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Abstract

Cognitive diagnosis models (CDMs) are useful statistical tools to provide rich in-

formation relevant for intervention and learning. As a popular approach to estimate

and make inference of CDMs, the Markov chain Monte Carlo (MCMC) algorithm

is widely used in practice. However, when the number of attributes, K, is large,

the existing MCMC algorithm may become time-consuming, due to the fact that

O(2K) calculations are usually needed in the process of MCMC sampling to get the

conditional distribution for each attribute profile. To overcome this computational

issue, motivated by Culpepper and Hudson (2018), we propose a computationally

efficient sequential Gibbs sampling method, which needs O(K) calculations to sam-

ple each attribute profile. We use simulation and real data examples to show the

good finite-sample performance of the proposed sequential Gibbs sampling, and its

advantage over existing methods.
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sampling.
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1 Introduction

In recent years, cognitive diagnosis models (CDMs) have gained great achievements

in educational and psychological assessments, where latent binary random vectors are

often assumed to represent the presence or absence of multiple fine-grained skills or

attributes. The CDMs can be viewed as a family of restricted latent class models,

with the goal of achieving personalized diagnostic classification. Compared with the

Item Response Theory (IRT) models, the CDMs can provide more informative feedbacks

on attribute profiles and allow for the design of more effective intervention strategies

(Rupp, Templin, & Henson, 2010).

Many CDMs have been proposed in the literature. An incomplete list contains the

Deterministic Input, Noisy “And” gate and Noisy Inputs, Deterministic “And” gate mod-

els (DINA and NIDA; Haertel, 1989; Junker & Sijtsma, 2001), the reduced version of the

Reparameterized Unified Model (rRUM; Hartz, 2002; Rupp et al., 2010), the Determinis-

tic Input, Noisy “Or” gate and Noisy Inputs, Deterministic “Or” gate models (DINO and

NIDO; Templin & Henson, 2006), the general diagnostic model (GDM; von Davier, 2005),

the log-linear cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 2009), and

the generalized DINA model (GDINA; de la Torre, 2011).

To estimate the CDM parameters and perform classification of examinees, the Bayesian

MCMC method is one popular approach, as it will not only provide the point estimation

but also the whole posterior distributional information for statistical inferences. In the

Bayesian framework, the MCMC algorithm is used to generate the unique stationary

distribution that weakly converges to the true target distribution of parameters of interest.

The MCMC algorithm provides a useful tool to solve many complicated problems in

statistics and psychometrics. In the CDM literature, the Bayesian MCMC estimation of

CDMs has also been studied. For instance, Under the confirmatory setting with the Q-

matrix prespecified, Culpepper (2015) proposed an efficient Gibbs sampling for the DINA

model, in which all parameters were sampled from their full conditional distributions.

Chung (2014, 2019) estimated the DINA and rRUM models in the Bayesian framework

using a Gibbs sampling algorithm.

Culpepper and Hudson (2018) further proposed a Bayesian sequential Gibbs sampler

of the rRUM which samples each latent attribute sequentially from the corresponding con-

ditional Bernoulli distribution. In addition, the software “JAGS” has also been used to
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fit many common CDMs (e.g. Zhan, Jiao, Man, & Wang, 2019). In the exploratory CDM

setting, Bayesian method has also been used to estimate the model parameters and the Q-

matrix jointly under identifiability conditions. For instance, Chen, Culpepper, Chen, and Douglas

(2018) proposed an easily implemented MCMC algorithm through a data augmenta-

tion strategy and item parameter reparameterizations. Following Culpepper and Hudson

(2018), Culpepper and Chen (2019) proposed a similar sequential sampler to estimate the

Q matirx under the exploratory rRUM.

In modern psychological, educational and medical applications of CDMs, large-scale

data, with large numbers of manifest attributes of interest (denoted by K), are often

collected. In many applications, the number of the corresponding latent classes 2K could

become comparable or even larger than the number of examinees N . Examples with large

number of latent classes can be found in educational assessment (Lee, Park, & Taylan,

2011) and the medical diagnosis (Wu, Deloria-Knoll, & Zeger, 2016). The increasing di-

mension of attributes and items often causes high computational cost and therefore in-

troduces new challenges for the estimation and inference of the CDMs.

In this paper, we focus on improving the MCMC with the Gibbs sampling in the setting

of many latent attributes under the cofirmatory CDMs with the Q-matrix prespecified.

Existing MCMC algorithms often directly sample from the posterior distribution of each

latent attribute profile (see Zhan et al., 2019), with the whole attribute profile treated as

one random sample from a categorical distribution with 2K different categories. Therefore,

in order to sample one attribute profile, it is needed to evaluate 2K posterior probabilities

of each possible profile candidate. The corresponding computational overhead for sam-

pling each individual’s attribute profile is of the order O(2K). For a large K, this would

lead to a significant computational burden and also affect the convergence of the MCMC

algorithm. Alternatively, Zhan, Li, Wang, Bian, and Wang (2015) proposed to model the

attributes as independent variables by introducing an independent Bernoulli prior for

each attribute, the corresponding sampling method is named as the independent Gibbs

sampling in this article. Without modeling the dependence among the attributes, the

computation cost of sampling each attribute profile in the independent Gibbs Sampling

is then reduced to O(K), however, the independent assumption of attributes is often too

strong to satisfy in practice.

Since the computational difficulty for large K mainly arises from the sampling of
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the attribute profiles, we follow the novel idea of sequential Gibbs sampler proposed in

Culpepper and Hudson (2018) to develop an efficient sequential Gibbs sampling method.

This work extends Culpepper and Hudson (2018), which focuses on the rRUM model, to

the more general GDINA model under the high-dimensional setting with many attributes;

such a high-dimensional setting arises in many applications but the related estimation

challenge has not been addressed. Following Culpepper and Hudson (2018), the sequential

sampler samples each attribute separately instead of sampling the attribute profile as a

whole, and consequently, the computational overheads of sampling attribute profiles is

greatly reduced from O(2K) to O(K). For a large K, the improvement is especially

significant as shown in the simulation studies.

The rest of the paper is organized as follows. In Section 2, we give an overview on the

CDMs and a Bayesian formulation for the estimation. Section 3 introduces the proposed

sequential Gibbs sampling, with a focus on the estimation of the GDINA model as a

general version of CDMs. The simulations and real data analyses are shown in Section

4 and Section 5, respectively. A discussion is given in Section 6. The supplementary

materials include more details for the proposed algorithm. Source code of the proposed

method will be made publicly available upon the acceptance of this work.

2 Bayesian GDINA Model

This section focus on the GDINA model as the general framework for CDMs, which

include many CDMs as special cases such as DINA, DINO, and Reduced RUM (Hartz,

2002; Junker & Sijtsma, 2001; Rupp et al., 2010). We present the formulation for the

Bayesian GDINA model, which contains the model setup, item parameter priors and

population parameter prior.

2.1 The DINA and GDINA Models

In CDMs, the examinee’s responses depend on his/her latent attribute profile which is

denoted by a K-dimensional vector α = (α1,α2, · · · ,αK)′, where the superscript ′ denotes

transpose. Each attribute αk indicates the mastery of attribute k = 1, · · · , K, and there

are in total C = 2K latent classes α ∈ {0, 1}K. Let the binary vector Y = (Y1, · · · , YJ)

represent an examinee’s responses to J items. Both α and Y are examinee-specific;
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a particular examinee i’s attribute profile and responses are denoted by αi and Yi for

i = 1, · · · , N . The N examinees’ attribute profiles are random samples from a population

distribution with the probability: πα = P (αi = α), where
∑
α

πα = 1, 0 ≤ πα < 1.

Thus, the population distribution of attribute profiles is characterized by the vector π =

(πα,α ∈ {0, 1}K)′. For notational convenience, for α = (α1,α2, · · · ,αK)′, we will also

write πα as πc with c = 1+
∑K

k=1 αk2k−1. Note that the two representations π = (πα,α ∈

{0, 1}K)′ and π = (πc, c = 1, · · · , C)′ are equivalent.

The binary Q-matrix (K. K. Tatsuoka, 1983) is a key component for CDMs. For each

pair of j and k, qjk = 1 indicates attribute k is required by item j, otherwise qjk = 0,

for j = 1, · · · , J . Particularly, the jth row vector qj of the Q-matrix corresponds to the

attributes required by item j.

The DINA model (Haertel, 1989; Junker & Sijtsma, 2001) is one of, if not the simplest,

consequently most restrictive, interpretable CDMs available for dichotomously scored

tests. For a specific examinee with an attribute profile α, we can define the ideal re-

sponse η(α, qj) to item j relying on α and qj as

η(α, qj) =
K∏

k=1

α
qjk
k . (1)

For brevity, given examinee i’s attribute profile αi, the ideal response η(αi, qj) can also

be written as ηij if the context permits. The ηij is an indicator of whether examinee i

masters all the required attributes for item j, which indicates that each item partitions all

examinees into two latent groups. Let gj = P (Yij = 1|ηij = 0) and sj = P (Yij = 0|ηij = 1)

be the guessing and slipping parameters, respectively. For examinee i and item j, the

positive response probability, denoted by θj,αi
= P (Yij = 1|αi), takes the form

θj,αi
= g

1−ηij
j (1− sj)

ηij . (2)

de la Torre (2011) proposed a general framework for CDMs based on the DINA model,

called the GDINA model, which characterized more complex relationships between at-

tribute profiles and response data. In the GDINA model, the positive response probability

can be decomposed into the sum of the effects due the presence of required attributes and

their interactions. We let K∗
j =

∑K
k=1 qjk be the number of required attributes by item

j, which is determined by the jth row vector qj in the Q-matrix. For a specific examinee
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with α and item j, we rearrange the structure of attribute profiles, so that the first K∗
j

attributes are the attributes required by item j. The reduced attribute profile for item j

consists of the firstK∗
j required attributes denoted by α∗

j = (α∗
j1, · · · ,α

∗
jK∗

j
)′, j = 1, · · · , J .

Similarly to α and Y , there also exists the examinee-specific reduced attribute profile,

denoted by α∗
ij = (α∗

ij1, · · · ,α
∗
ijK∗

j
)′. Given α∗

j , the item response probability of item j is

modeled as

h(θj,α∗
j
) = λj0 +

K∗
j∑

k=1

λjkα
∗
jk +

K∗
j−1∑

k=1

K∗
j∑

k′=k+1

λjkk′α
∗
jkα

∗
jk′ + · · ·+ λj12···K∗

j

K∗
j∏

k=1

α∗
jk, (3)

where θj,α∗
j
= P (Yij = 1|α∗

j) represents the positive response probability of the exam-

inees with the reduced α∗
j to item j, h(·) is the link function where usually probit,

identity, log and logit links can be employed, λj0 is the intercept, λjk is the main ef-

fect corresponding to α∗
jk, λjkk′ is the two-way interaction corresponding to α∗

jk and α∗
jk′,

. . . , λj12···K∗
j
is the K∗

j -way interaction corresponding to all required attributes. We let

λj = (λj0,λj1, · · · ,λjK∗
j
,λj12,λj13, · · · ,λj12···K∗

j
)′ represent the item parameters for item

j and λ = (λ1, · · · ,λJ) represent the item parameters for all items. The number of item

parameters is determined by the structure of Q-matrix. Specifically, for item j, the num-

ber of item parameters is 2K
∗
j . In this paper, we shall focus on the probit link function,

whereas the proposed method can be applied to other link functions as well.

Under the GDINA model, each item j can divide examinees into 2K
∗
j latent groups.

Because α∗
j is a sub-vector of α, we should notice that θj,α = θj,α∗

j
. For equation (3), we

can use the vector-notation to rewrite the positive response probability as follows

h(θj,α) = h(θj,α∗
j
) = X ′

α∗
j
λj ,

where Xα∗
j
= (1,α∗

j1, · · · ,α
∗
jK∗

j
,α∗

j1α
∗
j2,α

∗
j1α

∗
j3, · · · ,

∏K∗
j

k=1 α
∗
jk)

′ denotes a 2K
∗
j -dimensional

vector relying on α∗
j . For a particular examinee i = 1, · · · , N , the examinee-specific Xα∗

j

is denoted by Xα∗
ij
= (1,α∗

ij1, · · · ,α
∗
ijK∗

j
,α∗

ij1α
∗
ij2,α

∗
ij1α

∗
ij3, · · · ,

∏K∗
j

k=1 α
∗
ijk)

′. The GDINA

model degenerates to the DINA model by setting all item parameters, except λj0 and

λj12···K∗
j
, to zero. Then, we can obtain gj = h−1(λj0) and 1 − sj = h−1(λj0 + λj12···K∗

j
),

where h−1 is the inverse function of h.

The collection of positive response probabilities is denoted by a J × C matrix Θ =

(θj,α), which may depend on different forms of item parameters in different CDMs. Given
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the response data and all attribute profiles, the conditional likelihood function takes the

following form:

p(Y |α,Θ) =
N∏

i=1

J∏

j=1

θ
Yij

j,αi
(1− θj,αi

)1−Yij . (4)

After integrating attribute profiles, the marginal likelihood function takes the following

form:

p(Y |π,Θ) =
N∏

i=1

C∑

c=1

πc

J∏

j=1

θ
Yij

j,αc
(1− θj,αc)

1−Yij . (5)

2.2 Priors of Measurement Models’ Parameters

The population proportion parameter π includes the saturated information about the

attribute profile distribution in CDMs. The Dirichlet distribution is commonly used as

a conjugated prior for π, such as Culpepper (2015), Culpepper and Hudson (2018) and

Zhan et al. (2019). The specific form of the Dirichlet prior for π = (π1, · · · , πC) is

π ∼ Dirichlet(δ).

where δ = (δ, · · · , δC)′ represent a C-dimensional hyper-parameter vector for π.

In different CDMs, item parameters will be presented in the different forms, such as gj

and sj in the DINA model, and λj in the GDINA model. For the DINA model, indepen-

dent Beta distributions, Beta(ag, bg) and Beta(as, bs), are often used as the priors for guess-

ing and slipping parameters, respectively. We may also constraint 0 ≤ gj < 1 − sj ≤ 1,

to ensure the model identifiability (Chen et al., 2018; Gu & Xu, 2019; Junker & Sijtsma,

2001; Xu & Zhang, 2016). For the GDINA model, the normal distributions are often

taken as priors for the item parameters λ (e.g., Zhan et al., 2019). Specifically, two types

of priors are often chosen: one is a multivariate normal distribution, λj ∼ N(µλj
,Σλj

),

as a general choice; the other is a truncated multivariate normal distribution, λj ∼

N(µλj
,Σλj

)I{λj∈T }, which is used to ensure certain monotonicity assumption of the item

response function. Here I{·} denotes the indicator function, T = {T1, · · · , Tm, · · · , T2
K∗

j
},

and each Tm represents some pre-specified constraint of the m-th element of λj. For

instance, we may restrict the main effect terms in λj to be positive to ensure the mono-

tonicity assumption.

As discussed in the introduction, for a large K, the existing MCMC algorithms with
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Dirichlet prior for π often suffer from the increasing computational cost of sampling

each latent attribute profile αi from its conditional distribution, which is a categorical

distribution with 2K different categories. Therefore, it needs to evaluate 2K posterior

probabilities of each possible profile candidate to sample each αi, and the corresponding

computational overhead for sampling αi is O(2K). For a large K, this would lead to a

significant computational burden and also affect the convergence of the MCMC algorithm.

3 The Sequential Gibbs Sampling

In this section, we introduce the sequential Gibbs sampling method, which samples each

attribute separately and is computationally efficient for large K. The sequential Gibbs

sampling algorithm will be derived for the GDINA model. It’s natural to apply the

sequential Gibbs sampling to other CDMs, and an example of the DINA model is given

in Appendix A.

3.1 Motivation

With the commonly used Dirichlet prior for π, many existing Gibbs sampling methods

suggest that the full conditional distribution for α takes the following from:

p(α|∗) ∝ p(Y |α,λ)p(α|π), (6)

where the “∗” represented all the other parameters and responses. To infer a specific

examinee’s attribute profile, we need to calculate the posterior probability p(αc|∗) for c =

1, · · · , C to obtain the posterior distribution. For largeK, the computation is challenging.

Since in this Gibbs sampling method, the whole α should be sampled simultaneously,

hereafter this sampling method is referred to as the simultaneous Gibbs sampling.

Following Culpepper and Hudson (2018), we first describe the sequential sampling

method for the attributes. Let α\k denote the sub-vector ofα excluding the k-th attribute.

Based on the fact that knowing α\k and αk is equivalent to knowing the attribute profile

α, it’s obvious that p(α|π) = p(α\k,αk|π). According to Bayes’ theorem, given the α\k
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and π, the conditional probability of αk is

p(αk|α\k,π) = p(α\k,αk|π)/p(α\k|π)

= p(α|π)/p(α\k|π),
(7)

Considering Equation (7), the full conditional distribution for αk is calculated from

p(αk|∗,α\k) ∝ p(Y |α,λ)p(αk|α\k,π). (8)

In Equation (8), p(Y |α,λ) is the conditional likelihood function.

For the second term on RHS of Equation (8), noticing the binary nature of αk∈{0, 1},

we know that conditional on α\k and π,

αk|α\k,π ∼ Bernoulli(pk|α\k,π) (9)

with

pk|α\k,π =

∑C
c=1 πcI{αck=1∩αc\k=α\k}∑C

c=1 πcI{αc\k=α\k}

,

where we use the notation αc\k to represent the α vector corresponding to a general

latent class c excluding the k-th attribute. The above indicator function I{αck=1∩αc\k=α\k}

only selects one component from π, and the indicator function I{αc\k=α\k} can select two

components from π. According to the two indicator functions, we can construct a ratio

as pk|α\k,π. For different CDMs, the Bernoulli distribution form to describe αk remains

unchanged. Here we can interpret pk|α\k,π as the “prior” conditional probability before

incorporating any information of the responses. The examinee-specific pk|α\k,π depends

on the population parameter π and examinee-specific α\k; that is, for a specific examinee

i with attribute profile αi, pk|αi\k,π depends on π and αi\k, i = 1, · · · , N . When there is

no ambiguity, we will write pk|α\k,π and pk|αi\k,π as pk and pik in the following.

The Equations (8) and (9) imply a sampling method that can sample the latent at-

tributes sequentially one by one. Without loss of generality, the attributes are sampled in

an increasing order (i.e., α1, · · · ,αK are sampled in turns). In Table 1, an example with

three attributes is presented to show how Equation (9) works. An 8-dimensional vector π

(i.e., K = 3) is used to represent the saturated population information and α1, α2 and α3

are generated in turns. The first two rows show a one-to-one mapping between α and π.
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Similar to Gibbs sampling, an initial value of the attribute profile is needed as the starting

point. Without loss of generality, let the initial value of α equal to (000). When to sample

the first attribute α1, α2 = α3 = 0 is used in Equation (9), then the first attribute α1 can

be drawn from a Bernoulli distribution with p1 = π2

π1+π2
, which is the prior conditional

probability of α1 = 1 given α2 = α3 = 0. Assuming the realization of the first attribute

α1 is 1, then we can sample the second attribute α2, conditional on α1 = 1 and α3 = 0,

from a Bernoulli distribution with p2 =
π4

π2+π4
in Table 1. Assuming the realization of α2

is 0, then we move on to sample α3, conditional on α1 = 1 and α2 = 0, from a Bernoulli

distribution with p3 =
π6

π2+π6
in Table 1.

Table 1: A sample with three attributes for the conditional Bernoulli distribution

α 000 100 010 110 001 101 011 111 pk Prob
π π1 π2 π3 π4 π5 π6 π7 π8 − −

α1 = 1| α2=0,α3=0,π π1 π2 − − − − − − π2
π1+π2

p1
α2 = 0| α1=1,α3=0,π − π2 − π4 − − − − π4

π2+π4
1− p2

α3 = 1| α1=1,α2=0,π − π2 − − − π6 − − π6
π2+π6

p3
Note. The column “pk” represents the conditional probability of αk = 1. The column “Prob”
is the probability of realization αk shown in the first column (in this table, the realizations are
α1 = 1, α2 = 0 and α3 = 1).

In both of the sequential and simultaneous sampling methods, the sampling of at-

tribute profiles depends on π and δ. However, in the simultaneous Gibbs sampling, each

attribute profile is treated as a basic unit, and the joint information p(α|π) is used to

sample α. This method is very slow when K is large. In the sequential Gibbs sampling,

each element of the attribute profile is sampled seperately from the conditional Bernoulli

distribution of αk|α\k,π, which would reduce the compuational cost significantly.

3.2 Sequential Gibbs Sampling Schedules

With the above introduced sequential sampling method for attributes, in this section we

derive the Gibbs sampling updates for other model parameters. To illustrate our method,

we shall focus on the GDINA model with a probit link function and use the prior settings

introduced in Section 2.2.

We will use a data augmentation strategy to derive a closed-form Gibbs sampling

method for the item parameters. Please note that similar sampling methods have been

proposed in the CDM literature (Chen, Culpepper, & Liang, 2020; Culpepper, 2019a,

2019b). Specifically, we introduce the data augmentation process for the examinee with
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α to item j as follows

Zj = X ′
α∗

j
λj + εj,

where εj follows a standard normal distribution and Zj is a latent auxiliary variable. The

Zj is the examinee-specific, and the augmented data of item j for examinee i is denoted by

Zij, for i = 1, · · · , N . For examinee i, the augmented data Zij is distributed N(X ′
α∗

ij
λj , 1),

and the item response Yij is defined as Yij = 1 if Zj is positive, and Yij = 0 otherwise.

With the introduced augmented data Z, the Gibbs sampling needs to sample from the

four full conditional distributions: p(Z|Y ,α,π,λ), p(λ|Y ,Z,α,π), p(αik|Y ,Z,αi\k,π,λ)

and p(π|Y ,Z,α,λ).

Sample Augmented Data. For examinee i and item j, the augmented data is Zij.

Conditional on α, the distribution of Zij is independent of the parameter π, which means

the distributions p(Z|Y ,α,π,λ) and p(Z|Y ,α,λ) are equivalent.

According to the jth row vector qj in the Q-matrix, we can get the reduced vector

α∗
ij. Based on α∗

ij, λj and Yij, the augmented data Zij is normally distributed with

the mean µij = X ′
α∗

ij
λj and the variance one. The range of Zij is determined by Yij; if

Yij = 1, Zij > 0, otherwise Zij ≤ 0. The augmented data is generated by the formula

Zij |Yij,α
∗
ij,λj ∼






N(µij , 1)I{zij>0} Yij = 1

N(µij , 1)I{zij≤0} Yij = 0
. (10)

Sample Item Parameters. In the GDINA model, two considered types of item pa-

rameter priors are the multivariate normal distribution and the truncated multivariate

normal distribution, which will induce two sampling methods to sample item parame-

ters. The truncated prior is suitable for the case we have known some constrains on item

parameters. The multivariate normal distribution is suitable for the case we don’t have

additional information about item parameters.

For the item parameters, the conditional independence implies p(λ|Y ,Z,α,π) and

p(λ|Y ,Z,α) are equivalent. To sample the item parameters for item j, the informa-

tion of all examinees for this item need to be considered. We arrange all examinees’

augmented data about item j in a vector Zj = (Z1j, Z2j , · · · , ZNj)′. Furthermore, let

Xj = (Xα∗
1j
,Xα∗

2j
, · · · ,Xα∗

Nj
)′ denote an N × 2K

∗
jmatrix relying on α∗

ij for i = 1, · · · , N .
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Given Zj and Xj , a linear regression model is obtained as follows:

Zj = Xjλj + εj,

where εj = (ε1j , ε2j, · · · , εNj)′ is a random vector from a standard normal distribution. If

there are no constraints on the item parameter λj , which follows a the prior N(µλj
,Σλj

),

then we can obtain the full conditional distribution (Minka, 2000) whose form is shown

as

λj|α,Zj ∼ N(µ̂λj
, Σ̂λj

), (11)

where Σ̂−1
λj

= Σ−1
λj

+XjX ′
j and µ̂λj

= Σ̂λj
(X ′

jZj +Σ−1
λj
µλj

). The sampling method using

Equation (11) is called the sampling without truncation. The specifics of the deriva-

tion can be found in the Appendix B. If the prior of λj is the truncated distribution

N(µλj
,Σλj

)I{λj∈T }, we can obtain the closed form for λj’s full conditional distribution:

λj|α,Zj ∼ N(µ̂λj
, Σ̂λj

)I{λj∈T }. (12)

The sampling method using Equation (12) is called the sampling with truncation. The

details about how to sample from the truncated multivariate normal distribution will be

discussed in the Appendix C.

Sample Attribute Profiles. In the sequential Gibbs sampling, attributes are sampled

one by one, instead of the whole attribute profile. For examinee i, if the k-th attribute

αik isn’t required by an item, the value of αik won’t affect the item’s likelihood. So when

to sample attribute αik, we only need to pay attention to the items requiring the k-th

attribute. Hence, we define a set Ω̂k = {j | qjk = 1, j = 1, · · · , J}, which represents

the items which require attribute αk, and the complementary set of Ω̂k is defined as

Ω̂c
k = {j | qjk = 0, j = 1, · · · , J}. Only the items from Ω̂k will affect the inference about

αk.

Assuming item j belongs to Ω̂k and giving the reduced attribute profile α∗
ij , the pos-

itive response probability θj,αi
= Φ(X ′

α∗
ij
λj). For the specific examinee i, the likelihood
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function for the k-th attribute αik is

p(Yij|α
∗
ij,λj) = Φ(X ′

α∗
ij
λj)

Yij (1− Φ(X ′
α∗

ij
λj))

1−Yij

= Φ(T ij
0 + αikT

ij
1 )Yij (1− Φ(T ij

0 + αikT
ij
1 ))1−Yij

= [Φ(T ij
0 + T ij

1 )αikΦ(T ij
0 )1−αik ]Yij

[(1− Φ(T ij
0 + T ij

1 ))αik(1− Φ(T ij
0 ))1−αik ]1−Yij ,

(13)

where X ′
α∗

ij
λj = T ij

0 + αikT
ij
1 with the two terms T ij

0 and T ij
1 defined as follows. For

X ′
α∗

ij
λj, the notation T ij

0 is the sum of the terms which don’t contain αik and T ij
1 αik is

the sum of the terms related to αik. If examinee i masters attribute αk, the positive re-

sponse probability is Φ(T ij
0 + T ij

1 ), otherwise, the positive response probability is Φ(T ij
0 ).

Therefore, the positive response probability is Φ(T ij
0 + T ij

1 )αikΦ(T ij
0 )1−αik and a similar

expression, (1 − Φ(T ij
0 + T ij

1 ))αik(1 − Φ(T ij
0 ))1−αik , can be obtained for the negative re-

sponse. For example, assume that the vector qj = (110), the third attribute doesn’t affect

the positive response probability and the likelihood function. In other words, from the

responses on this item we can’t get any information about the third attribute. We show

how to calculate T ij
0 and T ij

1 . When to investigate the first attribute α1, the positive

response probability is that

Φ(λj0 + λj1α1 + λj2α2 + λj12α1α2)

= Φ(λj0 + λj2α2 + α1(λj1 + λj12α2)),
(14)

then notations T ij
0 = λj0 + λj2α2 and T ij

1 = λj1 + λj12α2.

According to Equation (13), it’s obvious that only the items in Ω̂ik will affect the full

conditional distribution for αik. The parameters π and α\k are used to calculate the

prior conditional probability for αik, with pik calculated as in Section 3. Then the full
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conditional distribution for αik is calculated by

p(αik|Yi,αi\k,λ,π)

∝
∏

j∈Ω̂k

p(Yij|αi,λi)p
αik

ik (1− pik)
1−αik

=
∏

j∈Ω̂k

[Φ(T ij
0 + T ij

1 )αikΦ(T ij
0 )1−αik ]Yij

[(1− Φ(T ij
0 + T ij

1 ))αik(1− Φ(T ij
0 ))1−αik ]1−Yijpαik

ik (1− pik)
1−αik

=




∏

j∈Ω̂k

Φ(T ij
0 + T ij

1 )Yij (1− Φ(T ij
0 + T ij

1 ))1−Yijpik




αik




∏

j∈Ω̂k

Φ(T ij
0 )Yij (1− Φ(T ij

0 ))1−Yij (1− pik)




1−αik

(15)

Hence, the full conditional distribution for αik is Bernoulli(p̂ik), where the value of p̂ik is

given by

∏
j∈Ω̂k

Φ(T ij
0 + T

ij
1 )Yij (1−Φ(T ij

0 + T
ij
1 ))1−Yijpik

∏
j∈Ω̂k

Φ(T ij
0 + T ij

1 )Yij (1− Φ(T ij
0 + T ij

1 ))1−Yijpik +
∏

j∈Ω̂k
Φ(T ij

0 )Yij (1− Φ(T ij
0 ))1−Yij (1− pik)

.

(16)

Sample the Population Parameter. The population parameter π is a C-dimensional

vector, whose prior is Dirichlet(δ). Given α, we can calculate the number of examinees

within the latent class c, Nc =
∑N

i=1 I{αi=αc}, and the vector N = (N1, N2, · · · , NC)′.

From the conditional indepdendence, we know p(π|Y ,Z,α,λ; δ) and p(π|α; δ) are equiv-

alent. And we can write the posterior of π as

π | α; δ ∼ Dirichlet(δ +N). (17)

We summarize the sequential Gibbs sampling for the GDINA model in Algorithm 1.

The sequential sampling method can be straightforwardly applied to other CDMs as well,

and the DINA example is illustrated in the Appendix.
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Algorithm 1: Sequential Gibbs Sampling for GDINA models

Input: Initialize λ(0),α(0),π(0),Y , m = 0,M and specify priors.
Output: Markov chains of λ,α,π.
while m < M do

Generate the augmented data from Equation (10).
Sample item parameters from Equation (11) or (12).
Sample attribute profiles from Equation (16).
Sample the population parameter from Equation (17).
Set m = m+ 1

end

4 Simulation Studies

In this section, the simultaneous Gibbs sampling, independent Gibbs sampling (Zhan et al.,

2015)1 , and sequential Gibbs sampling are used to estimate parameters in the DINA and

GDINA models. The simulation studies intend to implement on different settings of K.

However, for large K, the simultaneous Gibbs sampling methods doesn’t work due to

the high computational cost, so only the results of independent and sequential Gibbs

sampling are shown. To show that the difference among these methods is purely caused

by the difference among the sampling techniques rather than the software, we code and

compile all these three methods by ourselves. The computation of the simulation study

is implemented by Dell XPS with 3.0 GHz Intel Core i7-9700, 24 GB RAM.

The statistical software JAGS (Just Another Gibbs Sampling; Plummer, 2003), as

the off-the-shelf sampling method, is also used to implement the simultaneous Gibbs

sampling method for the DINA and GDINA models. The JAGS is similar to WinBUGS

(Lunn, Thomas, Best, & Spiegelhalter, 2000) and OpenBUGS (Foulley & Jaffrézic, 2010).

Zhan et al. (2019) showed how to implement the DINA and linear logistics models (LLM,

see Maris, 1999) by JAGS. We use JAGS to analyze the DINA and GDINA models. When

using JAGS, the initial values of all parameters are generated by the default way within

JAGS. Under the DINA model, another simultaneous sampler, the R package “dina”

(Culpepper, 2015), is also used to estimate the model. Our simulation results indicate

that “dina” is faster than JAGS 2 and the parameter estimates of “dina” are similar to

JAGS. As the R package “dina” can’t handle the GDINA model, the detailed results of

1For the independent Gibbs sampling, we use the independent Bernoulli prior that αnk ∼
Bernoulli(pik) and pik ∼ Beta(1, 1), where i and k indicate examinee and attribute, respectively.

2Particularly, using “dina” to run the chains with 2000 iterations for the DINA settings in our sim-
ulation with {N = 2000,K = 3}, {N = 2000,K = 5}, and {N = 2000,K = 7} needs about 20, 82, and
344 seconds, which are faster than JAGS but slower than the proposed method.
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“dina” are not shown.

4.1 Simulation Design

The attribute profiles are generated from the two following structures.

Uniform Structure. The uniform structure assumes that all latent classes share the

same probability.

Correlated Structure. Chiu, Douglas, and Li (2009) proposed a correlated structure

for attribute profiles, which can be viewed as a special case of the higher-order attribute

structure. For each examinee, the K-dimensional vector θ = (θ1, · · · , θK) follows a mul-

tivariate normal distribution N(0,Σ), where the covariance matrix Σ has a common

correlation ρ as follows 




1 ρ
. . .

ρ 1






,

then attributes are determined by

αk =





1 if θk > 0,

0 otherwise.
(18)

Chen, Liu, Xu, and Ying (2015) also called this situation as “Dependent Attributes”.

For the DINA and GDINA models, the generation methods of item parameters need

to be introduced separately. For the DINA model, we set the guessing and slipping

parameters to 0.2. For the GDINA model, another equivalent notation is introduced to

make the description of item parameters clear. For item j, let λ(0)
j and λ(w)

j denote the

intercept parameter and w-way interaction parameter, respectively. We generate λj from

a multivariate normal distribution with a diagonal covariance matrix. In particular, the

distribution to generate λj is specified as:

λ(w)
j ∼






N(−1.2, 0.42), w = 0,

N(0.9, 0.32)/w2, w = 1, · · · , K∗
j .

(19)
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This generation method of item parameters indicates the same-way interactions share

similar properties (i.e., the same distribution).

Based on the model identifiability and generic identifiability restrictions (Chen et al.,

2020; Gu & Xu, 2020; Xu, 2017; Xu & Zhang, 2016), the Q-matrix has this form

Q′ =
(
IK , IK , Q̃′

2, Q̃
′
3, Q̃

′
)
,

where each item in Q̃2 and Q̃3 requires two and three attributes, respectively. In addition,

we randomly sample non-zero q-vectors which require three or fewer attributes to fill Q̃.

Given the attribute profiles, the item parameters, the Q-matrix, and the response data

can be generated. For different K, the Q-matrices are fixed and shown in Appendix D.

The sampling methods are compared from three aspects: speed, parameter estima-

tion accuracy and classification accuracy. The running times of the sampling methods

are used to reflect the speed, and the bias, root mean squared error (RMSE) and mean

squared error (MSE) are used to evaluate the accuracy. The average bias, RMSE and

MSE, denoted by Bias, RMSE and MSE, are computed for each type parameter, accord-

ing to Biasφ = 1
H

∑H
h=1

1
R

∑R
r=1(φ̂

r
h − φh), RMSEφ = 1

H

∑H
h=1

√
1
R

∑R
r=1(φ̂

r
h − φh)2 and

MSEφ = 1
H

∑H
h=1

1
R

∑R
r=1(φ̂

r
h − φh)2, where φ̂r

h denotes the estimation from r-th replica-

tion of a parameter, φh denotes the true value, and R denotes the number of replications

(i.e., for guessing and slipping parameters, H = J ; for the item parameters in the GDINA

model, H is the total number of item parameters denoted by #{λ}; for population pa-

rameters, H = C). The subscript φ of the indices is used to discriminate the types of

parameters. On the other hand, two widely used indices, attribute-wise agreement rate

(AAR) and pattern-wise agreement rate (PAR), can be used to examine the classification

accuracy. The AAR =
∑R

r=1

∑N
i=1

∑K
k=1 I{α̂

r
ik = αik}/RNK can be used for arbitrary

K. The PAR =
∑R

r=1

∑N
i=1 I{

∑K
k=1 |α̂

r
ik − αik| = 0}/RN , however, is usually too small

to provide valid information about the classification accuracy when K is large. Hence,

we define a more practical measure, PARn =
∑R

r=1

∑N
i=1 I{

∑K
k=1 |α̂

r
ik − αik| ≤ n}/RN ,

which denotes that, for one pattern, up to n misestimated attributes can be tolerated.

When n is a positive integer, PARn is a relaxation of PAR (i.e., PAR0).

For any estimation of the parameter π, Biasπ = 0 always holds. So the maximum

norm is used to replace the bias to evaluate the performance of population parameter

estimations. When the true value and estimation of population parameter are π and
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π̂(r), the maximum norm of difference is ‖π − π̂(r)‖∞ = maxc |πc − π̂c|. The maximum

norm measures the maximum of absolute deviance. If the estimation repeats R times,

the average maximum norm (MN) is

MNπ =

∑R
r=1 ‖π − π̂(r)‖∞

R
.

Table 2 summaries the simulation study basic settings: sample sizes N = 1000 and

2000; the number of the items J = 30; attribute structures uniform, correlated structures

with two correlation levels ρ = 0.3 and 0.7. We call the cases K = 3 and 5 as the low

dimension cases, where the simultaneous and sequential Gibbs sampling are conducted.

The cases K = 7 and 15 are named as the high dimension cases, only the sequential Gibbs

sampling is performed. For each particular case, 25 independent response datasets are

generated.

Table 2: The Settings for Simulation Studies

Examinee Sample sizes N = 1000 and 2000
Number of Items J = 30
Attribute Structure uniform or correlations ρ = 0.3 and 0.7
Replications R = 25

K = 3, 5 K = 7, 15

Method Sim Seq Ind S M L Ind

DINA GDINA

Chain Length 2000 3000
Burn-in 1000 2000

Note. The column “Sim”, “Seq” and “Ind” represent the simultaneous, sequential and
independent Gibbs samplings, respectively.

For the low dimension (K = 3, 5), the Dirichlet prior’s hyper-parameter δ is the C-

dimensional vector 1, leading to a non-informative prior. For the high dimension (K =

7, 15), three δ’s are used: δ = 0.01, 0.1 and 1, which are indicated as “S”, “M” and “L”

in Table 2. For the GDINA model, the priors for the item parameter λj are shown as

follows:

λ(w)
j ∼






N(−1.2, 0.42), w = 0,

N(0.9, 0.32)/w, w = 1, · · · , K∗
j

(20)
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Figure 1: Plots the maximum of all potential scale reduction factors. The horizontal
dashed line represents the value 1.1.
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which have a similar support set and a large variance compared with the generation regime

for w > 0. For the DINA model, non-informative Beta priors are taken for the slipping

and guessing parameters. For fair comparison, all methods use the same set of priors.

Besides the priors, we need to specify initial values for α,π and λ. The initial value

of α is that each attribute is randomly sampled from an independent Bernoulli(0.5). The

initial value of population parameter π is the C-dimensional vector 1/C. The initial

value of λ is a random sample from the λ’s prior.

Culpepper (2015) showed that, for the DINA model, simultaneous Gibbs sampling

only needed about 750 iterations to reach convergence. Consequently, in this paper, a

2000 iterations Markov chain is run and we discard the first 1000 iterations as burn-in

which are adequate to reach convergence. For the GDINA model, we conduct a Markov

chain with length 3000 and burn-in length 2000.

For the simulation results, potential scale reduction factor R̂1/2 (Brooks & Gelman,

1998; Gelman & Rubin, 1992) is used for convergence diagnosis. Brooks and Gelman

(1998) suggested that R̂1/2 < 1.2 for all model parameters indicates that convergence has

been reached. To make the conclusion more reliable, the condition R̂1/2 < 1.1 can be used.

In Figure 1, the plots of the maximum of all potential scale reduction factors are shown

for six representative conditions. The six conditions are from high-dimensional GDINA

models. For each condition, we generate 5 independent response data. For each response

data, 5 parallel chains are run to calculate the potential scale reduction factors for all item

and population parameters. The plots are based upon the first 2000 chain lengths (from

50 to 2000 by increments of 50). The results in Figure 1 (and other diagnosis results not

presented here) support that all chains can reach convergence after 2000 iterations under

the GDINA model.

4.2 Simulation Results

There are 7 tables to show the results for different settings of the DINA and GDINA

models. For the GDINA model with a probit link function, the generation of item param-

eters has a great probability that the intercept is negative and the interaction is positive.

Consequently the results of the sampling with or without truncation are very similar, and

here we only show the results of sampling with truncation. The digits of bias, RMSE,

MSE, AAR and PARn are rounded off to four decimal places and the digits of time are
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rounded off to five significant figures.

Tables 3 – 5 show the results of the uniform population, correlated structure with

ρ = 0.3 and 0.7 for the low dimension cases, respectively. Hereafter, the “Sim”, “Seq”,

“Ind”, and “sSim” represent the simultaneous (implemented by JAGS), sequential, in-

dependent, and self-compiled simultaneous Gibbs sampling methods, respectively. For

the DINA model, ‘Sim”, “Seq” and “sSim” always obtain similar estimation results for

item parameters, population parameters, and attribute patterns, which indicates the es-

timation consistency between the sequential and simultaneous Gibbs sampling methods.

When the population is uniform, the “Ind” method also performs similarly to the other

methods. However, as the correlation ρ among the attributes increases, the “Ind” method

performs more poorly in MNπ. For the GDINA model, inferences between the sequential

and simultaneous Gibbs sampling methods are also consistent. As the correlation ρ in-

creases, the “Ind” method will underperform the other methods, due to the violation of

its assumption on the independence of the attributes.

For both models, the accuracy of estimations becomes better with the large sample

size. The classification accuracy of the “Sim” method, as a baseline, is comparable to

that of the other methods.

Tables 6 – 8 show the results of the uniform population and correlated structures with

ρ = 0.3 and 0.7 for the high dimension cases. If the population distribution of attribute

profiles is uniform, the “Ind” method is comparable or slightly outperforms the sequential

Gibbs sampling method. When the attributes become more correlated, the sequential

sampling method outperforms the “Ind” method. For instance, in the high-dimensional

condition with ρ = 0.7 and K = 15, the sequential sampling with a smaller δ is superior

to the other methods. We also find some common phenomena that when K = 15, the

RMSEπ is approximate to 0.0001 (i.e., the MSEπ is approximate to 0), which is due to

the large number of latent classes.

In Table 9, the average computational time is reported. Since the dependent structure

of the attribute profiles has almost negligible influence on the computational time, we

only report the calculation time of different methods under the uniform population. The

results show that the simultaneous Gibbs sampling implemented by JAGS has the slowest

speed among the four methods. In order to show the computational superiority of the

sequential Gibbs than that of the simultaneous Gibbs sampling, we also add the K = 7
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condition for the self-compiled simultaneous Gibbs sampling. Comparing the time of

“Seq” and “sSim”, when K = 7, the superiority of the sequential Gibbs sampling method

appears in the GDINA model. However, the superiority of the sequential Gibbs sampling

method has been reflected in the DINA model with K = 5. In addition, “Ind” is also

computationally efficient, with comparable computational time to the sequential Gibbs

method.

In the simulation study, using JAGS to estimate the GDINA model needs more mem-

ory space than the DINA model. Particularly, for the GDINA model, we find that the

estimation process in JAGS is often executed or shut down due to “run out of memory”.

Therefore, the presented computational time for the GDINA model is only the average of

those well-converged replications in JAGS, which leads to a counter-intuitive observation

that the simultaneous Gibbs sampling for the GDINA model is “faster” than the simul-

taneous Gibbs sampling of the DINA model. Due to the high computational cost, the

simultaneous Gibbs sampling time for some high dimension cases is not reported.

Through simulation studies, we can find when K is small, the sequential Gibbs can

use less time to obtain the results with similar accuracy as JAGS. When K is large,

the sequential Gibbs sampling algorithm still works well, but the simultaneous Gibbs

sampling algorithm doesn’t due to the high computational cost. The speed advantage

of the sequential Gibbs sampling become more apparent as K increases. In addition,

when the number of attributes K goes large, the moderately small hyperparameter δ is

preferred. Comparing the independent and sequential Gibbs sampling methods, for the

uniform structure with independent attributes, the independent Gibbs sampling method is

comparable or slightly outperforms the sequential Gibbs sampling method. However, for

correlated structures, the sequential Gibbs sampling method provides better performance

(see the Bias in Tables 5 and 8).

5 Real Data Analysis

In this analysis, the DINA and GDINA models are used to deal with the Tatsuoka’s

fraction-subtraction data (C. Tatsuoka, 2002). The fraction-subtraction data has been

widely analyzed. For the data set, the Q-matrix (de la Torre & Douglas, 2004) and con-

tents are shown in Table 10. This data set contains responses of 536 middle school students

22



T
ab

le
3:

P
aram

eter
recovery

for
L
ow

d
im

en
sion

w
ith

th
e
U
n
iform

P
op

u
lation

A
ttrib

u
te

N
u
m
b
er

K
=

3
K

=
5

S
am

p
le

S
ize

1000
2000

1000
2000

M
eth

od
S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

D
IN

A
B
ias

g
0.0010

0.0010
0.0013

0.0010
0.0002

0.0002
0.0004

0.0002
0.0009

0.0011
0.0005

0.0011
0.0008

0.0009
0.0014

0.0009
R
M
S
E
g

0.0156
0.0156

0.0156
0.0155

0.0113
0.0113

0.0113
0.0114

0.0164
0.0164

0.0161
0.0164

0.0122
0.0122

0.0122
0.0122

M
S
E
g

0.0003
0.0003

0.0003
0.0003

0.0001
0.0001

0.0001
0.0001

0.0003
0.0003

0.0003
0.0003

0.0002
0.0002

0.0002
0.0002

B
ias

s
0.0046

0.0037
0.0034

0.0037
0.0001

-0.0003
-0.0004

-0.0003
0.0035

0.0022
0.0036

0.0021
0.0019

0.0013
0.0005

0.0013
R
M
S
E
s

0.0257
0.0254

0.0253
0.0254

0.0171
0.0171

0.0171
0.0171

0.0278
0.0273

0.0273
0.0274

0.0179
0.0178

0.0177
0.0178

M
S
E
s

0.0007
0.0007

0.0007
0.0007

0.0003
0.0003

0.0003
0.0003

0.0009
0.0008

0.0008
0.0008

0.0004
0.0004

0.0003
0.0004

M
N

π
0.0158

0.0159
0.0144

0.0159
0.0117

0.0116
0.0115

0.0118
0.0154

0.0155
0.0109

0.0154
0.0105

0.0105
0.0065

0.0106
R
M
S
E
π

0.0094
0.0093

0.0082
0.0094

0.0060
0.0059

0.0054
0.0060

0.0059
0.0059

0.0041
0.0059

0.0040
0.0040

0.0026
0.0040

M
S
E
π

0.0001
0.0001

0.0001
0.0001

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

A
A
R

0.9742
0.9741

0.9739
0.9740

0.9749
0.9748

0.9748
0.9748

0.9445
0.9443

0.9445
0.9443

0.9461
0.9459

0.9466
0.9460

P
A
R
1

0.9956
0.9953

0.9952
0.9954

0.9962
0.9963

0.9961
0.9961

0.9644
0.9643

0.9654
0.9645

0.9667
0.9669

0.9676
0.9667

G
D
IN

A
B
ias

λ
0.0305

0.0310
0.0297

0.0307
0.0243

0.0244
0.0250

0.0244
0.0371

0.0372
0.0313

0.0374
0.0326

0.0331
0.0319

0.0332
R
M
S
E
λ

0.1370
0.1373

0.1378
0.1370

0.1148
0.1149

0.1151
0.1148

0.1334
0.1336

0.1325
0.1336

0.1288
0.1288

0.1275
0.1285

M
S
E
λ

0.0221
0.0222

0.0223
0.0221

0.0162
0.0161

0.0162
0.0161

0.0205
0.0205

0.0203
0.0206

0.0209
0.0210

0.0206
0.0209

M
N

π
0.0235

0.0238
0.0180

0.0236
0.0119

0.0118
0.0091

0.0119
0.0214

0.0217
0.0107

0.0214
0.0153

0.0152
0.0063

0.0155
R
M
S
E
π

0.0129
0.0130

0.0098
0.0130

0.0063
0.0063

0.0046
0.0063

0.0089
0.0090

0.0040
0.0090

0.0061
0.0061

0.0025
0.0061

M
S
E
π

0.0002
0.0002

0.0001
0.0002

0.0000
0.0000

0.0000
0.0000

0.0001
0.0001

0.0000
0.0001

0.0000
0.0000

0.0000
0.0000

A
A
R

0.9436
0.9423

0.9431
0.9435

0.9452
0.9446

0.9443
0.9452

0.8921
0.8920

0.8945
0.8923

0.8959
0.8960

0.8969
0.8956

P
A
R
1

0.9575
0.9557

0.9563
0.9578

0.9604
0.9595

0.9590
0.9605

0.8882
0.8876

0.8909
0.8886

0.8891
0.8892

0.8907
0.8887

N
o
t
e.

T
h
e
“S

im
”,

“S
eq”,

“In
d
”
an

d
“sS

im
”
rep

resent
th
e
sim

u
ltan

eou
s
(im

p
lem

ented
by

JA
G
S
),

sequ
ential,

in
d
ep

en
d
ent

an
d
self-com

p
iled

sim
u
ltan

eou
s

G
ib
b
s
sam

p
lin

g
m
eth

od
s,
resp

ectively.

23



T
ab

le
4:

P
aram

eter
recovery

for
L
ow

d
im

en
sion

w
ith

th
e
C
orrelation

ρ
=

0.3

A
ttrib

u
te

N
u
m
b
er

K
=

3
K

=
5

S
am

p
le

S
ize

1000
2000

1000
2000

M
eth

od
S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

D
IN

A
B
ias

g
0.0004

0.0005
-0.0018

0.0005
-0.0002

-0.0001
-0.0024

-0.0001
0.0010

0.0012
-0.0044

0.0011
0.0005

0.0006
-0.0043

0.0006
R
M
S
E
g

0.0159
0.0159

0.0161
0.0159

0.0113
0.0113

0.0117
0.0113

0.0170
0.0170

0.0180
0.0170

0.0120
0.0120

0.0132
0.0120

M
S
E
g

0.0003
0.0003

0.0003
0.0003

0.0001
0.0001

0.0001
0.0001

0.0003
0.0003

0.0003
0.0003

0.0002
0.0002

0.0002
0.0001

B
ias

s
0.0023

0.0016
0.0037

0.0016
0.0006

0.0003
0.0024

0.0003
0.0030

0.0020
0.0072

0.0020
0.0012

0.0007
0.0046

0.0007
R
M
S
E
s

0.0216
0.0215

0.0217
0.0215

0.0157
0.0156

0.0161
0.0157

0.0237
0.0235

0.0250
0.0235

0.0166
0.0166

0.0179
0.0166

M
S
E
s

0.0005
0.0005

0.0005
0.0005

0.0003
0.0003

0.0003
0.0003

0.0006
0.0006

0.0007
0.0006

0.0003
0.0003

0.0003
0.0003

M
N

π
0.0076

0.0077
0.0227

0.0076
0.0055

0.0054
0.0253

0.0054
0.0128

0.0128
0.0480

0.0125
0.0084

0.0082
0.0444

0.0083
R
M
S
E
π

0.0034
0.0034

0.0068
0.0034

0.0025
0.0025

0.0072
0.0025

0.0039
0.0039

0.0047
0.0039

0.0026
0.0026

0.0039
0.0026

M
S
E
π

0.0000
0.0000

0.0001
0.0000

0.0000
0.0000

0.0001
0.0000

0.0000
0.0000

0.0001
0.0000

0.0000
0.0000

0.0001
0.0000

A
A
R

0.9789
0.9788

0.9748
0.9789

0.9790
0.9789

0.9740
0.9790

0.9531
0.9530

0.9423
0.9533

0.9545
0.9543

0.9445
0.9544

A
P
R
1

0.9964
0.9965

0.9964
0.9964

0.9969
0.9969

0.9967
0.9969

0.9724
0.9722

0.9624
0.9721

0.9732
0.9728

0.9639
0.9728

G
D
IN

A
B
ias

λ
0.0304

0.0314
0.0371

0.0310
0.0220

0.0224
0.0279

0.0225
0.0371

0.0398
0.0565

0.0402
0.0270

0.0285
0.0457

0.0281
R
M
S
E
λ

0.1301
0.1303

0.1285
0.1304

0.1051
0.1053

0.1021
0.1052

0.1457
0.1459

0.1474
0.1461

0.1192
0.1193

0.1200
0.1194

M
S
E
λ

0.0198
0.0199

0.0195
0.0199

0.0130
0.0130

0.0126
0.0130

0.0250
0.0252

0.0260
0.0252

0.0176
0.0176

0.0183
0.0176

M
N

π
0.0109

0.0111
0.0250

0.0109
0.0091

0.0093
0.0195

0.0091
0.0215

0.0218
0.0453

0.0223
0.0153

0.0157
0.0415

0.0156
R
M
S
E
π

0.0064
0.0065

0.0112
0.0063

0.0049
0.0050

0.0089
0.0049

0.0076
0.0076

0.0073
0.0077

0.0056
0.0057

0.0064
0.0057

M
S
E
π

0.0000
0.0000

0.0002
0.0000

0.0000
0.0000

0.0001
0.0000

0.0001
0.0001

0.0001
0.0001

0.0000
0.0000

0.0001
0.0000

A
A
R

0.9488
0.9485

0.9466
0.9488

0.9531
0.9531

0.9512
0.9531

0.8936
0.8933

0.8914
0.8933

0.8976
0.8977

0.8938
0.8977

P
A
R
1

0.9660
0.9657

0.9630
0.9661

0.9701
0.9697

0.9665
0.9697

0.8931
0.8920

0.8877
0.8924

0.9031
0.9030

0.8952
0.9030

N
o
t
e.

T
h
e
“S

im
”,

“S
eq”,

“In
d
”
an

d
“sS

im
”
rep

resent
th
e
sim

u
ltan

eou
s
(im

p
lem

ented
by

JA
G
S
),
sequ

ential,
in
d
ep

en
d
ent

an
d
self-com

p
iled

sim
u
ltan

eou
s
G
ib
b
s

sam
p
lin

g
m
eth

od
s,

resp
ectively.

24



T
ab

le
5:

P
aram

eter
recovery

for
L
ow

d
im

en
sion

w
ith

th
e
C
orrelation

ρ
=

0.7

A
ttrib

u
te

N
u
m
b
er

K
=

3
K

=
5

S
am

p
le

S
ize

1000
2000

1000
2000

M
eth

od
S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

S
im

S
eq

In
d

sS
im

D
IN

A
B
ias

g
0.0001

0.0001
-0.0055

0.0002
0.0000

0.0000
-0.0057

0.0000
0.0019

0.0019
-0.0097

0.0019
-0.0000

-0.0000
-0.0119

-0.0000
R
M
S
E
g

0.0164
0.0164

0.0181
0.0164

0.0116
0.0116

0.0140
0.0116

0.0169
0.0169

0.0223
0.0169

0.0130
0.0130

0.0200
0.0130

M
S
E
g

0.0003
0.0003

0.0003
0.0003

0.0001
0.0001

0.0002
0.0001

0.0003
0.0003

0.0005
0.0003

0.0002
0.0002

0.0005
0.0002

B
ias

s
0.0022

0.0016
0.0069

0.0016
0.0011

0.0008
0.0066

0.0008
0.0019

0.0014
0.0108

0.0014
0.0008

0.0005
0.0104

0.0005
R
M
S
E
s

0.0209
0.0208

0.0227
0.0208

0.0145
0.0145

0.0171
0.0145

0.0210
0.0209

0.0260
0.0209

0.0141
0.0140

0.0210
0.0140

M
S
E
s

0.0004
0.0004

0.0005
0.0004

0.0002
0.0002

0.0003
0.0002

0.0005
0.0004

0.0007
0.0004

0.0002
0.0002

0.0005
0.0002

M
N

π
0.0072

0.0070
0.0546

0.0070
0.0054

0.0053
0.0581

0.0053
0.0127

0.0128
0.1206

0.0126
0.0080

0.0082
0.1259

0.0082
R
M
S
E
π

0.0034
0.0035

0.0144
0.0034

0.0024
0.0024

0.0149
0.0024

0.0033
0.0033

0.0087
0.0033

0.0023
0.0023

0.0087
0.0023

M
S
E
π

0.0000
0.0000

0.0005
0.0000

0.0000
0.0000

0.0005
0.0000

0.0000
0.0000

0.0005
0.0000

0.0000
0.0000

0.0005
0.0000

A
A
R

0.9815
0.9817

0.9696
0.9817

0.9825
0.9825

0.9678
0.9826

0.9652
0.9651

0.9380
0.9651

0.9667
0.9667

0.9361
0.9667

P
A
R
1

0.9966
0.9968

0.9959
0.9967

0.9976
0.9976

0.9963
0.9975

0.9795
0.9796

0.9511
0.9796

0.9819
0.9821

0.9478
0.9819

G
D
IN

A
B
ias

λ
0.0247

0.0252
0.0343

0.0252
0.0177

0.0186
0.0308

0.0186
0.0197

0.0190
0.0619

0.0184
0.0138

0.0141
0.0477

0.0141
R
M
S
E
λ

0.1227
0.1226

0.1347
0.1228

0.1139
0.1142

0.1356
0.1142

0.1458
0.1462

0.1647
0.1466

0.1145
0.1140

0.1406
0.1141

M
S
E
λ

0.0173
0.0173

0.0209
0.0173

0.0164
0.0164

0.0232
0.0164

0.0262
0.0262

0.0339
0.0264

0.0166
0.0164

0.0259
0.0165

M
N

π
0.0117

0.0117
0.0754

0.0118
0.0076

0.0075
0.0762

0.0077
0.0198

0.0205
0.1253

0.0195
0.0129

0.0132
0.1414

0.0125
R
M
S
E
π

0.0069
0.0069

0.0269
0.0069

0.0042
0.0043

0.0285
0.0043

0.0057
0.0058

0.0153
0.0057

0.0041
0.0041

0.0149
0.0041

M
S
E
π

0.0000
0.0000

0.0011
0.0000

0.0000
0.0000

0.0012
0.0000

0.0000
0.0000

0.0009
0.0000

0.0000
0.0000

0.0010
0.0000

A
A
R

0.9561
0.9562

0.9449
0.9559

0.9629
0.9626

0.9462
0.9628

0.9365
0.9362

0.9150
0.9364

0.9368
0.9369

0.9137
0.9369

P
A
R
1

0.9774
0.9780

0.9720
0.9776

0.9790
0.9786

0.9724
0.9789

0.9481
0.9475

0.9286
0.9480

0.9514
0.9516

0.9321
0.9514

N
o
t
e.

T
h
e
“S

im
”,

“S
eq”,

“In
d
”
an

d
“sS

im
”
rep

resent
th
e
sim

u
ltan

eou
s
(im

p
lem

ented
by

JA
G
S
),
sequ

ential,
in
d
ep

en
d
ent

an
d
self-com

p
iled

sim
u
ltan

eou
s
G
ib
b
s

sam
p
lin

g
m
eth

od
s,

resp
ectively.

25



T
ab

le
6:

P
aram

eter
recovery

for
H
igh

d
im

en
sion

w
ith

th
e
U
n
iform

P
op

u
lation

A
ttrib

u
te

N
u
m
b
er

K
=

7
K

=
15

S
am

p
le

S
ize

1000
2000

1000
2000

M
eth

od
0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

D
IN

A
B
ias

g
0.0066

0.0041
0.0026

0.0018
0.0018

0.0010
0.0005

-0.0004
0.0127

0.0055
0.0056

0.0055
0.0120

0.0007
0.0001

0.0001
R
M
S
E
g

0.0208
0.0190

0.0182
0.0178

0.0140
0.0134

0.0131
0.0128

0.0329
0.0299

0.0290
0.0293

0.0260
0.0205

0.0200
0.0198

M
S
E
g

0.0005
0.0004

0.0003
0.0003

0.0002
0.0002

0.0002
0.0002

0.0012
0.0010

0.0009
0.0010

0.0007
0.0005

0.0004
0.0004

B
ias

s
0.0112

0.0060
0.0026

0.0013
0.0073

0.0040
0.0020

0.0019
0.0036

-0.0038
-0.0046

-0.0046
0.0079

0.0013
0.0013

0.0012
R
M
S
E
s

0.0321
0.0290

0.0280
0.0276

0.0229
0.0214

0.0208
0.0201

0.0394
0.0367

0.0359
0.0360

0.0321
0.0268

0.0262
0.0259

M
S
E
s

0.0011
0.0009

0.0008
0.0008

0.0006
0.0005

0.0005
0.0005

0.0017
0.0015

0.0014
0.0014

0.0011
0.0008

0.0008
0.0007

M
N

π
0.0232

0.0163
0.0106

0.0056
0.0154

0.0114
0.0082

0.0040
0.0056

0.0003
0.0000

0.0006
0.0052

0.0004
0.0000

0.0003
R
M
S
E
π

0.0072
0.0052

0.0032
0.0018

0.0052
0.0039

0.0028
0.0013

0.0001
0.0000

0.0000
0.0000

0.0001
0.0000

0.0000
0.0000

M
S
E
π

0.0001
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

A
A
R

0.9039
0.9178

0.9256
0.9173

0.9161
0.9237

0.9269
0.9200

0.8167
0.8386

0.8396
0.8246

0.8114
0.8388

0.8402
0.8201

P
A
R
2

0.9712
0.9780

0.9792
0.9777

0.9773
0.9794

0.9799
0.9779

0.4679
0.5574

0.5632
0.4998

0.4436
0.5585

0.5654
0.4797

G
D
IN

A
B
ias

λ
0.0372

0.0410
0.0403

0.0355
0.0197

0.0264
0.0304

0.0320
0.0336

0.0325
0.0325

0.0320
0.0245

0.0315
0.0318

0.0324
R
M
S
E
λ

0.1884
0.1700

0.1595
0.1570

0.1445
0.1328

0.1256
0.1219

0.2057
0.1804

0.1781
0.1784

0.1886
0.1578

0.1562
0.1552

M
S
E
λ

0.0424
0.0344

0.0306
0.0296

0.0239
0.0204

0.0184
0.0175

0.0465
0.0367

0.0359
0.0361

0.0411
0.0297

0.0293
0.0290

M
N

π
0.0473

0.0311
0.0144

0.0037
0.0253

0.0185
0.0107

0.0025
0.0077

0.0000
0.0000

0.0001
0.0090

0.0001
0.0000

0.0000
R
M
S
E
π

0.0120
0.0077

0.0036
0.0012

0.0089
0.0060

0.0033
0.0009

0.0001
0.0000

0.0000
0.0000

0.0001
0.0000

0.0000
0.0000

M
S
E
π

0.0002
0.0001

0.0000
0.0000

0.0001
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

A
A
R

0.7846
0.8187

0.8358
0.8401

0.8298
0.8504

0.8589
0.8625

0.6852
0.7328

0.7355
0.7356

0.6754
0.7266

0.7303
0.7302

P
A
R
2

0.8187
0.8760

0.8943
0.9014

0.8981
0.9212

0.9278
0.9305

0.1025
0.1851

0.1923
0.1950

0.0897
0.1781

0.1880
0.1865

N
o
t
e.

In
th
e
row

“M
eth

od
”,

th
ere

are
th
ree

d
iff
erent

levels
of

δ
;
th
e
sequ

ential
G
ib
b
s
sam

p
lin

gs
w
ith

δ
=

0
.0
1
,
0
.1

an
d
1
.

26



T
ab

le
7:

P
aram

eter
recovery

for
H
igh

D
im

en
sion

w
ith

th
e
C
orrelation

ρ
=

0.3

A
ttrib

u
te

N
u
m
b
er

K
=

7
K

=
15

S
am

p
le

S
ize

1000
2000

1000
2000

M
eth

od
0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

D
IN

A
B
ias

g
0.0069

0.0039
0.0005

-0.0046
0.0047

0.0029
0.0012

-0.0038
0.0074

-0.0053
-0.0013

0.0008
0.0151

-0.0011
0.0012

0.0049
R
M
S
E
g

0.0212
0.0193

0.0185
0.0200

0.0152
0.0142

0.0137
0.0149

0.0283
0.0290

0.0292
0.0293

0.0251
0.0189

0.0208
0.0212

M
S
E
g

0.0005
0.0004

0.0004
0.0004

0.0003
0.0002

0.0002
0.0002

0.0008
0.0009

0.0010
0.0009

0.0007
0.0004

0.0005
0.0005

B
ias

s
0.0092

0.0058
0.0045

0.0053
0.0044

0.0025
0.0015

0.0022
0.0053

0.0000
-0.0085

-0.0111
0.0012

-0.0034
-0.0116

-0.0163
R
M
S
E
s

0.0270
0.0251

0.0246
0.0265

0.0181
0.0173

0.0170
0.0194

0.0339
0.0335

0.0386
0.0399

0.0241
0.0227

0.0294
0.0326

M
S
E
s

0.0008
0.0007

0.0006
0.0007

0.0003
0.0003

0.0003
0.0004

0.0012
0.0012

0.0018
0.0020

0.0006
0.0006

0.0012
0.0017

M
N

π
0.0233

0.0160
0.0110

0.0384
0.0174

0.0124
0.0096

0.0416
0.0177

0.0100
0.0128

0.0115
0.0174

0.0110
0.0188

0.0183
R
M
S
E
π

0.0055
0.0038

0.0025
0.0022

0.0041
0.0029

0.0020
0.0019

0.0001
0.0001

0.0001
0.0001

0.0001
0.0001

0.0001
0.0001

M
S
E
π

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

A
A
R

0.9114
0.9219

0.9287
0.9117

0.9199
0.9265

0.9306
0.9176

0.8347
0.8506

0.8448
0.8193

0.8314
0.8574

0.8499
0.8231

P
A
R
2

0.9749
0.9790

0.9820
0.9701

0.9793
0.9818

0.9826
0.9734

0.5423
0.6028

0.5769
0.5039

0.5250
0.6302

0.6004
0.5161

G
D
IN

A
B
ias

λ
0.0302

0.0289
0.0359

0.0459
0.0121

0.0200
0.0286

0.0508
0.0454

0.0492
0.0488

0.0490
0.0440

0.0585
0.0610

0.0602
R
M
S
E
λ

0.1867
0.1685

0.1581
0.1565

0.1469
0.1328

0.1235
0.1246

0.1940
0.1799

0.1788
0.1791

0.1730
0.1637

0.1693
0.1683

M
S
E
λ

0.0412
0.0341

0.0300
0.0297

0.0256
0.0211

0.0186
0.0198

0.0429
0.0381

0.0381
0.0383

0.0342
0.0325

0.0352
0.0347

M
N

π
0.0510

0.0313
0.0207

0.0450
0.0351

0.0229
0.0172

0.0414
0.0232

0.0235
0.0240

0.0238
0.0310

0.0204
0.0269

0.0267
R
M
S
E
π

0.0105
0.0065

0.0035
0.0029

0.0084
0.0055

0.0031
0.0026

0.0001
0.0001

0.0001
0.0001

0.0001
0.0001

0.0001
0.0001

M
S
E
π

0.0001
0.0001

0.0000
0.0000

0.0001
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

A
A
R

0.8212
0.8505

0.8627
0.8611

0.8368
0.8561

0.8630
0.8595

0.7179
0.7513

0.7497
0.7492

0.7294
0.7716

0.7652
0.7640

P
A
R
2

0.8752
0.9159

0.9290
0.9249

0.8978
0.9257

0.9306
0.9282

0.1747
0.2452

0.2348
0.2349

0.2104
0.3131

0.2860
0.2812

N
o
t
e.

In
th
e
row

“M
eth

od
”,

th
ere

are
th
ree

d
iff
erent

levels
of

δ
;
th
e
sequ

ential
G
ib
b
s
sam

p
lin

gs
w
ith

δ
=

0
.0
1
,
0
.1

an
d
1
.

27



T
ab

le
8:

P
aram

eter
recovery

for
H
igh

D
im

en
sion

w
ith

th
e
C
orrelation

ρ
=

0.7

A
ttrib

u
te

N
u
m
b
er

K
=

7
K

=
15

S
am

p
le

S
ize

1000
2000

1000
2000

M
eth

od
0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

0
.0
1

0
.1

1
In
d

D
IN

A
B
ias

g
0.0079

0.0043
-0.0000

-0.0117
0.0043

0.0021
-0.0002

-0.0111
0.0051

-0.0176
-0.0327

-0.0038
0.0094

-0.0111
-0.0342

-0.0019
R
M
S
E
g

0.0225
0.0201

0.0188
0.0261

0.0147
0.0136

0.0131
0.0221

0.0234
0.0303

0.0450
0.0334

0.0192
0.0200

0.0407
0.0268

M
S
E
g

0.0005
0.0004

0.0004
0.0008

0.0002
0.0002

0.0002
0.0006

0.0006
0.0010

0.0023
0.0012

0.0004
0.0004

0.0019
0.0008

B
ias

s
0.0053

0.0032
0.0026

0.0090
0.0032

0.0021
0.0016

0.0064
0.0083

0.0136
0.0210

-0.0082
0.0040

0.0075
0.0204

-0.0125
R
M
S
E
s

0.0215
0.0208

0.0207
0.0284

0.0152
0.0149

0.0147
0.0238

0.0271
0.0291

0.0394
0.0471

0.0175
0.0185

0.0307
0.0413

M
S
E
s

0.0005
0.0004

0.0004
0.0008

0.0002
0.0002

0.0002
0.0006

0.0008
0.0009

0.0016
0.0031

0.0003
0.0003

0.0010
0.0030

M
N

π
0.0313

0.0197
0.0292

0.1556
0.0153

0.0108
0.0168

0.1443
0.0193

0.1174
0.1447

0.1425
0.0368

0.0910
0.1454

0.1449
R
M
S
E
π

0.0040
0.0028

0.0023
0.0036

0.0029
0.0021

0.0016
0.0032

0.0001
0.0001

0.0001
0.0001

0.0001
0.0001

0.0001
0.0001

M
S
E
π

0.0000
0.0000

0.0000
0.0002

0.0000
0.0000

0.0000
0.0002

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

A
A
R

0.9353
0.9441

0.9488
0.8951

0.9425
0.9471

0.9493
0.9028

0.8834
0.8892

0.8505
0.8091

0.8868
0.9005

0.8642
0.8113

P
A
R
2

0.9786
0.9839

0.9862
0.9418

0.9833
0.9856

0.9869
0.9494

0.6998
0.7248

0.5877
0.4968

0.7094
0.7654

0.6348
0.5028

G
D
IN

A
B
ias

λ
0.0168

0.0262
0.0341

0.0842
0.0051

0.0114
0.0179

0.0914
0.0311

0.0547
0.0697

0.0684
0.0515

0.0482
0.0903

0.0858
R
M
S
E
λ

0.1604
0.1477

0.1454
0.1920

0.1440
0.1327

0.1288
0.1942

0.1664
0.1929

0.2139
0.2117

0.1514
0.1906

0.2319
0.2246

M
S
E
λ

0.0309
0.0262

0.0251
0.0459

0.0279
0.0233

0.0215
0.0503

0.0323
0.0445

0.0601
0.0591

0.0291
0.0448

0.0760
0.0701

M
N

π
0.0412

0.0303
0.0515

0.1693
0.0383

0.0238
0.0327

0.1585
0.0559

0.1413
0.1569

0.1562
0.0465

0.1134
0.1422

0.1418
R
M
S
E
π

0.0074
0.0047

0.0034
0.0058

0.0062
0.0040

0.0027
0.0054

0.0001
0.0001

0.0001
0.0001

0.0001
0.0001

0.0001
0.0001

M
S
E
π

0.0001
0.0000

0.0000
0.0004

0.0001
0.0000

0.0000
0.0004

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

A
A
R

0.8861
0.9046

0.9108
0.8800

0.8866
0.9013

0.9061
0.8740

0.8143
0.8185

0.7807
0.7769

0.8007
0.8242

0.7839
0.7736

P
A
R
2

0.9303
0.9559

0.9612
0.9522

0.9323
0.9525

0.9577
0.9432

0.4738
0.4750

0.3406
0.3249

0.4330
0.4921

0.3601
0.3181

N
o
t
e.

In
th
e
row

“M
eth

od
”,

th
ere

are
th
ree

d
iff
erent

levels
of

δ
;
th
e
sequ

ential
G
ib
b
s
sam

p
lin

gs
w
ith

δ
=

0
.0
1
,
0
.1

an
d
1
.

28



Table 9: The average computational time

DINA GDINA

(N,K) Sim Seq Ind sSim Sim Seq Ind sSim
(1000,3) 388.34 9.9296 10.809 9.6042 224.01 52.096 53.002 27.426
(1000,5) 591.50 10.671 12.066 24.890 370.68 50.496 52.038 49.066
(1000,7) — 11.178 13.082 84.437 — 51.232 53.165 133.16
(1000,15) — 19.895 17.347 — — 64.106 54.538 —
(2000,3) 856.37 19.573 21.568 18.986 516.98 103.63 105.93 53.263
(2000,5) 1308.2 20.877 23.815 48.351 828.19 99.263 102.31 94.644
(2000,7) — 21.753 25.917 165.23 — 99.180 104.39 252.84
(2000,15) — 32.277 33.705 — — 106.66 101.44 —

Note. The “Sim”, “Seq”, “Ind” and “sSim” represent the simultaneous (implemented by
JAGS), sequential, independent and self-compiled simultaneous Gibbs sampling methods,
respectively. The time is reported in seconds.

(i.e., N = 536) to 20 items (i.e., J = 20). There are 8 attributes and 28 = 256 latent

classes.

We fit both the DINA and GDINA models. Based on the results of simulation studies,

we set the hyper-parameter of the Dirichlet priror δ = 0.1. When applying the GDINA

model, we assume the item parameter prior for all items as λ(w) ∼ N(0, 1) for both

w = 0 and w > 0. The prior hyper-parameters and MCMC chain lengths and burn-in

are listed in Table 11. The computation of analyses is performed by a 2018 MacBook

Pro with 2.2 GHz Intel Core i7, 16 GB 2400 MHz DDR4 and Radeon Pro 555X 4096

MB; Intel UHD Graphics 630 1536 MB. The only feasible case for JAGS is running the 8-

attribute DINA model with the simultaneous Gibbs sampling. For the DINA model three

methods, the independent, sequential and simultaneous Gibbs sampling by implemented

JAGS, are compared. However, for the GDINA model, the independent and sequential

Gibbs sampling algorithms are used to compare.

When to analyze the fraction-subtraction data with the DINA model, the independent,

sequential and simultaneous Gibbs sampling methods spend 5.46, 4.91 and 942 seconds,

respectively. The off-the-shelf software JAGS is treated as a benchmark. We find that the

simultaneous Gibbs sampling using JAGS is time-consuming. Figures 2(a) and 2(b) show

the posterior means and 95% confidence interval of the guessing and slipping parameters,

respectively. When to compare estimation accuracy of item parameters, no matter from

posterior means or 95% confidence interval, the simultaneous Gibbs sampling gives very
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Table 10: The Q-matrix and Items for Fractions-Subtraction Data

ID Item α1 α2 α3 α4 α5 α6 α7 α8

1 5
3 −

3
4 0 0 0 1 0 1 1 0

2 3
4 −

3
8 0 0 0 1 0 0 1 0

3 5
6 −

1
9 0 0 0 1 0 0 1 0

4 31
2 − 23

2 0 1 1 0 1 0 1 0

5 43
5 − 3 4

10 0 1 0 1 0 0 1 1

6 6
7 −

4
7 0 0 0 0 0 0 1 0

7 3− 21
5 1 1 0 0 0 0 1 0

8 2
3 −

2
3 0 0 0 0 0 0 1 0

9 37
8 − 2 0 1 0 0 0 0 0 0

10 4 4
12 − 2 7

12 0 1 0 0 1 0 1 1

11 41
3 − 24

3 0 1 0 0 1 0 1 0

12 11
8 − 1

8 0 0 0 0 0 0 1 1

13 33
8 − 26

5 0 1 0 1 1 0 1 0

14 34
5 − 32

5 0 1 0 0 0 0 1 0

15 2− 1
3 1 0 0 0 0 0 1 0

16 45
7 − 14

7 0 1 0 0 0 0 1 0

17 73
5 − 24

5 0 1 0 0 1 0 1 0

18 4 1
10 − 2 8

10 0 1 0 0 1 1 1 0

19 4− 14
3 1 1 1 0 1 0 1 0

20 41
3 − 15

3 0 1 1 0 1 0 1 0

Table 11: Summary of analyzing conditions for the Fraction-Subtraction Data

DINA GDINA
GDINA λ prior — N(0,1)
DINA s, g prior Beta(1,1) —

δ 0.1 0.1
Chain Length 2000 4000

Burn-in 1000 2000
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similar results to the sequential Gibbs sampling, while the latter has obvious speed advan-

tage. Compared with the MCMC estimates obtained by JAGS, the independent Gibbs

sampling trends to overestimate the guessing parameters and underestimate the slipping

parameters, which may be due to the correlation of the attributes.

In the GDINA model, the item parameters are intercept and interaction parameters

rather than guessing and slipping parameters. The time costs of the independent and

sequential Gibbs sampling algorithms are 19.25 and 17.65 seconds, respectively. The

notation λ(w) represents the w-way interaction. Since the items in the fraction-subtraction

data need up to 5 attributes, there exist up to the 5-way interaction parameters. The

Figure 2(c) presents the box-plot of w versus λ(w) for the estimated item parameters. The

common property shared by the same-way interactions can be obtained by the box-plot.

The item parameter estimations show that the means of intercept parameters and 4-way

interaction parameters are negative and the others are positive. The conclusion that the

intercept term is negative is consistent with our intuition, because a subject without any

required attributes is usually expected to have a low positive response probability.
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Figure 2: The estimations of item parameters for the fraction-subtraction data. The
“Ind”, “Seq” and “Sim” represent the results from the independent, sequential and si-
multaneous (by implemented JAGS) Gibbs sampling, respectively.

6 Discussion

In practice, one computational challenge is that when the number of attributes is large, the

existing MCMC for the CDMs may become slow. In this paper, a computationally efficient

algorithm, named as the sequential Gibbs sampling, was proposed for a general CDM,
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i.e., the GDINA model. In the situation with small K, compared to the existing method

(e.g., JAGS), the proposed method can also yield similar results. The proposed method

still works well and fast for the case with large K. When K = 15, I = 2000, J = 40

and the model is the GDINA model, running 3,000 iterations only needs less 110 seconds.

Especially, for a largeK, the computational advantage becomes more significant compared

with the simultaneous Gibbs sampling method. The proposed method can be easily

applied to other CDMs. In the appendix, we show the algorithm for the DINA model for

an illustration.

In this paper, we only focus on the computational challenge for large K, given the Q-

matrix is correctly specified. Most references about identification theory pointed out that

theQ-matrix need to contain an identity matrix at least for strict identifiability (Gu & Xu,

2020; Xu & Shang, 2018). In practice, however, the Q-matrix may be misspecified, and it

would be needed to estimate the Q-matrix together with the model parameters and latent

attributes. The estimation of the Q-matrix is known to be a challenging issue, especially

when K is large, and the proposed algorithm may be extended to such applications

to help reduce the computational cost of the convensional MCMC approaches. Another

interesting extension is to use the idea in this paper to solve other latent variable modeling

problems with many latent attributes. Not only for the discrete but also for continuous

abilities, this idea may be helpful.
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Appendix

A Sequential Gibbs sampling for the DINA model

Under the DINA model, the item parameters are guessing parameter g and slipping

parameter s. The priors of guessing and slipping parameters follow Beta(ag, bg) and

Beta(as, bs), respectively. The rest of the measurement model remains similarly to the

GDINA model. The sampling methods for g, s and π can be founded in Culpepper

(2015). We only focus on sampling attribute profiles: for fixed Y ,αi\k, g, s and π, the

full conditional distribution for αik is proportional to

p(αik|Yi,αi\k,g, s,π)

∝
J∏

j=1

[
Pj(αi)

Yij (1− Pj(αi))
1−Yij

]
p(αik|pik) (A.1)

∝
J∏

j=1

[
(g

(1−ηij )
j (1− sj)

ηij )Yij ((1− gj)
(1−ηij )s

ηij
j )1−Yij

]
pαik

ik (1− pik)
1−αik (A.2)

∝
J∏

j=1

[
(s

1−Yij

j (1− sj)
Yij )ηij (g

Yij

j (1− gj)
1−Yij )1−ηij

]
pαik

ik (1 − pik)
1−αik (A.3)

∝
J∏

j=1

[
(s

1−Yij

j (1− sj)
Yij )

∏K
k=1

α
qjk
ik (g

Yij

j (1− gj)
1−Yij )1−

∏K
k=1

α
qjk
ik

]
pαik

ik (1− pik)
1−αik , (A.4)

where pik is the prior conditional probability as in Equation (9). For simplify, we

define a set Ωik = {j |
∏

k′ (=k α
qjk′
ik′ = 1&qjk = 1}, and the complementary set is

Ωc
ik = {j | j /∈ Ωik&j = 1, . . . , J}. We know that when item j belongs to Ωik, ηij = αik.

The items in the set Ωc
ik satisfy at least one of two conditions,

∏
k′ (=k α

qjk′
ik′ = 0 and qjk = 0,

which indicate that the value of αik doesn’t affect the value of ηij . In other words, the

items in the set Ωc
ik don’t affect the full conditional distribution. We can rewrite the full
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conditional distribution as follows:

p(αik|Yi,αi\k, g, s,p)

∝
∏

j∈Ωik

[
(s

1−Yij

j (1− sj)
Yij )αik(g

Yij

j (1− gj)
1−Yij )1−αik

]

∏

j /∈Ωik

[
(s

1−Yij

j (1− sj)
Yij )0(g

Yij

j (1− gj)
1−Yij )1

]
pαik

ik (1− pik)
1−αik

∝
∏

j∈Ωik

[
(s

1−Yij

j (1− sj)
Yij )αik(g

Yij

j (1− gj)
1−Yij )1−αik

]
pαik

ik (1− pik)
1−αik .

(A.5)

Obviously, the posterior distribution of αik is a Bernoulli distribution Bernoulli(p̂ik) with

the parameter

p̂ik =

∏
j∈Ωik

[
s
1−Yij

j (1− sj)Yij

]
pik

∏
j∈Ωik

[
s
1−Yij

j (1− sj)Yij

]
pik +

∏
j∈Ωik

[
(g

Yij

j (1− gj)1−Yij )
]
(1− pik)

.

We next introduce the initial values for the DINA model. The initial values of item

parameters g(0), s(0) are randomly sampled from the uniform distribution U [0, 0.4]. The

initial population parameter π is the C-dimensional 1/C; the hyper-parameters are as =

bs = ag = bg = 1. The other initial values are same as those in section 4.1. The sequential

Gibbs sampling for the DINA model is presented in Algorithm 2.

Algorithm 2: Sequential Gibbs Sampling for DINA

Input: Initialize g(0), s(0),α(0),π(0),Y , m = 0,M and specify priors.
Output: Markov chains of g, s,α,π.
while m < M do

Sample attribute profiles from Equation (A.5).
Sample the other parameters according to the reference (Culpepper, 2015).
Set m = m+ 1.

end

B Full conditional distribution for λj

Focusing on the jth item, we can get a classical linear regression as follows

Zj = Xjλj + εj,

38



where λj is the item parameter and the residual εj = (ε1, ε2, · · · , εN)′ is a random sample

from standard normal distribution. The kernel of likelihood function is given as

p(Zj |Xj,λj) ∝ exp

(
−
1

2
(Zj −Xjλj)

′I−1(Zj −Xjλj)

)
, (B.1)

where the I represents an identity matrix. Assuming the joint prior for λj is N(µλj
,Σλj

),

the specific form of parameter’s prior is

p(λj) ∝ exp

(
−
1

2
(λj − µλj

)′Σ−1
λj
(λj − µλj

)

)
(B.2)

According to the Bayesian linear regression, the kernel of the posterior is

p(λj|Zj,Xj ,λj)

∝ exp

[
−
1

2

(
(Zj −Xjλj)

′I−1(Zj −Xjλj) + (λj − µλj
)′Σ−1

λj
(λj − µλj

)
)]

∝ exp

[
−
1

2

(
λ′

j(X
′
jXj +Σ−1

λj
)λj − λ′

j(X
′
jI

−1Zj +Σ−1
λj
µλj

)− (X ′
jI

−1Zj +Σ−1
λj
µλj

)′λj

)]
.

(B.3)

Let Σ̂−1
λj

= XjX ′
j + Σ−1

λj
, using the undetermined coefficient method to solve µ̂λj

=

Σ̂λj
(X ′

jZj + Σ−1
λj
µλj

), so we can get the full conditional distribution for jth item’s pa-

rameters easily. The full conditional distribution is N(µ̂λj
, Σ̂λj

).

C Sample from the truncated multivariate normal

distribution

Because the posterior is a normal distribution, only the multivariate normal distribution

with truncation needs to de derived. Assuming that a random vector X ∼ Np(µ,Σ) and

X = (X1, X2, · · · , Xp)′ is a p-dimensional vector, where

µ = (µ1, · · · , µp)
′,

Σ =






σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp






.
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When we ignore the truncation, the marginal distribution of X1 is a normal distri-

bution which can be used to generate x1, and then the conditional distributions of the

following parameters:

X2|X1 = x1,

...

Xp|X1 = x1, · · · , Xp−1 = xp−1,

are also normal distributions (Anderson, 1958) which are used to generate x2, · · · , xp. As

a result, we can get a realization (x1, x2, · · · , xp)′ following Np(µ,Σ).

In this paper, the first component X1 is negative, the else components are positive.

Imposing the restrictions to (x1, x2, · · · , xp)′, we sample x1 from the interval (−∞, 0) part

of the marginal distribution of X1 and sample x2, · · · , xp from the (0,∞) of remaining

conditional distributions.

Furthermore, through this method, more complex restrictions can be easy to impose.

For any Xi, the left censoring, right censoring and interval censoring can be employed.

Generating censoring data from a unidimensional normal distribution is easy, so this

method is rather flexible and simple.

D The Q-matrices for different K

The Q-matrices are used for different K in the simulation studies, please see Table 12.

E Analyses of TIMSS 2007

The Trends in Mathematics and Science Study (TIMSS), a quadrennial assessment, as-

sessed the mathematics and science abilities of fourth and eighth students since 1995.

TIMSS 2007 (Grade 4) dataset with 25 mathematics (dichotomized) items used in Lee et al.

(2011), Park and Lee (2014) and Park, Xing, and Lee (2018). The dataset includes a sam-

ple of 698 Austrian students. The chosen data contain J = 25 items (i.e., booklets 4 and

5), which consist of two parts: 11 items released for booklet 4 were new items developed

for TIMSS 2007 and the remaining 14 items from booklet 5 were previously administered

during TIMSS 2003.
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Table 12: The transposed Q-matrices for different K

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

K=3
A1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1
A2 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 0
A3 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1

K=5

A1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0
A2 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0
A3 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0
A4 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0
A5 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1

K=7

A1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0
A2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0
A3 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0
A4 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1
A5 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1
A6 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1
A7 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0

K=15

A1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
A2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
A3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
A4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
A5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
A6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
A7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
A8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
A9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
A10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
A11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
A12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
A13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
A14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

The Q-matrix used by Lee et al. (2011) is listed in Table 13. There are 15 attributes

(i.e., K=15) belonging to three content domains: Number, Geometric Shapes and Mea-

sures and Data Display. For this data analyses, the prior hyper-parameters and MCMC

chain lengths and burn-in are listed in Table 14. Due to the large number of attributes,

the independent and sequential Gibbs sampling methods are the only two methods used

here.

Analyzing the TIMSS 2007 data with the DINA model, the time costs of the indepen-

dent and sequential Gibbs sampling are are 11.51 and 13.36 seconds, respectively. The

estimations and 95% HDP regions of guessing and slipping parameters are shown in Fig-

ures 3(a) and 3(b), respectively. When the DINA model is used to analyze, large guessing

and slipping parameters often indicate the model may not fit the data well. In the results

of sequential Gibbs sampling, the guessing parameters for items 15, 18, 22 and 25 are

greater than 0.5, meanwhile the slipping parameters for items 2, 3, 4, 10, 11, 17, 21 and

24 are greater than 0.5.

When to analyze the TIMSS 2007 using the GDINA model, the time costs of the

independent and sequential Gibbs sampling are 35.63 and 42.75 seconds, respectively.

Since the items in TIMSS 2007 need up to 6 attributes, there exist the 6-way interaction
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Table 13: Q matrix for TIMSS 2007

Number
Geometric Shape
and Measure Data Display

Item-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M041052 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
M041056 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M041069 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
M041076 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
M041281 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
M041164 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
M041146 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
M041152 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0
M041258A 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
M041258B 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
M041131 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0
M041275 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1
M041186 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
M041336 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0
M031303 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
M031309 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
M031245 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
M031242A 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
M031242B 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
M031242C 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
M031247 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
M031219 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
M031173 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
M031085 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
M031172 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1

Table 14: Summary of analyzing conditions for TIMSS 2007

DINA GDINA
GDINA λ prior — N(0,1)
DINA s, g prior Beta(1,1) —

δ 0.01 0.01
Chain Length 2000 4000

Burn-in 1000 2000
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parameters. The box-plot of estimated item parameters is given in Figure 3(c). We can

see that the average effect of intercept is negative and the others are positive.
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Figure 3: The estimations of item parameters for the TIMSS 2007 data. The “Ind” and
“Seq” represent results from the independent and sequential Gibbs sampling, respectively.
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