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Abstract

Cognitive diagnosis models (CDMs) are useful statistical tools to provide rich in-
formation relevant for intervention and learning. As a popular approach to estimate
and make inference of CDMs, the Markov chain Monte Carlo (MCMC) algorithm
is widely used in practice. However, when the number of attributes, K, is large,
the existing MCMC algorithm may become time-consuming, due to the fact that
O(2K) calculations are usually needed in the process of MCMC sampling to get the
conditional distribution for each attribute profile. To overcome this computational
issue, motivated by |Culpepper and Hudson! (2018), we propose a computationally
efficient sequential Gibbs sampling method, which needs O(K) calculations to sam-
ple each attribute profile. We use simulation and real data examples to show the
good finite-sample performance of the proposed sequential Gibbs sampling, and its

advantage over existing methods.
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1 Introduction

In recent years, cognitive diagnosis models (CDMs) have gained great achievements
in educational and psychological assessments, where latent binary random vectors are
often assumed to represent the presence or absence of multiple fine-grained skills or
attributes. The CDMs can be viewed as a family of restricted latent class models,
with the goal of achieving personalized diagnostic classification. Compared with the
Item Response Theory (IRT) models, the CDMs can provide more informative feedbacks
on attribute profiles and allow for the design of more effective intervention strategies
(Rupp. Templin, & Henson, |2010).

Many CDMs have been proposed in the literature. An incomplete list contains the
Deterministic Input, Noisy “And” gate and Noisy Inputs, Deterministic “And” gate mod-
els (DINA and NIDA;|[Haertel, [1989; |Junker & Sijtsma,|2001), the reduced version of the
Reparameterized Unified Model (rRUM; Hartz,2002; Rupp et al., [2010), the Determinis-
tic Input, Noisy “Or” gate and Noisy Inputs, Deterministic “Or” gate models (DINO and
NIDO;| Templin & Henson, |2006), the general diagnostic model (GDM; von Davier, 2005),
the log-linear cognitive diagnosis model (LCDM; [Henson, Templin, & Willse, 12009), and
the generalized DINA model (GDINA;|de la Torre, [2011]).

To estimate the CDM parameters and perform classification of examinees, the Bayesian
MCMC method is one popular approach, as it will not only provide the point estimation
but also the whole posterior distributional information for statistical inferences. In the
Bayesian framework, the MCMC algorithm is used to generate the unique stationary
distribution that weakly converges to the true target distribution of parameters of interest.
The MCMC algorithm provides a useful tool to solve many complicated problems in
statistics and psychometrics. In the CDM literature, the Bayesian MCMC estimation of
CDMs has also been studied. For instance, Under the confirmatory setting with the Q-
matrix prespecified, |(Culpepper (2015) proposed an efficient Gibbs sampling for the DINA
model, in which all parameters were sampled from their full conditional distributions.
Chung (2014, 2019) estimated the DINA and rRUM models in the Bayesian framework
using a Gibbs sampling algorithm.

Culpepper and Hudson (2018)) further proposed a Bayesian sequential Gibbs sampler
of the rRUM which samples each latent attribute sequentially from the corresponding con-

ditional Bernoulli distribution. In addition, the software “JAGS” has also been used to



fit many common CDMs (e.g.|Zhan, Jiao, Man, & Wang, 2019). In the exploratory CDM
setting, Bayesian method has also been used to estimate the model parameters and the ¢-

matrix jointly under identifiability conditions. For instance,|Chen, Culpepper, Chen, and Douglas
(2018)) proposed an easily implemented MCMC algorithm through a data augmenta-

tion strategy and item parameter reparameterizations. Following|Culpepper and Hudson

(2018)), |Culpepper and Chenl (2019) proposed a similar sequential sampler to estimate the

() matirx under the exploratory rRUM.

In modern psychological, educational and medical applications of CDMs, large-scale
data, with large numbers of manifest attributes of interest (denoted by K'), are often
collected. In many applications, the number of the corresponding latent classes 2% could
become comparable or even larger than the number of examinees N. Examples with large
number of latent classes can be found in educational assessment (Lee, Park, & Taylan,
2011) and the medical diagnosis (Wu, Deloria-Knoll, & Zeger, [2016). The increasing di-
mension of attributes and items often causes high computational cost and therefore in-
troduces new challenges for the estimation and inference of the CDMs.

In this paper, we focus on improving the MCMC with the Gibbs sampling in the setting
of many latent attributes under the cofirmatory CDMs with the Q-matrix prespecified.
Existing MCMC algorithms often directly sample from the posterior distribution of each
latent attribute profile (see|Zhan et all 2019), with the whole attribute profile treated as
one random sample from a categorical distribution with 2% different categories. Therefore,
in order to sample one attribute profile, it is needed to evaluate 2% posterior probabilities
of each possible profile candidate. The corresponding computational overhead for sam-
pling each individual’s attribute profile is of the order O(2%). For a large K, this would
lead to a significant computational burden and also affect the convergence of the MCMC
algorithm. Alternatively, Zhan, Li, Wang, Bian, and Wang (2015)) proposed to model the
attributes as independent variables by introducing an independent Bernoulli prior for
each attribute, the corresponding sampling method is named as the independent Gibbs
sampling in this article. Without modeling the dependence among the attributes, the
computation cost of sampling each attribute profile in the independent Gibbs Sampling
is then reduced to O(K), however, the independent assumption of attributes is often too

strong to satisfy in practice.

Since the computational difficulty for large K mainly arises from the sampling of



the attribute profiles, we follow the novel idea of sequential Gibbs sampler proposed in
Culpepper and Hudson (2018) to develop an efficient sequential Gibbs sampling method.
This work extends|Culpepper and Hudson! (2018), which focuses on the rRUM model, to
the more general GDINA model under the high-dimensional setting with many attributes;
such a high-dimensional setting arises in many applications but the related estimation
challenge has not been addressed. Following|Culpepper and Hudson (2018), the sequential
sampler samples each attribute separately instead of sampling the attribute profile as a
whole, and consequently, the computational overheads of sampling attribute profiles is
greatly reduced from O(2%) to O(K). For a large K, the improvement is especially
significant as shown in the simulation studies.

The rest of the paper is organized as follows. In Section [2| we give an overview on the
CDMs and a Bayesian formulation for the estimation. Section [3]introduces the proposed
sequential Gibbs sampling, with a focus on the estimation of the GDINA model as a
general version of CDMs. The simulations and real data analyses are shown in Section
[4] and Section [5] respectively. A discussion is given in Section [6] The supplementary
materials include more details for the proposed algorithm. Source code of the proposed

method will be made publicly available upon the acceptance of this work.

2 Bayesian GDINA Model

This section focus on the GDINA model as the general framework for CDMs, which
include many CDMs as special cases such as DINA, DINO, and Reduced RUM (Hartz,
2002; |Junker & Sijtsmal, 2001; Rupp et all, |2010). We present the formulation for the
Bayesian GDINA model, which contains the model setup, item parameter priors and

population parameter prior.

2.1 The DINA and GDINA Models

In CDMs, the examinee’s responses depend on his/her latent attribute profile which is
denoted by a K-dimensional vector o = (a1, g, - -+, aee)’, where the superscript * denotes
transpose. Each attribute a4, indicates the mastery of attribute £ = 1,--- , K, and there
are in total C' = 2% latent classes a € {0, 1}%. Let the binary vector Y = (Yy,---,Y})

represent an examinee’s responses to J items. Both a and Y are examinee-specific;



a particular examinee ¢’s attribute profile and responses are denoted by «; and Y; for
i=1,---,N. The N examinees’ attribute profiles are random samples from a population
distribution with the probability: 7, = P(a; = a), where > 7 =1, 0 < 14 < 1.
Thus, the population distribution of attribute profiles is charac?erized by the vector w =
(e, ¢ € {0,1}Y. For notational convenience, for a = (ay, o, -+, ax)’, we will also
write m,, as m, with ¢ = 1+ Eszl a,2*~1. Note that the two representations m = (74, a €
{0,1}%) and 7 = (7., c =1,--- ,C) are equivalent.

The binary Q-matrix (K. K. Tatsuoka, |1983) is a key component for CDMs. For each
pair of j and £, ¢j; = 1 indicates attribute % is required by item j, otherwise g;, = 0,
for j =1,---,J. Particularly, the jth row vector g; of the Q-matrix corresponds to the
attributes required by item 7.

The DINA model (Haertel,[1989;|Junker & Sijtsma,|2001) is one of, if not the simplest,
consequently most restrictive, interpretable CDMs available for dichotomously scored
tests. For a specific examinee with an attribute profile ¢, we can define the ideal re-

sponse 7(c, g;) to item j relying on o and g; as

n(e,q;) = [T o™ (1)

For brevity, given examinee ¢’s attribute profile a, the ideal response n(a;, g;) can also
be written as 7;; if the context permits. The 7;; is an indicator of whether examinee i
masters all the required attributes for item j, which indicates that each item partitions all
examinees into two latent groups. Let g; = P(Y;; = 1|n;; = 0) and s; = P(Y;; = 0|n;; = 1)
be the guessing and slipping parameters, respectively. For examinee ¢ and item j, the

positive response probability, denoted by 6, o, = P(Yi; = 1|ay), takes the form
O = 9 (1= 5 @)

de la Torre (2011) proposed a general framework for CDMs based on the DINA model,
called the GDINA model, which characterized more complex relationships between at-
tribute profiles and response data. In the GDINA model, the positive response probability
can be decomposed into the sum of the effects due the presence of required attributes and
their interactions. We let K7 = Zszl ¢ be the number of required attributes by item

J, which is determined by the jth row vector g; in the Q-matrix. For a specific examinee



with e and item j, we rearrange the structure of attribute profiles, so that the first K7

attributes are the attributes required by item j. The reduced attribute profile for item j

consists of the first K7 required attributes denoted by o = (&}, ,ajg.), j =1, J.
J

Similarly to a and Y, there also exists the examinee-specific reduced attribute profile,

denoted by aj; = (a;"jl, S ,aij;)’. Given a7, the item response probability of item j is

modeled as

K* 1 Kr* K*
J

h(e — )\]0 + Z )\Jka]k _|‘ Z Z A]kk/ajk‘a]k/ P —|— )\‘712](]* H Oé;k, (3)
k=1 k'=k+1 k=1

where 9j7a; = PV, = 1\04;) represents the positive response probability of the exam-
inees with the reduced «j to item j, h(-) is the link function where usually probit,
identity, log and logit links can be employed, Ajy is the intercept, A;; is the main ef-
fect corresponding to a,, Ajre is the two-way interaction corresponding to aj, and aj;,

. )\jlg...K;f is the Kj-way interaction corresponding to all required attributes. We let
Aj = (Mo, Ajr, - ,)\J»K;_f, Aj12; Ajig, - ,/\j12~~K;)I represent the item parameters for item
jand X = (Ayq,---,Ay) represent the item parameters for all items. The number of item
parameters is determined by the structure of @-matrix. Specifically, for item j, the num-

257 In this paper, we shall focus on the probit link function,

ber of item parameters is
whereas the proposed method can be applied to other link functions as well.

Under the GDINA model, each item j can divide examinees into 2%7 latent groups.
Because ] is a sub-vector of o, we should notice that 0o = 0jq:. For equation @), we

can use the vector-notation to rewrite the positive response probability as follows

h(0j.a) = h(0j.a;) = X g,

K* *

_ * * * ok J * \/ K?* : :
where Xa; = (1, ,ajK;,ajlan,ajlajd, <, [Ti2y @) denotes a 275 -dimensional
vector relying on . For a particular examinee ¢ = 1,---, N, the examinee-specific Xy

J
K*
. _ * * * * * || J * /

model degenerates to the DINA model by setting all item parameters, except Aj, and
)\jn...K;, to zero. Then, we can obtain g; = h™'()\j0) and 1 —s; = A~ (N\jo + )\]‘12,..}(;),
where h~! is the inverse function of h.

The collection of positive response probabilities is denoted by a J x C matrix © =

(0.«), which may depend on different forms of item parameters in different CDMs. Given



the response data and all attribute profiles, the conditional likelihood function takes the
following form:
(Y|, 0) HHW& o) Y (4)
i=1 j=1
After integrating attribute profiles, the marginal likelihood function takes the following

form:

N C J
p(Ylw,0) = [ > m ][00~ ba) . (5)

i=1 c=1 7j=1
2.2 Priors of Measurement Models’ Parameters

The population proportion parameter 7 includes the saturated information about the
attribute profile distribution in CDMs. The Dirichlet distribution is commonly used as
a_conjugated prior for 7r, such as|Culpepper (2015)), |Culpepper and Hudsonl (2018) and

Zhan et al. (2019). The specific form of the Dirichlet prior for @ = (7, -+, 7o) is
7 ~ Dirichlet(d).

where § = (0, --- ,d¢) represent a C-dimensional hyper-parameter vector for .

In different CDMs, item parameters will be presented in the different forms, such as g;
and s; in the DINA model, and A; in the GDINA model. For the DINA model, indepen-
dent Beta distributions, Beta(a,, b,) and Beta(as, b;), are often used as the priors for guess-
ing and slipping parameters, respectively. We may also constraint 0 < ¢g; <1 — s; <1,
to ensure the model identifiability (Chen et all,|2018;|Gu & Xu, 2019; |Junker & Sijtsmal,
2001; [ Xu & Zhang, 2016). For the GDINA model, the normal distributions are often
taken as priors for the item parameters X (e.g.,|[Zhan et all 2019)). Specifically, two types
of priors are often chosen: one is a multivariate normal distribution, A; ~ N(py,,Xy,),
as a general choice; the other is a truncated multivariate normal distribution, A; ~
N(py;, 2n,)I e}, Which is used to ensure certain monotonicity assumption of the item
response function. Here Z; denotes the indicator function, T' = {Ty,--- , Ty, - - - ,TQK;_‘ }
and each T, represents some pre-specified constraint of the m-th element of A;. For
instance, we may restrict the main effect terms in X; to be positive to ensure the mono-
tonicity assumption.

As discussed in the introduction, for a large K, the existing MCMC algorithms with



Dirichlet prior for 7 often suffer from the increasing computational cost of sampling
each latent attribute profile «; from its conditional distribution, which is a categorical
distribution with 2% different categories. Therefore, it needs to evaluate 2% posterior
probabilities of each possible profile candidate to sample each «;, and the corresponding
computational overhead for sampling a; is O(2%). For a large K, this would lead to a

significant computational burden and also affect the convergence of the MCMC algorithm.

3 The Sequential Gibbs Sampling

In this section, we introduce the sequential Gibbs sampling method, which samples each
attribute separately and is computationally efficient for large K. The sequential Gibbs
sampling algorithm will be derived for the GDINA model. It’s natural to apply the
sequential Gibbs sampling to other CDMs, and an example of the DINA model is given
in Appendix [Al

3.1 Motivation

With the commonly used Dirichlet prior for 7r, many existing Gibbs sampling methods

suggest that the full conditional distribution for a takes the following from:

plals) < p(Yla, Ap(a|), (6)

where the “x” represented all the other parameters and responses. To infer a specific

examinee’s attribute profile, we need to calculate the posterior probability p(a.|*) for ¢ =
1,---,C to obtain the posterior distribution. For large K, the computation is challenging.
Since in this Gibbs sampling method, the whole a should be sampled simultaneously,
hereafter this sampling method is referred to as the simultaneous Gibbs sampling.
Following |Culpepper and Hudson (2018), we first describe the sequential sampling
method for the attributes. Let an;, denote the sub-vector of a excluding the k-th attribute.
Based on the fact that knowing an; and oy, is equivalent to knowing the attribute profile

a, it’s obvious that p(a|m) = p(ay, ai|m). According to Bayes’ theorem, given the o



and 7, the conditional probability of «y, is
plaglang, ) = plang, axm) /plon| )
= plalm)/plon|m),

Considering Equation (7)), the full conditional distribution for «y is calculated from

plaglx, ang) o< p(Y|a, X)p(ag |, ). (8)

In Equation (), p(Y |, A) is the conditional likelihood function.
For the second term on RHS of Equation (8)), noticing the binary nature of «y € {0, 1},

we know that conditional on v, and T,

oy, T~ Bernoulli(pk‘a\wr) 9)

V\/i' h
© 1 I =1N —
ZC—l c {ack 1 e\ k a\k}

C
Zc:l FCI{ac\k:a\k}

pk:|a\k,7r -

)

where we use the notation a.\, to represent the a vector corresponding to a general
latent class ¢ excluding the k-th attribute. The above indicator function I{ack:mac\k:a\k}
only selects one component from 7r, and the indicator function I{ac\k:a\k} can select two
components from 7r. According to the two indicator functions, we can construct a ratio
as Prjo - FOT different CDMSs, the Bernoulli distribution form to describe «y, remains
unchanged. Here we can interpret pyja,,,» as the “prior” conditional probability before
incorporating any information of the responses. The examinee-specific DPhla depends
on the population parameter 7w and examinee-specific ay; that is, for a specific examinee

i with attribute profile o, pija depends on 7 and a;\y, ¢ =1,--- ,N. When there is

Nk T

no ambiguity, we will write Phlow and pyja as py and p;; in the following.

Nk T

The Equations (8) and (@) imply a sampling method that can sample the latent at-
tributes sequentially one by one. Without loss of generality, the attributes are sampled in
an increasing order (i.e., aq,- -+, are sampled in turns). In Table [I] an example with
three attributes is presented to show how Equation (@) works. An 8-dimensional vector 7

(i.e., K = 3) is used to represent the saturated population information and a4, as and ag

are generated in turns. The first two rows show a one-to-one mapping between « and 7.



Similar to Gibbs sampling, an initial value of the attribute profile is needed as the starting
point. Without loss of generality, let the initial value of v equal to (000). When to sample
the first attribute ay, as = az = 0 is used in Equation (@), then the first attribute oy can

be drawn from a Bernoulli distribution with p; = m’fm, which is the prior conditional

probability of a; = 1 given as = a3 = 0. Assuming the realization of the first attribute

a1 is 1, then we can sample the second attribute as, conditional on a3 = 1 and az = 0,

from a Bernoulli distribution with py = W;j*m in Table 1. Assuming the realization of ay

is 0, then we move on to sample a3, conditional on a; = 1 and ay = 0, from a Bernoulli

distribution with ps = —Z¢— in Table 1.

T2+T6

Table 1: A sample with three attributes for the conditional Bernoulli distribution

o 000 100 010 110 001 101 011 111 py Prob

T 1 Uy 3 T4 s s 7 Uy — —
) = ].’ (12:0,(13:0,71' 1 9 - - - - - - % P
ay =0l yy=l,3=0r — m - m™ - - - — = 1—p
a3 =1l a;=l,ap=0r - m - - - W - = D3

Note. The column “p;” represents the conditional probability of ay = 1. The column “Prob”

is the probability of realization «j shown in the first column (in this table, the realizations are
ar=1, 0, =0and a3 = 1).

In both of the sequential and simultaneous sampling methods, the sampling of at-
tribute profiles depends on 7 and §. However, in the simultaneous Gibbs sampling, each
attribute profile is treated as a basic unit, and the joint information p(a|m) is used to
sample . This method is very slow when K is large. In the sequential Gibbs sampling,
each element of the attribute profile is sampled seperately from the conditional Bernoulli

distribution of cy|ov\k, 7, which would reduce the compuational cost significantly.

3.2 Sequential Gibbs Sampling Schedules

With the above introduced sequential sampling method for attributes, in this section we
derive the Gibbs sampling updates for other model parameters. To illustrate our method,
we shall focus on the GDINA model with a probit link function and use the prior settings
introduced in Section 2.2.

We will use a data augmentation strategy to derive a closed-form Gibbs sampling
method for the item parameters. Please note that similar sampling methods have been
proposed in the CDM literature (Chen, Culpepper, & Liang, 12020; |Culpepper), 12019al,

2019b). Specifically, we introduce the data augmentation process for the examinee with

10



« to item 5 as follows

where ¢; follows a standard normal distribution and Z; is a latent auxiliary variable. The
Zj is the examinee-specific, and the augmented data of item j for examinee ¢ is denoted by
Zij, fori=1,--- N. For examinee 7, the augmented data Z;; is distributed N(Xt/x;‘j A1),
and the item response Yj; is defined as Y;; = 1 if Z; is positive, and Y;; = 0 otherwise.
With the introduced augmented data Z, the Gibbs sampling needs to sample from the
four full conditional distributions: p(Z|Y,a, 7, A), p(AlY, Z, o, 7), p(cir| Y, Z, cpnie, T, A)

and p(w|Y, Z, o, ).

Sample Augmented Data. For examinee ¢ and item j, the augmented data is Z;;.
Conditional on a, the distribution of Z;; is independent of the parameter 7, which means
the distributions p(Z|Y, o, w, A) and p(Z|Y, o, A) are equivalent.

According to the jth row vector g; in the -matrix, we can get the reduced vector

aj;. Based on ajj;, A; and Yj;, the augmented data Z;; is normally distributed with
the mean p;; = X/« A; and the variance one. The range of Z;; is determined by Yj;; if
ij

Yi; =1, Z;; > 0, otherwise Z;; < 0. The augmented data is generated by the formula

N(:uija 1)I{Zij>0} Y;j =1

N(pijs 1)Lz <0y Yij =0

s O (10)
Sample Item Parameters. In the GDINA model, two considered types of item pa-
rameter priors are the multivariate normal distribution and the truncated multivariate
normal distribution, which will induce two sampling methods to sample item parame-
ters. The truncated prior is suitable for the case we have known some constrains on item
parameters. The multivariate normal distribution is suitable for the case we don’t have
additional information about item parameters.

For the item parameters, the conditional independence implies p(A|Y, Z, o, ) and
p(AlY, Z, ) are equivalent. To sample the item parameters for item j, the informa-
tion of all examinees for this item need to be considered. We arrange all examinees’
augmented data about item j in a vector Z; = (Zij, Zaj, -+, Zn;)'. Furthermore, let

X, = (quj, Xz, Xag )" denote an N x 2% matrix relying on o fori=1,--- N.

Nj

11



Given Z; and X, a linear regression model is obtained as follows:
Zj = Xj>‘j + Ef]‘,

where €; = (€1;,€9;,- - ,€n;)" i1s a random vector from a standard normal distribution. If
there are no constraints on the item parameter A;, which follows a the prior N(py;, X»,),
then we can obtain the full conditional distribution (Minka, |2000) whose form is shown
as

Ajlo, Z; ~ N(ﬂxjjixj), (11)

where f];jl = 2;; + X; X and 1y, = ﬁ],\j(XJ’-Zj + Z;jlu,\j). The sampling method using
Equation (1) is called the sampling without truncation. The specifics of the deriva-
tion can be found in the Appendix If the prior of A; is the truncated distribution

N (ija 3y, )¢ A;eT}; We can obtain the closed form for A;’s full conditional distribution:
Ajla, Z; ~ N(fuy,. 25,)Tix ey (12)

The sampling method using Equation (I2) is called the sampling with truncation. The
details about how to sample from the truncated multivariate normal distribution will be

discussed in the Appendix

Sample Attribute Profiles. In the sequential Gibbs sampling, attributes are sampled
one by one, instead of the whole attribute profile. For examinee i, if the k-th attribute
oy, isn’t required by an item, the value of «;, won'’t affect the item’s likelihood. So when
to sample attribute «;,, we only need to pay attention to the items requiring the k-th
attribute. Hence, we define a set ), = {j | ¢ = 1,7 =1,---,J}, which represents
the items which require attribute ay, and the complementary set of € is defined as
QZ ={j|lgr=0,j=1,---,J}. Only the items from Q) will affect the inference about
Q-

Assuming item j belongs to QO and giving the reduced attribute profile a;, the pos-

itive response probability 6,4, = ®(X &I]- A;). For the specific examinee ¢, the likelihood

12



function for the k-th attribute oy is

p(}/;j|a:j7 Aj) = (p(X;:j)\j)Yij(l — Q)(X;ijj))l—Yij
= BT + o TP)"™ (1 = BT + aT})'
= [O(TY + {7y d(Tyl )l —on]Y

[(1— &(TY + TI))r (1 — B(T7)) k],

where lexgj)‘j = T2 + ag T} with the two terms Ty’ and T}’ defined as follows. For
X :1;- A;j, the notation Téj is the sum of the terms which don’t contain o, and Tfj oy 18
the sum of the terms related to a;;. If examinee i masters attribute oy, the positive re-
sponse probability is ®(T7 + T}7), otherwise, the positive response probability is ®(T}’).
Therefore, the positive response probability is ®(77 + T717)# & (T ) =%* and a similar
expression, (1 — ®(TW + T}7))**(1 — ®(T77))'~**, can be obtained for the negative re-
sponse. For example, assume that the vector g; = (110), the third attribute doesn’t affect
the positive response probability and the likelihood function. In other words, from the
responses on this item we can’t get any information about the third attribute. We show
how to calculate Téj and Tfj . When to investigate the first attribute «y, the positive
response probability is that
(I)()\jo + Ajrag + Ajaag + )\j12061042)

(14)
= <I)(/\j0 + Ajocg + Oz1()\j1 + )\j12042))»

then notations Téj = Ajo + Ajoap and Tfj = Aj1 + Ajioaa.
According to Equation (I3), it’s obvious that only the items in 2, will affect the full
conditional distribution for a;;. The parameters m and oy are used to calculate the

prior conditional probability for a;z, with p;; calculated as in Section [3] Then the full

13



conditional distribution for «;; is calculated by

p(aikyifia A\ k) Av Tl')

o< [T p(Yijlew, X)pii (1 — pa) '~

JE€Qy,
= [l + myesary) -
Jey,
(1= (T + 7)™ (1 = D(Tg7)) ™ p (1 — pyy) '~ (15)
- Qi
= H O(TY + T77) (1 — ®(Ty + TY) o pa
FEN

170(7;k

[T 2@ —e(1y)' " (1~ pa)

FiE

Hence, the full conditional distribution for ayy is Bernoulli(p;x), where the value of py is

given by

HJer (I)(Téj + Tlij)yij (1- ‘I)(Téj + Tfj))lfy”pik

[Tjcq, ®(T + 1)V (1= Ty + T7)' pir + [jeq, (Ty)Y0 (1= S(T)' (1 = par)
(16)

Sample the Population Parameter. The population parameter 7 is a C-dimensional
vector, whose prior is Dirichlet(d). Given a, we can calculate the number of examinees
within the latent class ¢, N, = Ef\il Ita;=a.}, and the vector N = (Ny, Ny, -+, N¢)'.
From the conditional indepdendence, we know p(7|Y, Z, a, A; ) and p(7|a; §) are equiv-

alent. And we can write the posterior of 7 as
7 | @; 8 ~ Dirichlet(d + N). (17)

We summarize the sequential Gibbs sampling for the GDINA model in Algorithm /1]
The sequential sampling method can be straightforwardly applied to other CDMs as well,
and the DINA example is illustrated in the Appendix.

14



Algorithm 1: Sequential Gibbs Sampling for GDINA models
Input: Initialize A, a@ 7)Y m = 0, M and specify priors.
Output: Markov chains of A\, o, 7.
while m < M do

Generate the augmented data from Equation (10).
Sample item parameters from Equation or (12).
Sample attribute profiles from Equation (I6).

Sample the population parameter from Equation (I7).

Setm=m-+1
end

4 Simulation Studies

In this section, the simultaneous Gibbs sampling, independent Gibbs sampling (Zhan et all,
2015)Y , and sequential Gibbs sampling are used to estimate parameters in the DINA and
GDINA models. The simulation studies intend to implement on different settings of K.
However, for large K, the simultaneous Gibbs sampling methods doesn’t work due to
the high computational cost, so only the results of independent and sequential Gibbs
sampling are shown. To show that the difference among these methods is purely caused
by the difference among the sampling techniques rather than the software, we code and
compile all these three methods by ourselves. The computation of the simulation study
is implemented by Dell XPS with 3.0 GHz Intel Core i7-9700, 24 GB RAM.

The statistical software JAGS (Just Another Gibbs Sampling; |Plummer, 2003)), as
the off-the-shelf sampling method, is also used to implement the simultaneous Gibbs
sampling method for the DINA and GDINA models. The JAGS is similar to WinBUGS
(Lunn, Thomas, Best. & Spiegelhalter|,2000) and OpenBUGS (Foulley & Jaffrézid,|2010).
Zhan et al. (2019) showed how to implement the DINA and linear logistics models (LLM,
see|Maris,[1999) by JAGS. We use JAGS to analyze the DINA and GDINA models. When
using JAGS, the initial values of all parameters are generated by the default way within
JAGS. Under the DINA model, another simultaneous sampler, the R package “dina”
(Culpepper], 12015), is also used to estimate the model. Our simulation results indicate
that “dina” is faster than JAGS|[4 and the parameter estimates of “dina” are similar to

JAGS. As the R package “dina” can’t handle the GDINA model, the detailed results of

!For the independent Gibbs sampling, we use the independent Bernoulli prior that o, ~
Bernoulli(p;) and p;; ~ Beta(1, 1), where ¢ and k indicate examinee and attribute, respectively.

2Particularly, using “dina” to run the chains with 2000 iterations for the DINA settings in our sim-
ulation with {N = 2000, K = 3}, {N = 2000, K = 5}, and {N = 2000, K = 7} needs about 20, 82, and
344 seconds, which are faster than JAGS but slower than the proposed method.
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“dina” are not shown.

4.1 Simulation Design

The attribute profiles are generated from the two following structures.

Uniform Structure. The uniform structure assumes that all latent classes share the

same probability.

Correlated Structure. |Chiu, Douglas, and Li (2009) proposed a correlated structure
for attribute profiles, which can be viewed as a special case of the higher-order attribute
structure. For each examinee, the K-dimensional vector @ = (6y,--- ,0f) follows a mul-
tivariate normal distribution N(0,X), where the covariance matrix ¥ has a common

correlation p as follows

then attributes are determined by

1 if 6, >0,
ay = (18)

0 otherwise.

Chen, Liu, Xu, and Ying (2015) also called this situation as “Dependent Attributes”.

For the DINA and GDINA models, the generation methods of item parameters need
to be introduced separately. For the DINA model, we set the guessing and slipping
parameters to 0.2. For the GDINA model, another equivalent notation is introduced to
make the description of item parameters clear. For item j, let /\5.0) and /\EW) denote the
intercept parameter and w-way interaction parameter, respectively. We generate A; from
a multivariate normal distribution with a diagonal covariance matrix. In particular, the

distribution to generate A; is specified as:

N(=12,042), w=0,
A~ (19)
N(0.9,0.3%)/w? w=1,---
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This generation method of item parameters indicates the same-way interactions share
similar properties (i.e., the same distribution).

Based on the model identifiability and generic identifiability restrictions (Chen et all,
2020; |Gu & Xu, [2020; (X, [2017;|Xu & Zhang, [2016)), the @-matrix has this form

Q= (IK,IK, ~’2, Ng,@') ;

where each item in @2 and @3 requires two and three attributes, respectively. In addition,
we randomly sample non-zero g-vectors which require three or fewer attributes to fill @
Given the attribute profiles, the item parameters, the (J-matrix, and the response data
can be generated. For different K, the Q-matrices are fixed and shown in Appendix [DI

The sampling methods are compared from three aspects: speed, parameter estima-
tion accuracy and classification accuracy. The running times of the sampling methods
are used to reflect the speed, and the bias, root mean squared error (RMSE) and mean

squared error (MSE) are used to evaluate the accuracy. The average bias, RMSE and

MSE, denoted by Bias, RMSE and MSE, are computed for each type parameter, accord-
ing to Blas, = % Zthl % Zf:l(qu — ¢n), RMSEy = % Zthl \/% Zfﬂ(éz — ¢n)? and
MSEy = & Zle = Zil(qu — ¢n)?, where ng}; denotes the estimation from r-th replica-

tion of a parameter, ¢, denotes the true value, and R denotes the number of replications
(i.e., for guessing and slipping parameters, H = J; for the item parameters in the GDINA
model, H is the total number of item parameters denoted by #{A}; for population pa-
rameters, H = (). The subscript ¢ of the indices is used to discriminate the types of
parameters. On the other hand, two widely used indices, attribute-wise agreement rate
(AAR) and pattern-wise agreement rate (PAR), can be used to examine the classification
accuracy. The AAR = Y7 SV S™F 7{&}, = au}/RNK can be used for arbitrary
K. The PAR = 3% SN Z{°K |45, — aux| = 0}/RN, however, is usually too small
to provide valid information about the classification accuracy when K is large. Hence,
we define a more practical measure, PARn = 3% ™Y T{S° |47 — aq| < n}/RN,
which denotes that, for one pattern, up to n misestimated attributes can be tolerated.
When n is a positive integer, PARn is a relaxation of PAR (i.e., PARO).

For any estimation of the parameter 7, Bias, = 0 always holds. So the maximum
norm is used to replace the bias to evaluate the performance of population parameter

estimations. When the true value and estimation of population parameter are 7w and
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7" the maximum norm of difference is |7 — 7|, = max,|r. — #.|. The maximum
norm measures the maximum of absolute deviance. If the estimation repeats R times,

the average maximum norm (MN) is

R

Table [2] summaries the simulation study basic settings: sample sizes N = 1000 and
2000; the number of the items J = 30; attribute structures uniform, correlated structures
with two correlation levels p = 0.3 and 0.7. We call the cases K = 3 and 5 as the low
dimension cases, where the simultaneous and sequential Gibbs sampling are conducted.
The cases K = 7 and 15 are named as the high dimension cases, only the sequential Gibbs

sampling is performed. For each particular case, 25 independent response datasets are

generated.
Table 2: The Settings for Simulation Studies
Examinee Sample sizes N = 1000 and 2000
Number of Items J =30
Attribute Structure uniform or correlations p = 0.3 and 0.7
Replications R =25
K=3,5 K=1715
Method Sim Seq Ind S M L Ind
DINA GDINA
Chain Length 2000 3000
Burn-in 1000 2000

Note. The column “Sim”, “Seq” and “Ind” represent the simultaneous, sequential and
independent Gibbs samplings, respectively.

For the low dimension (K = 3,5), the Dirichlet prior’s hyper-parameter § is the C-
dimensional vector 1, leading to a non-informative prior. For the high dimension (K =
7,15), three §’s are used: = 0.01,0.1 and 1, which are indicated as “S”, “M” and “L”
in Table[2l For the GDINA model, the priors for the item parameter X\; are shown as

follows:

N(-12,04%), w=0,
AW ( (20)

J
N(0.9,0.3%)/w, w=1,--- K*

J
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Figure 1: Plots the maximum of all potential scale reduction factors. The horizontal
dashed line represents the value 1.1.
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which have a similar support set and a large variance compared with the generation regime
for w > 0. For the DINA model, non-informative Beta priors are taken for the slipping
and guessing parameters. For fair comparison, all methods use the same set of priors.

Besides the priors, we need to specify initial values for a, w and A. The initial value
of av is that each attribute is randomly sampled from an independent Bernoulli(0.5). The
initial value of population parameter 7r is the C-dimensional vector 1/C. The initial
value of A is a random sample from the X\’s prior.

Culpepper (2015) showed that, for the DINA model, simultaneous Gibbs sampling
only needed about 750 iterations to reach convergence. Consequently, in this paper, a
2000 iterations Markov chain is run and we discard the first 1000 iterations as burn-in
which are adequate to reach convergence. For the GDINA model, we conduct a Markov
chain with length 3000 and burn-in length 2000.

For the simulation results, potential scale reduction factor RY/? (Brooks & Gelman.
1998; |Gelman & Rubinl, [1992) is used for convergence diagnosis. [Brooks and Gelman
(1998) suggested that R'/? < 1.2 for all model parameters indicates that convergence has
been reached. To make the conclusion more reliable, the condition RY2 < 1.1 can be used.
In Figure[I] the plots of the maximum of all potential scale reduction factors are shown
for six representative conditions. The six conditions are from high-dimensional GDINA
models. For each condition, we generate 5 independent response data. For each response
data, 5 parallel chains are run to calculate the potential scale reduction factors for all item
and population parameters. The plots are based upon the first 2000 chain lengths (from
50 to 2000 by increments of 50). The results in Figure[1] (and other diagnosis results not
presented here) support that all chains can reach convergence after 2000 iterations under

the GDINA model.

4.2 Simulation Results

There are 7 tables to show the results for different settings of the DINA and GDINA
models. For the GDINA model with a probit link function, the generation of item param-
eters has a great probability that the intercept is negative and the interaction is positive.
Consequently the results of the sampling with or without truncation are very similar, and
here we only show the results of sampling with truncation. The digits of bias, RMSE,
MSE, AAR and PARn are rounded off to four decimal places and the digits of time are

20



rounded off to five significant figures.

Tables [B] — [5] show the results of the uniform population, correlated structure with
p = 0.3 and 0.7 for the low dimension cases, respectively. Hereafter, the “Sim”, “Seq”,
“Ind”, and “sSim” represent the simultaneous (implemented by JAGS), sequential, in-
dependent, and self-compiled simultaneous Gibbs sampling methods, respectively. For
the DINA model, ‘Sim”, “Seq” and “sSim” always obtain similar estimation results for
item parameters, population parameters, and attribute patterns, which indicates the es-
timation consistency between the sequential and simultaneous Gibbs sampling methods.
When the population is uniform, the “Ind” method also performs similarly to the other
methods. However, as the correlation p among the attributes increases, the “Ind” method
performs more poorly in MN .. For the GDINA model, inferences between the sequential
and simultaneous Gibbs sampling methods are also consistent. As the correlation p in-
creases, the “Ind” method will underperform the other methods, due to the violation of
its assumption on the independence of the attributes.

For both models, the accuracy of estimations becomes better with the large sample
size. The classification accuracy of the “Sim” method, as a baseline, is comparable to
that of the other methods.

Tables[6] —[8]show the results of the uniform population and correlated structures with
p = 0.3 and 0.7 for the high dimension cases. If the population distribution of attribute
profiles is uniform, the “Ind” method is comparable or slightly outperforms the sequential
Gibbs sampling method. When the attributes become more correlated, the sequential
sampling method outperforms the “Ind” method. For instance, in the high-dimensional
condition with p = 0.7 and K = 15, the sequential sampling with a smaller § is superior
to the other methods. We also find some common phenomena that when K = 15, the
RMSE;, is approximate to 0.0001 (i.e., the MSE, is approximate to 0), which is due to
the large number of latent classes.

In Table[d] the average computational time is reported. Since the dependent structure
of the attribute profiles has almost negligible influence on the computational time, we
only report the calculation time of different methods under the uniform population. The
results show that the simultaneous Gibbs sampling implemented by JAGS has the slowest
speed among the four methods. In order to show the computational superiority of the

sequential Gibbs than that of the simultaneous Gibbs sampling, we also add the K =7
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condition for the self-compiled simultaneous Gibbs sampling. Comparing the time of
“Seq” and “sSim”, when K = 7, the superiority of the sequential Gibbs sampling method
appears in the GDINA model. However, the superiority of the sequential Gibbs sampling
method has been reflected in the DINA model with K = 5. In addition, “Ind” is also
computationally efficient, with comparable computational time to the sequential Gibbs
method.

In the simulation study, using JAGS to estimate the GDINA model needs more mem-
ory space than the DINA model. Particularly, for the GDINA model, we find that the
estimation process in JAGS is often executed or shut down due to “run out of memory”.
Therefore, the presented computational time for the GDINA model is only the average of
those well-converged replications in JAGS, which leads to a counter-intuitive observation
that the simultaneous Gibbs sampling for the GDINA model is “faster” than the simul-
taneous Gibbs sampling of the DINA model. Due to the high computational cost, the
simultaneous Gibbs sampling time for some high dimension cases is not reported.

Through simulation studies, we can find when K is small, the sequential Gibbs can
use less time to obtain the results with similar accuracy as JAGS. When K is large,
the sequential Gibbs sampling algorithm still works well, but the simultaneous Gibbs
sampling algorithm doesn’t due to the high computational cost. The speed advantage
of the sequential Gibbs sampling become more apparent as K increases. In addition,
when the number of attributes K goes large, the moderately small hyperparameter § is
preferred. Comparing the independent and sequential Gibbs sampling methods, for the
uniform structure with independent attributes, the independent Gibbs sampling method is
comparable or slightly outperforms the sequential Gibbs sampling method. However, for
correlated structures, the sequential Gibbs sampling method provides better performance

(see the Bias in Tables 5 and 8).

5 Real Data Analysis

In this analysis, the DINA and GDINA models are used to deal with the Tatsuoka’s
fraction-subtraction data (C. Tatsuoka, [2002). The fraction-subtraction data has been
widely analyzed. For the data set, the @-matrix (de la Torre & Douglad, 12004)) and con-

tents are shown in Table[I0] This data set contains responses of 536 middle school students
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Table 3: Parameter recovery for Low dimension with the Uniform Population

Attribute Number K=3 K=5
Sample Size 1000 2000 1000 2000
Method Sim Seq Ind sSim  Sim Seq Ind sSim  Sim Seq Ind sSim  Sim Seq Ind sSim

€¢

DINA  Biasg 0.0010 0.0010 0.0013 0.0010 0.0002 0.0002 0.0004 0.0002 0.0009 0.0011 0.0005 0.0011 0.0008 0.0009 0.0014 0.0009
RMSE, 0.0156 0.0156 0.0156 0.0155 0.0113 0.0113 0.0113 0.0114 0.0164 0.0164 0.0161 0.0164 0.0122 0.0122 0.0122 0.0122
MSE, 0.0003 0.0003 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002
Biasg 0.0046 0.0037 0.0034 0.0037 0.0001 -0.0003 -0.0004 -0.0003 0.0035 0.0022 0.0036 0.0021 0.0019 0.0013 0.0005 0.0013
RMSE; 0.0257 0.0254 0.0253 0.0254 0.0171 0.0171 0.0171 0.0171 0.0278 0.0273 0.0273 0.0274 0.0179 0.0178 0.0177 0.0178
MSE, 0.0007 0.0007 0.0007 0.0007 0.0003 0.0003 0.0003 0.0003 0.0009 0.0008 0.0008 0.0008 0.0004 0.0004 0.0003 0.0004
MN, 0.0158 0.0159 0.0144 0.0159 0.0117 0.0116 0.0115 0.0118 0.0154 0.0155 0.0109 0.0154 0.0105 0.0105 0.0065 0.0106
RMSE, 0.0094 0.0093 0.0082 0.0094 0.0060 0.0059 0.0054 0.0060 0.0059 0.0059 0.0041 0.0059 0.0040 0.0040 0.0026 0.0040
MSE, 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AAR 0.9742 0.9741 0.9739 0.9740 0.9749 0.9748 0.9748 0.9748 0.9445 0.9443 0.9445 0.9443 0.9461 0.9459 0.9466 0.9460
PAR1 0.9956 0.9953 0.9952 0.9954 0.9962 0.9963 0.9961 0.9961 0.9644 0.9643 0.9654 0.9645 0.9667 0.9669 0.9676 0.9667
GDINA Biasy 0.0305 0.0310 0.0297 0.0307 0.0243 0.0244 0.0250 0.0244 0.0371 0.0372 0.0313 0.0374 0.0326 0.0331 0.0319 0.0332
RMSE, 0.1370 0.1373 0.1378 0.1370 0.1148 0.1149 0.1151 0.1148 0.1334 0.1336 0.1325 0.1336 0.1288 0.1288 0.1275 0.1285
MSEj 0.0221 0.0222 0.0223 0.0221 0.0162 0.0161 0.0162 0.0161 0.0205 0.0205 0.0203 0.0206 0.0209 0.0210 0.0206 0.0209
MN, 0.0235 0.0238 0.0180 0.0236 0.0119 0.0118 0.0091 0.0119 0.0214 0.0217 0.0107 0.0214 0.0153 0.0152 0.0063 0.0155
RMSE, 0.0129 0.0130 0.0098 0.0130 0.0063 0.0063 0.0046 0.0063 0.0089 0.0090 0.0040 0.0090 0.0061 0.0061 0.0025 0.0061
MSE, 0.0002 0.0002 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
AAR 0.9436 0.9423 0.9431 0.9435 0.9452 0.9446 0.9443 0.9452 0.8921 0.8920 0.8945 0.8923 0.8959 0.8960 0.8969 0.8956
PARI1 0.9575 0.9557 0.9563 0.9578 0.9604 0.9595 0.9590 0.9605 0.8882 0.8876 0.8909 0.8886 0.8891 0.8892 0.8907 0.8887

Note. The “Sim”, “Seq”, “Ind” and “sSim” represent the simultaneous (implemented by JAGS), sequential, independent and self-compiled simultaneous
Gibbs sampling methods, respectively.
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Table 4: Parameter recovery for Low dimension with the Correlation p = 0.3

Attribute Number K=3 K=5
Sample Size 1000 2000 1000 2000

Method Sim Seq Ind sSim  Sim Seq Ind sSim  Sim Seq Ind sSim  Sim Seq Ind sSim

DINA  Biasg 0.0004 0.0005 -0.0018 0.0005 -0.0002 -0.0001 -0.0024 -0.0001 0.0010 0.0012 -0.0044 0.0011 0.0005 0.0006 -0.0043 0.0006
RMSE4 0.0159 0.0159 0.0161 0.0159 0.0113 0.0113 0.0117 0.0113 0.0170 0.0170 0.0180 0.0170 0.0120 0.0120 0.0132 0.0120
MSE, 0.0003 0.0003 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0001
Biasg 0.0023 0.0016 0.0037 0.0016 0.0006 0.0003 0.0024 0.0003 0.0030 0.0020 0.0072 0.0020 0.0012 0.0007 0.0046 0.0007
RMSE; 0.0216 0.0215 0.0217 0.0215 0.0157 0.0156 0.0161 0.0157 0.0237 0.0235 0.0250 0.0235 0.0166 0.0166 0.0179 0.0166
MSE, 0.0005 0.0005 0.0005 0.0005 0.0003 0.0003 0.0003 0.0003 0.0006 0.0006 0.0007 0.0006 0.0003 0.0003 0.0003 0.0003
MN, 0.0076 0.0077 0.0227 0.0076 0.0055 0.0054 0.0253 0.0054 0.0128 0.0128 0.0480 0.0125 0.0084 0.0082 0.0444 0.0083
RMSE, 0.0034 0.0034 0.0068 0.0034 0.0025 0.0025 0.0072 0.0025 0.0039 0.0039 0.0047 0.0039 0.0026 0.0026 0.0039 0.0026
MSE, 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000
AAR 0.9789 0.9788 0.9748 0.9789 0.9790 0.9789 0.9740 0.9790 0.9531 0.9530 0.9423 0.9533 0.9545 0.9543 0.9445 0.9544
APRI1 0.9964 0.9965 0.9964 0.9964 0.9969 0.9969 0.9967 0.9969 0.9724 0.9722 0.9624 0.9721 0.9732 0.9728 0.9639 0.9728

GDINA Biasy 0.0304 0.0314 0.0371 0.0310 0.0220 0.0224 0.0279 0.0225 0.0371 0.0398 0.0565 0.0402 0.0270 0.0285 0.0457 0.0281
RMSE, 0.1301 0.1303 0.1285 0.1304 0.1051 0.1053 0.1021 0.1052 0.1457 0.1459 0.1474 0.1461 0.1192 0.1193 0.1200 0.1194
MSEy 0.0198 0.0199 0.0195 0.0199 0.0130 0.0130 0.0126 0.0130 0.0250 0.0252 0.0260 0.0252 0.0176 0.0176 0.0183 0.0176
MN, 0.0109 0.0111 0.0250 0.0109 0.0091 0.0093 0.0195 0.0091 0.0215 0.0218 0.0453 0.0223 0.0153 0.0157 0.0415 0.0156
RMSE, 0.0064 0.0065 0.0112 0.0063 0.0049 0.0050 0.0089 0.0049 0.0076 0.0076 0.0073 0.0077 0.0056 0.0057 0.0064 0.0057
MSE, 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000
AAR 0.9488 0.9485 0.9466 0.9488 0.9531 0.9531 0.9512 0.9531 0.8936 0.8933 0.8914 0.8933 0.8976 0.8977 0.8938 0.8977
PAR1 0.9660 0.9657 0.9630 0.9661 0.9701 0.9697 0.9665 0.9697 0.8931 0.8920 0.8877 0.8924 0.9031 0.9030 0.8952 0.9030

Note. The “Sim”, “Seq”, “Ind” and “sSim” represent the simultaneous (implemented by JAGS), sequential, independent and self-compiled simultaneous Gibbs

sampling methods, respectively.



Table 5: Parameter recovery for Low dimension with the Correlation p = 0.7

Attribute Number K=3 K=5
Sample Size 1000 2000 1000 2000
Method Sim Seq Ind sSim  Sim Seq Ind sSim  Sim Seq Ind sSim  Sim Seq Ind sSim

qc

DINA  Biasg 0.0001 0.0001 -0.0055 0.0002 0.0000 0.0000 -0.0057 0.0000 0.0019 0.0019 -0.0097 0.0019 -0.0000 -0.0000 -0.0119 -0.0000
RMSE4 0.0164 0.0164 0.0181 0.0164 0.0116 0.0116 0.0140 0.0116 0.0169 0.0169 0.0223 0.0169 0.0130 0.0130 0.0200 0.0130
MSE, 0.0003 0.0003 0.0003 0.0003 0.0001 0.0001 0.0002 0.0001 0.0003 0.0003 0.0005 0.0003 0.0002 0.0002 0.0005 0.0002
Biasg 0.0022 0.0016 0.0069 0.0016 0.0011 0.0008 0.0066 0.0008 0.0019 0.0014 0.0108 0.0014 0.0008 0.0005 0.0104 0.0005
RMSE;  0.0209 0.0208 0.0227 0.0208 0.0145 0.0145 0.0171 0.0145 0.0210 0.0209 0.0260 0.0209 0.0141 0.0140 0.0210 0.0140
MSE, 0.0004 0.0004 0.0005 0.0004 0.0002 0.0002 0.0003 0.0002 0.0005 0.0004 0.0007 0.0004 0.0002 0.0002 0.0005 0.0002
MN, 0.0072 0.0070 0.0546 0.0070 0.0054 0.0053 0.0581 0.0053 0.0127 0.0128 0.1206 0.0126 0.0080 0.0082 0.1259 0.0082
RMSE, 0.0034 0.0035 0.0144 0.0034 0.0024 0.0024 0.0149 0.0024 0.0033 0.0033 0.0087 0.0033 0.0023 0.0023 0.0087 0.0023
MSE, 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0005 0.0000
AAR 0.9815 0.9817 0.9696 0.9817 0.9825 0.9825 0.9678 0.9826 0.9652 0.9651 0.9380 0.9651 0.9667 0.9667 0.9361 0.9667
PAR1 0.9966 0.9968 0.9959 0.9967 0.9976 0.9976 0.9963 0.9975 0.9795 0.9796 0.9511 0.9796 0.9819 0.9821 0.9478 0.9819
GDINA Biasy 0.0247 0.0252 0.0343 0.0252 0.0177 0.0186 0.0308 0.0186 0.0197 0.0190 0.0619 0.0184 0.0138 0.0141 0.0477 0.0141
RMSE, 0.1227 0.1226 0.1347 0.1228 0.1139 0.1142 0.1356 0.1142 0.1458 0.1462 0.1647 0.1466 0.1145 0.1140 0.1406 0.1141
MSEj 0.0173 0.0173 0.0209 0.0173 0.0164 0.0164 0.0232 0.0164 0.0262 0.0262 0.0339 0.0264 0.0166 0.0164 0.0259 0.0165
MN, 0.0117 0.0117 0.0754 0.0118 0.0076 0.0075 0.0762 0.0077 0.0198 0.0205 0.1253 0.0195 0.0129 0.0132 0.1414 0.0125
RMSE, 0.0069 0.0069 0.0269 0.0069 0.0042 0.0043 0.0285 0.0043 0.0057 0.0058 0.0153 0.0057 0.0041 0.0041 0.0149 0.0041
MSE, 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0010 0.0000
AAR 0.9561 0.9562 0.9449 0.9559 0.9629 0.9626 0.9462 0.9628 0.9365 0.9362 0.9150 0.9364 0.9368 0.9369 0.9137 0.9369
PARI1 0.9774 0.9780 0.9720 0.9776 0.9790 0.9786 0.9724 0.9789 0.9481 0.9475 0.9286 0.9480 0.9514 0.9516 0.9321 0.9514

Note. The “Sim”, “Seq”, “Ind” and “sSim” represent the simultaneous (implemented by JAGS), sequential, independent and self-compiled simultaneous Gibbs
sampling methods, respectively.
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Table 6: Parameter recovery for High dimension with the Uniform Population

Attribute Number K=17 K=15
Sample Size 1000 2000 1000 2000

Method 0.01 0.1 1 Ind 0.01 0.1 1 Ind 0.01 0.1 1 Ind 0.01 0.1 1 Ind

DINA  Biasg 0.0066 0.0041 0.0026 0.0018 0.0018 0.0010 0.0005 -0.0004 0.0127 0.0055 0.0056 0.0055 0.0120 0.0007 0.0001 0.0001
RMSE4 0.0208 0.0190 0.0182 0.0178 0.0140 0.0134 0.0131 0.0128 0.0329 0.0299 0.0290 0.0293 0.0260 0.0205 0.0200 0.0198
MSEq 0.0005 0.0004 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0012 0.0010 0.0009 0.0010 0.0007 0.0005 0.0004 0.0004
Biasg 0.0112 0.0060 0.0026 0.0013 0.0073 0.0040 0.0020 0.0019 0.0036 -0.0038 -0.0046 -0.0046 0.0079 0.0013 0.0013 0.0012
RMSE; 0.0321 0.0290 0.0280 0.0276 0.0229 0.0214 0.0208 0.0201 0.0394 0.0367 0.0359 0.0360 0.0321 0.0268 0.0262 0.0259
MSE, 0.0011 0.0009 0.0008 0.0008 0.0006 0.0005 0.0005 0.0005 0.0017 0.0015 0.0014 0.0014 0.0011 0.0008 0.0008 0.0007
MN,. 0.0232 0.0163 0.0106 0.0056 0.0154 0.0114 0.0082 0.0040 0.0056 0.0003 0.0000 0.0006 0.0052 0.0004 0.0000 0.0003
RMSE,; 0.0072 0.0052 0.0032 0.0018 0.0052 0.0039 0.0028 0.0013 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
MSE, 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AAR 0.9039 0.9178 0.9256 0.9173 0.9161 0.9237 0.9269 0.9200 0.8167 0.8386 0.8396 0.8246 0.8114 0.8388 0.8402 0.8201
PAR2 0.9712 0.9780 0.9792 0.9777 09773 0.9794 0.9799 0.9779 0.4679 0.5574 0.5632 0.4998 0.4436 0.5585 0.5654 0.4797

GDINA Biasy 0.0372 0.0410 0.0403 0.0355 0.0197 0.0264 0.0304 0.0320 0.0336 0.0325 0.0325 0.0320 0.0245 0.0315 0.0318 0.0324
RMSE, 0.1884 0.1700 0.1595 0.1570 0.1445 0.1328 0.1256 0.1219 0.2057 0.1804 0.1781 0.1784 0.1886 0.1578 0.1562 0.1552
MSEy 0.0424 0.0344 0.0306 0.0296 0.0239 0.0204 0.0184 0.0175 0.0465 0.0367 0.0359 0.0361 0.0411 0.0297 0.0293 0.0290
MN, 0.0473 0.0311 0.0144 0.0037 0.0253 0.0185 0.0107 0.0025 0.0077 0.0000 0.0000 0.0001 0.0090 0.0001 0.0000 0.0000
RMSE, 0.0120 0.0077 0.0036 0.0012 0.0089 0.0060 0.0033 0.0009 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
MSE, 0.0002 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AAR 0.7846 0.8187 0.8358 0.8401 0.8298 0.8504 0.8589 0.8625 0.6852 0.7328 0.7355 0.7356 0.6754 0.7266 0.7303 0.7302
PAR2 0.8187 0.8760 0.8943 0.9014 0.8981 0.9212 0.9278 0.9305 0.1025 0.1851 0.1923 0.1950 0.0897 0.1781 0.1880 0.1865

Note. In the row “Method”, there are three different levels of §; the sequential Gibbs samplings with § = 0.01,0.1 and 1.
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Table 7: Parameter recovery for High Dimension with the Correlation p = 0.3

Attribute Number K=17 K=15
Sample Size 1000 2000 1000 2000

Method 0.01 0.1 1 Ind 0.01 0.1 1 Ind 0.01 0.1 1 Ind 0.01 0.1 1 Ind

DINA  Biasg 0.0069 0.0039 0.0005 -0.0046 0.0047 0.0029 0.0012 -0.0038 0.0074 -0.0053 -0.0013 0.0008 0.0151 -0.0011 0.0012 0.0049
RMSE, 0.0212 0.0193 0.0185 0.0200 0.0152 0.0142 0.0137 0.0149 0.0283 0.0290 0.0292 0.0293 0.0251 0.0189 0.0208 0.0212
MSEq 0.0005 0.0004 0.0004 0.0004 0.0003 0.0002 0.0002 0.0002 0.0008 0.0009 0.0010 0.0009 0.0007 0.0004 0.0005 0.0005
Biasg 0.0092 0.0058 0.0045 0.0053 0.0044 0.0025 0.0015 0.0022 0.0053 0.0000 -0.0085 -0.0111 0.0012 -0.0034 -0.0116 -0.0163
RMSE; 0.0270 0.0251 0.0246 0.0265 0.0181 0.0173 0.0170 0.0194 0.0339 0.0335 0.0386 0.0399 0.0241 0.0227 0.0294 0.0326
MSE; 0.0008 0.0007 0.0006 0.0007 0.0003 0.0003 0.0003 0.0004 0.0012 0.0012 0.0018 0.0020 0.0006 0.0006 0.0012 0.0017
MN, 0.0233 0.0160 0.0110 0.0384 0.0174 0.0124 0.0096 0.0416 0.0177 0.0100 0.0128 0.0115 0.0174 0.0110 0.0188 0.0183
RMSE, 0.0055 0.0038 0.0025 0.0022 0.0041 0.0029 0.0020 0.0019 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
MSE, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AAR 0.9114 0.9219 0.9287 0.9117 0.9199 0.9265 0.9306 0.9176 0.8347 0.8506 0.8448 0.8193 0.8314 0.8574 0.8499 0.8231
PAR2 0.9749 0.9790 0.9820 0.9701 0.9793 0.9818 0.9826 0.9734 0.5423 0.6028 0.5769 0.5039 0.5250 0.6302 0.6004 0.5161

GDINA Biasy 0.0302 0.0289 0.0359 0.0459 0.0121 0.0200 0.0286 0.0508 0.0454 0.0492 0.0488 0.0490 0.0440 0.0585 0.0610 0.0602
RMSE, 0.1867 0.1685 0.1581 0.1565 0.1469 0.1328 0.1235 0.1246 0.1940 0.1799 0.1788 0.1791 0.1730 0.1637 0.1693 0.1683
MSE» 0.0412 0.0341 0.0300 0.0297 0.0256 0.0211 0.0186 0.0198 0.0429 0.0381 0.0381 0.0383 0.0342 0.0325 0.0352 0.0347
MN, 0.0510 0.0313 0.0207 0.0450 0.0351 0.0229 0.0172 0.0414 0.0232 0.0235 0.0240 0.0238 0.0310 0.0204 0.0269 0.0267
RMSE, 0.0105 0.0065 0.0035 0.0029 0.0084 0.0055 0.0031 0.0026 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
MSE, 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AAR 0.8212 0.8505 0.8627 0.8611 0.8368 0.8561 0.8630 0.8595 0.7179 0.7513 0.7497 0.7492 0.7294 0.7716 0.7652 0.7640
PAR2 0.8752 0.9159 0.9290 0.9249 0.8978 0.9257 0.9306 0.9282 0.1747 0.2452 0.2348 0.2349 0.2104 0.3131 0.2860 0.2812

Note. In the row “Method”, there are three different levels of ; the sequential Gibbs samplings with § = 0.01,0.1 and 1.



Table 8: Parameter recovery for High Dimension with the Correlation p = 0.7

Attribute Number K=17 K =15
Sample Size 1000 2000 1000 2000
Method 0.01 0.1 1 Ind 0.01 0.1 1 Ind 0.01 0.1 1 Ind 0.01 0.1 1 Ind

8¢

DINA  Biasg 0.0079 0.0043 -0.0000 -0.0117 0.0043 0.0021 -0.0002 -0.0111 0.0051 -0.0176 -0.0327 -0.0038 0.0094 -0.0111 -0.0342 -0.0019
RMSE, 0.0225 0.0201 0.0188 0.0261 0.0147 0.0136 0.0131 0.0221 0.0234 0.0303 0.0450 0.0334 0.0192 0.0200 0.0407 0.0268
MSE, 0.0005 0.0004 0.0004 0.0008 0.0002 0.0002 0.0002 0.0006 0.0006 0.0010 0.0023 0.0012 0.0004 0.0004 0.0019 0.0008
Biasg 0.0053 0.0032 0.0026 0.0090 0.0032 0.0021 0.0016 0.0064 0.0083 0.0136 0.0210 -0.0082 0.0040 0.0075 0.0204 -0.0125
RMSE; 0.0215 0.0208 0.0207 0.0284 0.0152 0.0149 0.0147 0.0238 0.0271 0.0291 0.0394 0.0471 0.0175 0.0185 0.0307 0.0413
MSE, 0.0005 0.0004 0.0004 0.0008 0.0002 0.0002 0.0002 0.0006 0.0008 0.0009 0.0016 0.0031 0.0003 0.0003 0.0010 0.0030
MN, 0.0313 0.0197 0.0292 0.1556 0.0153 0.0108 0.0168 0.1443 0.0193 0.1174 0.1447 0.1425 0.0368 0.0910 0.1454 0.1449
RMSE, 0.0040 0.0028 0.0023 0.0036 0.0029 0.0021 0.0016 0.0032 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
MSE, 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AAR 0.9353 0.9441 0.9488 0.8951 0.9425 0.9471 0.9493 0.9028 0.8834 0.8892 0.8505 0.8091 0.8868 0.9005 0.8642 0.8113
PAR2 0.9786 0.9839 0.9862 0.9418 0.9833 0.9856 0.9869 0.9494 0.6998 0.7248 0.5877 0.4968 0.7094 0.7654 0.6348 0.5028
GDINA Biasy 0.0168 0.0262 0.0341 0.0842 0.0051 0.0114 0.0179 0.0914 0.0311 0.0547 0.0697 0.0684 0.0515 0.0482 0.0903 0.0858
RMSE, 0.1604 0.1477 0.1454 0.1920 0.1440 0.1327 0.1288 0.1942 0.1664 0.1929 0.2139 0.2117 0.1514 0.1906 0.2319 0.2246
MSEy 0.0309 0.0262 0.0251 0.0459 0.0279 0.0233 0.0215 0.0503 0.0323 0.0445 0.0601 0.0591 0.0291 0.0448 0.0760 0.0701
MN, 0.0412 0.0303 0.0515 0.1693 0.0383 0.0238 0.0327 0.1585 0.0559 0.1413 0.1569 0.1562 0.0465 0.1134 0.1422 0.1418
RMSE,; 0.0074 0.0047 0.0034 0.0058 0.0062 0.0040 0.0027 0.0054 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
MSE 0.0001 0.0000 0.0000 0.0004 0.0001 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AAR 0.8861 0.9046 0.9108 0.8800 0.8866 0.9013 0.9061 0.8740 0.8143 0.8185 0.7807 0.7769 0.8007 0.8242 0.7839 0.7736
PAR2 0.9303 0.9559 0.9612 0.9522 0.9323 0.9525 0.9577 0.9432 0.4738 0.4750 0.3406 0.3249 0.4330 0.4921 0.3601 0.3181

Note. In the row “Method”, there are three different levels of ; the sequential Gibbs samplings with § = 0.01,0.1 and 1.



Table 9: The average computational time

DINA GDINA

(N, K) Sim Seq Ind sSim Sim Seq Ind sSim
(1000,3) 388.34 9.9296 10.809 9.6042 224.01 52.096 53.002 27.426
(1000,5) 591.50 10.671 12.066 24.890 370.68 50.496 52.038 49.066
(1000,7) — 11.178 13.082 84.437 — 51.232 53.165 133.16
(1000,15) — 19.895 17.347 — — 64.106 54.538 —
(2000,3) 856.37 19.573 21.568 18.986 516.98 103.63 105.93 53.263
(2000,5) 1308.2 20.877 23.815 48.351 828.19 99.263 102.31 94.644
(2000,7) — 21.753 25917 165.23 — 99.180 104.39 252.84
(2000,15) — 32.277 33.705 — — 106.66 101.44 —

Note. The “Sim”, “Seq”, “Ind” and “sSim” represent the simultaneous (implemented by

JAGS), sequential, independent and self-compiled simultaneous Gibbs sampling methods,
respectively. The time is reported in seconds.

(i.e., N = 536) to 20 items (i.e., J = 20). There are 8 attributes and 2% = 256 latent
classes.

We fit both the DINA and GDINA models. Based on the results of simulation studies,
we set the hyper-parameter of the Dirichlet priror § = 0.1. When applying the GDINA
model, we assume the item parameter prior for all items as A ~ N (0,1) for both
w = 0 and w > 0. The prior hyper-parameters and MCMC chain lengths and burn-in
are listed in Table [[I] The computation of analyses is performed by a 2018 MacBook
Pro with 2.2 GHz Intel Core i7, 16 GB 2400 MHz DDR4 and Radeon Pro 555X 4096
MB; Intel UHD Graphics 630 1536 MB. The only feasible case for JAGS is running the 8-
attribute DINA model with the simultaneous Gibbs sampling. For the DINA model three
methods, the independent, sequential and simultaneous Gibbs sampling by implemented
JAGS, are compared. However, for the GDINA model, the independent and sequential
Gibbs sampling algorithms are used to compare.

When to analyze the fraction-subtraction data with the DINA model, the independent,
sequential and simultaneous Gibbs sampling methods spend 5.46, 4.91 and 942 seconds,
respectively. The off-the-shelf software JAGS is treated as a benchmark. We find that the
simultaneous Gibbs sampling using JAGS is time-consuming. Figuresandshow
the posterior means and 95% confidence interval of the guessing and slipping parameters,
respectively. When to compare estimation accuracy of item parameters, no matter from

posterior means or 95% confidence interval, the simultaneous Gibbs sampling gives very
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Table 10: The @-matrix and Items for Fractions-Subtraction Data

ID Item o Qg 3 oy Q5 Qg Qp Qg
1 -3 00 0 1 0 1 1 0
2 33 0o 0 0 1 0 0 1 0
3 2-3 o0 0 1 0 0 1 0
4 332-22 0 1 1 0 1 0 1 0
5 42-35 0 1 0 1 0 0 1 1
6 -2 o 0 0 0 0 0 1 0
7 3-2% 1 1.0 0 0 0 1 0
8 2-2 o0 0 0 0 0 1 0
9 3f-2 o1 0 0 0 0 0 0
10 45-2L 0 1 0 0 1 0 1 1
11 435-23 0 1 0 0 1 0 1 0
12 -1 o 0 0 0 0 0 1 1
13 33-22 0 1 0 1 1 0 1 0
14 32-32 0 1 0 0 0 0 1 0
15 2—4 1 0 0 0 0 0 1 0
16 42-13 0 1 0 0 0 0 1 0
17 -2 0 1 0 0 1 0 1 0
18 45-2% 0 1 0 0 1 1 1 0
19 4-13 1 1 1 0 1 0 1 0
20 4;-12 0 1 1 0 1 0 1 0

Table 11: Summary of analyzing conditions for the Fraction-Subtraction Data

DINA  GDINA

GDINA X prior — N(0,1)
DINA s, g prior Beta(1,1) —
) 0.1 0.1

Chain Length 2000 4000
Burn-in 1000 2000
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similar results to the sequential Gibbs sampling, while the latter has obvious speed advan-
tage. Compared with the MCMC estimates obtained by JAGS, the independent Gibbs
sampling trends to overestimate the guessing parameters and underestimate the slipping
parameters, which may be due to the correlation of the attributes.

In the GDINA model, the item parameters are intercept and interaction parameters
rather than guessing and slipping parameters. The time costs of the independent and
sequential Gibbs sampling algorithms are 19.25 and 17.65 seconds, respectively. The
notation A*) represents the w-way interaction. Since the items in the fraction-subtraction
data need up to 5 attributes, there exist up to the 5-way interaction parameters. The
Figure presents the box-plot of w versus A for the estimated item parameters. The
common property shared by the same-way interactions can be obtained by the box-plot.
The item parameter estimations show that the means of intercept parameters and 4-way
interaction parameters are negative and the others are positive. The conclusion that the
intercept term is negative is consistent with our intuition, because a subject without any

required attributes is usually expected to have a low positive response probability.
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(a) DINA guessing parameters (b) DINA slipping parameters (c) GDINA parameters
Figure 2: The estimations of item parameters for the fraction-subtraction data. The

“Ind”, “Seq” and “Sim” represent the results from the independent, sequential and si-
multaneous (by implemented JAGS) Gibbs sampling, respectively.

6 Discussion

In practice, one computational challenge is that when the number of attributes is large, the
existing MCMC for the CDMs may become slow. In this paper, a computationally efficient

algorithm, named as the sequential Gibbs sampling, was proposed for a general CDM,
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i.e., the GDINA model. In the situation with small K, compared to the existing method
(e.g., JAGS), the proposed method can also yield similar results. The proposed method
still works well and fast for the case with large K. When K = 15, I = 2000, J = 40
and the model is the GDINA model, running 3,000 iterations only needs less 110 seconds.
Especially, for a large K, the computational advantage becomes more significant compared
with the simultaneous Gibbs sampling method. The proposed method can be easily
applied to other CDMs. In the appendix, we show the algorithm for the DINA model for
an illustration.

In this paper, we only focus on the computational challenge for large K, given the Q-
matrix is correctly specified. Most references about identification theory pointed out that
the ()-matrix need to contain an identity matrix at least for strict identifiability (Gu & Xul,
2020; Xu & Shang, |2018)). In practice, however, the @-matrix may be misspecified, and it
would be needed to estimate the Q)-matrix together with the model parameters and latent
attributes. The estimation of the @-matrix is known to be a challenging issue, especially
when K is large, and the proposed algorithm may be extended to such applications
to help reduce the computational cost of the convensional MCMC approaches. Another
interesting extension is to use the idea in this paper to solve other latent variable modeling
problems with many latent attributes. Not only for the discrete but also for continuous

abilities, this idea may be helpful.
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Appendix

A Sequential Gibbs sampling for the DINA model

Under the DINA model, the item parameters are guessing parameter g and slipping
parameter s. The priors of guessing and slipping parameters follow Beta(a,,b,) and
Beta(as, bs), respectively. The rest of the measurement model remains similarly to the
GDINA model. The sampling methods for g,s and @« can be founded in |Culpepper
(2015). We only focus on sampling attribute profiles: for fixed Y, a;\4,g,s and , the

full conditional distribution for a;j is proportional to

p(aik|Y1"a ai\kaQ) S, 7T)

x H Y (1= Pj(cu))' Y] plaiklpin) (A1)
j=1
H (957" (1= )™)Y (1 = ) ()Y | (1= ) (A.2)
T 1-Y; Yij
H ( ] 11(1 _ Sj)Yij )mj (gj ij (1 o gj)linj)lfmj} Otzk(l _plk)lfozi,c (A.3)
T K 9k
H (8]1 Y”(l — 5. ) ij )Hk 1 m (g;/”(l _ gj>1—Yij)1—Hk:1 o } pam(l —p; k)l_aiky (A.4)

where p;, is the prior conditional probability as in Equation (Q). For simplify, we

define a set Q= {7 | [y 2k oefﬁ" = 1&qjx = 1}, and the complementary set is
Q. =1{j1J¢QU&j=1,...,J}. We know that when item j belongs to Qi 1;; = .
The items in the set f satisfy at least one of two conditions, [, ad = 0and g, =0,

which indicate that the value of a;, doesn’t affect the value of 7;;. In other words, the

items in the set €2, don’t affect the full conditional distribution. We can rewrite the full
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conditional distribution as follows:

p(azk|Y';7 ai\k797 Sap)

[ 1-Y;; s Yis Y\ 1—ay
o TT 57790 = ) o) (g (1 = gy
J€ur
[/ 1Y 0, Yy v, » s (A.5)
TT 57900 =)0 (1= ) ) | it (1= pa) =
JEQur
o TT 570 = ) ) (g5 (1= ') = | s (1= )=
VST

Obviously, the posterior distribution of a;y is a Bernoulli distribution Bernoulli(p;) with

the parameter

1-Y;; >
e 27701~ 5]

1-Y;; » Yi; _V.. ’
[ljca, [sj (- sj)Y”] pik + [Ljeq,, [(gj (1= gj)! Y”)} (1= pir)

Dik =

We next introduce the initial values for the DINA model. The initial values of item
parameters g(), (O are randomly sampled from the uniform distribution U[0,0.4]. The
initial population parameter 7 is the C-dimensional 1/C’; the hyper-parameters are a, =
bs = a; = by, = 1. The other initial values are same as those in section[4.1] The sequential

Gibbs sampling for the DINA model is presented in Algorithm [2]

Algorithm 2: Sequential Gibbs Sampling for DINA
Input: Initialize g, s©, a7 Y m = 0, M and specify priors.
Output: Markov chains of g, s, o, 7.
while m < M do
Sample attribute profiles from Equation (A.D).
Sample the other parameters according to the reference (Culpepper,|2015).

Set m=m + 1.
end

B Full conditional distribution for A

Focusing on the jth item, we can get a classical linear regression as follows

Zj = XjA]‘ + Ej,
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where A; is the item parameter and the residual €; = (e1,€2, -+ ,en)" is a random sample

from standard normal distribution. The kernel of likelihood function is given as
1 _
P(Z;| X, Aj) o< exp <_2(Zj - X;N) 172, - Xﬁ\j)) : (B.1)

where the I represents an identity matrix. Assuming the joint prior for A; is N(py;, X»,),

the specific form of parameter’s prior is

1 _
PO xexp (<50 = B ) (B.2)
According to the Bayesian linear regression, the kernel of the posterior is
PN Z;, X5, Ag)
1 _ _
o exp [—5 ((Zj = X)) THZ5 = X0) + (A — )’ B3 (A — MAj))]

X eXp [—% ()\;(XJ’X] + E;jl))\j — A;(X;I’le + Egjlu,\j) - (X}I’le + E/\jlu,\j)')\j)} .

(B.3)
Let ﬁ];jl = X; X} + E;jl, using the undetermined coefficient method to solve f1, =
3 N (X Z + E;jlu,\j), so we can get the full conditional distribution for jth item’s pa-

rameters easily. The full conditional distribution is N(f,,, 3 A )

C Sample from the truncated multivariate normal
distribution

Because the posterior is a normal distribution, only the multivariate normal distribution
with truncation needs to de derived. Assuming that a random vector X ~ N,(u, X) and

X = (X4, Xs,---, X)) is a p-dimensional vector, where

® = (Mla T 7Mp)/7

011 012 - O1p

021 022 -+ 0O
2 pu—

Op1 Op2 " Opp
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When we ignore the truncation, the marginal distribution of X; is a normal distri-
bution which can be used to generate x;, and then the conditional distributions of the
following parameters:

Xo| Xy = 27,

Xp|X1 = T1," >Xp—1 = Tp-1,

are also normal distributions (Anderson, 1958) which are used to generate xo,- - - ,z,. As
a result, we can get a realization (x1,x, -, z,) following N,(u,X).

In this paper, the first component X; is negative, the else components are positive.
Imposing the restrictions to (z1, s, - -, x,)’, we sample z; from the interval (—oo,0) part
of the marginal distribution of X; and sample x5, - -, z, from the (0,00) of remaining
conditional distributions.

Furthermore, through this method, more complex restrictions can be easy to impose.
For any X, the left censoring, right censoring and interval censoring can be employed.
Generating censoring data from a unidimensional normal distribution is easy, so this

method is rather flexible and simple.

D The @-matrices for different K

The @Q-matrices are used for different K in the simulation studies, please see Table [12]

E Analyses of TIMSS 2007

The Trends in Mathematics and Science Study (TIMSS), a quadrennial assessment, as-
sessed the mathematics and science abilities of fourth and eighth students since 1995.
TIMSS 2007 (Grade 4) dataset with 25 mathematics (dichotomized) items used in|Lee et al.
(2011),Park and Lee (2014) and [Park, Xing, and Lee (2018). The dataset includes a sam-
ple of 698 Austrian students. The chosen data contain J = 25 items (i.e., booklets 4 and
5), which consist of two parts: 11 items released for booklet 4 were new items developed
for TIMSS 2007 and the remaining 14 items from booklet 5 were previously administered
during TIMSS 2003.

40



Table 12: The transposed Q-matrices for different K
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The Q-matrix used by [Lee et all (2011) is listed in Table[I3] There are 15 attributes
(i.e., K=15) belonging to three content domains: Number, Geometric Shapes and Mea-
sures and Data Display. For this data analyses, the prior hyper-parameters and MCMC
chain lengths and burn-in are listed in Table [I4] Due to the large number of attributes,
the independent and sequential Gibbs sampling methods are the only two methods used
here.

Analyzing the TIMSS 2007 data with the DINA model, the time costs of the indepen-
dent and sequential Gibbs sampling are are 11.51 and 13.36 seconds, respectively. The
estimations and 95% HDP regions of guessing and slipping parameters are shown in Fig-
uresand respectively. When the DINA model is used to analyze, large guessing
and slipping parameters often indicate the model may not fit the data well. In the results
of sequential Gibbs sampling, the guessing parameters for items 15, 18, 22 and 25 are
greater than 0.5, meanwhile the slipping parameters for items 2, 3, 4, 10, 11, 17, 21 and
24 are greater than 0.5.

When to analyze the TIMSS 2007 using the GDINA model, the time costs of the
independent and sequential Gibbs sampling are 35.63 and 42.75 seconds, respectively.
Since the items in TIMSS 2007 need up to 6 attributes, there exist the 6-way interaction
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Table 13: Q matrix for TIMSS 2007

Geometric Shape

Number and Measure Data Display
Item-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MO0O41052 1 1 0 0 0O O O O O O O 0 0 0 0
MO041056 0 0 0O O 1 O O O O O O 0 0 0 0
MO0O41069 0 1 0 1 1 0O O O O O O 0 0 0 0
Mo41076 0 O 1 0 O 1 0O O O O O 0 0 0 0
MO41281 0 1 1 0 O O O 1 O O O 0 0 0 0
Mo41164 0 0 0O O O O O O O 1 O 1 0 0 0
Mo041146 0 0 0O O O O O O 1 1 O 1 0 0 0
MO41152 1 1 1 0 O O O O O 1 1 0 0 0 0
MO041258A 0 0 0 0 0 O O O O 1 O 0 0 0 0
MO041258B 0 0 0 0 0 0 O O 1 1 O 0 0 0 0
MO41131 0 1 1 1 0 O O O 1 O O 0 0 0 0
MO041275 1 0 0 0O O O O O O O O 0 1 0 1
MO41186 1 1 0 1 0 0O O O O O O 0 1 0 0
MO41336 1 1 0 0 1 1 0 O O O O 0 1 1 0
MO31303 0 1 1 0 0O O O O O O O 0 0 0 0
MO31309 0 1 1 0 0O O O O O O O 0 0 0 0
MO0O31245 0 1 0 0O O O 1 O O O O 0 0 0 0
MO31242A 0 1 1 0 0 O O 1 O O O 0 0 0 0
MO31242B 0 1 1 0 0 0 0 O O O O 0 0 1 0
MO031242C 0 1 1 0 0O O O 1 O O O 0 0 1 0
MO0O31247 0 1 1 0 0O O 1 O O O O 0 0 0 0
M031219 0 0 0 O O O O O O 1 1 1 0 0 0
MO31173 0 1 1 0 O O O O O O O 0 0 0 0
MO031085 0 0 0O O O O O O O 1 O 0 0 0 0
MO31172 1 1 0 0 O O O O O O O 0 1 0 1

Table 14: Summary of analyzing conditions for TIMSS 2007

DINA  GDINA

GDINA X prior — N(0,1)
DINA s, g prior Beta(1,1) —

é 0.01 0.01

Chain Length 2000 4000

Burn-in 1000 2000
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parameters. The box-plot of estimated item parameters is given in Figure We can

see that the average effect of intercept is negative and the others are positive.
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Figure 3: The estimations of item parameters for the TIMSS 2007 data. The “Ind” and
“Seq” represent results from the independent and sequential Gibbs sampling, respectively.
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