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Cognitive diagnosis models (CDMs) are a family of discrete la-
tent attribute models that serve as statistical basis in educational and
psychological cognitive diagnosis assessments. CDMs aim to achieve
fine-grained inference on individuals’ latent attributes, based on their
observed responses to a set of designed diagnostic items. In the lit-
erature, CDMs usually assume that items require mastery of specific
latent attributes and that each attribute is either fully mastered or
not mastered by a given subject. We propose a new class of mod-
els, partial mastery CDMs (PM-CDMs), that generalizes CDMs by
allowing for partial mastery levels for each attribute of interest. We
demonstrate that PM-CDMs can be represented as restricted latent
class models. Relying on the latent class representation, we propose
a Bayesian approach for estimation. We present simulation studies to
demonstrate parameter recovery, to investigate the impact of model
misspecification with respect to partial mastery, and to develop di-
agnostic tools that could be used by practitioners to decide between
CDMs and PM-CDMs. We use two examples of real test data – the
fraction subtraction and the English tests – to demonstrate that em-
ploying PM-CDMs not only improves model fit, compared to CDMs,
but also can make substantial difference in conclusions about at-
tribute mastery. We conclude that PM-CDMs can lead to more ef-
fective remediation programs by providing detailed individual-level
information about skills learned and skills that need to study.

1. Introduction. Cognitive diagnosis assessments provide information
on an individual’s latent traits – skills, knowledge components, personality
traits, or psychological disorders – based on his or her observed responses
to carefully designed items. Compared with traditional tests for measur-
ing proficiency that often assume the existence of a unidimensional latent
trait, cognitive diagnosis models (CDMs) focus on detecting the presence or
absence of several distinct skills or traits, also known as latent attributes.
The information on “mastery” or “nonmastery” of the given skill set for
a given individual – a cognitive diagnosis – is used for designing targeted
intervention strategies to remedy those latent attributes that have not been
mastered yet.
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CDMs are tools that provide a cognitive diagnosis profile for every respon-
dent. Even though the earliest cognitively diagnostic models were proposed
in 1980s, this topic has gained great popularity in recent years due to the ad-
vancement of computation power needed for handling complex models and
also due to the models’ desirable diagnostic nature of providing informative
cognitive profiles for every respondent (Tatsuoka, 2009; Rupp et al., 2010).
Various CDMs have been developed under different assumptions about cog-
nitive processes (e.g., DiBello et al., 1995; Junker and Sijtsma, 2001; de
la Torre and Douglas, 2004; Templin and Henson, 2006; von Davier, 2008;
Henson et al., 2009; de la Torre, 2011). Two notable CDMs are the basic
Deterministic Input Noisy output “And” gate (DINA) model (Junker and
Sijtsma, 2001), which requires only two parameters for each item regardless
of the number of attributes measured by the item, and the more complex
Generalized DINA (GDINA) model (de la Torre, 2011), which includes many
commonly used CDMs as special cases.

Most CDMs currently assume binary classifications – mastery or non-
mastery – for latent attributes. As a consequence, when partial or incom-
plete mastery is possible, heterogeneity in response data may not be well
accounted for by standard CDMs. Likewise, standard CDMs with binary
attributes may not be able to provide accurate classifications for subjects
with immature – yet better than guessing – mastery skills. Even though
various goodness-of-fit tests have been developed in the CDM settings (e.g.,
de la Torre, 2008a; Rupp and Templin, 2008a; Hansen et al., 2016; Gu et al.,
2018), to our knowledge, only few diagnosis tools are available for testing for
partial mastery under the CDM framework. Among them, tools proposed
by Chen and de la Torre (2013) who developed a general CDM to accom-
modate the expert-defined polytomous attributes, which are pre-defined as
part of the test development process to provide additional diagnostic infor-
mation; see also the GDM for polytomous attributes (von Davier, 2008).
Moreover, due to the discreteness nature of CDMs, identifiability conditions
might be difficult to satisfy in practice; for instance, it has been established
that single-attribute items are necessary to identify all attribute profiles un-
der the DINA model (Chiu et al., 2009) and estimate the model parameters
(Xu and Zhang, 2016; Xu, 2017; Gu and Xu, 2019).

This paper proposes a new and flexible type of cognitive diagnosis mod-
els – Partial-Mastery CDMs (PM-CDMs) – that builds on the notion of
multiple latent dimensions as in CDMs, but allows for partial mastery. For
each subject, we introduce a set of continuous partial mastery scores be-
tween 0 and 1 that measure his/her mastery level for each attribute; this
assumption subsumes CDMs as special cases when all mastery scores are
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either 0 or 1. This general assumption is closely related to the grade of
membership model (Manton et al., 1994; Haberman, 1995), also called the
mixed membership model (Erosheva et al., 2004; Erosheva, 2005). The mixed
membership model has been employed for development of statistical mod-
els for complex multivariate data in many fields, from computer science to
genetics and the social and medical sciences (Erosheva, 2002; Airoldi et al.,
2014). Despite the similarity, the proposed PM-CDM class differs from the
class of mixed membership models in that it assumes a (continuous) mastery
score for each latent dimension (attribute) – where the latent dimensions are
pre-determined by expert knowledge about skills required for each item –
as opposed to a mixed membership among latent dimensions (attributes)
in the mixed membership model that are typically unspecified but inferred
from the analysis. In addition, the mastery score for each latent attribute in
PM-CDMs is between 0 and 1, indicating the corresponding mastery level,
while membership scores across different latent dimensions are assumed to
add up to one in the mixed membership models, which therefore cannot be
interpreted as the mastery level of each attribute.

To estimate the model parameters and latent mastery scores, this paper
develops a Gibbs sampling algorithm that is applicable to all PM-CDMs and
further demonstrates its good performance using extensive simulation stud-
ies and two real datasets. Moreover, under the proposed PM-CDM frame-
work, we propose two diagnostic methods for examining the binary assump-
tion of the attribute mastery level. We demonstrate utility of our partial
mastery analysis framework on two existing real data examples from cog-
nitive diagnosis literature – the Fraction Subtraction and the English test
data sets. The data examples show that the proposed PM-CDMs not only
improve the goodness of fit over CDMs, but also could make substantial dif-
ference in conclusions about attribute mastery. Therefore, PM-CDMs would
lead to more effective remediation programs in practice by providing the
detailed individual-level information about the targeted ability skills.

The rest of this paper is organized as follows. Section 2 gives a brief
review of CDMs. Section 3 introduces PM-CDMs and the estimation of the
model parameters. Simulation studies are further conducted for special cases
of DINA and GDINA to compare the performance of the respective PM-
CDMs and CDMs in Section 4. Section 5 presents analyses of the Fraction
Subtraction and English test data sets. Section 6 provides further discussion,
and the Supplementary Material (Shang et al., 2021) presents details for the
proposed Gibbs sampling algorithm and additional numerical results.
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2. A Brief Review of CDMs. In cognitive diagnosis setting, a sub-
ject (e.g., examinee or patient) provides a J-dimensional binary response
vector R = (R1, ..., RJ)> to J diagnostic test items, where the superscript
> denotes the transpose. These responses are assumed to be dependent in a
certain way on K unobserved latent attributes that is of practical interest. In
cognitive diagnosis, each of the K latent attributes, denoted by αk ∈ {0, 1}
for k ∈ {1, · · · ,K}, is assumed to be a binary indicator of the mastery or
nonmastery, respectively, of the kth attribute. A complete set of K latent
attributes, α = (α1, . . . , αK)>, is known as an attribute profile or a latent
subgroup/class. Such a construction of α differs from the conventional latent
class model setting and is necessary for the diagnosis purpose.

For instance, in educational testing, each αk may represent a certain abil-
ity or skill, and teachers may want to know whether a student has mastered
this skill or not. For example, the Fraction Subtraction test dataset – one of
the first designed cognitive diagnostic tests in educational measurement –
contains responses to 20 fraction subtraction problems designed to measure
8 skills that students in middle school need to learn for fraction subtraction
(see the upper panel in Table 1). The original items, attributes and response
data were conceived and collected by Tatsuoka (1990). Researchers are in-
terested in estimating the mastery status of each of the 536 middle school
students on 8 fraction subtraction attributes.

Cognitive Diagnostic Models (CDMs) are statistical and psychometric
tools that have been specifically designed to estimate which skills have been
mastered – the subjects’ diagnostic attribute profiles – from their responses.
CDMs achieve this by modeling the complex relationship among items, mul-
tivariate binary latent trait vector, and categorical item responses.

Many CDMs have the following two-step data generating process. The
first step proposes a population model for the attributes profile. A common
assumption is that the attribute profile follows from a population categorical
distribution α ∼ Categorical(p) with proportion parameters p := (pα : α ∈
{0, 1}K)>, where pα ∈ (0, 1) and

∑
α∈{0,1}K pα = 1. The second step in

CDMs follows a restricted latent class model framework with constraints
that are incorporated according to the cognitive processes. Given a subject’s
attribute profile α, response Rj to item j under the corresponding model
follows a Bernoulli distribution, Rj | α ∼ Bernoulli(θj,α), where θj,α =
P (Rj = 1 | α), is the probability of positive response to item j for subjects
with α. Parameters Θ = (θj,α) are constrained by the relationship between
the J items and the K latent attributes, specified through the Q-matrix that
is a J × K binary matrix with entries qjk ∈ {0, 1} indicating the absence
or presence, respectively, of a link between the jth item and the kth latent
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Table 1
Attributes of the Fraction Subtraction Data

Attributes Interpretation

α1 Convert a whole number to a fraction
α2 Separate a whole number from a fraction
α3 Simplify before subtracting
α4 Find a common denominator
α5 Borrow from whole number part
α6 Column borrow to subtract the second numerator from the first
α7 Subtract numerators
α8 Reduce answer to simplest form

Q-matrix of the Fraction Subtraction Data

Item α1 α2 α3 α4 α5 α6 α7 α8

1 0 0 0 1 0 1 1 0
2 0 0 0 1 0 0 1 0
3 0 0 0 1 0 0 1 0
4 0 1 1 0 1 0 1 0
5 0 1 0 1 0 0 1 1
6 0 0 0 0 0 0 1 0
7 1 1 0 0 0 0 1 0
8 0 0 0 0 0 0 1 0
9 0 1 0 0 0 0 0 0
10 0 1 0 0 1 0 1 1
11 0 1 0 0 1 0 1 0
12 0 0 0 0 0 0 1 1
13 0 1 0 1 1 0 1 0
14 0 1 0 0 0 0 1 0
15 1 0 0 0 0 0 1 0
16 0 1 0 0 0 0 1 0
17 0 1 0 0 1 0 1 0
18 0 1 0 0 1 1 1 0
19 1 1 1 0 1 0 1 0
20 0 1 1 0 1 0 1 0

attribute. The jth row vector qj ofQ provides the full attribute requirements
for item j. For illustration, Table 1 presents the 20× 8 binary Q-matrix for
the Fraction Subtraction dataset.

Given an attribute profile α and a Q-matrix Q, we write α � qj if αk ≥
qjk for any k ∈ {1, . . . ,K}, and α � qj if there exists k such that αk < qjk;
similarly we define the operations � and �. If α � qj , a subject with
α has all the attributes for item j specified by the Q-matrix and would
be “capable” to answer item j correctly; on the other hand, if α′ � qj ,
the subject with α′ misses some related attribute and is expected to have a
smaller response probability than subjects with α � qj . That is, θj,α ≥ θj,α′
for α � qj and α′ � qj ; such monotonicity assumption is common to
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most CDMs. Another common assumption of CDMs is that mastering non-
required attributes will not change the response probability, i.e., θj,α =
θj,α′ , if α ⊗ qj = α′ ⊗ qj , where ⊗ is the element-wise multiplication op-
erator. Note that this constraint implies that maxα�qj θj,α = minα�qj θj,α,
which is a key assumption for the identifiability of the CDM parameters (Xu,
2017). From the construction, CDMs can then be viewed as Q-restricted la-
tent class models with 2K latent classes.

CDMs with various diagnostic assumptions on the modeling of θ’s have
been proposed in the psychometrics literature for different application pur-
poses. We next introduce the popularly used DINA and GDINA models,
which are the representations of the basic and general CDMs respectively.

DINA model. One of the basic cognitive diagnosis model is the DINA model
(Junker and Sijtsma, 2001), which assumes a conjunctive relationship among
attributes. That is, it is necessary to possess all the attributes indicated by
the Q-matrix to be capable of providing a correct response. In addition,
having additional unnecessary attributes does not compensate for the lack
of necessary attributes. For item j and attribute vector α, we define the
ideal response ξDINAj,α = I(α � qj), i.e., the response when there is no
measurement error. The uncertainty is further incorporated at the item level,
using the slipping and guessing parameters s and g. For each item j, the
slipping parameter sj = P (Rj = 0 | ξDINAj,α = 1) denotes the probability of
the respondent making a incorrect response despite mastering all necessary
skills; similarly, the guessing parameter gj = P (Rj = 1 | ξDINAj,α = 0) denotes
the probability of a correct response despite an incorrect ideal response. The
response probability θj,α then takes the form

(2.1) θj,α = (1− sj)ξ
DINA
j,α g

1−ξDINAj,α

j .

In practice, it is usually assumed that 1 − sj > gj for any j for model
identifiability.

G-DINA model. de la Torre (2011) generalizes the DINA model to the G-
DINA model. The formulation of the G-DINA model based on θj,α can be
decomposed into the sum of the effects due the presence of specific attributes
and their interactions. Specifically, for item j with q-vector qj = (qjk : k =
1, · · · ,K),

θj,α = βj0 +

K∑
k=1

βjk(qjkαk) +

K∑
k′=k+1

K−1∑
k=1

βjkk′(qjkαk)(qjk′αk′)

+ · · ·+ βj12···K
∏
k

(qjkαk).(2.2)



PARTIAL-MASTERY COGNITIVE DIAGNOSIS MODELS 7

Note that not all β’s in the above equation are included in the model. For in-
stance, when qj 6= 1>, we do not need parameter βj12···K since

∏
k(qjkαk) =

0. To interpret, βj0 represents probability of a positive response when none
of the required attributes are present; when qjk = 1, βjk is included in the
model and it shows the change in the positive response probability as a re-
sult of mastering a single attribute αk; when qjk = qjk′ = 1, βjkk′ is in the
model and it shows the change in the positive response probability due to
the interaction effect of mastery of both αk and αk′ ; similarly, when qj = 1>,
βj12···K represents the change in the positive response probability due to the
interaction effect of mastery of all the required attributes.

The above model setup uses R and α to denote the responses and at-
tribute profile for a random subject from the population. In a cognitive
diagnostic assessment, suppose we have N independent subjects, indexed
by i = 1, . . . , N . For the ith subject, we denote his/her response vector
by Ri = (Rij : j = 1, . . . , J)> and his/her latent attribute profiles by
αi = (αik : k = 1, . . . ,K)>. Under the local independence assumption, the
likelihood function of the observed responses is

LCDM (p,Θ; R) =
N∏
i=1

∑
αi=α∈{0,1}K

pα

J∏
j=1

θ
Rij
j,α (1− θj,α)1−Rij .

The CDM model parameters can then be estimated by maximizing the
likelihood function via the EM-algorithm (e.g., de la Torre, 2009; Feng
et al., 2014); alternatively, researchers have proposed Bayesian estimation
approaches (e.g., Culpepper, 2015; Culpepper and Hudson, 2018). R pack-
ages “CDM” and “GDINA” for CDM estimation and inference have also
been recently developed by George et al. (2016) and Ma and de la Torre
(2019), respectively.

3. Partial-Mastery Cognitive Diagnosis Models.

3.1. Model setup. We propose a partial-mastery modeling approach for
cognitive diagnosis, which provides a generalization of CDMs. Usually, CDMs
assume that each subject belongs to only one particular attribute profile
α ∈ {0, 1}K , where mastery of each skill is either 0 or 1. That is, each
attribute must be either fully mastered or not mastered. Such an assump-
tion may be too strong when certain attributes are mastered gradually, and
partial mastery is possible. In such a case, the usual CDMs with binary
attributes may not fit the responses well and diagnostic classification of the
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subjects may also be affected; we will provide illustrations with our simu-
lated and real data examples. The proposed Partial-Mastery CDMs (PM-
CDMs) relax this assumption by introducing K subject-specific attribute
scores dk ∈ [0, 1], which indicate the subject’s mastery level of the kth at-
tribute with dk = 1 the highest and dk = 0 the lowest level. The attribute
mastery score d = (d1, · · · , dK)> then contains the subject’s attribute pro-
file information. Comparing with CDMs in Section 2, PM-CDMs are more
flexible, with dk measuring how well a student masters the kth skill, yet
includes respective CDMs as special cases when dk = αk ∈ {0, 1}.

We assume the latent attribute mastery score d follows a distribution
D(·) on [0, 1]K . Depending on application, different D may be chosen. We
propose to use a Gaussian copula model to allow for the dependencies among
the attributes. In particular, we assume

(3.1) {Φ−1(dk); k = 1, · · · ,K}> ∼ N(µ,Σ)

where Φ−1 is the inverse cumulative distribution function of a standard
normal distribution, µ is a K-dimensional mean vector, and Σ is a K ×K
covariance matrix. An advantage of the Gaussian copula model is that it can
directly characterize both the population mean mastery scores via µ and the
latent correlations among the K attributes via the underlying covariance
matrix Σ. Our model is similar to the correlated topic model by Blei et al.
(2007) in the sense that it allows for modeling dependencies among the latent
attributes, however, the major difference is that mastery scores for the latent
attributes do not add up to one whereas topic proportions in the correlated
topic model do have to add up to one. In other words, the mastery scores in
PM-CDMs live on the hypercube [0, 1]K while the topic proportions in the
correlated topic model live on a simplex.

Under the PM-CDM framework, the attribute mastery score dk indicates
the mastery level of the kth attribute and the item response function fol-
lows a similar assumption to the grade of membership models (Manton
et al., 1994; Haberman, 1995). Specifically, for a subject with a general
mastery score d, the marginal probability of a positive response to item j
is a weighted combination of θj,α = P (Rj = 1 | α) with θj,α defined under
the corresponding CDM:

(3.2) θj,d = P (Rj = 1 | d) =
∑

α=(α1,··· ,αK)∈{0,1}K
θj,α × pα|d.

Here pα|d =
∏K
k=1 dk

αk(1− dk)1−αk ∈ [0, 1], denoting the mixture weight of
θj,α given d. Note that

∑
α pα|d = 1; we have minα θj,α ≤ θj,d ≤ maxα θj,α

and thus θj,d are well defined.
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Under the local independence assumption that responses to different items
are independent given a mastery score, the probability mass function of a
subject’s observed responses R is

PPMCDM (R | Θ, µ,Σ) =

∫
d∈[0,1]K

J∏
j=1

θ
Rj
j,d (1− θj,d)1−Rj dDµ,Σ(d).

A restricted latent class model representation. From the model (3.2), θj,d
can also be represented by a restricted latent class model (RLCM). Consider
a vector of J × 2K latent variables A = (α∗1, · · · ,α∗J), where α∗j ∈ {0, 1}K .

The set of all possible A’s is A =
∏J
j=1{0, 1}K , which has 2K×J classes.

Define the distribution of the latent classes A = (α∗1, · · · ,α∗J) ∈ A as

πA = EDµ,Σ(d)

J∏
j=1

K∏
k=1

dk
α∗jk(1− dk)1−α∗jk(3.3)

= EDµ,Σ(d)

K∏
k=1

dk
∑J
j=1 α

∗
jk(1− dk)

∑J
j=1(1−α∗jk).

The conditional distribution of the responses given a latent class A is mod-
eled under the constraint that P (Rj = 1 | A) = P (Rj = 1 | α∗j ) = θj,α∗j .

The θj,α∗j ∈ [0, 1] is as defined in the CDMs. Under the local independence
assumption, the probability mass function of a subject’s observed responses
R under the above RLCM is

PRLCM (R | Θ, µ,Σ) =
∑

A=(α∗1,··· ,α∗J )∈A

πA

J∏
j=1

θj,α∗j

Following an argument similar to that of Lemma 3.1 in Erosheva et al.
(2007), we can prove that PRLCM (R | Θ, µ,Σ) = PPMCDM (R | Θ, µ,Σ).
Therefore, the PM-CDM is equivalent to the above RLCM with the distri-
bution of the latent classes as specified in Equation (3.3).

The equivalent RLCM representation plays a key role in our estimation of
PM-CDM as introduced in Section 3.2. Moreover, with the above RLCM rep-
resentation, we can study identifiability of PM-CDMs using recently devel-
oped techniques for identifiability of RLCMs (Xu, 2017; Gu and Xu, 2020).
In particular, Xu (2017) and Gu and Xu (2020) studied identifiability and
partial identifiability of a general family of RLCMs, including the DINA
and GDINA model, and showed that these RLCMs are identifiable if the
Q-matrix satisfies certain structural conditions. With the RLCM represen-
tation, we would expect that the identifiability of the model parameters of
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PM-CDMs could be established under a similar set of structural conditions
for the Q-matrix.

Relationships with CDMs. The key concept of PM-CDMs is to assume that
each subject has a continuous score dk, for any k ∈ {1, · · · ,K} of each at-
tribute in the range [0, 1], indicating the mastery level of the kth attribute.
Following (3.2), we can show that the proposed PM-CDMs cover the CDMs
as special cases when the mastery score dk takes discrete values. In partic-
ular, when d→ 1, then only p1|d is significant and θj,d → θj,1 = maxα θj,α
and similarly, when d → 0, θj,d → θj,0 = minα θj,α. More generally, when
d = α ∈ {0, 1}K , i.e., the subject’s mixed attribute profile is exactly a bi-
nary vector α, the probability of providing a positive response to item j is
θj,d = P (Rj = 1 | d = α) = θj,α. Therefore, with θj,α defined under any
CDM, the PM-CDM covers the corresponding CDM as a special case.

The difference between PM-CDMs and CDMs can be further revealed
under the RLCM representation of PM-CDMs. Following Equation (3.3)
and the related discussion, we can interpret a PM-CDM corresponding to
the following three-step data generating process:

1) the attribute mastery score d is generated from a population distribu-
tion Dµ,Σ(·);

2) the auxiliary latent indicators for item j, α∗j = (α∗jk : k = 1, · · · ,K),
is generated such that α∗jk’s are independent across k and α∗jk ∼
Bernoulli(dk).

3) given the working latent attributes α∗j for item j, the response Rj is
generated from Bernoulli(θj,α∗j ).

The three-step data generating process is also illustrated in Figure 1, where
for comparison, we also include an illustration of the data generating process
of a CDM. Under this RLCM representation, we can see that the PM-CDMs
allow the “working” attribute profiles {α∗j , j = 1, . . . , J} of a subject to be
flexible from item to item, whereas CDMs assume the attribute profile α is
fixed for all items. Therefore, instead of performing “hard” clustering as in
CDMs, where each subject is only assigned to one latent attribute profile, the
RLCM representation of PM-CDMs implies that PM-CDMs are performing
“soft” clustering of each subject, by allowing its latent attribute profile α∗j
varying from item to item. Note that the overall distribution of α∗j across all
items is characterized by the partial mastery score (probability) d, which is
estimated from the response data; and as discussed above, in the special case
of d = α ∈ {0, 1}K , we have α∗j = α for j = 1, . . . , J , and the PM-CDM
reduces exactly to the corresponding CDM. To provide an intuitive inter-
pretation, we can view a subject’s partial mastery score dk, 0 < dk < 1, as
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his/her mastery level of the kth attribute. That is, for this subject, he/she
masters the kth attribute with a certain probability (as characterized by
dk) and thus the realization of α∗ for the kth attribute may be 1 for some
items and 0 for others. For instance, for a set of pure items measuring only
this attribute with zero measurement error, the subject who only partially
masters the kth attribute with 0 < dk < 1 may answer some items correctly
and others incorrectly, which would be consistent with α∗ for the kth at-
tribute being 1 or 0 for different items. Please also see Galyardt (2014) for
more details on the model interpretation under the RLCM representation.
Such flexibility of PM-CDMs provides one major feature that distinguishes
them from CDMs, and that helps with accounting for additional subject-
level heterogeneity in responses. This also makes the PM-CDMs distinct
from the high-order CDMs, whose data generating process also follows the
CDM illustration provided in Figure 1, though both types of models using
continuous latent traits in modeling the distribution of the discrete latent
attributes.

Population distribution of 𝜶

Attribute profile
𝜶 = (𝛼!, … , 𝛼")

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 𝑡𝑜 𝑎𝑙𝑙 𝐽 𝑖𝑡𝑒𝑚𝑠
𝑅!, … , 𝑅#

Q-matrix       CDM

Attribute mastery score
𝒅 = (𝑑!, … , 𝑑")

Population distribution of 𝒅

Item J attribute profile
𝜶𝑱∗ = (𝛼#,!∗ , … , 𝛼#,"∗ )

Item 1 attribute profile
𝜶𝟏∗ = (𝛼!,!∗ , … , 𝛼!,"∗ )

Q-matrix Q-matrix 

…

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑜 𝑖𝑡𝑒𝑚 1
𝑅!

Q-matrix       CDM

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑜 𝑖𝑡𝑒𝑚 𝐽
𝑅#

Q-matrix       CDM

…

PM-CDM CDM

Fig 1. PM-CDM and CDM data generating processes for a subject

We would like to emphasize that the proposed PM-CDMs are a mixed
membership generalization of the binary attribute CDMs. Under the RLCM
presentation, we can see that the proposed PM-CDMs inherit a binary at-
tribute nature from CDMs. Specifically, the PM-CDMs are constructed using
the mixed membership modeling approach to capture the distribution of the
binary attribute profiles α∗ as in Steps 1) and 2), while still using the bi-
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nary attribute cognitive diagnosis modeling for the item response function
in Step 3. In the literature, polytomous attribute CDMs (e.g., Chen and
de la Torre, 2013; von Davier, 2008) have also been proposed to relax the
binary assumption of the attributes. The PM-CDMs differ from the poly-
tomous attribute CDMs in two major aspects: first, PM-CDMs relax the
binary attribute assumption by allowing different realizations of binary at-
tribute profiles in different items, whereas the polytomous attribute CDMs
relax the assumption by directly letting α to be polytomous; second, the
item response function of PM-CDMs follow from the binary CDMs assump-
tions, whereas polytomous attribute CDMs make polytomous item response
function assumptions, such as requiring polytomous entries of the Q-matrix
in some proposed models (e.g., Chen and de la Torre, 2013). Due to these
differences, the proposed PM-CDMs and polytomous CDMs may not be
directly comparable. On the other hand, we would like to point out that fol-
lowing a similar three-step data generating process, an extension from the
polytomous attribute CDMs to the polytomous attribute PM-CDMs can
be done by setting the α∗j in Step 2) to be polytomous instead of binary,
and setting Step 3) to be the data generating process of the corresponding
polytomous CDMs.

Note that, as introduced in Section 2, our focus is on CDMs that can
be formulated as restricted latent class models. There are other CDMs not
falling in the family of restricted latent class models, such as the Reparame-
terized Unified Model (RUM; DiBello et al., 1995; Hartz, 2002; Stout et al.,
2019). In addition to the latent attribute α, the RUM also incorporates an
extra probability term Pcj (η) into the jth item’s response function with a
subject-dependent continuous latent variable η for the respondent and an
additional item parameter cj . The RUM shares the similarity to the PM-
CDM that they both use continuous latent variables for modeling the item
response function. Nevertheless, the two models are constructed differently.
The continuous latent variable η in RUM is introduced to account for the
additional response variability after considering the binary latent attribute
α’s. The PM-CDM, on the other hand, directly models the latent attribute
as a continuous mastery score, indicating the mastery level of each attribute
of interest. In addition, the η in RUM is usually unidimensional, while the
mastery scores d in PM-CDM are multidimensional. Moreover, the PM-
CDM and RUM model the continuous latent variable differently. The RUM
uses a Rasch-type item response function for Pcj (η) with η following a nor-
mal population distribution, while the PM-CDM uses a mixed membership
modeling approach and the CDM-type item response functions. Particularly,
the introduced restricted latent class model representation of the PM-CDM
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makes it statistically distinct from the RUM.

Relationships with multidimensional item response theory (MIRT) models.
By assuming the mastery level to be continuous, PM-CDMs also relate to
the traditional multidimensional item response theory (MIRT) models. Such
continuous latent variable models have been proposed by researchers to per-
form cognitive diagnosis. For instance, Hong et al. (2015) proposed a model
includes a noncompensatory IRT term and a term following the discrete
attribute DINA model; Hartz and Roussos (2008) proposed a fusion model
with both IRT-based continuous latent variable and skills-based diagno-
sis attributes; Bolt and Lall (2003) studied the estimation of both com-
pensatory and noncompensatory MIRT models; and Embretson and Yang
(2013) presents the noncompensatory multicomponent latent trait model for
diagnosis (MLTM-D). Despite the similarity, there are several differences be-
tween the proposed PM-CDMs and these existing MIRT models. First, the
modeling construction is different. Given an individual’s latent score, the
item response function of PM-CDMs uses a mixture modeling framework
together with cognitive diagnosis assumptions. In particular, PM-CDMs can
be equivalently represented by the family of the restricted latent class models
mentioned above, which significantly differs from the MIRT modeling of the
latent traits. Therefore, the partial mastery score is not a simple mapping
of the latent trait θ in MIRT from (−∞,∞) to [0, 1]. Second, PM-CDMs
have the cognitive diagnostic nature built directly into the item response
function modeling, similarly to CDMs. Thus, PM-CDMs naturally incor-
porate any CDM item level cognitive diagnostic assumption, such as the
conjunctive (fully nonconmpesnatiry) and disjunctive (fully compensatory)
assumptions that make use of interaction terms of the attributes. Therefore,
similarly to CDMs, PM-CDMs provide a more flexible diagnostic modeling
approach compared to MIRT. Third, the estimated mastery score dk ∈ [0, 1]
from PM-CDMs directly leads to a diagnostic interpretation, indicating a
subject’s mastery level of an attribute, while an ability trait in (−∞,+∞)
under MIRT is not directly applicable for diagnosis and certain threshold
would be needed post estimation.

3.2. PM-CDM Estimation. To make inference on model parameters and
latent variables, we propose a Gibbs sampling Markov chain Monte Carlo
(MCMC) algorithm. We introduce the algorithm under the general PM-
CDM setting while it can be easily applied to each specific PM-CDM such
as the PM-DINA and PM-GDINA models.

From the RLCM representation in Section 3.1, the θj,d can also be inter-
preted from a mixture model point of view by introducing for each sub-
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ject a vector of J × 2K auxiliary latent indicators (α∗1, · · · ,α∗J), where
α∗j ∈ {0, 1}K . This restricted latent class model can be equivalently rep-
resented by the 3 steps as in Figure 1. With the auxiliary latent indicators
α∗ integrated out, we can see that this model setup gives the same form of
θj,d = P (Rj = 1 | d) as in (3.2). This equivalent RLCM representation plays
a key role in designing an efficient Gibbs sampling algorithm to estimate the
model parameters as described below.

Suppose we observe N independent subjects, indexed by i = 1, . . . , N ,
with their responses generated from a PM-CDM. For the ith subject, we
denote his/her response vector by Ri = (Rij : j = 1, . . . , J)>, latent mastery
score by di = (dik : k = 1, . . . ,K)>, and latent indicators for item j by
α∗ij = (α∗ijk : k = 1, . . . ,K)>. Denote D = {di : i = 1, . . . , N}, A∗ =
{α∗i : i = 1, . . . , N}, and R = {Ri : i = 1, . . . , N}. Following the RLCM
representation, the joint probability distribution of (D,A∗,R) is

P (D,A∗,R | Θ, µ,Σ)

=
N∏
i=1

Dµ,Σ(di)
J∏
j=1

K∏
k=1

dik
α∗ijk(1− dik)1−α∗ijkθ

Rij
j,α∗ij

(1− θj,α∗ij )
(1−Rij).

Let p0(µ), p0(Σ), p0(Θ) be the priors of µ,Σ, and Θ. From the RLCM
representation, we have the joint posterior distribution of µ,Σ,Θ:

P (µ,Σ,Θ,D,A∗ | R) = p0(µ)p0(Σ)p0(Θ)(3.4)

×
N∏
i=1

Dµ,Σ(di)
J∏
j=1

K∏
k=1

dik
α∗ijk(1− dik)1−α∗ijkθ

Rij
j,α∗ij

(1− θj,α∗ij )
(1−Rij).

Computationally, it is more convenient to work with d̃i = (d̃ik, k =
1, · · · ,K) which is defined to be

d̃i := Φ−1(di) = (Φ−1(di,k) : k = 1, · · · ,K).(3.5)

The posterior distribution represented by D̃ := {d̃i : i = 1, . . . , N} is

P (µ,Σ,Θ, D̃,A∗ | R) = p0(µ)p0(Σ)p0(Θ)

N∏
i=1

Nµ,Σ(d̃i)(3.6)

×
J∏
j=1

K∏
k=1

Φ(d̃ik)
α∗ijk(1− Φ(d̃ik))

1−α∗ijkθ
Rij
j,α∗ij

(1− θj,α∗ij )
(1−Rij).

where Nµ,Σ(d̃i) denotes the normal distribution density with mean µ and
covariance matrix Σ.
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To perform the Gibbs sampling based on the posterior distribution in
(3.6), the difficulty arises from the sampling of d̃i. Note that the conditional
distribution of d̃i is

(3.7) P (d̃i | µ,Σ,Θ,A∗,R) ∝ Nµ,Σ(d̃i)
J∏
j=1

K∏
k=1

Φ(d̃ik)
α∗ijk(1−Φ(d̃ik))

1−α∗ijk .

The above conditional distribution of d̃i given α∗ij ’s is nontrivial to sam-
ple directly. To overcome this difficulty, we use an equivalent representa-
tion of the proposed model by introducing the auxiliary variables zijk ∼
N(d̃ik, 1) and redefining α∗ijk = 1 if zijk ≥ 0 and α∗ijk = 0 otherwise. We

denote zi = (zijk : j = 1, . . . , J ;K = 1, . . . ,K)>. With this representa-
tion, we can first sample zijk from the conditional posterior distribution

p(zijk | µ,Σ,Θ, d̃i,A∗,R) ∝ Nd̃ik,1
(zijk)I(zijk ≥ 0)α

∗
ijkI(zijk < 0)1−α∗ijk

which is a truncated Gaussian distribution with mean dik and variance one;
then we sample d̃i from Gaussian distribution p(d̃i | µ,Σ,θ,A∗, zi,R) ∝
Nµ,Σ(d̃i)

∏J
j=1

∏K
k=1Nd̃ik,1

(zijk).
With augmented variables z and conjugate priors, the conditional dis-

tribution of model parameters can be written in closed-form expressions.
Sampling from the above conditional distribution of each parameter can
be done using standard statistical software such as R. The detailed Gibbs
sampling steps are provided in the Supplementary Material (Shang et al.,
2021).

4. Simulation Studies. There are three primary objectives of the sim-
ulation studies presented in this paper: (1) to demonstrate parameter recov-
ery via our Gibbs sampling under the new PM-CDM approach, (2) to inves-
tigate the impact of model misspecification with respect to partial mastery,
and (3) to develop diagnostic tools that could be used by practitioners to
decide between CDM and PM-CDM approaches.

4.1. Simulation settings. We conducted simulation studies to compare
the model fit for PM-CDM and classical CDM under various data generation
conditions. The proposed model is evaluated when the data are generated
from either a classical CDM or a partial-mastery CDM, in terms of item
parameter estimation and latent profile (attribute) specification. In the sim-
ulation, we consider two popular CDMs in educational measurements, the
DINA and GDINA models, and their partial mastery counterparts, PM-
DINA and PM-GDINA. Specifically, for each model we consider a fixed-
length test of J = 20 and the number of latent attributes to be K = 3 and
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K = 5. For each K, we simulate two types of Q-matrices as given in (4.1):
the complete – under the DINA model – Q-matrices (Q3 and Q5), with an
K×K identity submatrix, and the Q-matrices without identify submatrices
(Q′3 and Q′5). Note that Q′3 and Q′5 are incomplete under the DINA model
(Chiu et al., 2009) while they are complete under the GDINA model (Köhn
and Chiu, 2017, 2018).

(4.1) Q3 =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
1 1 1
1 1 1
1 1 1



Q′3 =



0 1 1
1 0 1
1 1 0
0 1 1
1 0 1
1 1 0
0 1 1
1 0 1
1 1 0
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
1 1 1
1 1 1
1 1 1



Q5 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1



Q′5 =



1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1


For the latent attributes generated under PM-CDMs, different means and

correlations are used to reflect different scenarios of the knowledge mastery
in the population. For K = 3, the mean of d̃ is taken as µ3 = 0 or (−1, 0, 1)>,
and for K = 5, the mean is µ5 = 0 or (−1,−0.5, 0, 0.5, 1)>. Note that the
non-constant mean represents imbalanced distribution of the latent attribute
profiles. The covariance matrix of d̃ is defined as Σ = σ2{ρ11T +(1−ρ)IK},
where 1 = (1, .., 1)> and IK is the K×K identity matrix. The diagonal terms
of covariance matrix are fixed to be σ2 = 1 and the correlation parameter ρ
is taken as 0 or 0.8, corresponding to low and high correlations of the latent
attributes. Since CDMs can be considered as special cases of PM-CDMs with
each dk ∈ {0, 1}, when we simulate data from the CDMs, we follow the PM-
CDM data generating process by first simulating d’s and then round them
to be 0 or 1. Note that the used method of simulating correlated attributes
under CDMs are the same to many existing studies (e.g., Chiu et al., 2009;
Chen et al., 2015)

After generating latent attributes d̃i from Normal(µ,Σ) for i = 1, .., N ,
we generate data under conventional CDMs and PM-CDMs. In particular,
datasets are simulated according to 4 models: DINA, PM-DINA, GDINA
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and PM-GDINA. The correct response probability for DINA and PM-DINA
model is set to be 0.2 (non-mastery) and 0.8 (mastery); in other words,
both the slipping and guessing parameters are set to be 0.2 for all items.
For GDINA and PM-GDINA, there is an additive effect of the mastered
attributes on the probability. For items requiring only 1 attribute, it is either
0.2 (non-mastery) or 0.8 (mastery); for 2-attribute items, it is 0.2 (master
none), 0.5 (master 1 of 2) or 0.8 (master both); for 3-attribute items, it’s 0.2
(master none), 0.4 (master 1 of 3), 0.6 (master 2 of 3) or 0.8 (master all).

We consider two sample sizes for each K. For K = 3, we generate N = 500
and N = 1000 subjects; for K = 5 we use N = 1000 and N = 2000. In
summary, this simulation study uses the following 128 conditions:

DINA
PM-DINA

GDINA
PM-GDINA

⊗ (K = 3
K = 5

)
⊗
(
QK
Q′K

)
⊗
(
µ = 0
µ 6= 0

)
⊗
(
ρ = 0
ρ = 0.8

)
⊗N ′s.

For each condition, we generate 50 replications.
To get a direct comparison to CDMs, we fit both the DINA and PM-

DINA models for the DINA- and PM-DINA-generated datasets, and both
the G-DINA and PM-GDINA models for the the GDINA- and GPM-DINA-
generated datasets. For PM-CDM estimation, we perform the proposed
Gibbs sampling algorithm. In particular, we take weakly-informative pri-
ors of µ,Σ and θ’s: for µ, we take µ0 = 0 and Σ0 = IK ; for Σ, we take
Ψ0 = IK and ν0 = K + 1; for θ’s, we take weakly-informative priors
Beta(a0 = 1, b0 = 2) for α∗ = 0 and Beta(a0 = 2, b0 = 1) for α∗ � qj ,
and noninformative priors Beta(a0 = 1, b0 = 1) for other α∗’s. Such Beta
priors are set to reflect the assumption that students mastering no skills
will have lower probabilities to get the correct response and those mas-
tering all required skills of item j will have higher chances to answer it
correctly (e.g., Chen et al., 2018). We take the following initial values:

µ(0) = (0, ..., 0)T ; Σ(0) = E; d(0) ∼ Unif(0.01, 0.99); d̃(0) = Φ−1(d(0)); z
(0)
ijk ∼

Normal(d̃
(0)
ik , 1);α

(0)
ij = 1(z

(0)
ij ≥ 0); θ

(0)
jl = 0.5 ; ∀j = 1, .., J ; l = 1, ..., 2K .

We run MCMC chains in R with a total number of M = 30, 000 and
burn-in size at 10, 000 in the simulation studies. Using Macbook Pro with 3
GHz Dual-Core Intel Core i7 CPU, the computational time of the proposed
Gibbs sampling algorithm is about 300 seconds for 1000 MCMC iterations
under the setting of K = 3 and N = 500 and about 690 seconds for 1000
MCMC iterations under the setting of K = 5 and N = 1000, meanwhile
the Bayesian DINA takes 100 and 230 seconds, respectively. As K increases,
the proposed algorithm gradually gains advantage over the Bayesian CDM.



18 SHANG ET AL.

Under a case of K = 10, N = 1000, the estimation of the PM-CDM takes
about 45 minutes whereas classical Bayesian CDM would take 95 minutes.
Overall, as N increases, the computational time increases approximately lin-
early in N . Though M = 30, 000 and burn-in size 10, 000 are used in our
simulation, we find that the MCMC chain converges well after about 1000
iterations (the convergence of the MCMC chains is diagnosed with trace
plots and Gelman-Rubin’s R2 < 1.1); therefore, a few thousands iterations
would suffice in practice. We note that the EM algorithm for CDM esti-
mation is computationally more efficient (taking about 5 minutes for the
case of K = 10); nevertheless, the MCMC estimation provides the full dis-
tributional information of the estimates, and its computational time may
not be directly comparable to that of the EM algorithm, which usually only
provides the point estimation (and standard error) results. It would be an
interesting future research direction to study a more efficient EM-type esti-
mation algorithm for the proposed models.

4.2. Simulation Results.

4.2.1. Item Parameter Recovery Results. For each simulated dataset, we
first compare the CDMs and PM-CDMs in terms of their estimation of item
parameters. Table 2 summarizes the simulation results for (K = 3, N =
500, Q = Q3) and (K = 5, N = 1000, Q = Q5), respectively. Results
for other simulation settings are presented in the Supplementary Material
(Shang et al., 2021) due to space constraint. For the estimation of item pa-
rameters, we report the mean absolute errors (MAEs) of the posterior mean
estimates of the item parameters (θj,α’s), averaged over 50 replications, and
the corresponding averaged root mean squared errors (RMSEs), which are
in the columns “MAE” and “RMSE” of Table 2. When the PM-DINA and
PM-GDINA are the true models, simulation results show that the proposed
Gibbs sampling algorithm estimates the item parameters accurately with
small MAEs and RMSEs. Nonconstant means and high correlations of the
mastery scores have little effect on estimating the items parameters, com-
pared with the cases with constant mean and zero correlation.

Model misspecification impact. When the DINA is fitted for these data gen-
erated from the PM-DINA, the DINA model has severe misfitting and much
larger MAEs and RMSEs for the item parameters. Similarly, we observe
that the PM-GDINA outperform the GDINA in terms of item parameter
estimation for all simulation cases when the PM-GDINA is the true model.
On the other hand, when DINA or GDINA is the true model, they perform
better than the PM-DINA or PM-GDINA, respectively, though the differ-



PARTIAL-MASTERY COGNITIVE DIAGNOSIS MODELS 19

ences are minor especially for the GDINA model with larger K = 5, lower
sample size, and more complicated settings with nonzero means and high
correlations. This indicates that performance of PM-DINA or PM-GDINA
in item parameter estimation is comparable to that of DINA or GDINA,
due to the fact that CDMs can be viewed as a submodel of PM-DCMs with
extremal d values.

4.2.2. Attribute Mastery Recovery Results. We approach evaluating the
estimation of attribute profiles or mastery scores in different ways that de-
pend on the true assumption about subject-level heterogeneity. We consider
two cases: (i) If the true model assumes Binary mastery (CDMs), the mod-
els are evaluated by mis-classification rates. In particular, we consider the
Attribute-level Mis-Classification Rate (AMCR) that is the proportion of
incorrectly classified attributes among all subjects and all attributes, i.e.,
AMCR =

∑N
i=1

∑K
k=1 |αik − α̂ik|/NK, where α̂ik ∈ {0, 1} is the estimated

kth latent attribute for the ith individual: when CDMs are fitted to the
data, it is estimated based on the maximum likelihood estimator and when
PM-CDMs are fitted to the data, the estimated α̂ik is computed by round-
ing the estimated latent mastery score dik to the nearest binary class. (ii)
When the true model assumes partial mastery (PM-CDMs), we evaluate
models by the root mean of squared error in estimating the latent attribute:
ARSE = (

∑N
i=1

∑K
k=1(dik− d̂ik)2/NK)1/2, where d̂ik is the estimated latent

mastery score: when CDMs are fitted to the data, we take the posterior
probabilities of latent attributes P̂ (αik = 1) as d̂ik, and when PM-CDMs
are fitted to the data, d̂ik is the posterior mean estimator from the MCMC
algorithm. In addition, to have a direct comparison of the CDMs and PM-
CDMs, we also compute AMCR, where the “true” attribute profile of the ith
individual is set to be I(di ≥ 0.5); then for PM-CDMs we use I(d̂i ≥ 0.5)
as the estimator, and for CDMs we use the maximal likelihood estimators.

Table 2 summarizes simulation results for (K = 3, N = 500, Q = Q3) and
(K = 5, N = 1000, Q = Q5), respectively, while results for other settings
are reported in the Supplementary Material (Shang et al., 2021). We can
see that the PM-CDMs outperform the CDMs in most cases. In particular,
when the PM-DINA is the true model, the DINA model has higher AMCR
for latent attributes than the PM-DINA. On the other hand, when the DINA
is the true model, the latent attribute classification results from the PM-
DINA are comparable to the true DINA model. Similarly, we observe that
the PM-GDINA outperform the GDINA in all cases when the PM-GDINA
is the true model, while being comparable to the GDINA model when the
GDINA is true.
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Table 2
MAE is the mean absolute error of item parameter estimates; RMSE is the root mean

squared error of item parameter estimates; AMCR is the attribute level misclassfication
rate; ARSE is the root mean squared error of mastery score estimates.

Simulation results for K = 3, Q = Q3, and N = 500.
True Model

PM-DINA DINA

µ ρ Fitted Model MAE RMSE AMCR ARSE MAE RMSE AMCR

Constant
0

PM-DINA 0.051 0.065 0.281 0.235 0.058 0.071 0.069
DINA 0.154 0.182 0.290 0.257 0.026 0.034 0.068

0.8
PM-DINA 0.044 0.057 0.207 0.189 0.040 0.050 0.061

DINA 0.127 0.145 0.217 0.223 0.022 0.028 0.050

Non-const.
0

PM-DINA 0.053 0.071 0.194 0.215 0.066 0.080 0.056
DINA 0.161 0.205 0.242 0.243 0.033 0.047 0.055

0.8
PM-DINA 0.045 0.061 0.175 0.191 0.051 0.063 0.043

DINA 0.149 0.189 0.250 0.253 0.029 0.039 0.041

True Model
PM-GDINA GDINA

µ ρ Fitted Model MAE RMSE AMCR ARSE MAE RMSE AMCR

Constant
0

PM-GDINA 0.058 0.073 0.285 0.238 0.076 0.090 0.084
GDINA 0.125 0.144 0.308 0.273 0.043 0.054 0.094

0.8
PM-GDINA 0.059 0.072 0.207 0.185 0.067 0.083 0.053

GDINA 0.092 0.104 0.249 0.234 0.057 0.076 0.084

Non-const.
0

PM-GDINA 0.065 0.081 0.196 0.229 0.072 0.087 0.067
GDINA 0.114 0.133 0.328 0.332 0.053 0.071 0.061

0.8
PM-GDINA 0.060 0.075 0.161 0.186 0.068 0.081 0.051

GDINA 0.093 0.118 0.218 0.240 0.063 0.087 0.046

Simulation results for K = 5, Q = Q5, and N = 1000.
True Model

PM-DINA DINA

µ ρ Fitted Model MAE RMSE AMCR ARSE MAE RMSE AMCR

Constant
0

PM-DINA 0.054 0.070 0.328 0.255 0.077 0.089 0.126
DINA 0.150 0.178 0.328 0.262 0.021 0.028 0.125

0.8
PM-DINA 0.040 0.052 0.217 0.198 0.052 0.061 0.073

DINA 0.119 0.137 0.289 0.279 0.026 0.020 0.069

Non-const.
0

PM-DINA 0.056 0.075 0.239 0.239 0.077 0.088 0.098
DINA 0.158 0.201 0.316 0.285 0.034 0.052 0.090

0.8
PM-DINA 0.042 0.055 0.181 0.192 0.061 0.075 0.067

DINA 0.156 0.196 0.290 0.261 0.044 0.061 0.064

True Model
PM-GDINA GDINA

µ ρ Fitted Model MAE RMSE AMCR ARSE MAE RMSE AMCR

Constant
0

PM-GDINA 0.064 0.078 0.324 0.256 0.088 0.101 0.134
GDINA 0.114 0.135 0.376 0.367 0.045 0.058 0.135

0.8
PM-GDINA 0.069 0.085 0.215 0.196 0.070 0.082 0.082

GDINA 0.105 0.112 0.317 0.284 0.067 0.078 0.078

Non-const.
0

PM-GDINA 0.072 0.089 0.253 0.252 0.075 0.098 0.111
GDINA 0.133 0.162 0.319 0.317 0.056 0.069 0.108

0.8
PM-GDINA 0.071 0.089 0.195 0.203 0.072 0.087 0.078

GDINA 0.118 0.133 0.325 0.312 0.071 0.085 0.074

4.2.3. Model Diagnosis of CDMs Using Mastery Score Plots. In this sub-
section, we propose two types of diagnosis for the binary assumption of the
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attribute mastery status under CDMs and use simulation results to illustrate
their performance.

The first diagnosis method is to examine the estimated covariance ma-
trix from PM-CDMs. From the definition of PM-CDMs, the covariance ma-
trix Σ in (3.1) characterizes the dependent structure of the latent scores
dk ∈ [0, 1], k = 1, . . . ,K, up to the Φ−1 transformation. Since CDMs can be
viewed as special cases of PM-CDMs with dk ∈ {0, 1}, under the CDMs, the
corresponding d̃k = Φ−1(dk) as defined in (3.1) would diverge to {−∞,+∞}.
Therefore, we would expect that when the data are generated from the
CDMs, the diagonal elements of the estimated covariance matrix Σ̂ of the
transformed variables d̃’s from the PM-CDMs would be relatively larger
than that in the case when the data are generated from the PM-CDMs with
dk ∈ [0, 1]. Thus, examination of diagonal elements of Σ̂ fitted by the PM-
CDMs can then be used as an exploratory tool for the diagnosis of the binary
assumption of the attribute mastery status under the CDMs. We have done
a simulation study to confirm our observation above. Table 3 reports co-
variance estimation results from the PM-CDMs under simulation settings in
Table 2, when the data are generated either from the CDMs or PM-CDMs.
We can observe that when the PM-CDMs are true, the estimated diagonal
terms are close to the true value and the estimated correlation ρ̂ is close to
the truth; on the other hand, when the CDMs are true, the diagonal terms
σ̂2 estimated from the PM-CDMs tend to be large. Based on these results, in
practice, when some of the estimated diagonal elements of Σ̂’s is not large,
it may imply that the CDM’s assumption on the corresponding attribute
does not hold; see real data examples in Section 5.

The second diagnosis method is to examine the scatter plot of the latent
attribute mastery scores estimated from PM-CDMs. If binary mastery is
true, the estimated mastery scores d̂’s from PM-CDMs would be close to 0
or 1; on the other hand, if partial mastery is true, we would expect d̂’s are
distributed between 0 and 1. To illustrate this, Figure 2 report the scatter
plots for the settings in the upper panel of Table 2 (the data are simulated
from DINA or PM-DINA with K = 3); simulation results of other settings
are presented in the Supplementary Material (Shang et al., 2021). From
Figure 2, when the DINA is the true model, we can see that the estimated
attribute mastery scores are concentrated at the corners, corresponding to
the binary assumption of the mastery status of the attributes. On the other
hand, if the true model are the PM-DINAs (with σ = 1), we can observe
many data points spread in the middle part of the plot. Therefore, in prac-
tice, if the plot of the attribute mastery scores shows that most points are
on the edges or corners, it may be preferable to use CDMs; on the other
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Table 3
Covariance estimation results for K = 3, Q = Q3 and N = 500. The fitted models are

PM-CDMs and values in parentheses are the standard errors.

µ ρ True Model σ̂2 ρ̂

Constant
0

P-DINA 1.03(0.43) 1.02(0.48) 0.99(0.42) -0.01(0.15)
DINA 11.84(3.64) 11.77(3.49) 11.07(3.28) -0.01(0.07)

0.8
P-DINA 1.30(0.48) 1.31(0.49) 1.52(0.91) 0.67(0.06)

DINA 19.08(6.18) 16.22(3.73) 14.85(5.20) 0.70(0.05)

Non-const.
0

P-DINA 1.00(0.37) 1.14(0.59) 0.99(0.25) 0.02(0.16)
DINA 7.50(1.68) 9.87(3.69) 4.25(1.37) 0.03(0.11)

0.8
P-DINA 1.01(0.29) 1.50(0.93) 1.64(0.61) 0.64(0.08)

DINA 10.84(2.79) 11.53(3.24) 4.00(1.19) 0.65(0.14)

Constant
0

P-GDINA 1.16(0.88) 1.04(0.32) 0.87(0.20) 0.05(0.12)
GDINA 4.40(1.28) 4.51(1.58) 4.54(2.40) 0.03(0.07)

0.8
P-GDINA 1.21(0.45) 1.19(0.42) 1.42(0.53) 0.68(0.07)

GDINA 9.91(4.41) 9.60(4.21) 9.90(5.30) 0.73(0.05)

Non-const.
0

P-GDINA 0.78(0.34) 1.08(0.63) 0.94(0.33) 0.04(0.14)
GDINA 3.04(0.89) 4.65(2.05) 3.56(1.23) 0.01(0.09)

0.8
P-GDINA 1.24(0.88) 1.46(0.49) 1.36(1.16) 0.62(0.09)

GDINA 4.06(1.16) 10.49(5.34) 4.33(1.25) 0.64(0.12)

Fig 2. Estimated d of the three attributes by PM-DINA when the true model is DINA
(Row 1) or PM-DINA (Row 2), under three different settings with µ = (0, 0, 0) and ρ = 0
(Column 1), µ = (0, 0, 0) and ρ = 0.8 (Column 2), µ = (−1, 0, 1) and ρ = 0.8 (Column 3).
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hand, if most points are concentrated in the middle, PM-CDMs may be a
better fit.

5. Real Data Examples.

5.1. Fraction Subtraction Data. We first consider the Fraction Subtrac-
tion Data discussed in Table 1, which is a dataset containing responses from
536 middle school students to 20 fraction subtraction problems. Based on
the understanding of the problem solving process, eight latent attributes
required to answer the items and the 20 × 8 Q-matrix were specified (e.g.
Tatsuoka, 1990; de la Torre and Douglas, 2004), which are given in Table
1. The data have been analyzed by many researchers, including Tatsuoka
(2002), de la Torre and Douglas (2004), Xu and Shang (2018), among oth-
ers. Identifiability issue of the DINA model for this dataset has also been
discussed in DeCarlo (2011). Gu and Xu (2020) recently proved that under
the given Q-matrix, the DINA item parameters are all identifiable and the
proportion parameters are partially identifiable.

With the Q-matrix, DINA, GDINA, high-order DINA (HO-DINA), high-
order GDINA (HO-GDINA), PM-DINA and PM-GDINA are fitted. The
information criteria values in Table 7 in the Supplementary Material (Shang
et al., 2021) show that the PM-DINA is a much better fit to these data
comparing to the other models. The difference in BIC/AIC values provides
a very strong evidence for supporting this conclusion, according to guidelines
suggested by Kass and Raftery (1995). To compare the DINA and PM-DINA
models, the estimated correct response probability of non-mastery subjects
(θ0, the guessing parameter) and mastery subjects (θ1, 1 − the slipping
parameter) are also reported in Table 4. We can see that the PM-CDMs
generally give smaller slipping parameters on all items and smaller guessing
parameters on all but one item (item 3), which agrees with the simulation
estimation results when the data are generated from the PM-DINA model.

Figure 3 shows the plot of the estimated latent attribute mastery scores
from the PM-DINA model. We can see that some of the plots (e.g, A1-A4,
A1-A7 pairs) are similar to those in the simulation study when DINA model
is true (upper panels in Figures 2), while others (e.g, A2-A3, A2-A8 pairs)
seem to be more similar to that when the PM-DINA is true (lower panels in
Figures 2). In addition, most of the subjects have the mastery scores of A6
close to 1. We also report in Table 4 the estimated mean, covariance, and
correlation matrix from the PM-DINA model. According to the discussions
based on the simulation study, larger values of the variances σ̂2’s serve as
an indicator of an underlying DINA model while smaller σ̂2’s are likely
the result from a PM-DINA model. Interestingly, the results here show a
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Table 4
Q-matrix for Fraction Subtraction data and the estimation results.

Item Q PM-DINA DINA

A1 A2 A3 A4 A5 A6 A7 A8 θ̂0 θ̂1 θ̂0 θ̂1

1 0 0 0 1 0 1 1 0 0.013 0.948 0.030 0.911
2 0 0 0 1 0 0 1 0 0.013 0.985 0.016 0.959
3 0 0 0 1 0 0 1 0 0.005 0.914 0.000 0.866
4 0 1 1 0 1 0 1 0 0.208 0.938 0.224 0.890
5 0 1 0 1 0 0 1 1 0.279 0.891 0.301 0.828
6 0 0 0 0 0 0 1 0 0.043 0.975 0.090 0.956
7 1 1 0 0 0 0 1 0 0.009 0.904 0.025 0.803
8 0 0 0 0 0 0 1 0 0.333 0.859 0.443 0.818
9 0 1 0 0 0 0 0 0 0.078 0.788 0.261 0.753
10 0 1 0 0 1 0 1 1 0.014 0.849 0.029 0.786
11 0 1 0 0 1 0 1 0 0.051 0.971 0.066 0.918
12 0 0 0 0 0 0 1 1 0.038 0.975 0.127 0.959
13 0 1 0 1 1 0 1 0 0.004 0.721 0.013 0.665
14 0 1 0 0 0 0 1 0 0.021 0.979 0.060 0.939
15 1 0 0 0 0 0 1 0 0.024 0.958 0.031 0.895
16 0 1 0 0 0 0 1 0 0.022 0.953 0.107 0.889
17 0 1 0 0 1 0 1 0 0.017 0.927 0.038 0.862
18 0 1 0 0 1 1 1 0 0.083 0.924 0.119 0.862
19 1 1 1 0 1 0 1 0 0.008 0.878 0.022 0.759
20 0 1 1 0 1 0 1 0 0.007 0.912 0.013 0.843

Mean, variance, and correlation estimation results for Fraction data

A1 A2 A3 A4 A5 A6 A7 A8

µ̂ -0.719 1.759 0.644 1.246 -0.551 2.512 2.622 2.043
Φ(µ̂) 0.236 0.961 0.740 0.894 0.291 0.994 0.996 0.979
σ̂2 22.687 3.463 15.207 68.514 48.576 2.649 10.043 2.516

Σ̂∗ A1 A2 A3 A4 A5 A6 A7 A8
A1 1.000 0.732 0.755 0.868 0.851 0.189 0.904 0.563
A2 0.732 1.000 0.712 0.656 0.756 0.318 0.809 0.680
A3 0.755 0.712 1.000 0.664 0.882 0.309 0.790 0.644
A4 0.868 0.656 0.664 1.000 0.787 0.174 0.883 0.345
A5 0.851 0.756 0.882 0.787 1.000 0.238 0.875 0.643
A6 0.189 0.318 0.309 0.174 0.238 1.000 0.272 0.271
A7 0.904 0.809 0.790 0.883 0.875 0.272 1.000 0.592
A8 0.563 0.680 0.644 0.345 0.643 0.271 0.592 1.000

mixture of both cases. For A1, A3, A4, A5 and A7, σ̂2’s are large, while
A2, A6 and A8 have relatively smaller σ̂2’s. Moreover, we can see that most
of the attributes are strongly-correlated, but A6 is weakly correlated with
the others. Based on our results, we conclude that the DINA model fits well
on some attributes but not on others, while PM-DINA fits better overall.
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Fig 3. Scatter plots of attribute scores for Fraction Subtraction data.

Hence, we recommend to use PM-DINA to fit the fraction subtraction data.

5.2. English Tests Data. The second dataset is the English tests dataset
collected by the Examination for the Certificate of Proficiency in English
(ECPE). Designed and organized by University of Michigan English Lan-
guage Institute, the examination is developed to test high-level English lan-
guage skills to determine language proficiency of non-native speakers. It
contains questions to evaluate grammar, vocabulary and reading skills. We
consider a subset of the data from 2003-2004 ECPE grammar section with
2922 subjects and 28 items (Liu et al., 2007). The Q-matrix contains three
attributes: Morphosyntactic Form, Cohesive Form and Lexical Form. The
data were also analyzed in Chiu et al. (2016) using a joint likelihood esti-
mation approach. We again use DINA, GDINA and their partial mastery
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counterparts for fitting this dataset. The information criteria results in Ta-
ble 7 in the Supplementary Material (Shang et al., 2021) provide strong
evidence in favor of partial mastery (Kass and Raftery, 1995). The PM-
GDINA provides the best fit, yet the BIC difference between PM-DINA and
PM-GDINA is negligible.

Table 5
Q-matrix and estimation results. θ0,0 is for subjects with α = (0, 0, 0), θ1,0 is for subjects
only mastering the first of all required attributes, θ0,1 is for subjects only mastering the
last of all required attributes, and θ1,1 is for subjects mastering all required attributes;

note here each item j requires at most 2 attributes and thus has at most 4 different θj,α.

Item Q PM-GDINA GDINA

Morph. Coh. Lex. θ̂00 θ̂10 θ̂01 θ̂11 θ̂00 θ̂10 θ̂01 θ̂11

1 1 1 0 0.54 0.76 0.83 0.98 0.70 0.46 0.80 0.94
2 0 1 0 0.59 0.95 0.74 0.91
3 1 0 1 0.35 0.58 0.41 0.90 0.41 0.67 0.50 0.78
4 0 0 1 0.19 0.91 0.47 0.82
5 0 0 1 0.62 0.99 0.75 0.96
6 0 0 1 0.53 0.98 0.70 0.93
7 1 0 1 0.20 0.82 0.74 0.99 0.48 0.95 0.70 0.94
8 0 1 0 0.71 0.99 0.81 0.97
9 0 0 1 0.29 0.86 0.53 0.79
10 1 0 0 0.41 0.99 0.52 0.89
11 1 0 1 0.28 0.75 0.71 0.99 0.49 0.62 0.72 0.93
12 1 0 1 0.06 0.24 0.19 0.94 0.15 0.00 0.38 0.74
13 1 0 0 0.58 0.99 0.66 0.91
14 1 0 0 0.45 0.92 0.54 0.83
15 0 0 1 0.59 0.99 0.73 0.96
16 1 0 1 0.27 0.74 0.68 0.98 0.48 0.84 0.69 0.91
17 0 1 1 0.62 0.86 0.88 0.97 0.79 0.93 0.88 0.94
18 0 0 1 0.56 0.96 0.72 0.91
19 0 0 1 0.16 0.93 0.45 0.84
20 1 0 1 0.09 0.39 0.20 0.95 0.20 0.20 0.38 0.76
21 1 0 1 0.27 0.62 0.86 0.96 0.54 0.77 0.79 0.92
22 0 0 1 0.01 0.89 0.29 0.80
23 0 1 0 0.47 0.99 0.66 0.94
24 0 1 0 0.09 0.77 0.34 0.69
25 1 0 0 0.44 0.87 0.52 0.77
26 0 0 1 0.36 0.84 0.54 0.78
27 1 0 0 0.17 0.82 0.29 0.70
28 0 0 1 0.43 0.97 0.64 0.91

Covariance and correlation estimation results for English data

Cov. Morph. Coh. Lex.
Morph. 1.126 0.867 1.010

Coh. 0.867 1.083 0.973
Lex. 1.010 0.973 1.337

Corr. Morph. Coh. Lex.
Morph. 1.000 0.784 0.823

Coh. 0.784 1.000 0.809
Lex. 0.823 0.809 1.000
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Table 5 provides the estimated θj,α’s from the GDINA and the PM-
GDINA. We observe that the estimates from the PM-GDINA satisfy the
monotonicity assumption while the results for items 1 and 12 from the
GDINA violate that. In addition, the PM-GDINA generally gives smaller
estimates of θ̂j,0 and larger estimates of θ̂j,1 than the GDINA, which agrees
with the simulation study when the PM-GDINA is correct. For the popula-
tion parameters, the estimated µ’s from the PM-GDINA is (0.227, 0.624, 0.944)
which corresponds to (0.590, 0.734, 0.827) on the 0-1 scales of the mastery
scores. Comparing to the fraction subtraction data, all estimated µ’s are rel-
atively small; moreover, all diagonal terms of estimated covariance matrix
in Table 5 are fairly close to one. These results suggest that the PM-GDINA
may be a better fit for all attributes than the GDINA. The plots of the
attribute mastery scores in Figure 4 further demonstrate this. Instead of
concentrating at the edges and corners, the majority of the subjects’ mas-
tery scores lie in the middle of the plot. According to the simulation results
(e.g., Figure 2), this suggests that PM-GDINA fits the data better than
the GDINA model. Overall, the results provide strong evidence in favor of
partial mastery over binary mastery for all items and attributes.

Fig 4. Estimated attribute scores by PM-GDINA for English data.

We further investigate goodness-of-fit of the GDINA and PM-GDINA on
individual levels. In Figure 5, we present the frequency of estimated all-zero
α (left panel) or all-one α (right panel) attribute profiles – students who
have not mastered any skill or have mastered all three skills, respectively
– from PM-GDINA and GDINA versus the number of correct responses.
The right panel suggests that the two models have similar classification per-
formance for the classification of students into the all-one attribute profile.
However, the left panel indicates a substantial difference for the classification
of students into the zero skill mastery profile. Thus, while the PM-GDINA
and GDINA models are similar in classifying students with less than 12
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correct responses into the all-zero profile, GDINA also estimates zero skill
mastery for a substantial proportion of students who had more than 12
correct responses, while PM-GDINA does not. Take subject 1792 as an ex-
ample, who got correct answers in 20 out of the total 28 questions (Table
6), the GDINA classifies its attribute pattern as (0, 0, 0) with its posterior
probability (0.48) significantly higher than those of other attribute profiles,
which indicates the test-taker does not master any of the attributes. On the
other hand, the PM-GDINA estimates d̂ = (0.41, 0.65, 0.67) suggest partial
mastery of all the three skills. In Table 6, we also list observed responses
from the other four subjects who answered at least 18 out of 28 items cor-
rectly but were classified as (0, 0, 0) by the G-DINA model. On the other
hand, the PM-GDINA estimates reflect partial-mastery of the three skills.
We also present in Table 6 the posterior estimation result of each attribute
from the GDINA (values in parentheses of the column “GDINA Class”).
Though subject 1792’s results are more similar to the PM-GDINA, the rest
four subjects’ results are quite different. The posterior estimate of each at-
tribute of these four subjects from GDINA appears close to zero, while each
of subjects answered 18 out of 28 items correctly.

Overall, the above analysis shows that the PM-GDINA appears to sta-
tistically fit the data better. Practically, we may further consult education
domain experts to decide which results should be used in reporting the cog-
nitive diagnosis results for the subjects.

One interesting observation pointed out by an anonymous reviewer is that
the subject 1792 correctly answered 10 out of those 13 items that require the
first attribute, seemingly contradicting the estimation result of a relatively
low mastery score d1 = 0.41. One reason for this is that the estimation of
each attribute is largely affected by the item parameters. Consider items
13 and 27 for example. Though both items only require the first attribute,
we can see from the estimation results in Table 5 that item 13 is a much
easier problem than item 27; for a subject without mastering any attribute,
d = (0, 0, 0), he/she still has a probability of θ000 = 0.58 to correctly answer
item 13, but only a probability of θ000 = 0.17 to correctly answer item 27.
Such differences in item parameters would lead to different estimated mas-
tery scores even for subjects answering the same number of items correctly;
for instance, conditional on the other items’ responses, answering item 13
correctly but not item 27 (as did by subject 1792) would result in a lower
d1 estimate than the other way around. Another major reason is that the
estimation of each attribute also depends on the q-vectors. Note that sev-
eral items requiring the first attributes also require the other attributes;
under the compensatory GDINA and PM-GDINA model assumption, the
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absence of one required attribute can be compensated by the presence of
other latent attributes. Take item 1, which requires the first two attributes,
for example; from the estimation results, an individual with attribute pro-
file (010), though lacking the first attribute, still has a probability of 0.83
to answer this item correctly. Thus, the simple subscore of counting how
many items requiring each attribute were correctly answered often does not
provide a reasonable estimation of the latent attribute, a phenomenon com-
monly occurring in multidimensional latent variable models, such as CDMs
(Rupp et al., 2010) and item response theory models (Reckase, 2009). This
is also the reason why latent variable statistical models are often preferred in
educational measurement rather than simply using total scores or subscores.

We use a simulation study to further illustrate this. Under the PM-
GDINA model, using the data Q-matrix and the estimated item parameters
in Table 5, we simulate 10,000 independent response vectors to the 28 items
from the estimated mastery score d̂ = (0.41, 0.65, 0.67) of subject 1792. We
find that about 21% out of the 10,000 simulations have correct answers to
at least 10 out of those 13 items that require the first attribute, indicating
that the seemly contradictory observation is a normal phenomenon under
the estimated model parameters. We further present in Figure 6 the esti-
mated probability of providing correct answers to at least 10 out of those
13 items for mastery scores d̂ = (d1, 0.65, 0.67) with the mastery scores of
attributes 2 and 3 taking the same estimated values as subject 1792 (solid
curve) and d̂ = (d1, 0, 0) (dashed curve), where the mastery score of the
first attribute d1 varies from 0 to 1. Comparing the two curves, we can see
that when attributes 2 and 3 take 0 values, the chance of observing at least
10 correct answers out of those 13 items is much lower. In addition, both
curves increase with d1, indicating a positive correlation between the number
of correct answers and the level of the first mastery score. All these results
suggest the reasonableness of the estimation result for subject 1792.

Table 6
Individual case study for English Data. “GDINA Class” column gives the estimated

attribute profiles by GDINA and the posterior estimate of each attribute (in parentheses),
and “PM-GDINA” column gives the estimated mastery scores.

Subject Response GDINA Class PM-GDINA Scores

1792 1100111011111111110010111100 000 (0.36, 0.45, 0.51) (0.41, 0.65, 0.67)

429 1010111111001010010111111001 000 (0.05, 0.20, 0.32) (0.28, 0.56, 0.63)
824 1110011101011001101111011101 000 (0.23, 0.20, 0.34) (0.41, 0.62, 0.65)
1366 1001010011111101011010111011 000 (0.02, 0.02, 0.05) (0.36, 0.51, 0.51)
2273 1111110111001110110110011011 000 (0.08, 0.17, 0.19) (0.38, 0.62, 0.65)
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Fig 5. (Left) Frequency of estimated all-zero α of English Test Data from PM-GDINA and
GDINA, versus the number of correct responses. (Right) Frequency of estimated all-one α
from PM-GDINA and GDINA, versus the number of correct responses.

Fig 6. The estimated probability (y-axis) of providing correct answers to at least 10 out of
those 13 items requiring attribute 1, for mastery scores d̂ = (d1, 0.65, 0.67) (solid curve)
and d̂ = (d1, 0, 0) (dashed curve), with first attribute’s mastery score d1 (x-axis) varying
from 0 to 1. The dotted vertical line indicates the estimated score d1 = 0.41 of subject 1792.

Finally, we would like to point out that the hierarchical structure of the la-
tent attributes for this dataset was studied in Templin and Bradshaw (2014)
under CDMs. Even though the hierarchy structure is not used in the CDM
and PM-CDM modeling of this work, the corresponding hierarchical models
can be viewed as submodels of the fitted CDM and PM-CDM by constrain-
ing the model parameters to respect the hierarchy. As the sample size of this
dataset is relatively large (N = 2922), fitting the general models would yield
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similar results as the hierarchical submodels. This was also found in the data
analysis in Templin and Bradshaw (2014) that “Agreement between the two
models [the hierarchy and general models] was very high, providing matching
classifications for 93.6% of examinees. The two models provide similar clas-
sifications of examinees with only a few cases where classifications differed
substantially.” For this reason, this work focuses on the general CDM and
PM-CDM.

6. Discussion. In this paper, we propose a mixed membership mod-
eling approach for cognitive diagnosis, PM-CDM, which allows for partial
mastery along multiple dimensions of latent attributes. The proposed ap-
proach covers CDMs as special cases and provides a more flexible tool for
cognitive diagnosis assessment. We develop a Bayesian estimation method
that is applicable to all PM-CDMs and demonstrate accurate parameter
recovery in simulated setting with partial mastery assumption. Using sim-
ulation studies, we investigate the impact of model misspecification when
the true data generation process assumes binary mastery but partial mas-
tery models are fitted to the data, and vice versa. Our results indicate that
partial mastery models are able to fit simulated data better than binary
mastery CDMs when partial mastery is present, and provide comparable
(or slightly worse) results to CDMs when binary mastery is the correct as-
sumption. In addition to goodness-of-fit measures such as AIC and BIC, we
suggest several diagnostics that could be used for determining when partial
mastery models are more appropriate. In the two real data examples consid-
ered in this paper, we find strong evidence in support of partial mastery. For
the fraction subtraction data, partial mastery was clearly more appropriate
than binary mastery for some attributes (such as A3 “simplify before sub-
tracting”) but not for others (such as A7 “subtract numerators”), whereas
in the English tests data, partial mastery specification was found to be more
appropriate for all attributes. Examining discrepancies between estimated
individual-level partial mastery scores and attribute profiles, we observe that
PM-CDMs provide more detailed information about the skills learned that
skills that need study. This property of PM-CDMs has the potential to lead
to more effective remediation programs.

The proposed Gaussian copula modeling approach needs K+K(K+1)/2
parameters to model the distribution of the attribute mastery score d. The
computation cost of the proposed Gibbs sampling method increases quadrat-
ically with respect to K. An interesting direction is to further reduce the
model complexity, especially when the number of attributes K is large. We
may consider a factor analysis model for the latent scores; for instance, the
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one-factor model is {Φ−1(dk); k = 1, · · · ,K}> = µ + Λη + ε, where Λ is a
K×1 loading vector, η is a subject specific factor following standard normal
distribution and ε follows a multivariate K-dimensional normal distribution
with zero mean and diagonal covariance E. Then this model corresponds to
{Φ−1(dk); k = 1, · · · ,K}> ∼ N(µ,ΛΛ> + E), which has fewer model pa-
rameters than the proposed model in Section 2 (when K ≥ 4). The above
factor analysis modeling is similar to the higher-order factor models and
higher-order CDMs proposed in de la Torre and Douglas (2004), Templin
et al. (2008), and Culpepper and Chen (2019); this is also related to the mul-
tidimensional IRT model (Reckase, 2009). However, as discussed in Section
3.1, our method differs from these existing studies due to the different cog-
nitive diagnosis modeling from the latent scores to responses. Alternatively,
to reduce the computation cost when K is large, we may use the variational
approximation inference method (Blei et al., 2003; Erosheva et al., 2007; Blei
et al., 2007) or moment based method (Zhao et al., 2018) for PM-CDMs.

Another interesting extension of this study is to allow for mixtures of bi-
nary and partial mastery across attributes. As illustrated in the analysis of
the Fraction Subtraction data, in practice some attributes may satisfy the
partial mastery assumption while other may follow the binary assumption.
Moreover, as discussed in the analysis of the English data, the extension
to hierarchical PM-CDMs is also worthy of further investigation. Such an
extension would need to carefully incorporate prespecified hierarchical struc-
tures among the latent attributes by domain experts.

Finally, in this paper, we have assumed that the pre-specified Q-matrix
is known and correct. In practice, the Q-matrix is usually constructed by
the users and may not be accurate. A misspecified Q-matrix could lead to
substantial lack of fit and, consequently, erroneous classification of subjects
(Rupp and Templin, 2008b; de la Torre, 2008b). Various methods for Q-
matrix validation and estimation have been proposed under CDMs (e.g.,
Liu et al., 2012, 2013; DeCarlo, 2012; Chen et al., 2015; de la Torre and
Chiu, 2016; Xu and Shang, 2018; Chen et al., 2018). It would be interesting
to use these approaches to develop a more general PM-CDM framework for
estimating the Q-matrix of multiple latent dimensions.
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