, and N. Novielli, “How to ask for technical
help? evidence-based guidelines for writing questions on stack
overflow,” IST Journal, vol. 94, pp. 186-207, 2018. [Online]. Available:
https://doi.org/10.1016/j.infsof.2017.10.009

U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey on the usage
of eye-tracking in computer programming,” ACM Comput. Surv., vol. 51,
no. 1, pp. 5:1-5:58, Jan. 2018.

T. Beelders and J.-P. du Plessis, “The influence of syntax highlighting
on scanning and reading behaviour for source code,” in Proceedings
of the Annual Conference of the South African Institute of Computer
Scientists and Information Technologists, ser. SAICSIT ’16. New
York, NY, USA: ACM, 2016, pp. 5:1-5:10. [Online]. Available:
http://doi.acm.org/10.1145/2987491.2987536

P. Rodeghero and C. McMillan, “An empirical study on the patterns of eye
movement during summarization tasks,” in 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), vol. 00, Oct. 2015, pp. 1-10.

S. Raina, L. Bernard, B. Taylor, and S. Kaza, “Using eye-tracking to
investigate content skipping: A study on learning modules in cybersecu-
rity,” in Proceedings of the 2016 IEEE Conference on Intelligence and
Security Informatics (1SI), Sep. 2016, pp. 261-266.

N. J. Abid, J. 1. Maletic, and B. Sharif, “Using developer
eye movements to externalize the mental model used in code
summarization tasks,” in Proceedings of the 11th ACM Symposium
on Eye Tracking Research & Applications, ser. ETRA °19. New
York, NY, USA: ACM, 2019, pp. 13:1-13:9. [Online]. Available:
http://doi.acm.org/10.1145/3314111.3319834

N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic,
“Developer reading behavior while summarizing java methods: Size
and context matters,” in Proceedings of the 4l1st International
Conference on Software Engineering, ser. ICSE ’19. Piscataway,
NJ, USA: IEEE Press, 2019, pp. 384-395. [Online]. Available:

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]

(27]

(28]

205

https://doi.org/10.1109/ICSE.2019.00052

P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and
S. K. D’Mello, “Improving automated source code summarization
via an eye-tracking study of programmers,” in 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India -
May 31 - June 07, 2014, 2014, pp. 390-401. [Online]. Available:
https://doi.org/10.1145/2568225.2568247

R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-tracking
study assessing the comprehension of c++ and python source code.”
in Proceedings of the Symposium on Eye Tracking Research and
Applications, ETRA 2014. New York: ACM, 2014, pp. 231-234.

H. Uwano, M. Nakamura, A. Monden, and K. ichi Matsumoto, “Ana-
lyzing individual performance of source code review using reviewers’
eye movement,” in Proceedings of the 2006 Symposium on Eye Tracking
Research & Applications, ser. ETRA 06. New York, NY, USA: ACM,
2006, pp. 133-140.

J. Saddler, C. Peterson, P. Peachock, and B. Sharif, “Reading behavior and
comprehension of c++ source code — a classroom study,” in Proceedings
of the 21st International Conference on Human Computer Interaction,
ser. HCII 2019. Orlando, FL, USA: Springer, July 2019.

C. S. Peterson, J. A. Saddler, N. M. Halavick, and B. Sharif, “A gaze-
based exploratory study on the information seeking behavior of developers
on stack overflow.” in CHI Extended Abstracts. New York, NY, USA:
ACM, 2019.

C. S. Peterson, J. Saddler, T. Blascheck, and B. Sharif, “Visually

analyzing students’ gaze on c++ code snippets,” in Proceedings of the
6th International Workshop on Eye Movements in Programming, ser.

EMIP ’19. Montreal, Quebec, Canada: IEEE, May 2019.
“Stackprinter.” [Online]. Available: http://www.stackprinter.com/

D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and
B. Sharif, “itrace: eye tracking infrastructure for development
environments,” in Proceedings of the 2018 ACM Symposium on Eye
Tracking Research & Applications, ETRA 2018, Warsaw, Poland,
June 14-17, 2018, 2018, pp. 105:1-105:3. [Online]. Available:
https://doi.org/10.1145/3204493.3208343

B. Sharif, J. Meinken, T. Shaffer, and H. H. Kagdi, “Eye
movements in software traceability link recovery,” Empirical Software
Engineering, vol. 22, no. 3, pp. 1063-1102, 2017. [Online]. Available:
https://doi.org/10.1007/s10664-016-9486-9

P. Olsson, “Real-time and offline filters for eye tracking,” p. 42, 2007.
S. Bird, E. Loper, and E. Klein, Laura Lion and Gabrielle Giraffe and
Carl Capybara. London, England: O’Reilly Media Inc., 2009.

S. Petrov, D. Das, and R. McDonald, “A universal part-of-speech
tagset,” CoRR, vol. abs/1104.2086, April 2011. [Online]. Available:
http://arxiv.org/abs/1104.2086

S. E. Maxwell and H. D. Delaney, Designing experiments and analyzing
data: A model comparison perspective. Belmont, CA: Wadsworth
Publishing Company, 1990.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 22,2021 at 22:13:59 UTC from IEEE Xplore. Restrictions apply.

