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Abstract

The likelihood ratio test is widely used in exploratory factor analysis to assess the
model fit and determine the number of latent factors. Despite its popularity and clear
statistical rationale, researchers have found that when the dimension of the response
data is large compared to the sample size, the classical chi-square approximation of
the likelihood ratio test statistic often fails. Theoretically, it has been an open prob-
lem when such a phenomenon happens as the dimension of data increases; practically,
the effect of high dimensionality is less examined in exploratory factor analysis, and
there lacks a clear statistical guideline on the validity of the conventional chi-square
approximation. To address this problem, we investigate the failure of the chi-square ap-
proximation of the likelihood ratio test in high-dimensional exploratory factor analysis,
and derive the necessary and sufficient condition to ensure the validity of the chi-square
approximation. The results yield simple quantitative guidelines to check in practice
and would also provide useful statistical insights into the practice of exploratory factor

analysis.
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1 Introduction

Exploratory factor analysis serves as a popular statistical tool to gain insights into latent structures
underlying the observed data (Gorsuch, 1988; Fabrigar and Wegener, 2011; Bartholomew et al.,
2011). It is widely used in many application areas such as psychological and social sciences (Fabrigar
et al., 1999; Preacher and MacCallum, 2002; Thompson, 2004; Finch and Finch, 2016). In factor
analysis, the relationship among observed variables in data are explained by a smaller number of
unobserved underlying variables, called common factors. To understand the underlying scientific
patterns, one fundamental problem in factor analysis is to decide the minimum number of latent
common factors that is needed to describe the statistical dependencies in data.

In order to determine the number of factors in exploratory factor analysis, a wide variety
of procedures have been proposed; see reviews and discussions in Costello and Osborne (2005),
Barendse et al. (2015) and Luo et al. (2019). For instance, one broad class of criteria are based
on the eigenvalues of the sample correlation matrix of the observed data. Examples include the
Kaiser criterion (Kaiser, 1960), the scree test (Cattell, 1966), the parallel analysis method (Horn,
1965; Keeling, 2000; Dobriban, 2020), and testing linear trend of eigenvalues (Bentler and Yuan,
1998) among many others. Another class of methods propose various goodness-of-fit indexes to
select the number of factors, such as AIC (Akaike, 1987), BIC (Schwarz, 1978), the reliability
coefficient (Tucker and Lewis, 1973), and the root mean square error of approximation (Steiger,
2016). Moreover, the likelihood ratio test provides another popularly used approach in practice
(Bartlett, 1950; Anderson, 2003).

Among the various criteria to determine the number of factors, the likelihood ratio test plays a
unique role, as it is based on a formal hypothesis testing procedure with a clear statistical rationale
and also has a solid theoretical foundation with guaranteed statistical properties. In particular, the
likelihood ratio test examines how a factor analysis model fits the data using a hypothesis testing
framework based on the likelihood theory. The classical statistical theory shows that under the
null hypothesis, the likelihood ratio test statistic (after proper scaling) asymptotically converges to

a chi-square distribution, with the degrees of freedom equal to the difference in the number of free



parameters between the null and alternative hypothesis models (see, e.g., Anderson, 2003, Section
14.3.2).

In the modern big data era, it is of emerging interest to analyze high-dimensional data (Finch
and Finch, 2016; Harlow and Oswald, 2016; Chen et al., 2019), where throughout this paper we
refer to the dimension of the observed response variables as the dimension of data. Classical
asymptotic theory, despite its importance, often replies on the assumption that the data dimension
is fixed as the sample size increases. Such an assumption often fails in high-dimensional data
analysis with large data dimension, and therefore the corresponding asymptotic theory is no longer
directly applicable to modern high-dimensional applications. In fact, it has been found in the recent
statistical literature that the chi-square approximations for the likelihood ratio test statistics can
become inaccurate as the dimension of data increases with the sample size (e.g. Bai et al., 2009;
Jiang and Yang, 2013; He et al., 2020a). In factor analysis, although considerable high-dimensional
statistical analysis results have been recently developed (Bai and Ng, 2002; Bai and Li, 2012;
Sundberg and Feldmann, 2016; Ait-Sahalia and Xiu, 2017; Chen and Li, 2020), less attention has
been paid to the statistical properties of the popular likelihood ratio test under high dimensions.
Particularly, it remains an open problem when the conventional chi-square approximation of the
likelihood ratio test starts to fail as the data dimension grows. In other words, for a dataset with
sample size N, how large the data dimension p can be to still ensure the validity of the chi-square
approximation of the likelihood ratio test?

To better understand this issue, this paper investigates the influence of the data dimensionality
on the likelihood ratio test in high-dimensional exploratory factor analysis. Specifically, under the
null hypothesis, we derive the necessary and sufficient condition for the chi-square approximation to
hold. The results consider both the likelihood ratio test without and with the Bartlett correction,
and provide useful quantitative guidelines that are easy to check in practice. Our simulation results
are consistent with the theoretical conclusions, suggesting good finite-sample performance of the
developed theory.

The rest of the paper is organized as follows. In Section 2.1, we give a brief review of the ex-

ploratory factor analysis and the likelihood ratio test, and in Section 2.2, we present our theoretical



and numerical results on the performance of the chi-square approximation under high dimensions.
Several extensions are discussed in Section 3, and the technical proofs and additional simulation

studies are deferred to the appendix.

2 Likelihood Ratio Test under High Dimensions

2.1 Likelihood ratio test for exploratory factor analysis

In this section, we briefly review the likelihood ratio test in exploratory factor analysis (see, e.g.,
Anderson, 2003, Section 14). Suppose X;, i = 1,..., N are independent and identically distributed
p-dimensional random vectors. The exploratory factor analysis considers the following common-

factor model
Xi=p+AF;,+ U, (1)

where p a the p-dimensional mean parameter vector, A is a p x kg loading matrix with rank(A) =
ko < p, F; is a kp-dimensional random vector containing the common factors, and U; is a p-
dimensional error vector. It is well known that the factor model (1) is not identifiable without
additional constraints, and there are many ways to impose identifiablity restrictions (Anderson,
2003; Bai and Li, 2012). In this paper, we focus on the following identification conditions which
have been popularly used in exploratory factor analysis. In particular, we assume that F; and U; are
independent latent random vectors with E(F;) = 0y,, cov(F;) = Ii,, E(U;) = 0,, and cov(U;) = ¥,
where 0y, denotes a ko-dimensional all-zero vector, I, represents a ko x ko identity matrix, and
VU is a p x p diagonal matrix with rank(¥) = p. It follows that the population covariance matrix

¥ = cov(X;) can be expressed as
S=AAT +U. (2)

Typically, the true number of common factors kg is unknown. In exploratory factor analysis,



to determine the number of factors in model (1), various procedures have been developed. Among
them, the likelihood ratio test plays a unique role due to its solid theoretical foundation and nice
statistical properties. The common practice utilizes the model’s likelihood function assuming both
F; and U; to be normally distributed. In such case, X; follows a multivariate normal distribution
with mean vector 0, and covariance matrix ¥ as in (2), and we write X; ~ N(0,,%). Then, the
likelihood ratio test is used to sequentially test the factor analysis model with a specified number of
factors against the saturated model (e.g., Hayashi et al., 2007). Specifically, for each £k =0,1,...,p,

we consider the following null and alternative hypotheses:
Hyy: ¥ = AAT + ¥ with (at most) k factors, versus Hy - ¥ is any positive definite matrix.

In practice without a priori knowledge, a typical procedure examines the above hypotheses in a
forward stepwise manner. Specifically, we first consider £ = 0 and examine Hpg : ko = 0 versus
H 40 using the likelihood ratio test, that is, testing whether there is any factor in model (1). If
Hy is rejected, we then consider k = 1, that is, a 1-factor model in the null hypothesis Hy . If
Hy 1 is rejected, we proceed with k£ = 2, and test a 2-factor model for Hg . This testing procedure
continues until we fail to reject Ho,ic for some k. Then k is taken as an estimate of the true number
of factors based on the likelihood ratio test.

We next introduce the details on the abovementioned likelihood ratio test. For k = 0, Hog
examines the existence of any significant factors, which is an important problem in psychology

applications (e.g., Mukherjee, 1970). This test can be written as
Hy:X =V versus Hyq:X #VY,

that is, testing whether ¥ is a diagonal matrix. Statistically, this is also equivalent to the following
hypothesis test

Hy:R=1, versus Hj:R#I,,

where R denotes the population correlation matrix of the response variables {X;,i = 1,...,N}.



Under the normality assumption of X, Hpo then tests for the complete independence between
p dimensions of X. The likelihood ratio test statistic for Hyo with the chi-square limit is Ty =
—(N —1)log(|Ry|), where Ry denotes the sample correlation matrix of the observations {X;,i =
1,...,N}, and |Ry| denotes the determinant of Ry; see, e.g., Bartlett (1950). When the dimension

p is fixed and the sample size N — oo, under Hy o,
D .
To = X3, with fo =p(p—1)/2, (3)

where 2 represents the convergence in distribution, and Xfco represents a random variable following
the chi-square distribution with degrees of freedom fy. To improve the finite-sample performance,
researchers have proposed using the Bartlett correction for the likelihood ratio test (Bartlett, 1950).
The corrected test statistic is poTp with the Bartlett correction term po = 1— (2p +5)/{6(N —1)},

and under Hy o with fixed p and N — oo, we still have the chi-square approximation:
D
Po X TO — X%m (4)

while it improves the convergence rate of the chi-square approximation (3) from O(N~1) to O(N~2).
For k > 1, Hy j, examines whether the k-factor model fits the observed data. Under the k-factor
model, let Ak and \i/k denote the maximum likelihood estimators of A and W, respectively, and

define flk = AkA,I + \ilk Then to test Hyy, the likelihood ratio test statistic can be written as
Ti = —(N = 1)log(1Z] x [S] ™) + (N = D{tr(EX") - p}, (5)

where 3 is the unbiased sample covariance matrix of the observations {X;,i =1, -+, N}, and tr(A)
denotes the trace of a matrix A; see, e.g., Lawley and Maxwell (1962). Under the null hypothesis

with kg = k, p fixed and N — oo, we have the following chi-square approximation:

Tkgxffk, where fr = {(p — k)* —p — k}/2. (6)



Moreover, applying the Bartlett correction for this test, we have

2p+ 544k

D 2 .
pk;XTk-)ka, where pk—l—m (7)

Despite the usefulness of the above chi-square approximations, classical large sample theory as-
sumes that the data dimension p is fixed, and therefore many conclusions are not directly applicable
to high-dimensional data when p increases with the sample size N. As analyzing high-dimensional
data is of emerging interest in modern data science, it imposes new challenges to understanding
the statistical performance of the likelihood ratio test in the exploratory factor analysis, which will

be investigated in the next section.

2.2 Main results

In high-dimensional exploratory factor analysis, it is important to understand the limiting behavior
of the likelihood ratio test, as applying an inaccurate limiting distribution would lead to misleading
scientific conclusions. This section focuses on the limiting distribution of the likelihood ratio test
under the null hypothesis, and investigates the influence of the data dimension p and the sample
size N on the chi-square approximation.

Recent statistical literature has shown that the chi-square approximation for the likelihood ratio
test can become inaccurate in various testing problems (Bai et al., 2009; Jiang and Yang, 2013;
He et al., 2020a), while this inaccuracy issue is still less studied in the exploratory factor analysis.
To demonstrate that similar phenomena exist for the exploratory factor analysis, we first present

a numerical example, before showing our theoretical results.

Numerical Example 1. Consider Hy g in Section 2.1 with N = 1000 and p € {20,100, 300, 500}.
Under each combination of (N,p), we generate X;,i =1,...,N from N(0p,1,) independently, and
then compute the likelihood ratio test statistics Ty in (3) and its Bartlett corrected version poTy in
(4). We repeat the procedure 5000 times, and present the histograms of Ty and poTy in the first and
second rows, respectively, of Figure 1. For comparison, in each histogram, we add the theoretical

density curve of the limiting distribution Xfco in (3) and (4) (the red curves in Figure 1).
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Figure 1: Histograms of Ty and pgTy with the density curves of X)%D

From the two figures in the first column of Figure 1, we can see that when p is small (p = 20)
compared to N, the density curve of X%o approximates the histograms of Ty and pgTy well. This is
consistent with the classical large sample theory in (3) and (4). However, as p increases from 20
to 500, the density curve of X%o moves farther away from the sample histograms of Ty and pgTo,
indicating the failure of the chi-square approximation as p increases. It is also interesting to note
that the likelihood ratio test statistics without and with the Bartlett correction behave differently
as p increases, despite their similarity when p is small. For instance, when p = 100, X%o already
fails to approximate the distribution of 7§, but it can still well approximate that of the corrected
statistic pgTy. Nevertheless, when p = 300 and 500, X)%n fails to approximate the distributions of
both Ty and ppTh, while the approximation biases differ. These numerical observations bring the
following question in practice: how large the dimension p with respect to the sample size N can be
so that we can still apply the classic chi-square approximation for the likelihood ratio test?

To provide a statistical insight into this important practical issue, we derive the necessary and
sufficient condition to ensure the validity of the chi-square approximation for the likelihood ratio

test, as p increases with V. Particularly, we first consider Hy g : kg = 0 in Section 2.1, and provide



the following Theorem 1.

Theorem 1 Suppose N > p+5. Let X?co(a) denote the upper-level a-quantile of the X;() distribution.

Under Hog : ko =0, as N — oo,
(i) SUPae(0,1) | Pr{Ty > X?co(a)} —a| = 0, if and only if lim, o p/Nl/2 =0;
(i) supqe(o,1) | Pripo x To > X}O(a)} —a| = 0, if and only if lim,,_o p/N?/3 = 0.

In Theorem 1, N > p+5 is required for the technical proof. This condition is mild as N > p+1
is required for the existence of the likelihood ratio test statistic with probability one (Jiang and
Yang, 2013). Theorem 1 (i) suggests that the chi-square approximation for Ty in (3) starts to fail
when the dimension p approaches N%/2, and (ii) shows that the chi-square approximation for pgTj
in (4) starts to fail when p approaches N 2/3_ To further demonstrate the validity of Theorem 1, we

conduct a simulation study as follows.

Numerical Example 2. We take p = |N¢|, where N € {100,500,1000,2000} and ¢ €
{3/24,4/24,...,23/24}. For each combination of (N,p), we generate X; from N (0,,1,) for i =
1,..., N independently, and conduct the likelihood ratio test with two chi-square approximations in
(3) and (4), respectively. We repeat the procedure 1000 times to estimate the type I error rates
with significance level 0.05, and then plot estimated type I error rates versus € in Figure 2. The
left figure in Figure 2 presents the results of the chi-square approximation for Ty in (3), where the
estimated type I error begins to inflate when e approaches 1/2. In addition, the right figure in Figure
2 presents the results of the chi-square approximation for pyTy in (4), where the estimated type I
error begins to inflate when e approaches 2/3. The two theoretical boundaries on € in Theorem 1
are denoted by two vertical dashed lines in Figure 2. For each approxrimation, the theoretical and

empirical values of € where the approximation begins to fail are consistent.

We next investigate the sequential test for Hy j, when k& > 1. Under Hy j, assume the true factor
number is k, and AxA; and Wy are the true values such that (2) holds with AAT = AzA] and
W = V,, where Ay is a matrix of size p x k, and ¥y is a diagonal matrix. In classical multivariate

analysis with fixed dimension and certain regularity conditions, it can be shown that Ak[&,j i AkA,I
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Figure 2: Estimated type I error versus € when kg = 0

and Uy Lif U, where Lif represents the convergence in probability; see, e.g., Theorem 14.3.1 in
Anderson (2003). To facilitate the following theoretical analysis, we consider a simplified version
of the test by assuming AkAg and Wy are given, and define X; = AkAg + V. Then we consider

testing Hy . : ¥ = X, and the likelihood ratio test statistic can be expressed as
T = —(N = 1) log(|] x [Z|7") + (N = D{er(E51) - p);

see Section 8.4 of Muirhead (2009). The test statistic 7 and T} in (5) are the same except that
T’ is based on the true value ), = AkAg + W}, while T}, is based on S = f\kf\g + \ilk, with f\kf\g
and Uy, being the maximum likelihood estimators of AkA;— and Wy, respectively, under the k-factor
model. Under the classical setting with p fixed, the chi-square approximation of 7" is T" LN Xfc,,
where f’ = p(p+1)/2, and by the Bartlett correction with p’ = 1—{6(N—1)(p+1)}~1(2p?+3p—1),
we have p'T’ L, X?/- For this simplified testing problem H,, the test statistic 7" and its limit do
not depend on the number of factors k, as the true AkAg and ¥y are assumed to be given.
Considering H(/),k and the statistic 7", we next provide the necessary and sufficient condition
on when the chi-square approximation for the likelihood ratio test fails as the data dimension p

increases under H ;.
Theorem 2 Suppose N > p+2. Under Hj, : ¥ = AkAg—HIlk, with given A, and Yy, and k = ko,

10



as N — oo,
(i) supye(1y | Pr{T" > X?,(a)} —a| = 0, if and only if lim,, oo p/N'/? = 0;
(i) supae(oq) | Prip’ x T > X?,(a)} —a| = 0, if and only if lim,_,o p/N?/® = 0.

Remark 1 For the more general testing problem Hy j, we need to obtain the mazximum likelihood
estimators Ay, and Uy, and then conduct the likelihood ratio test with chi-square approrimations (6)
or (7). When the number of latent factors k is fized compared to N and p, we note that py/p’ and
T/ asymptotically converge to 1. Furthermore, if A/A\;rf]\,;r + Uy, approximates the true AkA,;r + Uy
sufficiently well, we expect that the conclusions in Theorem 2 would hold for the likelihood ratio
test under the null hypothesis Hy i similarly. In particular, when k is fized as N — oo, consistent
estimation of A and Wy has been discussed under both fized p in the classical literature (see,
e.g., Anderson, 2003, Theorem 14.3.1) and p — oo in recent literature on high-dimensional factor
analysis model (see, e.g., Bai and Li, 2012). When k also diverges with N and p, an asymptotic
regime that is less investigated in the literature, deriving a similar condition for the chi-squared
approximation would require accurate characterizations of the biases of estimating Ay and Yy,
which, however, would be challenging and need new developments of high-dimensional theory and

methodology.

We next demonstrate the theoretical results through the following numerical study.

Numerical Example 3. We consider the likelihood ratio test under Hy ), with k = ko € {1,3}.
(I) When ko = 1, under Ho1, we set A = p x 1, and ¥ = (1 — p*)I,,, with p = 0.3. (1I) When

ko =3, under Hy3, we set ¥ = (1 — p2)1p and

px1p 0p, 0y,
A= Opl p X 11)1 0p1 ’

Op—2pr  Op—2p, P X 1p_2p

where p1 = |p/3], p = 0.6, and 1,, represents a pi-dimensional vector with all one entries. For

both cases, we set p = | N¢|, where N € {100,500, 1000,2000} and ¢ € {8/24,7/24,...,23/24}. And

11



we generate each observation X;,i=1,..., N, from N(0, AAT + V) independently, and conduct the
likelihood ratio test with the function factanal() in R. Similarly to Figure 2, we plot the estimated
type I error rates (based on 1000 replications) versus € for two approximations (6) and (7), where

the results of case (I) are in Figure 3, and the results of case (II) are in Figure /.
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Figure 3: Estimated type I error versus € when ky = 1
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Figure 4: Estimated type I error versus € when kg = 3

Similarly to Numerical Example 2, Numerical Example 3 also demonstrates that the empirical

values of €, where the chi-square approximations start to fail, are consistent with the corresponding

12



theoretical results. The necessary and sufficient conditions therefore would provide simple quan-
titative guidelines to check in practice. In addition, it is worth mentioning that the conditions in
Theorems 1 and 2 also reflect the biases of the chi-square approximations. For instance, consider-
ing the likelihood ratio test for Hy g, by the proof of Theorem 1, when p/N — 0, we obtain that
E(Ty — X?co) X {vaur()(?co)}_l/2 is approximately Cyp?/N, and E(py x Ty — Xico) X {Valr(xfco)}_l/2 is
approximately Cop®/N?, where C and Cy are positive constants. This suggests that the mean of
the chi-square limit will become smaller than the means of Ty and pgTy as p increases, which is
consistent with the observed phenomenon in Figure 1.

Moreover, Figures 2—4 show that the estimated type I error of the likelihood ratio test increases
as € increases. This can provide one possible explanation for the well-known finding that the
likelihood ratio test tends to overestimate the number of factors (Hayashi et al., 2007). In particular,
let k denote the number of factors estimated by the sequential procedure described in Section 2.1,
and let ko denote the true number of factors. Note that in the sequential procedure, rejecting Hy g,
leads to an overestimation of the number of factors, i.e., k> ko. Thus, when the type I error of
testing Hy , inflates as in Figures 2-4, the probability of rejecting Hy 1, would also increase, which
consequently suggests an inflation of the probability of overestimating the number of factors, k> ko.
We also conduct simulation studies in Section B.2 to demonstrate the performance of estimating
the number of factors using the likelihood ratio test. The numerical results are consistent with
the above theoretical analyses and show that the procedure begins to overestimate the number of
factors when the type I error begins to inflate.

Furthermore, Theorems 1 and 2 indicate that given the same sample size, the chi-square ap-
proximation with the Bartlett correction can hold for a larger p than the one without the Bartlett
correction. This explains the patterns observed in Figure 1. Under the classical settings where
p is fixed, researchers have shown that the Bartlett correction can improve the convergence rate
of the likelihood ratio test statistic from O(N~!) to O(N~2); however, this result does not apply
to the high-dimensional setting with p increasing with N. Our theoretical results in Theorems 1
and 2 provide a more precise description on how the Bartlett correction improves the chi-square

approximations for high-dimensional data, in terms of the failing boundary of p with respect to N.

13



Remark 2 Similar phase transition phenomena were discussed in He et al. (2020b). However,
we point out that this paper considers different problem settings. In particular, He et al. (20200)
discussed several problems on testing mean vectors and covariances, whereas Theorem 1 eramines
testing correlation matrices. Moreover, Theorem 2 considers a problem of testing the covariance
equal to a given k-factor matriz, which was not discussed in He et al. (2020b). To establish the
result, it is required to derive a mew high-dimensional asymptotic result given as Lemma 8 in the

Appendiz of this paper.

3 Discussions

This paper investigates the influence of the data dimension on the popularly used likelihood ratio
test in high-dimensional exploratory factor analysis. For the likelihood ratio test without or with
the Bartlett correction, we derive the necessary and sufficient conditions to ensure the validity of
the chi-square approximations under the corresponding null hypothesis. The developed theoretical
conditions only depend on the relationship between the data dimension and the sample size, and
would provide simple quantitative guidelines to check in practice.

The theoretical results in this paper are established under the common normality assumption
of the observations {X;,i = 1,..., N}. To illustrate the robustness of the theoretical results to
the normality assumption, we conduct additional simulation studies with X;’s following a discrete
distribution or a heavy-tailed t-distribution in Appendix. Similar numerical findings are observed
when detecting the existence of factors, which suggests that the validity of the theoretical results
and the usefulness of the developed conditions in practice. Please see Section B.1 in Appendix.

Moreover, this paper focuses on controlling the type I error when testing a given null hypothesis,
whereas deciding the number of factors would involve multiple steps of hypothesis testing in the
sequential procedure. When the derived phase transition conditions are satisfied, our theoretical
results suggest that the type I error of testing corresponding null hypothesis can be asymptotically
controlled. However, the probability of correctly deciding the true number of factors relies on not

only the type I error but also the power of testing each hypothesis in the sequential procedure.
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The power of the likelihood ratio test depends on certain complicated hypergeometric functions
(Muirhead, 2009), which would be very challenging to investigate under high dimensions. We
would like to leave this interesting problem as a future study. In addition to the likelihood ratio
test, it is also of interest to develop other efficient methods for deciding the number of factors in
high-dimensional settings (see, e.g., Bai and Ng, 2002; Chen and Li, 2020).

When applying the likelihood ratio test in the exploratory factor analysis, it is worth noting
that the data dimension p is not the only condition to consider. Researchers have discussed various
other regularity conditions such as small sample size (MacCallum et al., 1999; Mundfrom et al.,
2005; Winter et al., 2009; Winter and Dodou, 2012), nonnormality (Yuan et al., 2002; Barendse
et al., 2015), and rank deficiency (Hayashi et al., 2007). The results in this paper only provide one
necessary requirement to check in the high-dimensional exploratory factor analysis.

The results in this paper are also related to the important design problem on minimum sample
size requirement for the exploratory factor analysis (Velicer and Fava, 1998; Mundfrom et al.,
2005). The existing literature have conducted extensive simulation studies to explore what is the
minimum sample size N required or how large the ratio N/p should be. In this paper, we derive
theoretical results suggesting that we may also consider the polynomial relationship between N
and p. Specifically, given the number of variables p to consider, the sample size should be at least
p? to apply the likelihood ratio test, and at least p3/2 to apply the likelihood ratio test with the
Bartlett correction. This may provide helpful statistical insights into the practice of exploratory
factor analysis.

Although this paper focuses on the exploratory factor analysis, we expect that the failure
of chi-square approximations under high dimensions can happen generally in other latent factor
modeling problems such as the confirmatory factor analysis (Thompson, 2004; Koran, 2020) and
the exploratory item factor analysis (Reckase, 2009; Chen et al., 2019). Moreover, the phenomena
introduced in this paper may also occur for other fit indexes that involve certain chi-square limit,
such as the root mean square error of approximation (Steiger, 2016). New high-dimensional theory

and methodology for these problems would need to be further investigated.
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Appendix

This appendix presents the technical proofs in Section A and additional simulations in Section B.

A Proofs

We prove Theorems 1 and 2 in Sections A.1 and A.2, respectively, and provide a required lemma
and its proof in Section A.3. In the following proofs, for two sequences of number {ay : N > 1}
and {by : N > 1}, any = O(by) denotes limsup,,_, . |an/bn| < oo, and ay = o(by) denotes

limy_yo0 an /by = 0.

A.1 Proof of Theorem 1

To derive the necessary and sufficient condition on the dimension of data, it is required to correctly
understand the limiting behavior of the likelihood ratio test statistic under both low- and high-
dimensional settings. In particular, we examine the limiting distribution of the likelihood ratio test
statistic based on its moment generating function. For easy presentation in the technical proof, we
let n = N — 1 below. Then we can write Ty = —n log \Rn| Under the conditions of Theorem 1, by
Theorem 5.1.3 in Muirhead (2009) and Lemma 5.10 in Jiang and Yang (2013), we know that there
exists a small constant dy > 0 such that for h € (—do, dp),
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where I'(z) denotes the Gamma function, and I'y(z) denotes the multivariate Gamma function

satisfying I'y(2) = mP(p—1)/4 H?:l Mz—(G—-1)/2}

Part (i) The chi-square approximation. When p is fixed compared to N, by applying
Stirling’s approximation to the Gamma function, it can be shown that as N — oo, for any h €
(=60, 00), E{exp(h x Tp)} converges to (1 — 2h)~70/2, which is the moment generating function of
Xfco; see, e.g., Bartlett (1950) and Section 5.1.2 of Muirhead (2009). It follows that Ty D, X?‘o by
the continuity theorem. When p — oo, Jiang and Yang (2013) and Jiang and Qi (2015) derived
an approximate expansion of the multivariate Gamma function I'p(-) when p increases with the

sample size N, and then showed that for any h € (—dg, do),

Elexp{h(To + npin,0)/(non,0)}] — exp(h?/2), (8)

where &g is a constant that is sufficiently small, exp(h?/2) is the moment generating function of

the standard normal random variable N (0, 1), and

n—1
o= -n+1/2log (1-2) = “—p, o2 =-2{L+10g(1-2)}.
n n ’ n n

This suggests (1o + npn,0)/(nonp) EEN N(0,1) by the continuity theorem. Note that Xfeo can

be viewed as a summation of the squares of fy independent standard normal random variables,

and fo — oo when p — oo. By applying the central limit theorem to Xfeo when p — oo, we
. D .

obtain (X?co — fo)/V2fo — N(0,1), giving E[exp{h(x?o — fo)/v2fo}] — exp(h?/2). Therefore,

if the chi-square approximation for Ty holds, we know Elexp{h(To — fo)/v/2fo}] — exp(h?/2) for

h € (—6o,00), which, given (8), is equivalent to

V2fo x (none) ™t = 1, 9)
(fo + npno) X (nopg) ™" — 0. (10)
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We next examine (9) and (10) by discussing two cases lim,_, p/n = 0 and lim, . p/n = C €
(0, 1], respectively.
Case (i.1): lim, oo p/n = 0. Under this case, we show that (9) holds. By Taylor’s expansion,

log(1 — ) = —x — 22/2 4+ O(2?) for x € (0,1), and then

2 3 2
2 _ p p P
Recall that fo = p(p — 1)/2, and it follows that (9) holds. Next we prove (10) holds if and only if
p/n'/? — 0. Similarly by Taylor’s expansion and p/n = o(1), we have

[no = (—n+p+1/2){—i]1€(Z)kJrO(ii)}_n;lp

k=1
2 3 2 4
+1/2 +1/2
_p+p7+p72ip(p /)7p(p2/)+0p737p+g
2n  3n n 2n n

and then fo + nuno = —p*/(6n) + O(p*/n?) + o(p). Given that (9) holds under this case and
V2fo/p = 1, we obtain (fo + npino) X (nope)~t = —p?/(6n) + O(p®/n?) + o(1), which converges
to 0 if and only if p?/n — 0 under this case.

Case (i.2): lim,,_,oo p/n = C € (0,1]. Under this case, we show that (9) does not hold. Note that

2fo C?
nQJfL’O —2{C +1log(1 - CO)}"

IfC=1, 2f0/(n20270) — 0, and thus (9) does not hold. We next consider C' € (0, 1). If (9) holds,
we shall have g1(C) = 0 with g1(C) = C% + 2{C + log(1 — C)}. By taking derivative of g;(C), we

obtain

, _ 2 __202

when C' € (0,1). This suggests that g;(C) is strictly decreasing on C' € (0,1). As g1(0) = 0, we
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know ¢1(C) < 0 for C' € (0, 1), and thus (9) does not hold.

Finally, we consider a general sequence p/n € (0,1], and write p, = p and f, o = fo below
to emphasize that p and fy change with n. For the bounded sequence {p,/n}, by the Bolzano-
Weierstrass theorem, we can further take a subsequence {p,, /n;} such that p,, /ny — C € [0,1]. If
C € (0,1], the analysis in Case (i.2) applies, and we know /2, 0 X (ng0n,,0) " does not converge
to 1. Since a sequence converges if and only if every subsequence converges, we know (9) does not
converge to 1 under this case. Alternatively, if all the subsequences of {p/n} converge to 0, we
know p/n — 0, and the analysis in Case (i.1) applies. In summary, the chi-square approximation

holds if and only if p?/n — 0.

Part (ii) The chi-square approximation with the Bartlett correction. Similarly to
the proof of Part (i), when p is fixed, it has been shown that E{exp(h x pg x Tp)} — (1 — 2h)~fo/2
for h € (=dp,00) and pg = 1 — (2p + 5)/(6n) (see, e.g., Bartlett, 1950); when p — oo, we also
have (8) holds. If the chi-square approximation with the Bartlett correction holds, E[exp{h(poTo —
f0)/v2fo}] — exp(h?/2) for h € (—do, ), which, given (8), is equivalent to

V2fo x (npo x on o)t — 1, (12)
(fo +npo X pno) X (npo X anjo)_l — 0. (13)

Case (ii.1): lim, oo p/n = 0. Under this case, we have (12) holds given py — 1 and (9) proved
above. We next prove (13) holds if and only if p?/n? — 0. Similarly to the proof in Case (i.1), by

Taylor’s expansion and p/n = o(1), we have

Hn,0

I
|
N
+
b
+
—
~
=
——
|
el
~
|3
~—
>




By npp =n — (2p + 5)/6, we obtain

Jo+mnpo X pmo = fo+n X pino—p x p1o/3+ o(p)

3 4 5 3 4

2
p—pr* P p p P p
= — — O
ot e 122 T <n3> o)+ i+ g

_ +O<ﬁ>+o@)

 36n2 n3

Given that (12) holds under this case and /2fo/p — 1, we obtain (fo+np0fn,0) X (npoon0) "t =
—p3/(36n%) + O(p*/n3) + o(1), which converges to 0 if and only if p3/n? — 0 under this case.
Case (#.2): limp_oop/n = C € (0,1]. Under this case, we show that (12) does not hold. Note
that

2fo C?

25802, —2(1— C/3){C +log(1— C)}

(14)

If C =1, 2fo/(n*pjor ) — 0 and thus (12) does not hold. We next consider C' € (0,1). If (12)
holds, we shall have g2(C) = 0 with g2(C) = C?+2(1—C/3)?{C +log(1—C)}. By taking derivative
of g2(C), we obtain ¢g4(0) = 0, ¢5(0) =0, and

4C(3C? —8C +9)

" _ _

when C' € (0,1). Similarly to the analysis in Case (i.1), we obtain that ¢g4(C) < 0 for C € (0,1).
It follows that g2(C) is strictly decreasing on C' € (0,1) with g2(0) = 0. Therefore g2(C') < 0 on
C € (0,1), which suggests that (12) does not hold.

Finally, for a general sequence p/n € (0,1], following the analysis of taking subsequences in
Part (i), we know that the chi-square approximation with the Bartlett correction holds if and only
if p3/n? — 0. Recall that N = n+ 1. Thus, the same conclusions hold asymptotically by replacing
n with N, that is, the chi-square approximations without and with the Bartlett correction hold if

and only if p?/N — 0 and p?/N?2, respectively.
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A.2 Proof of Theorem 2

Similarly to the proof of Theorem 1, we next examine the limiting distribution of 7" based on its
moment generating function. In Theorem 2, testing Hé,k 1Y = AkA;r + WU, when A and Uy are
given is equivalent to testing the null hypothesis Hy : ¥ = I, by applying the data transformation
E,;UQXZ- with ¥, = Ak;A;l— + Wg. Then by Corollary 8.4.8 in Muirhead (2009), under the null

hypothesis, we have

E{exp(h x T")} = (2:) o (1 — 2h)PrU=2R)/2 Fp{nr(i(;/zf;)/?}’ (15)

where n = N — 1.

Part (i) The chi-square approximation. When p is fixed compared to the sample size N,
by applying Stirling’s approximation to the Gamma function, it has been shown that as N — oo,
(15) converges to (1 — 2h)~/"/2, which is the moment generating function of X?c, (Muirhead, 2009,
Section 8.4.4), and therefore T” EEN X?,. When p — oo, by the proof of Lemma 3 in Section A.3,

we have Elexp{h(T’ + ni,)/(noy,)}] — exp(h?/2), where

unz—p+(p—n+1/2)1og(1—§), ai:—2{%+1og(1—§)}. (16)

Similarly to the proof of Theorem 1, we know that the chi-square approximation for 7" holds if and

only if

V2f % (nop) ™t = 1, (17)

(f' 4+ npp) x (no,) ™t = 0. (18)

Case (i.1): lim, ,oop/n = 0. Under this case, similar to (11), by Taylor’s expansion, o2 =

p*n=2{1+o0(1)}. As \/2f/p — 1, we have (17) holds. We next show that (18) holds if and only if
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p?/n — 0. Particularly, by Taylor’s expansion and p/n — 0,

= —p+(—n+p+1/2){—i—pQ—i—kO(Zi)} (19)

It follows that f’'+ nu, = —p3/(6n%) + O(p*/n®) + o(p/n). Given (17) and /27" /p — 1, (18) holds
if and only if p?/n — 0.
Case (i.2): lim, o p/n = C € (0,1]. Under this case, 2f"/(n%02) — —C?/[2{C + log(1 — O)}].
We then know (17) does not hold following the proof of Theorem 1, and therefore the chi-square
approximation fails.

Finally, for a general sequence p/n € (0, 1], following the same analysis of taking subsequences
as in the proof of Theorem 1, we know that the chi-square approximation holds if and only if

p?/n — 0.

Part (ii) The chi-square approximation with the Bartlett correction. Similarly to
the proof of Theorem 1 and the analysis above, we know that the chi-square approximation with

the Bartlett correction holds if and only if

VP % (ngf X ) 51, (20)
(f 4+ np X pn) x (np’ x 0,)"t = 0. (21)

Case (ii.1): limy, oo p/n =0. As p’ — 1 under this case, we know (20) holds given (17) proved in

Part (i). We next prove (21) holds if and only if p3/n? — 0. Similarly to (19), by Taylor’s expansion

and p/n — 0,
= —p+(-n+p+1/2)¢{-> id +0 »
fn = =P p 2 Fxw 3
_ plp+1 PP Pt p° <p)
- 2n 6n2 12n3+0 n4 to n/’
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By np' =n—p/3+ O(1) and p/n — 0,

2n 6n2 12n3
plp+1) p*  p* P P p°
= _perl) P L o2 .
2 6n  12n? + 6n + 18n2 + n3 +o(p)

It follows that f/ 4 np'u, = —p*/(36n2) +O(p*/n®) + o(p). Given (13) and /2f"/p — 1, (21) holds
if and only if p®/n? — 0.

Case (#.2): lim, .o p/n = C € (0,1]. Under this case, p/ — 1 — /3 and 2f'/(np'c,)? converges
to the limit same as the right hand side of (14). Thus the same analysis applies and we know that
the chi-square approximation with the Bartlett correction fails.

Finally, for a general sequence p/n € (0, 1], following the same analysis of taking subsequences
as in the proof of Theorem 1, we know that the chi-square approximation with the Bartlett cor-
rection holds if and only if p3/n? — 0. Recall that N = n + 1. Thus, the same conclusions hold
asymptotically by replacing n with N, that is, the chi-square approximations without and with the

Bartlett correction hold if and only if p?/N — 0 and p3/N?, respectively.

A.3 Lemma

Lemma 3 Under the conditions of Theorem 2, when p — o0 asn = N —1 — oo, we have

(T + npn) /(noy) 2 N(0,1) with p, and o2 in (16).

Proof. Tt suffices to show that there exists a constant ¢’ > 0 such that E[exp{h(T"4+npuy)/(no,)}] —
exp(h?/2) for all |h| < &'. Particularly, we let s = h/(no,), and prove log[E{exp(sT")}] — h?/2 —

hyin /0. By the moment generating function of 7" in (15), we have

log [E{exp(s x T")}] (22)

= —pnslog(2e/n) — %(1 — 2)log(1 — 25) + log {W} _

We next derive the approximate expansion of (22) by discussing two cases.

Case 1: limp/n — C € (0,1]. Under this case, we utilize the approximate expansion of multivari-
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ate gamma function in Lemma 5.4 of Jiang and Yang (2013). To apply the result, we first show

that the conditions are satisfied. Specifically, define r2 = —log(1 — p/n), and we have

h? log(1 —C)

— X , if C € (0,1);
h? 2 C+H+log(l-C
(—ns)? x r2 = —ﬁlog(l —p/n) — , o8 )
- if C=0.

2 )
Therefore, —ns = O(1/ry,), and then Lemma 5.4 in Jiang and Yang (2013) can be applied to expand

(22). It follows that

_Zﬂ<

(22) = —pnslog(2e/n) 1 —2s)log(1 — 2s)

—pnslog{n/(2¢)} + 7"% {(—ns)2 —(p—n-+ 1/2)(—ns)} + o(1).
By Taylor’s expansion (1 — 2s)log(1 — 2s) = —2s + 252 + O(s3) for s € (0,1), we obtain

(22) = —% {-2s+25* +0(s%)}
—log (1 - %) {n282 +(p—n+1/2)ns} +o(1)

= 52{—pn—n210g(1—%>}+s{pn—(p—n—|—1/2)log (1—%)}4—0(1).

With s = h/(noy,), we have log(E[exp{hT"/(noy,)}]) = h?/2 — hjin/on + o(1).

Case 2: limp/n = 0. Under this case, we utilize the approximate expansion of multivariate gamma
function in Proposition A.1 of Jiang and Qi (2015). To apply the result, we first show that the
conditions are satisfied. Particularly, as 02 = p?n~=2{1+0(1)}, we have —ns x p/n = —ph(no,)~1 =

h{1+ o(1)}. Therefore, —ns = O(n/p), and we can apply Proposition A.1 in Jiang and Qi (2015)

to expand (22). It follows that

og { T,(n/2 — ns)

Fp(TL/Q) } - ’7”71(_’”5) + 7n,2(—n8)2 + Yn,3 + 0(1)’
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where

Y1 = —{2p+ (n—p—1/2)log (1 —p/n)},
Yn2 = —{p/n+log(l—p/n)},

T3 = p{(n/2 —ns)log (n/2 —ns) — (n/2)log(n/2)}.
Note that v, 3 = (pn/2)(1 — 2s)log(1l — 2s) — pnslog(n/2). Then we have

2
(22) = — pnslog <n€> - %(1 —25)log(1 — 25) — Y115 + Yn2n?s® + n3 + o(1)

= —(p+Yn1)ns + %,271282 +o(1),

which gives log(E[exp{hT"/(nc,)}]) = h?/2 + unh/on + o(1) by s = h/(noy,).

Finally, for a general sequence {p/n}, to prove that (7" + nuy)/(no,) converges in distribution
to N(0,1), it suffices to show that every subsequence has a further subsequence that converges in
distribution to N'(0,1). By the boundedness of p/n and the Bolzano-Weierstrass theorem, we can
further take a subsequence such that p/n has a limit and the arguments above can be applied. In

summary, Lemma 3 is proved. O

B Supplementary simulation studies

B.1 Simulations on the Type I Error

In this section, we provide additional simulation studies when the data is not normally distributed.
Particularly, we focus on the likelihood ratio test under the null hypothesis Ho o, which detects the

existence of any factors or not.

Simulations with heavy-tailed t-distributed data. Similarly to previous simulations,
we consider p = | N¢|, where N € {100,500, 1000,2000} and ¢ € {3/24,4/24,...,23/24}. Under

each combination of (N, p), we generate the entries of data matrix X; as independent and identical
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random variables following ¢4, distribution, where dy denotes the degrees of freedom and we take
do € {5,10}. Then we conduct the likelihood ratio test for Hyo with approximations (3) and (4).
We repeat the procedure 1000 times, and estimate the type I error rates with significance level 0.05.
We present the results of t5 and t1( distributed data in Figures 5 and 6, respectively. In each figure,
we draw the estimated type I error rates versus ¢ values for approximations (3) and (4) in the left
and right plots, respectively. Similarly to Numerical Example 2, we can see that the chi-square

approximation for Ty starts to fail when e approaches 1/2, and the chi-square approximation for

poTo starts to fail when e approaches 2/3.

Approximation (3) for Tj

Approximation (4) for poTj

T« N =100 : =< N=100 l
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Figure 5: Estimated type I error versus ¢ of t5-distributed data
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Figure 6: Estimated type I error versus ¢ of to-distributed data
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Setting (I)

Zi,j (-OO, O) [07 OO)
T j -1 1
Setting (II)
Zij (—o0, —1) [—1,0) [0,1) 1, 00)
X j -2 -1 1 2

Setting (I1T)

% | (oo,—1)  [-1,-04) [-0.4,0) [0,04) [04,1) [1,00)
T j -3 -2 -1 1 2 3

Table 1: Three settings of correspondence between x; ; and z; ;

Simulations with discrete multinomial data. The simulations are conducted same as
above, except that we generate the entries in the data matrix X; from a discrete multinomial
distribution. Specifically, for each entry z;; within the matrix X;, where ¢ = 1,...,N and j =

1 ,p, we first sample z; j ~ N(0,1), and then set discrete value of z; ; according to the range of

z; j considering three settings (I)—(III) in Table 1. The results under settings (I)—(III) are given in
Figures 7-9, respectively. Similarly to Numerical Example 2, under each setting, we observe that

the chi-square approximation (3) for Ty starts to fail when e approaches 1/2, and the chi-square

approximation (4) for pgTy starts to fail when ¢ approaches 2/3.

Approximation (3) for Tj Approximation (4) for pgTj
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Figure 7: Discrete data (I): Estimated type I error versus e
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Approximation (3) for Tj

Approximation (4) for poTp
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Figure 8: Discrete data (II): Estimated type I error versus
Approximation (3) for Tj Approximation (4) for poTp
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Figure 9: Discrete data (III): Estimated type I error versus e

B.2 Simulations on Estimating the Number of Factors

In this section, we demonstrate the performance of estimating the number of factors using the
sequential procedure described in Section 2.1. In particular, we consider the simulation setting
similar to that in Numerical Example 3, where we take the true number of factors kg € {1, 3},
sample size N € {500, 1000} and data dimension p = | N€¢] for different ¢ values. When conducting
the likelihood ratio tests in the sequential procedure, the nominal significance level is set as o =
0.05. For each combination of (kg, N), we use the sequential procedure to estimate the number of
factors, denoted as k. We repeat the procedure 1000 times and estimate the proportions of correct
estimation (k = ko) and overestimation (k > ko), respectively. We present the results for ko = 1,3

in Figures 10 and 11 , respectively, where the results based on the likelihood ratio test without and
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with the Bartlett correction are given in the left and right columns, respectively.

The numerical results in Figures 10 and 11 show that (I) using the likelihood ratio test, the
procedure begins to overestimate the number of factors when e approaches 1/2; (II) using the
likelihood ratio test with the Bartlett correction, the procedure begins to overestimate the number
of factors when € approaches 2/3. These observations, compared with Figures 2—4, suggest that the
sequential procedure begins to overestimate the number of factors when the corresponding type 1
error begins to inflate, which is consistent with our discussions in Section 2.2. Moreover, in Figures
10 and 11, when € is small and does not pass the corresponding phase transition boundary, the
proportion of overestimation (l% > ko) is around 0.05. This is because that rejecting Hy j, suggests
k > ko, and the probability of rejecting Hy , (type I error of testing Hp,) can be asymptotically

controlled at the level o = 0.05 under the asymptotic regimes derived in Theorems 1 and 2.
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Figure 10: Estimating the number of factors when kg = 1
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500; Bartlett Correction
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500; No Correction
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Figure 11: Estimating the number of factors when kg
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